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Abstract 

Background:  Harnessing hepatocytes for basic research and regenerative medicine 
demands a complete understanding of the genetic determinants underlying hepato-
cyte differentiation and maturation. Single-cell CRISPR screens in organoids could link 
genetic perturbations with parallel transcriptomic readout in single cells, providing 
a powerful method to delineate roles of cell fate regulators. However, a big challenge 
for identifying key regulators during data analysis is the low expression levels of tran-
scription factors (TFs), which are difficult to accurately estimate due to noise and drop-
outs in single-cell sequencing. Also, it is often the changes in TF activities in the tran-
scriptional cascade rather than the expression levels of TFs that are relevant to the cell 
fate transition.

Results:  Here, we develop Organoid-based Single-cell CRISPR screening Analyzed 
with Regulons (OSCAR), a framework using regulon activities as readouts to dissect 
gene knockout effects in organoids. In adult-stem-cell-derived liver organoids, we 
map transcriptomes in 80,576 cells upon 246 perturbations associated with transcrip-
tional regulation of hepatocyte formation. Using OSCAR, we identify known and novel 
positive and negative regulators, among which Fos and Ubr5 are the top-ranked ones. 
Further single-gene loss-of-function assays demonstrate that Fos depletion in mouse 
and human liver organoids promote hepatocyte differentiation by specific upregu-
lation of liver metabolic genes and pathways, and conditional knockout of Ubr5 
in mouse liver delays hepatocyte maturation.

Conclusions:  Altogether, we provide a framework to explore lineage specifiers 
in a rapid and systematic manner, and identify hepatocyte determinators with poten-
tial clinical applications.
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Background
The liver is the largest internal organ that controls metabolism, secretion, and detoxifi-
cation, and those essential functions are mainly executed by hepatocytes [1]. Decipher-
ing the mechanism of hepatocyte differentiation and maturation facilitates regenerative 
medicine, which is aimed to promote the generation of functional hepatocytes in vitro 
or in  vivo for the treatment of liver diseases. Functional hepatocytes are generated 
through tightly controlled transcriptional programs in vivo. During liver development, 
the liver progenitor hepatoblasts are specified from the foregut of endoderm and then 
differentiate into hepatocytes and cholangiocytes [2]. Hepatocytes derived from liver 
progenitor-like cells are also observed in vivo, when the hepatic parenchyma is severely 
compromised during injuries [3–5]. It is known that transcription factors (TFs) such as 
FOXA2, HNF4α, and CEBPA are required for the hepatocyte differentiation and main-
tenance of functional mature hepatocytes, and loss of any of those key TFs will lead to 
the degeneration of hepatocytes and liver diseases [2]. Based on the current understand-
ing of hepatocyte specification, step-wised differentiation of hepatocytes from human 
pluripotent stem cells (PSC) has been established [6, 7]. However, the PSC-derived 
hepatocytes are not functionally mature, implying the unknown realm of hepatocyte dif-
ferentiation and maturation.

Single-cell profiling of fetal liver development has revealed thousands of genes, includ-
ing dozens of TFs that are dynamically expressed during hepatocyte formation [8, 9]. 
To identify key regulators for hepatocyte differentiation and maturation from a large 
number of candidates, a high-throughput assay in a near-physiological model is urgently 
needed. Compared to 2D culture models, adult-stem-cell-derived 3D organoids possess 
advantages in experimental manipulability and scalability, as well as capturing aspects 
of the native tissue architecture and function in  vitro [10]. Organoids derived from 
intrahepatic cholangiocyte organoids (ICOs) [11] are facultative and could convert into 
hepatocytes in defined culture conditions [12–14]. This ICO-based one-step hepatocyte 
differentiation system has been successfully applied to test a small pool of hepatocyte 
specifiers through a gain-of-function assay in our previous study [15]. However, only the 
expression of Albumin was used as the readout, and the heterogeneity of organoids was 
not accounted for, limiting the systematic discovery of hepatocyte regulators that are 
involved in the complex process.

Single-cell CRISPR (scCRISPR) screens, in which single-cell transcriptomes are used 
as readouts for CRISPR gene perturbations, are suitable to assess transcriptional effects 
on cell fate or cell states for vast candidate genes [16–22]. scCRISPR screens have not 
been applied in 3D organoids for lineage specifiers at large scale. While the rich scRNA-
seq readout would capture the heterogeneity of organoids, it also poses additional chal-
lenges for determining the perturbation effects that are required for the identification of 
key transcriptional regulators. Cell fate transition is often driven by a cascade of tran-
scriptional activation while each TF may only present at low abundance at a given time 
point. Due to the noise and dropouts in single-cell sequencing, it is difficult to accu-
rately estimate the change of low abundance transcripts. In addition, sometimes it is the 
change of TF activities, rather than a change in TF abundance, that initiates transcrip-
tional cascades. Most existing analysis tools for scCRISPR screens estimate the direct 
perturbation effects on gene expression [16, 18, 23], rather than on TF activities. It has 
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been shown that using changes in the activities of regulons (the TF-centered gene regu-
latory modules) is a more robust method for cell state identification than using differen-
tial gene expression in scRNA-seq [24]. Therefore, using the changes in the activities of 
regulons to assess the perturbation effects is a possible way to address the challenges for 
TF regulator screens in organoids.

Here, we established OSCAR, a method for scCRISPR screening in organoids using 
changes in regulatory network as readouts and applied it to identify modulators of 
hepatocyte differentiation and maturation. Using OSCAR, two sets of modulators that 
potentiated or attenuated this process were identified and ranked on their regulatory 
effects on hepatocyte marker expression. Among the top modulators, c-Fos, a compo-
nent of activated protein-1 (AP-1) transcription factor, caused accelerated hepatocyte 
differentiation and maturation when perturbed in both mouse ICOs (mICOs) and 
human ICOs (hICOs); whereas Ubr5 loss led to an opposite effect. Collectively, our 
study demonstrated an organoid-based scCRISPR screen approach that was scalable, 
manipulable, and general purpose for identifying regulators in cell fate transition.

Results
Establishment of an organoid‑based single‑cell CRISPR screen for hepatocyte lineage 

regulators

To assess the feasibility of conducting single-cell CRISPR screens in 3D organoids, 
we performed a proof-of-concept CROP-seq screen in mouse ICOs (mICOs), iso-
lated from livers of mice expressing spCas9-EGFP at Rosa26 locus (Fig.  1a) [25]. 
mICOs form a self-organized cystic structure in the expansion medium (EM) with 
the expression of hepatocyte lineage markers as well as ductal markers. mICOs 
could convert into hepatocyte-like cells in a defined differentiation medium (DM) 
for ~ 12 days [12, 14]. To improve the scalability and manipulability of the system for 
setting up the in-organoid single-cell CRISPR screen, we shortened the duration of 
the differentiation strategy from 12  days (DM_12) to 7  days (DM_7) and compared 
the transcriptional profiles between them. In agreement with previous reports [12], 
both strategies could induce comparable expression of multiple hepatocyte mark-
ers such as Alb, Ttr, Cyp3a11, Apoa1, Mup20, Mrp2, Sult1a1, and Aldh1a1 as well 
as the reduction of ductal markers such as Sox9 and Spp1, indicative of cholangio-
cyte-to-hepatocyte transition (Additional file 1: Fig. S1a). Principal component analy-
sis (PCA) of transcriptional profiles revealed that the samples from DM_7 clustered 
closest to those from DM_12, indicating the overall transcriptional similarity between 
the two strategies (Additional file  1: Fig. S1b). Differential gene expression analysis 
revealed that ~ 80% of the upregulated genes and downregulated genes are conserved 
between DM_7 and DM_12 groups (Additional file 1: Fig. S1c and Additional file 2: 
Table S1a, b). Nearly, all of the gene ontology (GO) biological processes enriched for 
upregulated genes shared in DM_7 and DM_12 groups were metabolism-related, 
while the enriched processes associated with the downregulated genes were related 
to the cell cycle pathway (Additional file 1: Fig. S1d and Additional file 2: Table S1c, 
d). Gene set enrichment analysis (GSEA) of transcriptional profiles for the DM_7 
strategy identified multiple metabolism-related processes such as retinol metabolism, 
drug metabolism, and complement and coagulation cascades (Additional file  1: Fig. 
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S1e-h), suggesting the differentiation of mICOs into functional hepatocyte-like cells. 
Together, the above results demonstrated that a 7-day differentiation strategy was 
adequate for producing hepatocyte-like cells.

For the pilot screen, we designed a sgRNA library targeting six hepatic fate regu-
lators (three sgRNAs per gene), namely Hnf4α, Onecut1, Hdac3, Esrp2, Cebpd, and 
Hmga2, as well as 4 non-targeting controls (NTs), for a total of 22 sgRNAs (Addi-
tional file 2: Table S2). The sgRNAs were individually cloned into the lentiviral CROP-
seq vector modified with an mCherry reporter. To perform the screen, mICOs were 
transduced with lentivirus produced from this CROP-Guide-mCherry gRNA library 
at a multiplicity of infection (MOI) of 0.3, and enriched with FACS for genome-edited 
cells (GFP+/mCherry+) at day 3 post-transduction (Fig. 1a, b). At day 5 post-sorting, 
the GFP+/mCherry+ double positive mICOs were split and subjected to either EM for 

Fig. 1  Establishment of an organoid-based single-cell CRISPR screen for hepatocyte lineage regulators. a 
Schematic design of the organoid-based CROP-seq screen. b Mouse ICOs isolated from Cas9-EGFP knockin 
mice were transduced with the pilot CROP-seq screen lentiviral library carrying a mCherry reporter (pre-FACS; 
top panel). At day 3 post-transduction, mICOs were enriched with FACS for genome-edited cells (GFP+/
mCherry.+) and expanded (post-FACS; bottom panel). Scale bars, 500 μm. c The number and corresponding 
ratio of cells expressing a unique sgRNA (red), more than two sgRNAs (green) or none (blue) in the EM and 
DM groups. d UMAP visualization of cells with unique sgRNA assignments in the EM and DM groups. e UMAP 
visualization of the expression of known hepatic markers, including Alb, Ttr, Mup20, Apoa1, Sult1a1, and 
Aldh1a1. Expression is color-scaled in log2 for each cell. f Heatmap graph displaying the perturbation effect of 
each sgRNA on the top 20 variable genes. g Violin plots showing the relative expression of known hepatocyte 
and cholangiocyte markers in Hnf4α-KO single cells in the pilot screen. Color filling indicates a P-value less 
than 0.05 (Wilcoxon rank sum test)
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expansion or DM for differentiation for 7 days; and both cell populations were cap-
tured using the 10 × Genomics scRNA-seq 3’ polyA-primed platform (Fig. 1a).

After sgRNA assignments and scRNA-seq quality controls based on the number of 
genes expressed, the count of RNA and the percentage of mitochondrial genes (Addi-
tional file 1: Fig. S2a, b), we obtained a total of 8812 cells in the EM group and 11,234 cells 
in the DM group (Fig. 1c). Over 70% of the cells in each group had at least one sgRNA 
assignment, and ~ 50% had a unique sgRNA assigned, indicating the low multiplicity of 
infection (MOI) (Fig. 1c and Additional file 1: Fig. S2c). To eliminate the confounding 
effect, we exclude any cells that were assigned to multiple sgRNAs from downstream 
analysis. The cells with unique sgRNA assignments were normalized and scaled for clus-
tering and dimensional reduction by uniform manifold approximation and projection 
(UMAP), visualizing a clear separation of cells from EM and DM groups (Fig.  1d). A 
cohort of known hepatocyte marker genes, such as Alb, Ttr, Mup20, Apoa1, Sult1a1, and 
Aldh1a1, were upregulated in cells of DM group (Fig. 1e), confirming response to differ-
entiation induction. When we clustered the sgRNAs based on their effects on the top 20 
variable genes computed by scMAGeCK [23], sgRNAs targeting the same gene had simi-
lar perturbation effects (Fig. 1f ). Interestingly, sgRNAs targeting Hdac3 resulted in an 
opposite expression pattern compared to those targeting Hnf4α, which is consistent with 
their opposite roles in hepatocyte differentiation and metabolism [26, 27], albeit classic 
hepatocyte or cholangiocyte markers have not been detected in those top 20 variable 
genes (Fig. 1f ). Violin plots of several hepatocyte or cholangiocyte markers further con-
firmed the inhibitory effect of Hnf4α-KO on cholangiocyte-to-hepatocyte differentiation 
(Fig.  1g). Those results suggested that the single-cell transcriptome profiles in mICOs 
can reveal the perturbation effects for key regulators of hepatic fate determination.

OSCAR for identifying novel modulators regulating hepatocyte differentiation 

and maturation

Next, we applied our screening strategy to an extensive gene set of candidate modula-
tors shortlisted by either comparing the bulk RNA-seq data of mouse liver E14.0 with 
that of adult mouse liver or mining previously reported regulators involved in liver 
development [27–32]. This library includes 236 sgRNAs targeting 79 genes (3 sgRNAs 
per gene except for Hnf4α with 5 sgRNAs) along with 10 NTs, resulting in 246 sgRNAs 
in total (Additional file 2: Table S3). Similar to the pilot screen, spCas9-EGFP mICOs 
were transduced with the sgRNA library of 246 sgRNAs at a representation of 2000 cells 
per sgRNA, as only a fraction of dissociated mICOs generated new organoids [33]. We 
sequenced the transcriptome of 80,576 cells at a median depth of ~ 50,000 reads per cell. 
After assigning sgRNAs to each individual cell and filtering out low-quality cells, we 
obtained 30,217 cells in the DM group and 11,166 cells in the EM group with unique 
sgRNA assignments, accounting for more than 50% in their respective group, which is 
similar to the percentages in pilot screen (Fig. 2a and Additional file 1: Fig. S3).

To identify regulators in the differentiation and maturation of hepatocytes, we devel-
oped a computational analysis pipeline (OSCAR) for assessing the perturbation effects 
based on changes in regulatory networks (Fig. 2a). As the differentiation process is often 
a transcription factor (TF)-driven cascade, we reasoned that the activities of TF-cen-
tered co-varying gene modules were the most biologically meaningful readout for our 
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screen. Evaluating the transcriptional changes at the gene-module level instead of the 
single-gene level also reduces the noises raised from the stochastic nature of single-cell 
expression data [34]. Therefore, we mapped such TF “regulons” de novo from our screen 
data by considering both gene co-expression and TF-gene regulatory relationships using 
SCENIC [35] (Fig. 2a). In total, we have uncovered 244 regulons whose activities var-
ied significantly in our OSCAR screen (Additional file 2: Table S4). Among them, 150 

Fig. 2  CROP-seq screen in mICOs identifies novel modulators regulating hepatocyte differentiation and 
maturation. a Schematic illustration of the OSCAR analysis pipeline. b Overlap of the regulons in our OSCAR 
screen and those differentially activated in mouse fetal livers throughout development [8]. The circos map 
contains the following layers from outside to inside: the master transcription factor of the 150 overlap 
regulons, the relative activity score of the indicated regulon at embryo stage E11.0, E11.5, E13.0, E14.5, E16.0, 
and E17.5, respectively. c Representation of perturbation modules and regulon modules. Left heatmap: The 
effect size on each regulon feature (rows) after perturbation of each candidate gene (columns). Middle and 
Right heatmap: k-means clustering of Spearman’s correlation coefficient of regulons (middle, k = 5) and 
candidate genes (right, k = 4) computed from the effect size matrix. d Regulatory relationships between 
perturbation modules and regulon modules. The thickness of the line represents the − log10 of the P-value 
of hypergeometric tests. Only lines with the P-value less than 0.05 were retained. e Heatmap graph showing 
the perturbation effects of each candidate gene in module P2 and P4 in OSCAR screen on the activities of the 
top 20 variable regulons
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regulons shared the master transcription regulators with the 282 regulons that were dif-
ferentially activated in mouse fetal livers throughout development (Fig. 2b). The master 
transcription factor of these regulons includes known key regulators of hepatocyte dif-
ferentiation, such as Hnf4α, Foxa2, and Cebpα, as well as transcription factors activated 
during cholangiocyte differentiation, such as Hnf1β, Sox4, and Sox9. In addition, the top 
20 variable regulons derived from our data are associated with terms of differentiation 
and biosynthesis, including multiple lipid and glucose metabolism pathways (Additional 
file 1: Fig. S4 and Additional file 2: Table S5). These results suggested that perturbations 
in liver organoids are capable to induce changes in the regulatory networks that reca-
pitulate the in vivo changes during hepatocyte differentiation and maturation.

To evaluate our regulon-based analysis method, we first compared the robustness of 
regulon activity with gene expression by downsampling the cells in our data. We found 
that only 40–50 cells are needed to reliably detect changes in regulon activities, while it 
took 120–150 cells to robustly identify gene expression changes (Additional file 1: Fig. 
S5). These results suggested that the regulon activity is more robust than single-gene 
expression due to the sparsity of single-cell sequencing data.

Subsequently, we compared the performance of OSCAR in profiling perturbation 
effects with two other methods, scMAGeCK and MIMOSCA (See “Methods”). We used 
the correlation coefficient of the top 200 variable features for each perturbation in rela-
tive to Hnf4a as the metrics. The three methods are highly consistent with each other, 
with Spearman’s correlation coefficients ranging from 0.89 to 0.97 (Additional file 1: Fig. 
S6a-c). Next, we measured the robustness of the method, by comparing the agreement 
of perturbation effects calculated from different subsets of the data with those calculated 
from the whole dataset. OSCAR and scMAGeCK are comparable in robustness, while 
MIMOSCA had a higher variation among different rounds of subsampling (Additional 
file 1: Fig. S6d). From the robustness score, we estimated that the cell number required 
for obtaining robust perturbation effects is 30 to 40% for OSCAR and scMAGeCK com-
pared to the cell number for the original version of MIMOSCA.

We found that the GO terms associated with the master TFs from the top variable reg-
ulons identified in OSCAR are more relevant to liver function than the top variable TFs 
identified in scMAGeCK or MIMOSCA (Additional file 1: Fig. S6e). Similarly, OSCAR 
revealed more regulatory changes associated with cell differentiation in the ESC CROP-
seq data (Additional file 1: Fig. S6f ). These results suggested that regulon-based analy-
sis could better reveal biological insights from changes in the whole regulatory network 
than the gene expression-based analysis.

To identify the regulators of hepatocyte formation, we clustered the gene pertur-
bations by the mean regulon activity across all the perturbed cells after removing the 
sgRNAs with less than 40 targeted single cells (Fig.  2a). Using k-means clustering, we 
partitioned the perturbed genes into 4 perturbation modules (P1-P4) and regulons into 
5 programs (R1-R5) (Fig.  2c). We also inferred a regulatory network between pertur-
bation modules and regulon programs from the data (Fig.  2d). Interestingly, genes in 
group P2 and group P4 showed more significant regulatory effects than other groups 
(Fig.  2d). Perturbations in P4 inhibited the regulon program R3, featuring terms such 
as hepatocyte differentiation, glucose and lipid metabolism. In contrast, perturbations 
in P2 activated R3 but inhibited the activities of R1 and R2, which are closely associated 
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with biliary epithelial cell differentiation and mitotic cell cycle (Fig. 2d). We observed the 
well-known differentiation enhancer Hnf4α and repressor Hdac3 located in P4 and P2, 
respectively [26, 27, 36], suggesting that P4 may represent the group of positive regula-
tors of hepatocyte formation and P2 represented the negative ones (Fig. 2d).

We next assessed the association of each perturbed gene with the activities of the top 
20 variable regulons in each regulon program (Additional file 1: Fig. S7). We found that 
perturbations in group P2 increased the activities of Foxa3 and Cebpa-centered regu-
lons, which are known to be key transcription factors involved in hepatocyte specifica-
tion and differentiation [37], as well as the Ppara and Nr1h4-centered regulons, which 
are involved in metabolic regulation [38, 39] (Fig. 2e and Additional file 1: Fig. S7). On 
the contrary, perturbation of the genes in group P4 had the opposite effects on these reg-
ulons (Fig. 2e and Additional file 1: Fig. S7). Among those top 20 variable regulons, we 
also found key TFs of signaling pathways that determine liver cell fate: Tead4 is recog-
nized as a DNA-anchor protein of the YAP transcription complex at the downstream of 
Hippo-YAP signaling, which controls cholangiocyte specification and hepatocyte trans-
differentiation [33, 40–42]. Tcf7l2/Tcf4 acts as the transcriptional partner with β-catenin 
at the downstream of Wnt signaling, which is also required for liver development and 
the postnatal proliferation of hepatocytes [2, 33].

Together, these results suggested our computational framework for scCRISPR data 
analysis is reliable for identifying key cell fate regulators and infer their biological func-
tions from changes in the whole regulatory network.

Modulators identified from OSCAR could be ranked based on the perturbation effects 

on hepatocyte marker expression

To further explore the function of the candidate regulators in modules P2 and P4, we 
sought to map the perturbation effects on hepatocyte differentiation at the single-gene 
expression level. Due to the variability in editing outcomes of the CRISPR-Cas9 system, 
the presence of a sgRNA in a cell does not always indicate the knockout of the target 
gene. To accurately map the perturbation effects, we applied the MIMOSCA framework 
to infer the perturbation probability for each cell [18] (Fig. 3a). For non-targeting con-
trols, the distribution of the perturbation probability follows a normal distribution with 
a mean of 0.5. In contrast, bimodal distributions of the perturbation probability were 
observed for the sgRNAs targeting the candidate regulators, suggesting the separation 
of unperturbed and perturbed cells (Fig.  3b). To identify those unperturbed cells, we 
fitted a two-component Gaussian mixture model on the perturbation probability dis-
tribution for each gene in the P2 and P4 group (Fig. 3a and Additional file 1: Fig. S8). 
After removing the unperturbed cells, we found an increased expression pattern of 9 
hepatocyte-specific marker genes (including Alb, Ttr, Tff3, and Cyp3a13) in the P2 per-
turbation group (Fig.  3c), and the opposite expression pattern in the P4 perturbation 
group (Fig. 3d). These results support that perturbation of these candidate genes directly 
impact the emergence of mature hepatocyte function, such as the secretion of Albumin 
and expression of cytochrome 450 enzymes. Therefore, we integrated the expression 
of the 9 hepatocyte markers into a hepatocyte regulator score, by which the candidate 
modulators in P2 and P4 could be ranked (Fig. 3e, f ).
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Deletion of Fos boosts hepatocyte differentiation by upregulating metabolic pathways

Among the top candidates, Fos perturbation exhibited the highest hepatocyte regulator 
score (Fig.  3e). To further investigate the role of Fos in hepatocyte differentiation and 
maturation, we generated stable Fos KO mICO lines and compared them to the non-tar-
geting (NT) control mICOs under EM or DM conditions (Fig. 4a, b). Morphologically, 
Fos KO organoids closely resembled the NT mICOs (Supplementary Figure Additional 
file  1: Fig. S9a). Using the cell viability assay, we found that their growth rates were 
comparable (Additional file 1: Fig. S9b). In Fos KO organoids cultured with expansion 
medium, cholangiocyte markers (Sox9 and Spp1) were upregulated, while hepatocyte 
markers were barely detectable by qRT-PCR (Additional file 1: Fig. S9c). Upon induction 
with differentiation medium, globally, cholangiocyte markers were significantly reduced 
in NT and Fos KO organoids, while all hepatocyte markers (Alb, Ttr, Apoa1, Mup20, 
and Mrp2) were significantly increased (Additional file 1: Fig. S9c). Interestingly, four of 
the five hepatocyte markers were expressed at significantly higher levels in the Fos KO 

Fig. 3  Candidate modulators identified from the screen regulate hepatocyte marker expression. a Schematic 
illustration of the strategy to filter unperturbed cells for expression analysis. b The representative distribution 
curve of perturbation probability of cells with sgRNA targeting NT-2 (non-targeting) and Foxs1-1 sgRNA. c, d 
Violin plot showing the relative effects of each perturbation from module P2 (c) or module P4 (d) on selected 
known hepatic markers compared to NT controls. Color filling indicates a P-value less than 0.05 (Wilcoxon 
rank sum test). e, f Perturbation score of candidate modulators in P2 (e) and P4 (f) groups using hepatocyte 
regulator score calculated with expression change of the nine hepatocyte markers used in c and d 
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organoids. These results suggested that Fos is a conditional liver cell fate regulator, and 
the deletion of Fos significantly enhanced hepatocyte differentiation upon differentiation 
induction.

Fig. 4  FOS perturbation boosts hepatocyte differentiation and maturation in ICOs. a Flowchart of individual 
validation of Fos perturbation in ICOs. b Western blot analysis of Fos protein levels in mICOs transduced with 
NT sgRNA or sgRNA targeting Fos. Uncropped images of the Western blots are available in Additional File 
1: Fig. S12. c Volcano plot of differentially expressed genes (|log2FoldChange|< 1 and an adjusted P-value 
using the Benjamini-Hochberg (BH) method < 0.05) in Fos KO mICOs compared with NT control ICOs in 
DM condition. d The top 10 enriched GO-BP terms (sorted by adjusted P-values using the BH method) 
of significantly upregulated genes in Fos KO mICOs compared with the NT controls in DM condition. e, f 
Heatmap showing relative expression of genes involved in xenobiotic metabolism (e) or lipid metabolism (f). 
g Representative immunofluorescent staining of Alb expression in Fos KO mICOs compared with NT control 
ICOs in DM condition. Scale bars, 100 μm. h Percentages of Albumin positive cells for mICOs in g were shown 
as mean ± s.e.m. (n = 5) and compared by two-tailed Student’s t test. A P-value less than 0.05 was considered 
statistically significant. i, j Secretory Alb protein levels (i) and bile acid production (j) were measured in Fos KO 
mICOs compared with the NT controls in DM condition. Data were shown as mean ± s.e.m. (n = 6). Following 
one-way ANOVA, the Bonferroni method was used as the post hoc test for pairwise comparisons. Statistical 
significance was defined as a P-value below 0.05. k The expression dynamics of Fos, Hnf4α, and 20 reported 
TFs upregulated during hepatocyte development [43] using the previously published single-cell RNA-seq 
data [8]. l qPCR analysis showing the expression of hepatocyte genes in human FOS KO ICOs compared 
with the NT controls in DM conditions. m ALB protein levels as measured by immunofluorescent staining in 
human FOS KO ICOs compared with the NT controls in DM conditions. Scale bars, 50 μm
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To further understand the molecular mechanisms underlying the observed effects of 
Fos knockout, we performed RNA-seq for Fos KO and NT mICOs that underwent dif-
ferentiation induction. Differential gene expression analysis of RNA-seq data revealed 
840 upregulated genes and 397 downregulated genes in Fos KO mICOs (Fig.  4c and 
Additional file 2: Table S6a). As expected, multiple common hepatocyte markers such 
as Alb, Apoa1, Apob, Apoc2, Cyp2c29, Cyp2c66, and Cyp3a11 were among the upregu-
lated genes (Fig. 4c). Interestingly, functional analysis showed enrichment of upregulated 
genes in multiple hepatic function-related processes, including lipid metabolism, xeno-
biotic metabolism, and glutathione metabolism (Fig. 4d and Additional file 2: Table S6b). 
Specifically, major metabolic enzymes such as cytochrome P450 (Cyp450) and UDP-
glucuronosyltransferase (UGT) accounting for detoxification were significantly enriched 
(Fig. 4e and Additional file 2: Table S6b). In addition, we observed representative genes 
involved in fatty acid metabolism (Cd36, Pparg), bile acid homeostasis (Cyp27a1, 
Akr1d1, Malrd1, Nr5a2), and Abc transporters for bile secretion (Abcc2, Abcg5, and 
Abcg8) were significantly upregulated (Fig. 4f and Additional file 2: Table S6b). In agree-
ment with an increase in Alb mRNA level, immunofluorescent staining revealed an ele-
vated protein level in Fos KO mICOs compared to that of the NT mICOs (Fig. 4g, h). Fos 
KO mICOs also displayed a significant increase in Alb secretion and bile acid produc-
tion (Fig. 4i, j), suggesting that they were more mature in terms of hepatocyte functions.

Since Fos knockout led to accelerated hepatocyte differentiation in our mouse ICO 
model, we ask whether Fos play a role in hepatocyte differentiation in vivo. By analyzing 
Fos expression pattern during liver development, we found that Fos is highly expressed in 
E11.0, but dramatically decreases afterward (Fig. 4k), which is contrary to the tendency 
of Hnf4α and 20 reported TFs that are upregulated during hepatocyte development [43], 
suggesting the Fos suppression is required for the onset of hepatocyte differentiation [8]. 
On the other hand, Fos deletion had been proved to upregulate metabolic pathways in a 
liver conditional knockout mouse model [44], which is consistent with our data obtained 
from the organoid model. Collectively, we proposed that Fos is a suppressor for hepato-
cyte differentiation and maturation.

FOS perturbation in human ICOs potentiates hepatocyte differentiation

To explore whether the augmented effects on hepatocyte differentiation and maturation 
upon the Fos deletion is conserved across mouse and human, we evaluated the effects 
of human FOS depletion in the human intrahepatic cholangiocyte organoid (hICO) 
model. To this end, we first generated hICOs by isolating bile-duct epithelial cells from 
donors receiving hepatectomy. hICOs are similar with mICOs in expression profiles 
and the ability to convert to hepatocyte-like cells in defined culture medium [12–14]. 
Human ICOs were then transduced with an all-in-one lentivirus expressing both Cas9 
and sgRNA targeting FOS, to generate FOS-deleted organoids, which were subjected to 
differentiation using a strategy similar to the mICOs differentiation [13, 14] (Fig. 4a).

Strikingly, the FOS-deleted ICOs exhibited significantly elevated expression in com-
mon hepatic genes, including ALB, TTR​, CYP3A4, CYP2B6, APOC3, APOC1, SULT1A1, 
and UGT1A1, as assessed by qRT-PCR when compared to that of the non-targeting con-
trols (Fig.  4l). In line with an increase in ALB mRNA level, immunofluorescent stain-
ing demonstrated an enhanced ALB protein level in FOS-deleted-hICOs (Fig.  4m). 
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These results suggested deletion of FOS in human ICOs also boosted hepatocyte 
differentiation.

Ubr5 ablation in liver delayed hepatocyte differentiation and maturation

Among the P4 regulators, Chaf1α and Ubr5 perturbation had the lowest hepatocyte reg-
ulator scores (Fig. 3f ). However, as the core component of chromatin assembly factor 1 
(CAF1) complex, the conditional deletion of its partner Chaf1b using Mx1-Cre (active 
in hematopoietic and hepatic lineages) led to postnatal lethality [45]. To facilitate the 
sample collection and analysis, we chose to dissect the functions of Ubr5, which has not 
been examined in the liver before. To this end, we first generated individual mICOs with 
Ubr5 deletion in a similar way as illustrated in Fig. 4a and subjected them to differentia-
tion in DM conditions. Transcriptional profiling revealed that the downregulated genes 
in Ubr5 knockout mICOs were significantly associated with hepatocyte-related pro-
cesses, including glucose homeostasis, fatty acid metabolic process, hormone metabolic 
process, xenobiotic metabolic process, and coagulation (Additional file 1: Fig. S10 and 
Additional file 2: Table S7), indicative of the augmented effect of Ubr5 in hepatocyte dif-
ferentiation and maturation.

To further dissect the Ubr5’s role in vivo, we generated the Ubr5 conditional knock-
out mice (Ubr5fl/fl). After crossing with Albumin-Cre mice, the exon 6 and exon 7 with 
flanking LoxP sites would be specifically deleted in liver cells (hepatocytes and cholan-
giocytes), resulting in Ubr5 loss-of-function in the liver (Fig. 5a). Using the hepatocytes 
isolated by liver perfusion (Fig.  5b), we confirmed the efficient knockout of Ubr5 by 
western blot analysis (Fig. 5c). The Ubr5 knockout liver’s size was comparable to Ubr5 
WT, with no notable changes in liver morphology or structure observed up to 21 days 
(Additional file 1: Fig. S11a). To directly evaluate the effect on hepatocyte differentiation, 
we sacrificed the mice at 3 weeks, and performed immunohistochemistry (IHC) analysis 
of several classic hepatocyte and hepatoblast markers, including Mup, Ttr, Hnf4α, and 
Afp. The results showed that the staining of Mup and Ttr was significantly reduced upon 
Ubr5 deletion (Fig. 5d and Additional file 1: Fig. S11b). Moreover, the Albumin in the 
serum was reduced in Ubr5 KO mice (Fig. 5e), suggesting the Albumin synthesis in liver 
was compromised.

To globally depict the gene expression profile in hepatocytes, we performed RNA-
seq analysis of isolated hepatocytes from Ubr5 WT and KO mice at 3 weeks. GO-term 
enrichment analysis on the 266 differentially expressed genes in Ubr5 knockout liver 
revealed significant enrichment in metabolic pathways related to lipid metabolism, such 
as olefinic compound metabolic process, steroid metabolic process, and long-chain fatty 
acid metabolic process (Fig. 5f, g and Additional file 2: Table S8a, b). Indeed, indicated 
by Oil Red O staining, Ubr5 knockout liver had increased lipid accumulation at 3 weeks 
compared to wild-type liver (Additional file 1: Fig. S11c, d), suggesting a specific role of 
Ubr5 in regulating the lipid metabolic pathways.

Among the 39 genes that were downregulated in Ubr5 knockout livers, 7 genes were 
also significantly downregulated in Ubr5 knockout mICOs compared to their counter-
part, including several classical hepatocyte markers (Sult5a1 and Mup members) (Fig. 5f 
and Additional file 2: Table S8c). GSEA analysis further confirmed that a set of mature 
hepatocyte enriched genes were downregulated in Ubr5 KO hepatocytes (Fig.  5h and 
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Additional file  2: Table  S8d), while a cohort of embryonic liver enriched genes were 
upregulated in Ubr5 KO hepatocytes (Fig.  5i and Additional file  2: Table  S8d). These 
results demonstrated that liver-specific Ubr5 deletion led to retardation of hepato-
cyte differentiation and maturation. At last, to survey the time window in which Ubr5 
exerts its role in hepatocyte differentiation and maturation, we isolated liver tissues from 
mice of different days after birth and performed qRT-PCR to detect classical hepato-
cyte and hepatoblast markers. Overall, Ubr5 loss delayed differentiation during P7-P28, 
as indicated by the reduction of hepatocyte markers, such as Alb, Ttr, Cyp2c69, and 

Fig. 5  Ubr5 ablation in liver blocks hepatocyte differentiation and maturation. a Schematic illustration for 
the generation of conditional Ubr5 knockout mice. Exon 6 and exon 7 were deleted upon Cre-mediated 
recombination. b Schematic hepatocyte isolation by liver perfusion. c Western blot examination of Ubr5 
protein level in WT (wild-type) and KO liver (3 weeks). Vinculin was used as a loading control. Uncropped 
Western blot images are provided in Additional File 1: Fig. S12. d Immunohistochemistry analysis of 
hepatic makers (Mup, Ttr, and Hnf4α) and hepatoblast maker Afp in WT and KO liver (3 weeks). Scale bars, 
200 μm. Magnification = 2.5 × . e Serum Albumin levels in WT and Ubr5 KO mice. Data were represented 
as mean ± s.e.m. (n = 6) and compared by two-tailed Student’s t test, significance was set at a P-value less 
than 0.05. f Clustered heatmap of differentially expressed genes (|log2FoldChange|< 1 and adjusted P-value 
using BH methods < 0.05) in perfused hepatocytes from WT and Ubr5 KO mice (n = 3). Selected genes were 
indicated in right. g The top 10 enriched GO-BP terms (sorted by adjusted P-values using the BH method) 
of significantly differentially expressed genes in the liver of Ubr5 conditional KO mice compared to their 
wild-type counterparts. h, i Gene set enrichment analysis (GSEA) of selected gene sets encoding products 
related to mature hepatocyte (h) or hepatoblast (i), presented as normalized enrichment score (NES). j 
Representative hepatic gene expression in liver tissues from WT and Ubr5 KO mice at different time point 
after birth. Histone H3 was used as an internal control. The data were represented as mean ± s.e.m. (n = 3) and 
tested by one-tailed Student’s t test. Only statistically significant comparisons (P-value < 0.05) were marked on 
the graph
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Hnf4α (Fig.  5j). Intriguingly, the hepatoblast marker Afp was increased at the time of 
P21 (Fig. 5j). These results suggested that Ubr5 plays a role in postnatal development of 
hepatocytes in mice.

Discussion
Single-cell CRISPR screen enables high-throughput perturbation of multiple genes with 
coupled functional readout of transcriptomic consequences [16–18]. Here, for the first 
time, we applied scCRISPR screen in a 3D organoid system to probe novel regulators for 
hepatic cell fate. We developed OSCAR for identifying transcriptional regulators based 
on their perturbation effects on the regulatory network built from the scCRISPR data. 
After functional validation in organoids and mice, Fos and Ubr5 were demonstrated as 
the hepatic cell fate regulators.

Our OSCAR illustrates how scCRISPR screens in organoids could be used to reveal 
transcriptional regulatory mechanisms underlying in vivo development. The data analy-
sis framework provides a methodology that is readily transferable to other systems for 
identification of determinants of complex biological processes. With the success of orga-
noid-based application, we plan to apply OSCAR in vivo for further dissecting genetic 
circuits of liver development, regeneration, and tumorigenesis. While the delivery of 
sgRNAs to the fetal liver will be challenging, this might be overcome through recently 
reported transgenic inducible mosaic sgRNA system [46].

Technically, one major advance of our study is applying the scCRISPR screen in the 
organoid system. Different from 2D cell culture, 3D organoid recapitulate the in vivo tis-
sue architecture and behavior. Compared with the iPSC system, the cholangiocyte orga-
noid differentiation system offers a more convenient one-step differentiation protocol 
and higher genomic stability during passaging [13], providing a more easily manipu-
lable system for screening. However, previous CRISPR screens in organoids relied on 
cell proliferation as readout [47–51], which would limit the ability to map regulators 
in complex processes, such as differentiation, maturation, and aging. scCRISPR screen 
connects genes with complex phenotypes using the whole transcriptome for every single 
cell as the readout, which is particularly useful for the heterogeneous organoid system. 
To study the neural fate regulators in brain development, Fleck et al. perturbed 20 TFs in 
iPSCs and generated mosaic neural organoids from them. The regulators of dorsal telen-
cephalon commitment were identified based on the enrichment of sgRNAs in different 
cell clusters in the scRNA-seq data [52].

In our in-organoid scCRISPR screen for hepatocyte fate regulators, we developed a strat-
egy to identify the key regulators from the scCRISPR screen data based on the changes in 
regulatory networks. Compared to previous methods, the OSCAR framework has some 
advantages. First, using activities of TF-centered gene modules derived from the screen 
data, we were able to alleviate the impact of inherent noise in scCRISPR screens and thus 
reduced the cell number required for robustly measuring perturbation effects. Second, 
we were able to dissect different functional pathways in the complex processes and link 
them to perturbed genes. We obtained modules that are directly associated with hepato-
cyte function, such as those regulating the expression of hepatocyte enzymes in lipid and 
glucose metabolism. Even though the study was performed in organoids in vitro, the gene 
modules recapitulated part of the regulatory network in the in vivo development of mouse 
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liver. Hence, our OSCAR provided a rapid, reliable analysis method for scCRISPR screens, 
which can be applied to study regulatory programs in other complex biological processes.

After identifying key regulators based on their overall regulatory profiles, we separated 
the perturbed and unperturbed cells based on their gene expression patterns, and removed 
the unperturbed cells for each sgRNA to ensure the accurate mapping of perturbation 
effects from a heterogeneous cell population in organoids. We were able to rank the reg-
ulators based on their direct impacts on the expression of hepatocyte marker genes. We 
validated the functions of the top-ranked positive and negative regulators. Fos knockout 
directly promoted hepatocyte differentiation in organoids. Not only known as an onco-
gene, Fos was also reported as a fate regulator in multiple lineages. Constitutive Fos dele-
tion led to a differentiation block of osteoclasts and lineage transition to macrophages [53]. 
Overexpression of Fos in vitro inhibited the differentiation of chondrocytes [54]. We dis-
covered a specific role of Fos in hepatocyte differentiation and maturation, as loss of Fos 
significantly activated hepatic metabolic pathways and functions in both human and mouse 
ICO-derived hepatocyte-like cells. Consistent with our observation, conditional knockout 
of Fos in mouse liver led to the upregulation of metabolic pathways, and vice versa [44]. The 
consistency of FOS protein function in mouse and human also reveals the power for per-
forming genetic screen in a model with uniform genetic background. Interestingly, FOS was 
also reported as the direct target of Hippo-Yap signaling, and inhibition of FOS activity with 
small molecule T5524 would rescue the liver organ overgrowth induced by Yap [55]. Con-
sidering our data, FOS would possibly be a potential druggable gene to rewire the metabolic 
status of dedifferentiated hepatocytes in cancer.

Another regulator we functionally validated was Ubr5, constitutive knockout of Ubr5 in 
mice was embryonic lethal [56], while conditional disruption of the Ubr5 catalytical domain 
in early B-lymphocytes impairs the B cell maturation, indicating the role of Ubr5 in cell 
fate regulation [57]. Our findings that Ubr5 ablation delayed hepatocyte differentiation and 
maturation revealed the significance of this regulator in liver development. The transcrip-
tional profiling revealed a strong defect of lipid metabolism, which was further supported 
by the increased lipid accumulation observed in Ubr5 knockout liver at 3 weeks. The poten-
tial molecular mechanism underlying Ubr5’s regulation on hepatocyte differentiation needs 
further investigations. Given that Ubr5 is an E3 ligase, the finding of Ubr5’s substrates and 
its interactions with other proteins might provide more insights.

Our screen was conducted using ICOs, which possess a cholangiocyte identity and could 
be converted to hepatocyte-like cells upon induction. The regulators we identified in the 
screen are factors that are involved in the cholangiocyte-hepatocyte identity switch. While 
we have validated the role of Ubr5 in mouse liver development, additional studies employ-
ing the iPSC-to-hepatocyte differentiation system are crucial to ascertain these factors’ role 
in human hepatocyte differentiation and maturation.

Conclusions
In summary, we developed OSCAR, a framework using regulon activities as readouts to 
dissect gene knockout effects in organoids. By integrating scCRISPR and liver organoid 
system, we achieved pooled library screening in organoids and identified novel regula-
tors that significantly impact hepatocyte cell fate. Our results demonstrate that OSCAR 
is a powerful and scalable method to discover new regulators of cell fate determination.
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Methods
Human material for organoid culture

Human liver tissue was obtained from Zhongshan Hospital Fudan University. 
Informed consents were obtained from all the patients. All procedures were in 
accordance with the ethical standards of the Medical Ethical Council of Zhongshan 
Hospital Fudan University.

Mouse models

Rosa26-LSL-SpCas9 and Alb-Cre mice were obtained from Jackson Laboratory. 
Rosa26-SpCas9 was generated by crossing Rosa26-LSL-SpCas9 with Dppa3-Cre 
obtained from Shanghai Model Organisms. Ubr5 fl/fl mice were generated by Model 
Animal Research Center of Nanjing University (MARC, Nanjing, China). The target-
ing strategy is shown in Fig.  5a. Genotyping primers are listed in Additional file  2: 
Table S9a.

All mice were maintained in C57BL/6 background. All breeding and experimental 
procedures were performed in accordance with the relevant guidelines and regula-
tions and with the approval of the Institutional Animal Care and Use Committee at 
Fudan University.

Isolation, culture, and differentiation of Cas9‑expressing mouse intrahepatic cholangiocyte 

organoids (mICOs)

To isolate mouse bile-duct organoid, livers from Rosa26-SpCas9 knockin mice were 
removed and minced into small pieces of roughly 0.5 mm3. The minced tissue was 
washed three times with ice-cold wash medium to remove the red blood cells, and 
then incubated with digestion buffer containing 0.125 mg/ml collagenase, 0.125 mg/
ml dispase II, and 0.1 mg/ml DNase I at 37 °C for 45 min with agitation. The cell sus-
pension was filtered through a 100-μm cell strainer to exclude the tissue residue and 
washed with basal medium for 4 times to remove hepatocytes from the suspension. 
The resulting pellets were resuspended in 300 μL of ice-cold Matrigel and allowed to 
seed into six wells of a 24-well plate. After polymerizing, the Matrigel droplets were 
overlaid with growth medium as previously described [14].

To passage the organoids, Matrigel domes in medium were scraped mechanically 
and pipetted up and down using a 1000-μL pipette. The organoid suspension was 
transferred to a 15-ml centrifuge tube supplemented with cold basal medium and 
pipetted up and down several times to remove the Matrigel from the organoids. After 
centrifuging at 200 × g for 3 min at 8  °C, the organoids were resuspended in 500 μL 
basal medium, transferred to a 1.5-ml centrifuge tube, and pipetted up and down 
using a 200-μL pipette to disrupt the organoids completely into fragments. The cell 
fragments were collected by centrifuge at 200 × g for 3 min and resuspended in fresh 
Matrigel before plating into the wells of a 24-well plate. The organoids were passaged 
every 5–7 days as desired.

To differentiate the cells within the organoids to hepatocyte-like cells, the organoids 
seeded as above described were cultured in expansion medium for 2 days and then 
transferred into differentiation medium (day 0) which was changed each day for up to 
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4 days (day 4) for CROP-seq experiment or 9 days (day 12) for individual validation 
experiment. From day 4 to day 7 for CROP-seq experiment, 3 μM dexamethasone was 
added into the differentiation medium which was replaced each day until the differen-
tiation endpoint.

CROP‑seq library construction, lentiviral packing

A CROP-seq library with 246 sgRNAs targeting 78 transcription factors or chromatin 
remodeling factors (3 sgRNAs per gene except for Hnf4α with 5 sgRNAs, 236 sgRNAs 
in total) to be potentially involved in liver development and regeneration and negative 
controls (10 non-targeting sgRNAs) was constructed. Briefly, oligos were synthesized, 
annealed, and cloned individually into the CROP-seq-Guide-mCherry vector (modified 
from CROP-seq-Guide-Puro, Addgene plasmid #86,708). The plasmids were verified by 
Sanger sequencing and pooled together for lentiviral packing.

For lentiviral packing, the CROP-seq library plasmids together with the helper plas-
mids psPAX2 (Addgene plasmid #12,260) and pMD2.G (Addgene plasmid #12,259) 
were transfected into HEK293T cells using Neofect transfection reagent (Neo biotech). 
At 24 h after transfection, medium was changed with viral producing medium (Lonza). 
Sixty hours post transfection, lentivirus particles were collected, filtered through a 
0.45-μm filter, concentrated by centrifuging at 120,000 × g for 3 h, aliquoted and frozen 
at − 80 °C.

CROP‑seq screen

For CROP-seq screening, Matrigel beds should be prepared in advance as previously 
described [33]. Briefly, Matrigel was diluted in expansion medium to a concentration of 
25% and plated evenly to 24-well plates. These beds were placed in 5% CO2 incubator 
at 37  °C to be solidified overnight. BEC-organoids were enzymatically dissociated into 
small cell clusters (~ 5 cells for each cluster) with prewarmed TrypLE supplemented with 
1 mM EDTA (pH 8.0) for 10 min. To achieve ~ 2000 × coverage of the library, 500,000 
cell clusters were infected with CROP-seq library lentivirus (MOI ~ 0.3) in expan-
sion medium containing 10% Matrigel, 8 μg/ml polybrene, and 10 μM ROCK inhibitor 
(Y-27632). The suspension of cell clusters and lentivirus were added dropwise onto the 
Matrigel beds (10,000 clusters for each Matrigel bed). At 24-h post-infection, organoids 
were scraped, washed, and reseeded into the 24-well plates for expansion. Three days 
after infection, organoids were dissociated with prewarmed TrypLE supplemented with 
1  mM EDTA (pH 8.0) for 20  min to obtain single-cell suspension. The GFP/mCherry 
double positive single cells were enriched by FACS sorting and seeded into wells of 
24-well plate. After expanding for 5  days, the organoids were passaged, expanded for 
2  days, and subject to differentiation medium (DM condition) for differentiation as 
described above.

At the endpoint of differentiation, approximately 30,000 BECs from EM condition 
and 60,000 differentiated hepatocyte-like cells from DM condition were captured by the 
Chromium Controller using Chromium Next GEM Single Cell 3’ kit v2 (10 × Genomics) 
with 10,000 input cells for each lane. Libraries were built according to the manufactur-
er’s instructions and sequenced on an Illumina NovaSeq 6000 platform.
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Analysis of single sgRNA perturbation effect using scMAGeCK

We analyzed the alteration of gene expression for each sgRNA by the linear regression 
method (LR) of scMAGeCK R package (version 1.6.0) running with default param-
eters. The sign and value of obtained coefficients matrix could reflect the changing 
direction and degree of gene expression phenotypes respectively in the presence of 
perturbations.

The OSCAR framework for data analysis

CROP‑seq raw data processing

Single-cell sequencing data from each library was processed using “cellranger count” 
pipeline in CellRanger (version 3.1.0) suite with default parameters to generate an 
individual expression matrix. The feature-barcode matrix was imported in R (ver-
sion 4.0.3) and analyzed with the Seurat R package (version 3.2.3). mm10 was used 
as the reference genome. We retained cells with more than 200 expressed genes and 
less than 6000 expressed genes as well as less than 10% mitochondrial genes. For the 
assignment of sgRNAs to cells, a “cropseq_count.py” script [23] was used to collect 
cell identity information from bam files generated by Cell Ranger. Cells with unique 
sgRNA were retained for downstream analysis.

Regulon prediction and activity assessment

pySCENIC (version 1.2.4) was used to perform single-cell regulatory network infer-
ence. According to the published protocol [58], the gene count matrix was loaded 
into SCENIC with gene symbols as row names, and cell barcode as column names. 
To filter low-quality genes, we only kept genes with at least 6 UMI counts across all 
samples and detected in at least 1% of cells. Then the co-expression network was built 
with GRNBoost, followed by pruned by Rcistarget to generate gene regulatory net-
work. Finally, the regulon activity for each cell was scored according to AUCell.

Construction of regulatory maps and identification of regulators

In order to compare the regulatory pattern among perturbations, we first filtered sgR-
NAs with less than 40 cells supported. The effect size of a perturbation on a regulon 
was obtained via the mean regulon activity scores of each target gene group minus 
the mean regulon activity scores of non-target cells. The Spearman’s correlation coef-
ficient was calculated for each perturbation pair or regulon pair. The perturbation 
modules (Pi) and regulon modules (Rj) were identified based on k-means clustering 
via the function “kmeans.”

We constructed the regulatory map of modules (Pi-Rj) by performing hypergeomet-
ric tests, following the strategy of IreNA [59]. The regulatory relationships between 
perturbation and regulon modules (Pi-Rj) were assessed by reshaping and simplifying 
the effect size matrix of perturbation and regulon. Firstly, we retained the regulation 
pairs filtered by Wilcoxon rank sum test (p < 0.05), and divided them into active (effect 
size > 0) and repressive (effect size < 0) regulations. Secondly, we applied the following 
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formula to compute the statistical significance (P-value) from a perturbation module i 
(Pi) to a regulon module j (Rj):

where N, KP, KR, and k denote the total number of regulations in the matrix, the number 
of regulations derived from Pi, the number of regulations targeting Rj, and the number 
of regulations targeting Rj from Pi, respectively. The P-value was adjusted by Benjamini–
Hochberg method and the threshold value was set to 0.05. Thirdly, we utilized Cytoscape 
(version 3.7.2) to visualize the whole regulatory map of modules (Pi-Rj). The reliability 
of the module regulatory relationship is measured by the logarithm of adjusted P-value 
(− log10 adjusted P-value), and we only retained the mapped lines with adjusted P-value 
less than 0.05.

Refine sgRNA assignments by identification of unperturbed cells

Due to the variability of editing outcomes for CRISPR-Cas9 system, the presence of a 
sgRNA in a cell does not always result in a loss-of-function of its target gene. To accu-
rately map the perturbation effects of selected sgRNAs, we exploited MIMOSCA [18, 52] 
to calculate the perturbation probability for each cell, using the default parameters except 
that parameter “l1_ratio” was set to 0.5. Theoretically, the distribution curve of perturba-
tion probability will be bimodal, consisting of a population of cells with no perturbation 
(either unedited or edited but has eligible effects on protein function) and a population 
of cells with perturbation. We utilized Gaussian mixture models (GMM) from mixtools 
R package (version 1.2.0) to separate cells into two groups (k = 2) for each sgRNA. If the 
probability of a candidate cell entering the perturbed group is less than 0.05, the cell will 
be regarded as unperturbed cell and removed for further analysis.

Scoring of hepatocyte markers

To compare and rank the effects of candidate perturbations on our focused hepatocyte 
markers (Alb, Ttr, Mup20, Sult1a1, Cyp3a13, Abcc3, Tff3, Trf, and Fga), we defined the 
following formula to compute a score for each perturbation:

where scorei donates the composite score of perturbation i, k donates the total num-
ber of markers, n donates the total number of perturbations, and FCij donates the fold 
change of normalized expression of marker j in cells with perturbation i compared with 
unperturbed cells.

Comparison of OSCAR with scMAGeCK and MIMOSCA

scMAGeCK (LR) and MIMOSCA were run with default parameters using the expres-
sion matrix and cell identities as the input. The output matrices of the perturbation 
effects were used for the comparison, using the metrics described below.

(1)P(x = k) =
(KP
k
)(N−KP

KR−k
)

( N
KR

)

(2)Scorei =

k

j=1

log2FCij/k , i = 1, 2, . . . , n
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Consistency

To compare the consistency of the three methods, a relative perturbation effect of 
each target was calculated as Spearman’s correlation coefficient of the top 200 vari-
able features between that target and Hnf4α. The consistency was then evaluated 
by pairwise Spearman’s correlation of the relative perturbation effects obtained by 
three methods.

Robustness

Since the coefficients in the perturbation effect matrix obtained by the three meth-
ods were close to 0 for most perturbations, the agreement on the sign of the coef-
ficient was used to evaluate the robustness instead of the value of the coefficient. 
Seven target genes with perturbed cell numbers larger than 600 were included in the 
analysis.

	(I)	 Firstly, we construct a cell-TF matrix (defined as M0 = (Aij)n×m
 ) with m cells and 

n TFs that are recognized both as the core members of regulons computed by 
SCENIC and the 4000 highly variable genes computed by Seurat, where m ≥ j

, n ≥ i , Aij refers to the normalized regulon activity or TF expression according to 
specified method F among methods to be evaluated. In addition, the target identity 
vector of m cells is defined as P0 with q groups. Taking the cell-TF matrix M0 and 
the identity vector P0 as inputs to F, the output was the coefficient matrix 
C0 = (Vij)n×q

 with q targets and n TFs, which converted to C∗
0 = (V ∗

ij )n×q
 via the 

“sign” function in R, where q ≥ j, n ≥ i,Vij refers to the coefficient and Vij
* refers to 

the sign of the coefficient.
	(II)	 For each target group, at a given cell number N, P0 was downsampled 100 times, 

and Pt was defined as the vector obtained at the t time. For t = 1, 2,…,100, a Matrix 
Mt was obtained by extracting cells from M0, according to cell identities in Pt. We 
then derived the matrix Ct

* from Pt and Mt using the same procedure as in (I).
	(III)	We obtained the co-directionality matrix D = (Rij)n×q

 with q targets and n TFs, 
where q ≥ j, n ≥ i. Here, Rij was resigned to reflect the co-directionality between 
100 downsamples and population, and computed as below:

where I, t, i, and j denote the indicator function, the downsample round number, TF 
i, and target j, respectively. To measure the robustness of target j, we have defined an 
indicator named “robustness score” or RS for each target j within q targets:

GO terms

The TFs were first ranked by the variance of their coefficients in each method. The func-
tional GO terms enriched for the selected number of the top-ranked TFs were clustered 

Rij =
∑100

t=1
I(C∗

tij = C∗
0ij)/100

RSj = ||D.j − [1]||2, j = 1, 2, . . . , q
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and the proportion of functional modules that matched the prior knowledge were com-
pared among three methods.

Bulk RNA‑seq analysis

Total RNA was extracted with RNAprep pure micro kit (Tiangen). RNA amount and 
integrity were measured by Bioanalyzer 2100 (Agilent). Libraries for RNA sequencing 
were generated using the Illumina TruSeq RNA Sample Prep kit v2 and sequenced on 
an Illumina NovaSeq 6000 platform. Reads were processed using the following pipe-
line. First, the quality of raw sequencing data was checked by FastQC (version 0.11.8) 
and MultiQC (version 1.6). Then STAR (version 2.7.1a) was used to align reads to 
mouse GRCm38 genome with parameters “–outSAMtype BAM SortedByCoordinate 
–outSAMunmapped Within –outSAMattributes Standard.” Bam files were sorted and 
indexed by samtools (version 1.15.1), and count matrices were generated by feature-
Counts (version 2.0.1). Downstream analysis was completed in R (version 4.0.3). After 
performing the differential expression test by DESeq2 (version 1.30.0), upregulated 
genes (log2 (fold change) ≥ 1 and p.adjust < 0.05) and downregulated genes (log2 (fold 
change) ≤  − 1 and p.adjust < 0.05) were identified. Heatmaps was generated by pheat-
map (version 1.0.12).

Enrichment analysis

Functional enrichment analysis for specified genes was performed by the function 
“enrichGO” from ClusterProfiler (version 3.18.0) with parameters “ont = ’BP’, pvalueC-
utoff = 0.05, qvalueCutoff = 0.2.” In order to concisely comprehend the enrichment 
terms of target genes paird with top regulons, the redundancy of enrichment items was 
reduced by the function “simplify” with parameters “cutoff = 0.7, measure = "Wang"” 
and the term clusters based on semantic similarity were obtained by the method “binary 
cut” provided by simplifyEnrichment (version 1.4.0). Sankey map generated by ggalluvial 
(version 0.12.3) was applicable to the visualization of relationships between regulons and 
various functional clusters. Gene set enrichment analysis was implemented by the func-
tion “GSEA” from clusterProfiler and “gseaplot2” from enrichplot (version 1.14.2).

Pseudotime analysis

The dynamic changes in single-cell profiles of specified genes were assessed by Mon-
ocle2 (version 2.22.0) [60]. A continuous pseudotime heatmap was generated and 
smoothed by the function “plot_pseudotime_heatmap” to visually compare the tem-
poral patterns of different genes.

qRT‑PCR

Total RNA was extracted with the rNeasy Mini Kit (Qiagen) according to the man-
ufacturer’s instructions. Complementary DNA was synthesized with the GoScript 
Reverse Transcription System (Promega). qRT-PCR reactions were performed with 
SYBR qPCR Mix (Biomake) in triplicates on the CFX96 Touch System (Bio-Rad). 
Primer pairs are listed in Additional file 2: Table S9b.
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Immunofluorescence and ELISA

The organoids were collected and washed with cold PBS after the medium was dis-
carded, pelleted by centrifugation (1  min at 300 × g), then fixed in 4% paraformal-
dehyde for 15  min. The fixed organoids were washed with PBS in tube three times, 
permeabilized with 0.25% Triton X-100 for 15  min, then blocked in PBST solution 
(0.1% Triton X-100) containing 1% donkey serum (Solarbio) for 1  h at room tem-
perature. The samples were then incubated overnight with primary antibody at 4 °C. 
Fluorescein-labeled secondary antibodies (Thermo Fisher Scientific, 1:200) and 
4,6-diamidino-2-phenylindole (DAPI) were applied for 1  h at room temperature. 
Confocal laser scanning was done on an Olympus FV3000 laser-scanning micro-
scope. Albumin ELISA was performed according to the manufacturer’s instructions 
(Abcam, ab108792).

Oil Red O staining and immunohistochemistry

Liver tissues were fixed with 4% paraformaldehyde and embedded in optimal cutting 
temperature (OCT) compound or paraffin. For Oil Red O staining, working solution 
was prepared from Oil Red O stock solution mixed 3:2 with water and incubated at 4 °C 
overnight. Solution was filtered through 0.45-μm filters and applied on OCT-embedded 
liver sections for 10 min, followed by incubating in 60% (v/v) isopropyl alcohol for 3 s. 
Slides were washed twice in water, and counterstained with hematoxylin. Lipid droplets 
was quantified using the Image-Pro Plus software by measuring area occupied by red 
pixels. For immunohistochemistry, paraffin-embedded liver sections were deparaffinized 
in xylene and graded alcohols, followed by antigen retrieval, and endogenous peroxidase 
quenched by H2O2. Sections were then blocked with 1% BSA in PBS for 30  min, and 
incubated overnight at 4 °C with α-Mup (Santa Cruz, 1:200), α-Ttr (ProteinTech, 1:100), 
α-HNF4α (Abcam, 1:500), and α-AFP (ProteinTech, 1:100). Secondary biotinylated anti-
rabbit antibody (Vector Labs, 1:400) was added for 2 h at room temperature, followed 
by detection with streptavidin-HRP (Vector Labs) and DAB + chromogen (Vector Labs) 
according to the manufacturer’s recommendations. Slides were counterstained with 
Mayer’s hematoxylin, dehydrated, and mounted with Eukitt (Sigma). Images were taken 
by Vectra Automated Quantitative Pathology Imaging System (Perkin Elmer). Image-Pro 
Plus version 7.0 software was used to access the integrated optical density (IOD) value 
of the IHC sections. The signal density of tissue areas from five randomly selected fields 
were counted in a blinded manner and subjected to statistical analysis.

Immunoblotting

These assays were performed as previously described. The following antibodies were 
used: α-UBR5 (Bethyl, 1:2,000), α-FOS (CST, 1:2,000), α-Vinculin (Abcam, 1:4,000), α-β-
actin (Cell signaling technology, 1:2000), and HRP-conjugated α-mouse IgG and α-rabbit 
IgG (Epizyme, 1:10,000).
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Fluorescence activated cell sorting (FACS)

For organoids, single-cell suspension was dissociated by 1xTrypLE (Gibco) containing 
15 U/ml DNase at 37  °C for 15–20  min. To avoid cell clumps, suspend the cells with 
pipet every 5 min. Flow cytometry was performed using FACSAria II (BD) flow cytom-
eter to sort mCherry+ cells.

Organoid growth assessment

For assessing mICO growth, single-cell suspension dissociated by 1xTrypLE (Gibco) 
were seeded in wells of a 48-well plate (2000 cells per well). Organoid growth was 
assessed using the CellTiter-Glo 3D Cell Viability Assay (Promega) according to the 
manufacturer’s instructions.

Statistical analysis

The hypothesis tests in this paper were carried out using the ’stat’ package function in 
R language (version 4.0.2) or Prism Software (version 6.0). For small sample dataset 
that did not pass the Shapiro–Wilk test (P-value < 0.05), logarithmic transformations 
were applied to enhance data normality. Student’s t test was employed for comparisons 
between two groups, while one-way analysis of variance (ANOVA) were applied for 
comparisons involving more than two groups. Spearman’s correlation analysis was used 
to quantify the correlation among datasets. The significance threshold of the P-value 
was set to 0.05 by default. Adjustments for multiple hypothesis testing were made using 
either the false discovery rate (FDR; achieved by Benjamini–Hochberg or q-value) or the 
family-wise error rate (FWER; achieved by Bonferroni), as specified in the manuscript.

Review history
The review history is available as Additional file 3.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​023-​03084-8.

Additional file 1: Fig. S1. Comparison of different differentiation strategies for mICOs. mICOs isolated from livers of 
spCas9-EGFP knock-in mice were cultured under DM for differentiation or EM for expansion for 7 or 12 days. Cultures 
were harvested for transcriptional profiling. a qRT-PCR analysis showing relative gene expression as mean ± s.e.m. (n 
= 4) of known hepatocyte markers (Alb, Ttr, Cyp3a11, Apoa1, Mup20, Mrp2, Sutl1a1, and Aldh1a1) or biliary duct 
markers (Sox9 and Spp1) for mICO cultures maintained under expansion medium (EM) or transferred to differentia-
tion medium (DM) for 7 or 12 days (DM_7 or DM_12). Following one-way ANOVA, pairwise comparisons were 
performed using the Tukey-HSD test. Only statistically significant comparisons (P-value <0.05) were marked. b 
Principal-component analysis (PCA) of transcriptional profiles of the samples under each condition. X-axis: the 
principal component with the largest explanatory variance. Y-axis: the principal component with the second largest 
explanatory variance. c Venn diagram showing the overlap of upregulated and downregulated genes in DM_7 and 
DM_12 groups compared to the EM group. d The top 5 gene ontology biological processes enriched for upregu-
lated or downregulated genes shared in DM_7 and DM_12 groups. e GSEA of transcriptional profile using KEGG 
gene sets of MsigDB. Bubble size indicates -log10 (FDR q-value) and the color of bubble denotes normalized 
enrichment score (NES). f-h Enrichment score (ES) plots displaying the top 3 pathways of the most highly enriched 
gene sets including retinol metabolism (f ), drug metabolism cytochrome p450 (g), and complement and 
coagulation cascades (h). The statistically significance threshold was set to 0.05 and the adjusted method used was 
the q-value. Fig. S2. sgRNA assignments and scRNA-seq quality control in pilot CROP-seq screen. a The distribution 
of the number of sgRNAs detected per cell in EM and DM group, respectively. b Violin plots of the number of genes 
(feature), number of UMIs (count) and mitochondrial gene percentages for the cells with unique sgRNA assignments 
in EM or DM group. Cells with more than 200 expressed genes and less than 6,000 expressed genes as well as less 
than 10% mitochondrial genes were retained. c The number of cells expressing a unique sgRNA targeting the same 
gene. Fig. S3. sgRNA assignments and scRNA-seq quality control in CROP-seq screen. a Distribution of the number 
of sgRNAs detected per cell in EM and DM groups, respectively. b Quality controls of CROP-seq screen, with the same 
criteria as that in the pilot study. c Number of single cells expressing a unique sgRNA for each targeting gene. d 

https://doi.org/10.1186/s13059-023-03084-8
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Distribution of cell numbers for each perturbation in EM (left) and DM (right) groups. Fig. S4. Sankey plot of 
enrichment analysis for the top 20 variable regulons. The first column: Top 20 variable regulons (number of terms > 
0). The second column: clusters of GO-BP terms (adjusted P-value using BH methods < 0.05). The third column: the 
focused terms. The edge linking the first column to the second column: the term i of regulon j is the member of 
cluster k. The thickness of edge: the number of terms. Fig. S5. Evaluating the number of cells required for robustly 
measuring the regulon activities and expression. a-i Scatter plot showing the Spearman’s correlations between 
average regulon activities (blue points) or average gene expression (red points) in the indicated number of cells and 
that in the whole sample. The cells were randomly sampled 1000 times for each indicated cell number. The curves 
represent the median point of the 1000-time iterations. Cells with sgRNAs targeting Six5 (a), Tead2 (b), Tet2 (c), Spic 
(d), Relb (e), Dnmt3b (f and g), Jdp2 (h), Onecut1 (i) were shown. Fig. S6. Comparison of the three methods on the 
performance of mapping perturbation effects. a-c Scatter plots showing the correlation of perturbation effects 
among the three methods. Each point represents the perturbation effect of a target relative to Hnf4a, which is 
calculated as the Spearman’s correlation coefficient between the top 200 variable features for that target and those 
for Hnf4a. d The line plot shows the robustness of perturbation effects identified by the three methods by 
subsampling different numbers of cells. The robustness score represents the agreement of coefficients calculated 
from the 100 subsets of data with those calculated from the whole dataset. e, f The line plot shows the proportion of 
the key GO term module associated with different numbers of top variable TFs identified by the three methods, 
using our OSCAR dataset (e) or the ESC CROP-seq data (f ). Fig. S7. Association of each perturbed gene with the 
activities of top 20 variable regulons in each regulon program. Column: each perturbed gene from P1-P4 perturba-
tion groups. Row: top 20 variable regulons for each regulon program. Fig. S8. Filtering unperturbed cells from 
scRNA-seq data by MIMOSCA and Gaussian fitting. a Distribution of perturbation probability of each sgRNA before 
filtering. The innermost layer: hierarchical clustering tree indicating the similarity of the distribution of perturbation 
probability calculated by MIMOSCA. The second layer: annular heatmap showing the relative density ( , where Counti 
denotes the number of cells within bini, and the width of each bin is 0.05) of each sgRNA. The third layer: annular bar 
plot showing the number of cells before filtering. As a reference, the number of cells with sgRNA Sfpi1−1 is 183. The 
fourth layer: annular band plot showing the performance of GMM. From inside to outside of the fourth layer, the 
location of bands indicates the probability of each cell being assigned to the second cluster (Higher probability of 
perturbation) of the GMM in each bin, and the color of bands indicates the probability of perturbation of each cell. b, 
c The angle of the polar coordinate plot represents the proportion of cells retained, and the distance from the pole 
represents the number of cells retained (log2 transformation). Histogram showing the distribution of the proportion 
of cells retained for Module P2 (b) or Module P4 (c). Fig. S9. Comparison of growth and gene expression in Fos-KO 
and control mICOs under expansion or differentiation medium. a Representative images showing cyst structures of 
mICOs stably expressing either non-targeting sgRNA (sgNT) or sgRNA targeting Fos (sgFos_1, sgFos_2, sgFos_3). 
Scale bars: 500 μm. b Upper panel: Growth of three Fos-KO lines and control mICOs in EM condition was monitored 
using the Cell-titer Glo assay. Luminescence values were taken every 24 hours. Error bars indicate the standard error 
of the mean. Lower panel: Growth rates for the Fos-KO lines and control mICOs in expansion medium (EM) were 
determined over 24-hour intervals across a 6-day period. Growth rates were calculated by dividing each day’s 
luminescence value by the previous day’s average. Error bars represent standard errors of the mean (n = 3). 
Statistical significance was tested using one-way ANOVA, followed by Bonferroni’s correction for pre-planned 
pairwise comparisons between sgNT and each sgFos line. A P-value less than 0.05 was considered statistically 
significant, and only such comparisons are marked on the graph. c qRT-PCR analysis of the relative gene expression 
of selected cholangiocyte markers (Sox9 and Spp1) and hepatic markers (Alb, Ttr, Apoa1, Mup20, and Mrp2) in mICO 
cultures. Organoid cultures were maintained under expansion medium (EM) or switched to differentiation medium 
(DM) for 7 days. Statistical significance was assessed using one-way ANOVA, followed by Bonferroni’s correction for 
pre-planned pairwise comparisons between sgNT and sgFos_3 under both EM and DM conditions. A P-value less 
than 0.05 was considered statistically significant. Fig. S10. Ubr5 depletion in mICOs weakens hepatocyte differentia-
tion and maturation. Ubr5 KO mICOs and the NT controls were maintained under DM condition for differentiation 
with the strategy as illustrated in Fig. 3a. a Volcano plot shows differentially expressed genes (|log2FoldChange| < 1 
and an adjusted P-value using the BH methods < 0.05). Blue, downregulated genes; red, upregulated genes. 
Representative markers were labelled. b Selected GO terms significantly enriched for genes down-regulated in Ubr5 
KO cultures. c-g Heatmaps showing differentially expressed genes involved in glucose homeostasis (c), fatty acid 
metabolic process (d), hormone metabolic process (e), xenobiotic metabolic process (f ) and coagulation (g). Fig. 
S11. Ubr5 depletion in vivo weakens hepatocyte differentiation and maturation. a Morphology of WT and Ubr5-KO 
livers from mice at P21. Scale bars: 100 μm. b Quantification of IHC images by calculating the relative Integrated 
Optical Density (IOD). Data are represented as mean ± s.e.m. (n = 5) and were compared by the two-tailed student’s 
t test. c Representative images of Oil Red O staining of WT and Ubr5-KO livers from two pairs of mice at P21. Scale 
bars, 100 μm. d Percentages of lipid droplets area in (c) were shown as mean ± s.e.m. (n = 4) and compared by 
Wilcoxon rank sum test within each pair. A P-value less than 0.05 was considered statistically significant. Fig. S12. 
Uncropped images of Western blots. a Western blot gel images for FOS and β-actin; boxes indicate the cropped 
regions in Fig. 4b. b Images of western blot gel for UBR5 and Vinculin; the cropped regions in Fig. 5c are indicated by 
the boxes. 

Additional file 2: Table S1. Downstream analysis of RNA-seq data for organoids at different culturing conditions 
(EM, DM_7 and DM_12). Related to Fig. S1c, d. Table S2. sgRNA sequences and their targeting genes used in the 
pilot screen. Table S3. sgRNA sequences and their targeting genes used in the OSCAR screen. Table S4. Detailed 
data of regulons computed by SCENIC. Table S5. Enriched GO-BP terms of top 20 variable regulon (Terms > 0). 
Related to Fig. S4. Table S6. Downstream analysis of RNA-seq data for organoids at different culturing conditions 
(Fos KO vs WT). Related to Fig. 4c-f. Table S7. Downstream analysis of RNA-seq data for organoids at different cultur-
ing conditions (Ubr5 KO vs WT). Related to  Fig. S9. Table S8. Downstream analysis of RNA-seq data for hepato-
cytes from Ubr5 conditional knockout mice and the wildtype mice (Ubr5 KO vs WT) . Related to Fig. 5f-i. Table S9. 
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The information of primers used in this study. Table S10. The source data and detailed statistics associated with 
Figs. 4 and 5, Fig. S1, Fig. S9 and Fig. S11.  

Additional file 3. Review history.
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