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Abstract 

Technologies to study localized host–pathogen interactions are urgently needed. 
Here, we present a spatial transcriptomics approach to simultaneously capture host 
and pathogen transcriptome-wide spatial gene expression information from human 
formalin-fixed paraffin-embedded (FFPE) tissue sections at a near single-cell resolution. 
We demonstrate this methodology in lung samples from COVID-19 patients and vali-
date our spatial detection of SARS-CoV-2 against RNAScope and in situ sequencing. 
Host–pathogen colocalization analysis identified putative modulators of SARS-CoV-2 
infection in human lung cells. Our approach provides new insights into host response 
to pathogen infection through the simultaneous, unbiased detection of two transcrip-
tomes in FFPE samples.

Keywords: Spatial transcriptomics, Host–pathogen interactions, Colocalization 
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Background
Much is still unknown about how hosts react to pathogens and how pathogen infec-
tion underlies various biological processes and disease states. Although single-cell tran-
scriptomics methods have improved the elucidation of cell type-specific effects caused 
by pathogens and how these relate to disease outcomes [1, 2], such approaches remove 
pathogens and host cells from their natural environment, limiting the study of com-
plex spatial dynamics of infections. Gaining insights into the localized host response 
to pathogen infection requires technologies that allow for the co-capture of host and 
pathogen spatial transcriptome information. Moreover, there is a need to develop tech-
nologies compatible with formalin-fixed paraffin-embedded (FFPE) tissue blocks, since 
working with potentially infectious human material under standard laboratory condi-
tions requires the neutralization of the pathogens present. The ability to work with FFPE 
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blocks also opens up the possibility of accessing the plethora of archived samples depos-
ited in biobanks.

There are currently several FFPE-compatible spatially-resolved transcriptomics meth-
ods available [3–27], however, there are limitations to their use in carrying out host–
pathogen colocalization analysis. Several methods with high spatial resolution, such as 
RNAScope [3], FFPE-smFISH [4], clampFISH 2.0 [5], MERFISH/MERSCOPE [Vizgen] 
[6, 7], in  situ sequencing (ISS) [CARTANA, 10X Genomics] [8–11], Improved in  situ 
sequencing (IISS) [12], Xenium In  Situ Technology [10X Genomics] [13, 14], FISSEQ 
[ReadCoor, 10X Genomics] [15, 16], MOSAICA [17], CosMx [NanoString] [18], and spa-
tially-resolved FFPE microRNA capture [19], are limited by providing only a partial view 
of the full transcriptome as they employ sets of gene-specific probes that range from 
around 10 to 6000 genes. Alternatively, some methods that can capture a larger scope 
of the transcriptomic landscape, such as LCM-seq [20], GeoMx [NanoString] [21, 22], 
Pick-Seq [23], and RNA-seq of FFPE PuTi-spots [24], are hindered by lower tissue area 
throughput due to laborious selection of tissue regions of interest [18, 20–24]. Oligo-
d(T) based methods, such as DBiT-seq [25, 26] and spatially-resolved FFPE mRNA cap-
ture with Visium [27], are widely applicable for eukaryotes, however, these methods are 
unable to capture the non-polyadenylated transcripts present in many prokaryotic and 
viral pathogens. In addition, irreversible modifications of the 3’ polyA tail induced by 
formalin fixation can impact the performance of oligodT-based methods that capture 3’ 
poly-A-tailed transcripts [28, 29]. To study host–pathogen dynamics in a comprehensive 
manner, we need an exploratory approach to identify what host genes are affected by the 
presence of the pathogen through the co-detection of pathogen-specific transcripts.

Several of the FFPE-compatible spatial transcriptomics technologies performed host–
pathogen spatial characterization [21]. For instance, spatially resolved analysis of SARS-
CoV-2 viral infection in the human lung provided new insights into the heterogeneous 
viral distribution and host response to the infection [30–36]. However, such approaches 
largely target a limited number of host and/or pathogen transcripts and rely on the 
selection of predefined regions of interest that result in a small number of assayed tissue 
areas and impede an unbiased analysis of whole tissue sections [21]. Other studies per-
formed SARS-CoV-2 detection by targeting a limited number of genes with RNAScope 
[37] or viral proteins with immunohistochemistry [38] in sections consecutive to those 
processed for human whole-transcriptome analysis with Spatial Transcriptomics (10X 
Genomics Visium platform). In a non-probe-based approach, one study captured a sin-
gle SARS-CoV-2 UMI from a COVID-19 patient using an untargeted, poly-A-based 
Spatial Transcriptomic (ST) method [27]; however, it is unclear if a lower viral load in 
the sample or low sensitivity of the method impacted the viral detection. Methods that 
combine the advantages of using targeted probes to detect transcripts—improving the 
capture efficiency of less abundant pathogen transcripts in formalin-fixed tissues—with 
using a whole-transcriptome probe panel for unbiased capture of gene expression infor-
mation would enable host and pathogen transcriptome-wide dual RNA analysis.

Outside of pathogen-specific studies, such as those focused on SARS-CoV-2 in 
COVID-19 samples, researchers developed novel methods to analyze the interactions 
between host cells and the local microbiome with a high spatial resolution (100–55 µm) 
[39, 40]. These approaches provide insights into the composition and abundance of 
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different microbial taxa present in the tissue microenvironment, along with transcrip-
tome-wide host gene expression [39, 40]; however, such methods [39, 40] are unable to 
explore individual gene expression profiles of each microbe or pathogen. Additionally, 
these studies [39, 40] demonstrated the methods on fresh frozen tissues, and have not 
yet applied the approaches to FFPE tissue sections. In the case of infectious diseases 
caused by a specific pathogen, a spatially-resolved transcriptomics technology that cap-
tures both host and pathogen transcriptome-wide information in whole FFPE tissue sec-
tions at high spatial resolution would provide more in-depth information.

Here, we present a spatial transcriptomics strategy to unbiasedly explore host–patho-
gen interactions in FFPE tissues. We utilized the commercially available, high-through-
put, sequencing-based Spatial Transcriptomics (ST) platform [41, 42]  and introduced 
the co-detection of a second, pathogen transcriptome to the human one. We demon-
strated the potential of such an approach through the dual capture of human and SARS-
CoV-2 viral transcriptomes at 55 µm (~ 1–10 cells) spatial resolution in FFPE sections 
of COVID-19 patient lungs. Targeted transcriptome technologies RNAScope [3] and 
in  situ sequencing (ISS) [8–10]  validated our spatial detection of SARS-CoV-2. Our 
approach reaches a high spatial resolution (55  µm), is designed to spatially resolve 10 
SARS-CoV-2 transcripts, and does not require the preselection of regions of interest, 
facilitating unbiased, whole-tissue analysis. A prominent feature of our method is the 
colocalization analysis of human and viral gene expression information that allows an 
understanding of human tissue response to SARS-CoV-2 infection by comparing areas 
with and without the presence of viral RNA in the same tissue section. Overall, our 
strategy opens up the possibility of spatially studying host response to pathogen infec-
tions in various infectious diseases through the simultaneous, unbiased detection of two 
transcriptomes.

Results
Dual Spatial Transcriptomics enables simultaneous, accurate detection of both host 

and pathogen whole transcriptomes in FFPE tissue sections

We advanced the Visium Spatial Gene Expression assay for FFPE tissues [42] to simul-
taneously capture human and SARS-CoV-2 whole transcriptome (WT) information at 
a 55 µm resolution. Specifically, we analyzed 16,688 human genes and 10 SARS-CoV-2 
gene transcripts in total, across 13 lung tissue sections from 5 lung tissue samples, 3 
from COVID-19 patients (i.e., 1C, 2C, 3C), and 2 from control patients (i.e., 4nC, 5nC) 
(Fig. 1a, Additional file 1: Fig. S1, Additional file 2: Table S1, Additional file 3: Table S2). 
First, we verified the specificity of the SARS-CoV-2 probes (S) for capturing SARS-
CoV-2 transcripts only by applying both human WT probes (H) and spike-in SARS-
CoV-2 probes (HS) to control tissue sections. We did not identify any SARS-CoV-2 
transcripts above background levels in these samples (see Methods), demonstrating that 
the SARS-CoV-2 probes specifically captured only SARS-CoV-2 information (Fig.  1b, 
Additional file 1: Fig. S2).

To independently validate the viral detection by our set of SARS-CoV-2 probes, we 
compared the ST viral signal to the signal obtained by orthogonal imaging-based spatial 
RNAScope technology [3] in consecutive sections. Specifically, we compared the distri-
bution of spots with detected S gene signals by ST and RNAScope across all COVID-19 
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and control samples. To systemically and unbiasedly analyze all our samples, we devel-
oped a computational pipeline for automated signal detection across both platforms (see 
Methods and Additional file 1: Fig. S3-S5). Using our computational approach, we found 
an average specificity of the ST method of 94.92% (1C: 86.86%, 2C: 99.37%, 3C: 98.53%) 

Fig. 1 Spatial Transcriptomics SARS-CoV-2 capture validated by RNAScope and in situ sequencing (ISS). a Overview 
of the study. 16,688 human host genes and 10 SARS-CoV-2 pathogen genes were assayed across 3 lung samples 
from SARS-CoV-2 infected patients and 2 lung samples from control patients. b SARS-CoV-2 detection in control 
sections with human and SARS-CoV-2 probes added (HS), in COVID-19 sections with human and SARS-CoV-2 
probes added (HS), and in COVID-19 sections with only human probes added (H). c SARS-CoV-2 S gene detection by 
ST and RNAScope in consecutive sections of the 1C sample. Full tissue section scale bars are 550 µm and zoomed-in 
panel scale bars are 20 µm. d Detection of SARS-CoV-2 S and E genes by ST and in situ sequencing (ISS). All scale bars 
are 550 µm. e Distribution of ST S gene, RNAScope S gene, and ISS S gene signals across sample 1C. f SARS-CoV-2 ST 
S gene, RNAScope S gene, and ISS S gene signals across a portion of sample 1C. Scale bars are 900 µm
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(Fig. 1c). Furthermore, we performed a second validation of the ST detection of the S 
and E genes using in situ sequencing (ISS) [8–10] in the same sample (1C) and with the 
same automated pipeline (see Methods). Despite the substantial distance (~ 300  µm) 
between the sections used for the ST and ISS experiments, we observed an overall simi-
lar distribution of the viral signal and an average specificity of 82.20% of the ST method 
in comparison to ISS (E gene: 83.65%, S gene: 80.74%) (Fig.  1d, Additional file  1: Fig. 
S6), confirming that our platform can capture SARS-CoV-2 information accurately. Fur-
thermore, quantification of the RNAScope and ISS S gene signals in comparison to the 
ST S gene-specific signal in the COVID-19 lung sample with the highest viral transcript 
levels, 1C, yielded a similar signal intensity distribution and spatial pattern in the S gene 
heatmap between the three detection methods (Fig.  1e,f ). Quantitative comparison of 
the RNAScope and ST S gene signals resulted in a specificity of 76.37% and a sensitivity 
of 28.93%, yielding a higher sensitivity than that of the original ST method [41] com-
pared to the single molecule detection method smFISH [43]. The two methods did not 
yield statistically significant differences in their viral signal detection (p-value = 0.323, 
see Additional file 1: Table S3), providing further support to the validation of our ST-
based SARS-CoV-2 gene detection with RNAScope. Additional qPCR validation target-
ing the SARS-CoV-2 E gene showed a similar trend of SARS-CoV-2 related transcripts 
between the samples to the cumulative signal obtained by the spatial detection methods 
(ST, RNAScope) (Additional file 1: Fig. S7). The agreement between several alternative 
validation techniques and the ST-based detection provides further confirmation of the 
accurate capture of SARS-CoV-2 transcript by our method.

Subsequently, we sought to understand if the addition of the SARS-CoV-2 probes 
impacted the quality of the human gene expression information captured. To this end, 
we analyzed consecutive COVID-19 sections with both human WT probes and spike-
in SARS-CoV-2 probes (HS) versus only human WT probes (H). Across the COVID-19 
and control tissue sections, we generated a dataset consisting of 37,754 spots in total, with 
an average of ∼2,013 unique human genes and ∼3,809 unique human molecules (UMIs) 
per spot, respectively (Fig. 2a). We captured very similar human gene expression profiles 
between sample replicate sections and across most samples, both with and without SARS-
CoV-2 probes added (r = 0.98–1, p-value < 0.05) (Fig. 2a-b, Additional file 1: Fig. S8). Fur-
thermore, we observed a lack of correlation between SARS-CoV-2 UMI counts and human 
average UMIs per spot (r = 0.06, p-value < 0.05) (Additional file 1: Fig. S9a). Overall, these 
results demonstrate the highly reproducible capture of human transcriptomic information 
and the specificity of the SARS-CoV-2 probes in detecting the SARS-CoV-2 transcriptome 
without interfering with the capture efficiency of the human transcripts.

Host–pathogen transcriptome co‑capture enables exploration of pathogen spatial gene 

distributions in diseased tissue sections

We next investigated the SARS-CoV-2 transcriptome profile across our COVID-19 sam-
ples. In COVID-19 sections, 9.5% of spots (i.e., 1,132 spots in total) presented a SARS-
CoV-2 transcriptional signal with highly reproducible capture of SARS-CoV-2 gene 
expression between consecutive sections (r = 0.98, p-value < 0.05, Fig. 2c) and a high cor-
relation of the SARS-CoV-2 gene expression (as UMI counts) in a spot to the average 
SARS-CoV-2 expression in a spot (r = 0.96, p-value < 0.05) (Additional file 1: Fig. S9b). 
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Overall, we captured 90% (i.e., 9 out of 10) of the targeted SARS-CoV-2 genes (Addi-
tional file 4: Table S4) with an average of ∼1.7 unique molecules and ∼1.5 unique genes 
per spot, respectively, across samples. These relatively low levels of detected viral tran-
scripts demonstrate the high sensitivity of our approach and are likely associated with 
the longer disease duration (13–17 days) of the patients included in the analysis (Addi-
tional file 3: Table S2), in agreement with several studies that observed lower, or even 
undetectable, viral load in COVID-19 patients with longer survival times [30, 31, 33, 
36, 44]. The overall distribution of SARS-CoV-2+ spots in COVID-19 samples showed 
a wide range of SARS-CoV-2+ spot ratios across the COVID-19 samples: 33.6% for 1C, 
1.1% for 2C, and 1.0–1.6% for 3C (Fig. 3a, Additional file 4: Table S4), congruent to the 
heterogeneous viral loads across different samples in similar disease stages observed in 
other studies [30, 33, 35, 36]. In addition, we observed varied abundances of the differ-
ent SARS-CoV-2 gene transcripts across the three COVID-19 samples (Fig.  3b, Addi-
tional file  1: Fig. S10). For example, N was the highest expressed SARS-CoV-2 gene, 
while ORF10 was not detected at all, in line with previous reports of N as the most 
abundant subgenomic RNA (sgRNA) [45, 46] and ORF10 as consistently either absent 
or the scarcest sgRNA detected [45, 46]. The abundance trend of the remaining SARS-
CoV-2 genes (M, E, S, ORF1ab, ORF3a, ORF7a, ORF7b, ORF8) varied across the four 
COVID-19 sample sections (Additional file  1: Fig. S10), with the factors driving these 
differences remaining to be further investigated. SARS-CoV-2 genes that were more 
abundant exhibited a higher number of spots with only that gene detected (termed 
singleton spots) (Additional file  1: Fig. S11). However, many significantly colocalizing 

Fig. 2 Reproducible capture of human and SARS-CoV-2 transcriptomes. a Distribution of UMI and gene 
counts per spot across patient sample sections. b Pearson correlation of average human gene expression 
between consecutive sections for each sample, one section with human and SARS-CoV-2 probes added (HS) 
and the other with only human probes added (H), p-value < 0.05. c Pearson correlation of average SARS-CoV-2 
transcriptome capture between consecutive sections, p-value < 0.05
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genes, such as gene pairs S–N, ORF8-N, ORF7a-ORF8, ORF7a-N, ORF1ab-S, ORF1ab-
ORF8, ORF1ab-ORF3a, ORF1ab-N, ORF1ab-M (p-value < 0.05, Additional file  1: Fig. 
S12), were also genes with higher total UMI counts and were found in a greater number 
of spots. Two of these genes (N and ORF8) are expected to have higher sgRNA abun-
dances and several genes (ORF1ab, S, ORF3a, and M) are localized in closer proxim-
ity on the SARS-CoV-2 genomic RNA (gRNA) [45, 46]. Thus, the relative abundance of 
gRNA, sgRNAs, and the physical proximity of genes on the gRNA could be impacting 
the SARS-CoV-2 gene colocalization in the ST spots. Although the SARS-CoV-2 tran-
scripts differed in their abundances across genes, we observed a fairly even spatial dis-
tribution of each gene across samples 1C and 3C, while for 2C the transcripts showed a 
more localized spatial distribution (Fig. 3c, Additional file 1: Fig. S13-S14). Variation in 
the SARS-CoV-2 gene abundances and colocalization could be influenced by the differ-
ent number of gene-specific probes across the SARS-CoV-2 genes, RNA quality, and the 
SARS-CoV-2 probes binding to both viral genomic RNA (gRNA) and subgenomic RNA 
(sgRNA). Previous studies observed sgRNA abundance variation [45, 46] and such dif-
ferences could be reflected in our SARS-CoV-2 transcriptomic data.

The human lung spatial transcriptome during COVID‑19 infection

By simultaneously capturing the spatial human and SARS-CoV-2 transcriptomes, we 
were able to perform both unsupervised and supervised analyses of the infection pat-
tern. First, we explored the human lung cellular landscape in response to SARS-CoV-2 

Fig. 3 Spatial distribution and abundance of SARS-CoV-2 gene transcripts. a SARS-CoV-2 genes per spot 
across each COVID-19 sample. Scale bars are 500 µm. b Abundance (total normalized UMI counts) of 
the SARS-CoV-2 genes across all COVID-19 samples. c Spatial distribution of UMI counts per spot of each 
SARS-CoV-2 gene for COVID-19 sample 1C. Scale bars are 500 µm
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infection by unsupervised, joint graph-based clustering of the spatial transcriptomics 
data collected from both COVID-19 and control sections and identified six distinct clus-
ters (Fig. 4a). Investigation into the cluster marker genes revealed mixtures of different 
cell types, however, we identified clear expression signatures for clusters dominated by 
myeloid cells (cluster 1), endothelial cells (cluster 2), B-cells/plasma cells (cluster 3), epi-
thelial cells (cluster 4), and fibroblasts (cluster 6) (Fig. 4b-c, Additional file 1: Fig. S15, 
Additional file 5: Table S5) (differential expression analysis used the Wilcoxon rank sum 
test and “bimod” Likelihood-ratio tests, p-value < 0.05). Marker genes specific for fibro-
blast, smooth muscle, and endothelial cells characterized cluster 5, and further subclus-
tering resulted in three subclusters (subcluster 1: fibroblast-dominated, subcluster 2: 
smooth muscle cell-dominated, subcluster 3: a mixture of endothelial and immune cells), 
in line with our previous observations (Additional file 6: Table S6).

To identify the proportions of cell types in our ST spots, we performed cell type decon-
volution of our ST data using a publicly available single-cell dataset [36]. We found 

Fig. 4 Human lung cellular landscape in response to SARS-CoV-2 infection. a Clustering of the human 
transcriptome data across COVID-19 and control sections reveals 6 distinct clusters with SARS-CoV-2+ spots 
distributed throughout the clusters. b Differential genes per cluster across COVID-19 and control sections. 
c Spatial distribution of the clusters on COVID-19 and control sections. Scale bars are 500 µm. d, e Spatial 
distribution of genes upregulated in COVID-19 sections, COL3A1 (d) and LYZ (e). Scale bars are 500 µm. 
Differential expression analysis used the Wilcoxon rank sum test and “bimod” Likelihood-ratio tests, 
p-value < 0.05
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various cell type compositions in our spatial spots, however, the dominant cell type iden-
tified per ST cluster largely confirmed our original annotation, purely based on DE anal-
ysis of the clusters (Additional file  1: Fig. S16). In addition, the deconvolution analysis 
uncovered less abundant cell types, such as T/NK cells, that were almost equally distrib-
uted between the ST myeloid-enriched cluster 1 and B cell/plasma cell-enriched cluster 3 
(Additional file 1: Fig. S16). Re-annotation of the spatial spots based on the dominant cell 
type present resulted in 11 deconvolution-based clusters (myeloid, endothelial, B/plasma, 
epithelial, fibroblast, vascular contractile, ciliated, mesothelial, RBC, secretory, T/NK and 
mast cells), in line with the number of cell types used for label transfer.

We next explored the distribution of the SARS-CoV-2 transcripts across the different 
tissue regions (clusters). SARS-CoV-2+ spots appeared throughout different morphologi-
cal areas and ST clusters (Fig.  4a), in agreement with the uniform spatial distribution of 
the SARS-CoV-2 genes across the same tissue sections (Fig. 3a, Additional file 1: Fig. S13-
S14). However, a pronounced enrichment of SARS-CoV-2 RNA appeared in ST clusters 
1 (myeloid-enriched) and 3 (B cell/plasma cell-enriched) and in the T/NK cell-dominated 
and B cell/plasma cell-dominated deconvolution-based clusters (Additional file 1: Fig. S17). 
Endothelial cell-, myeloid cell-, and red blood cell-dominated deconvolution-based clusters 
showed moderate SARS-CoV-2 enrichment, in line with previous reports [36] (Additional 
file 1: Fig. S17). We also observed a higher enrichment of SARS-CoV-2 transcripts in the ST 
cluster 6 (fibroblast-enriched), in contrast to the very low viral enrichment in the fibroblast-
dominated deconvolution-based cluster, which suggests that the SARS-CoV-2 RNA in the 
fibroblast-enriched ST cluster might originate from another cell type and is masked by the 
gene signature of activated fibroblasts. Of note, epithelial and ciliated cell-dominated clus-
ters, previously described as major targets of the virus [36, 47–51], had very low levels of 
viral transcripts, likely explained by the analyzed cases being of a late disease phase.

To investigate the transcriptomic shifts within infected lungs, we ran differen-
tial expression analysis comparing COVID-19 and control lung sections (differential 
expression analysis used Wilcoxon rank sum test and “bimod” Likelihood-ratio tests, 
p-value < 0.05). All COVID-19 lung samples included in this study represented the late-
phase pneumonia stage (between 13–17 days post-infection) of the disease and showed 
consistent histopathological features with organizing diffuse alveolar damage, extensive 
fibrosis, and leukocyte infiltration, accompanied by low viral load [30, 33, 44]  (Addi-
tional file 1: Fig. S1). We found that the transcriptome data also reflected these substan-
tial structural differences between the COVID-19 and control lung sections. Specifically, 
signatures of plasma cells (IGHG3, IGKC, IGHM, JCHAIN, IGHG2, IGKV4-1, IGLV3-1, 
IGHA1), activated fibroblasts (COL1A1, COL1A2, COL3A1), inflammatory cytokines 
(CXCL9, CCL18) and complement factors (C1QB, C1QC) dominated the DE genes for 
the COVID-19 lung sections (Fig. 4d, Additional file 7: Table S7). Such transcriptomic 
changes reflect the overall tissue response to a prolonged SARS-CoV-2 infection.

We further explored the human host transcriptomic landscape within specific clus-
ters (differential expression analysis used the Wilcoxon rank sum test and “bimod” 
Likelihood-ratio tests, p-value < 0.05). We observed marked differences in monocyte-
macrophage (CD163, F13A1, CD14, LYZ, APOE, C1QA, B2M, PPARG, VCAN, FCN1, 
YAP1, FCGR3A) marker genes within the myeloid cell-rich ST cluster 1, activated fibro-
blast (COL1A1, COL3A1, COL5A1, SPP1, FN1, POSTN, CTHRC) marker genes in the 
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fibroblast-rich ST cluster 6, and AT2 cell (SFTPC, LYZ, MUC1, SLC34A2, LAMP3, 
PGC, NAPSA, CEBPA, LPCAT1, SDC1, NKX2-1, ABCA3, ALPL) marker genes within 
the epithelial cell-dominated ST cluster 4 in the COVID-19 lung samples (Additional 
file 8: Table S8), consistent with substantial cell state and cell type composition changes 
occurring during the progression of the disease, previously reported in numerous stud-
ies [30, 36, 52–54]. Taken together, we observed differences in pathogen abundance and 
could explore shifts in human gene expression within different tissue compartments.

Colocalization analysis of human and SARS‑CoV‑2 transcriptomes identifies novel potential 

biomarkers

With the possibility of simultaneously capturing the human and SARS-CoV-2 spatial tran-
scriptomes, our approach allowed us to conduct colocalization analysis and identify host gene 
expression changes caused by the presence of the viral mRNA in lung cells at 55 µm resolution. 
By comparing human gene expression patterns between SARS-CoV-2+ and SARS-CoV-2− 
spots en masse in COVID-19 tissue sections (Additional file 9: Table S9), we detected a down-
regulation of certain immunoglobulin genes (IGKC, IGKV4-1, IGHA1, IGHG2), extracellular 
matrix components (FBLN, COL1A2, COL3A1, BGN, COL1A1, SPP1), as well as several AT2 
(SFTPB, SFTPC, MUC1, SLC34A2), AT1 (GPRC5A, AGER), and the alveolar endothelial cell 
marker AQP1 in the SARS-CoV-2+ spots (Fig. 5a) (differential expression analysis used the 
Wilcoxon rank sum test and DESeq2 negative binomial distribution tests, p-value < 0.05). The 
viral infection preceding both the extensive plasma cell infiltration and fibroblast activation in 
time and the functional impairment or increased apoptosis of alveolar epithelial cells, known 
to be the primary cellular targets of SARS-CoV-2 in the lungs [36, 51], may explain these 
expression patterns. Notably and in line with other works exploring COVID-19-induced tran-
scriptome changes in a spatial context [36], we observed the downregulation of the RNase1 

Fig. 5 Colocalization analysis reveals human host response to SARS-CoV-2 infection. a Dot plot depicting 
differential expression of human genes in SARS-CoV-2+ and SARS-CoV-2- spots in COVID-19 sections. b Spatial 
distribution of RNase1, downregulated in SARS-CoV-2+ spots, and CXCL9, upregulated in SARS-CoV-2+ spots, 
in COVID-19 sample 1C. Scale bars are 500 µm. Differential expression analysis used the Wilcoxon rank sum 
test and DESeq2 negative binomial distribution tests, p-value < 0.05
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gene in SARS-CoV-2+ spots, potentially blocking the degradation of viral RNA in the environ-
ment of actively infected cells (Fig. 5a-b, Additional file 9: Table S9).

We next looked into specific host pathways affected in SARS-CoV-2+ spots. We iden-
tified upregulation of several NFκB pathway components (NFKB2 and NFKBIA) and 
inflammatory cytokines (CXCL9, CCL17, and CCL21) in the presence of viral tran-
scripts, in line with the abundant literature describing these molecules in the early 
steps of COVID-19 pathogenesis (Fig.  5a-b, Additional file  9: Table  S9) [55–59]. Of 
note, we observed a localized downregulation of certain complement factors (C1QB, 
CFD, and C7) and interferon response genes (IFI6 and ISG15) (Fig. 5a, Additional file 9: 
Table S9), in contrast to their enrichment in COVID-19 lungs compared to control lungs 
in our samples and in others analyzed in previous works [33, 36, 51] (Additional file 7: 
Table S7). Furthermore, our results revealed an up- (SERPINE1 and PI15) or downregu-
lation (A2M and WFDC2) of several protease inhibitor genes in SARS-CoV-2+ spots. 
Taken together, these results point to localized differences in the host response to the 
virus.

To explore the colocalization of the human host and SARS-CoV-2 RNA expression 
within distinct spatial tissue compartments and to potentially reveal cell type-specific 
responses to the presence of the virus, we identified unique DE genes between SARS-
CoV-2+ and SARS-CoV-2− spots within all ST and the five deconvolution-based clusters 
with the highest proportion of SARS-CoV-2 viral spots (Additional file  10: Table  S10, 
Additional file  11: Table  S11) (differential expression analysis used the Wilcoxon rank 
sum test and DESeq2 negative binomial distribution tests, p-value < 0.05). In the B-cell 
dominated deconvolution-based cluster, we observed the upregulation of several immu-
noglobulin variable genes (IGLV9-49, IGHV1-46), which, along with the enrichment 
of IGHV5-10–1 in the en masse DE analysis and of other variable genes (IGLV6-57, 
IGLV3-1, IGLV4-60) in a number of ST and deconvolution-based clusters, can signal 
the presence of virus-reactive B cell clones in the vicinity of infected cells. In addition, 
we identified the differential expression of several known SARS-CoV-2 entry factors 
between the SARS-CoV-2+ and SARS-CoV-2− spots in several clusters, however, some 
of these were specific to a single cluster: we found an enrichment of MMRN1 in the 
SARS-CoV-2+ spots of the deconvolution-based endothelial cluster, while the same clus-
ter showed downregulation of EMILIN1 and B cell/plasma cell-dominated spots showed 
upregulation of NRP1 in SARS-CoV-2+ B cell/plasma cell-dominated spots.

Beyond supporting previously described cellular mechanisms of COVID-19-related 
lung disease, our colocalization analysis revealed changes in the expressional levels of 
several novel genes, not yet discussed in this context (Fig. 5a, Additional file 9: Table S9). 
SRRM2 and HNRNPA2/B1 function as ubiquitous modulators of RNA processing [60, 
61], while SMAP2, ARHGEF1, and TCIRG1 are leukocyte-enriched gene products 
implicated as regulators of intracellular vesicular trafficking and the autophagy pathway 
[62–64]. Based on in silico or in vitro analysis, several recent studies found evidence for 
a molecular interaction between SARS-CoV-2 viral components and SRRM2 [61, 65–
67], HNRNPA2B1 [68–71], SMAP2 [72], and ARHGEF1 [72]. Furthermore, bulk RNA 
analysis identified the upregulation of TCIRG1 in SARS-CoV-2-infected lungs [31, 32]. 
Our colocalization analysis revealed that these genes showed a general upregulation 
in viral spots across all ST and most deconvolution-based clusters (B cell/plasma cell, 
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endothelial, myeloid, and red blood cell-dominated), supporting their general relevance 
in the infected cells. The lack of enrichment of these transcripts in the SARS-CoV-2+ 
spots in the T/NK cell-dominated deconvolution-based cluster is likely due to these T/
NK cells not being the primary target of the virus, but rather interacting with the SARS-
CoV-2-infected cells as part of the adaptive immune response. Our in situ spatial analy-
sis provides the first confirmation of the direct association of these expressional changes 
with defined areas actively expressing viral components in the COVID-19-diseased 
human lungs. In summary, by leveraging pathogen and host expression information for 
the same tissue section, we can explore highly localized cellular responses to the infec-
tion within distinct spatial compartments.

Discussion
Exploratory methods to study host–pathogen interactions, especially approaches appli-
cable to FFPE tissue blocks in which human tissue samples are routinely archived, are 
of major importance for understanding the pathogenesis of infectious diseases. While 
some of the previously published, spatially resolved transcriptomics methods [3–27, 
73] are adept at working with such material, they are largely incompatible with provid-
ing a comprehensive view of both host and pathogen transcriptomic landscapes. The 
method proposed here enables insights into host response to pathogen infection within 
the spatial context of the tissue microenvironment at the whole transcriptome level, in 
an unbiased and high-throughput manner. Our results showcase the potential of this 
method through the dual capture of SARS-CoV-2 and human transcriptomes from lung 
tissues of COVID-19 patients and control donors. In addition, the extensive validation 
of our viral transcript capture with RNAscope, ISS, and qPCR demonstrates that our 
approach is highly reproducible, specific, and sensitive for the transcriptomes of interest.

Limitations of our proposed approach include the requirement of previous knowledge 
of the pathogen transcriptome of interest to develop targeted probes, the inability to 
detect different human RNA splice variants, the lack of capturing human non-coding 
RNA groups that may have important regulatory functions, and the inability to detect 
new viral variants since the viral RNA is not directly sequenced. However, probes target-
ing specific host RNA transcripts could be designed to overcome some of these short-
comings. Although the method requires the development of targeted probes for RNAs 
of interest, the general RNA-templated ligation probe design is already established by 
10X Genomics for compatibility with the commercially available Visium Spatial Gene 
Expression for FFPE assay [74], enabling broad applicability. For example, future work 
could expand the approach by identifying regions with active viral replication with the 
development of probes targeting the negative strand of single-stranded positive-strand 
RNA viruses. In addition, although we observed SARS-CoV-2 gene colocalization in our 
tissue sections, where many significantly colocalized genes are located closer in proxim-
ity in the viral RNA, other SARS-CoV-2 gene pairs were not significantly colocalized in 
our tissues. The reasons behind these observed differences in SARS-CoV-2 gene colo-
calization remain to be further investigated. Viral dynamics and mechanisms over the 
course of infection, FFPE-induced degradation, and the detection limit of our probes 
(76% specificity and ~ 29% sensitivity of RNAScope) could contribute to the lack of sta-
tistically significant colocalization of some gene pairs. As the method is probe-based, 
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aspects of viral biology (mutations, modifications, etc.), as well as degradation, could 
affect the ability of probes to bind and detect viral RNA. To detect a larger portion of 
viral RNA, our SARS-CoV-2 probe panel could be expanded to include more probes per 
gene and probes targeting sequences that facilitate the differentiation of gRNA and sgR-
NAs. A method combining probe-based capture with direct sequencing would capture 
degraded and fragmented viral RNA while differentiating viral strains and mutational 
patterns. Such enhancements to our method could elucidate additional insights into the 
spatial organization of SARS-CoV-2 infection.

In the context of SARS-CoV-2 infection, there is a large body of work available on 
exploring the transcriptomic changes occurring in the lungs of affected individuals, both 
on the single cell level [49, 51, 75–77] and spatially within intact tissue sections [30–35]. 
The latter approaches, however, largely rely on the detection of a low number of SARS-
CoV-2 transcripts or immunolabeling of certain viral protein components and often 
require the preselection of regions of interest for the analysis. Our approach provides 
additional information on the relative level and distribution of viral transcripts by target-
ing 10 SARS-CoV-2 genes and the whole human transcriptome in the same tissue sec-
tion to unbiasedly identify SARS-CoV-2+ and SARS-CoV-2− tissue spots from the same 
dataset, without the need for any additional detection method. Future efforts could pur-
sue establishing and validating techniques for the integration of different spatial datasets 
[78]. Such approaches could also benefit from our high-resolution, transcriptome-wide 
spatial co-detection of host and pathogen RNA that mitigates the technical challenges of 
collecting complementary information from consecutive tissue sections.

Our results largely agreed with previous works describing the distribution of different 
sgRNAs [45, 46] and the major lung cell types showing enrichment of viral components 
in the advanced disease phase [36], while also drawing attention to the potential interac-
tions between SARS-CoV-2-infected cells and B, T, and NK cells, as part of the adap-
tive immune response to the infection. In addition, our methodology introduces a novel 
colocalization analysis between the pathogen and host transcriptomes, on the level of a 
tissue spot, close to single cell (1–10 cells/spot) resolution. Besides several known medi-
ators of COVID-19 pathogenesis, our spatial analysis unveiled the upregulation of sev-
eral genes (SRRM2, HNRNPA2/B1, SMAP2, ARHGEF1, and TCIRG1) likely involved in 
the intracellular steps of viral metabolism [31, 32, 61, 65–72], providing additional sup-
port for them as potential targets for future molecular interventions in COVID-19 dis-
ease [72, 79–81]. We also observed the upregulation of several immunoglobulin variable 
genes in certain subsets of SARS-CoV-2+ spots, potentially representing virus-associ-
ated B cell clones. With novel spatial transcriptomics technologies expanding into lym-
phocyte clone detection in the tissue context [82], such observations paired with antigen 
analysis could provide a basis for further research in the hope of identifying and generat-
ing neutralizing antibodies for clinical and scientific use.

Dual host–pathogen spatial transcriptome analysis has immense potential to provide 
unique information in a wide range of infectious diseases, specifically about entry fac-
tors, host-provided machinery for replication, productive and potentially harmful cellu-
lar countermeasures against the presence of the pathogen, and cell–cell interactions, in 
a tissue-specific manner and spatial context. In the case of recently emerged pathogens 
with substantial epidemiological relevance, such as SARS-CoV-1, DENV (Dengue virus), 
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or ZIKV (Zika virus), or potential novel pathogens in the future, it would be advanta-
geous to adopt similar spatial technologies at the forefront of related research efforts. At 
the same time, the high-resolution spatial co-detection of host and pathogen transcrip-
tomes opens up the possibility of generating previously unavailable information even 
about otherwise well-described pathogens, making our method a promising tool for a 
wide range of studies in the field of infectious diseases.

Conclusions
We demonstrate a proof-of-concept of deciphering host–pathogen interactions in FFPE 
sections through the colocalization of host and pathogen transcriptomes after their 
simultaneous capture in SARS-CoV-2-infected human lung tissue. The method has the 
potential to be applied to other human pathogens with the development of targeted 
probes and thus examine the interplay between host and pathogen across a multitude 
of human infectious diseases. Overall, our approach unleashes a potential new research 
line of studying infectious diseases in archived material at a large scale by exploring mul-
tiple transcriptomes in a single experiment.

Methods
Patient selection, sample collection, and processing

Collection of postmortem samples from lung tissue was performed at the  2nd Depart-
ment of Pathology, Semmelweis University (Budapest, Hungary) and the University 
Hospital Zurich (Switzerland). Autopsy cases were selected from patients who were hos-
pitalized because of COVID-19 infection and died at the local clinical departments of 
the universities. Criteria for selection were: premortem positive (COVID-19 cases) or 
negative (control cases) SARS-CoV-2 PCR test, lack of malignancy of the lung, closed 
clinical documents, and less than 24 h as a postmortem interval (PMI). The autopsies 
were done in harmony with the World Health Organization’s (WHO) recommenda-
tion for the autopsy of COVID-19 cases [83]. The biopsies were fixated in formaldehyde 
(4%) and then went through a dehydration process overnight. Dehydrated samples were 
embedded into paraffin blocks and were stored at 4 °C until sectioning. The use of tis-
sue specimens collected at Semmelweis University in this study was approved by the 
Hungarian Scientific Research Ethics Committee (ETT TUKEB IV/3961–2/2020/EKU). 
Samples and data were managed anonymously. At the University Hospital Zurich, small 
quantities of bodily substances removed in the course of an autopsy were anonymized 
for research purposes without consent, in the absence of a documented refusal of the 
deceased persons. In accordance with the Swiss Federal Act on Research involving 
Human Beings, this study did not require institutional board approval. Subsequent 
experiments were approved by the Swedish Ethical Review Authority (2010/313–31/3, 
2018/689–32). Relevant clinical parameters of the patients included in this study are 
summarized in Additional file 3: Table S2.

Sample selection—evaluating RNA Quality

Total RNA was extracted from each formalin-fixed paraffin-embedded (FFPE) sample 
block with the RNeasy FFPE kit (Qiagen, Cat. No. / ID: 73504) following the manufac-
turer’s instructions (deparaffinization was performed using xylene (#28975.291 VWR) 
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and 96% EtOH (#20823.290 VWR) or 100% EtOH (#1.00983.1000 VWR)). The concen-
tration of extracted total RNA was determined with the RNA HS Qubit assay (Thermo 
Fisher Scientific) following the manufacturer’s instructions. Total RNA was diluted to 
between 2-5  ng and RNA fragment length was assessed using the Agilent RNA 6000 
Pico Kit following the manufacturer’s instructions. The RNA quality of the sample was 
evaluated by the DV200 measurement (percentage of RNA fragments longer than 200 
nucleotides) as specified in the Visium Spatial Gene Expression for FFPE – Tissue Prep-
aration Guide [84]. Samples with a DV200 greater than 40% were selected for Visium 
FFPE, RNAScope, and in situ sequencing. Total RNA was used for RT-qPCR to deter-
mine the overall viral load in the samples (see “Viral load estimation by qPCR”).

SARS‑CoV‑2 probe design

SARS-CoV-2 probes were designed as described [74], with probes designed based on 
the reference transcriptome Wuhan-Hu-1 isolate Sars_cov_2.ASM985889v3, Ensembl 
build 101 (https:// covid- 19. ensem bl. org/ Sars_ cov_2/ Info/ Index) and were not designed 
for other strains or mutation patterns. Probes were designed to target the SARS-CoV-2 
genes Surface glycoprotein (S), Envelope protein (E), Membrane glycoprotein (M), 
ORF1ab, ORF3a, ORF7a, ORF7b, ORF8, Nucleocapsid phosphoprotein (N), and ORF10 
(Additional file 2: Table S1, Additional file 12: Table S12, Additional file 13: Table S13) 
(10X Genomics).

Spatial Transcriptomics

Consecutive 5  µm tissue sections from each sample were placed onto Visium Spatial 
Gene Expression slides (PN: 2000233, 10X Genomics) and stored overnight in a desic-
cator [84]. 5 µm sections consecutive to the ones used for Visium FFPE were placed onto 
Superfrost Plus microscope slides (#631–9483, VWR) and stored at  4◦C until used for 
RNAScope and in situ sequencing. Deparaffinization, Hematoxylin and Eosin staining, 
and decrosslinking were performed as specified in the Visium Spatial Gene Expression 
for FFPE – Deparaffinization, H&E Staining, Imaging & Decrosslinking Demonstrated 
Protocol [85]. Spatial gene expression profiling of RNA from FFPE lung samples was 
performed by following all steps in the Visium Spatial Gene Expression Reagent Kits for 
FFPE User Guide [42] with the modifications: for COVID-19 samples (Additional file 3: 
Table  S2), four 5  µm consecutive sections per patient sample tissue FFPE block were 
placed on Visium Spatial Gene Expression slides (PN: 2000233, 10X Genomics). For step 
1.1.g, Human whole transcriptome (WT) probes (10X Genomics) were added to two 
consecutive sections (technical replicates) with the Probe Hybridization Mix: 19.8  µL 
Nuclease-free water, 77.0  µL FFPE Hyb Buffer, 6.6  µL LHS Human WT probes, and 
6.6 µL RHS Human WT probes, per sample. Human WT and spike-in custom probes 
targeting SARS-CoV-2 genes (10X Genomics) were added to the remaining two consec-
utive sections (technical replicates) with the Probe Hybridization Mix: 14.5 µL Nuclease 
Free water, 77.0 µL FFPE Hyb Buffer, 6.6 µL LHS Human WT probes, and 6.6 µL RHS 
Human WT probes, 2.6 µL LHS viral probes, and 2.6 µL RHS viral probes, per sample. 
For control patient samples, two consecutive sections (technical replicates) were pro-
cessed as described for the COVID-19 samples, with adding Human WT and SARS-
CoV-2 spike-in probes to all sections. For step 4.1.d, qPCR (Bio-Rad) step 4 was run for a 

https://covid-19.ensembl.org/Sars_cov_2/Info/Index
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total of 30 cycles. For step 4.2.d, the Sample Index PCR was performed with 15 cycles for 
1C, 15–16 cycles for 3C, 18–19 cycles for 2C, 16 cycles for 4nC, and 18 cycles for 5nC. 
After step 4.4, the concentration of sequence libraries was determined with 2 µL of each 
sample run with the dsDNA HS Qubit assay (Thermo Fisher Scientific).

Spatial Transcriptomics hematoxylin & eosin imaging

Hematoxylin & Eosin brightfield images were acquired with a Zeiss Axiolmager.Z2 
VSlide Microscope using the Metasystems VSlide scanning system with Metafer 5 
v3.14.179 and VSlide software. The microscope has an upright architecture, uses a 
widefield system, and a 20X air objective with a numerical aperture (NA) of 0.80 was 
used. The camera was a CoolCube 4 m with a Scientific CMOS (complementary metal–
oxide–semiconductor) architecture and monochrome with a 3.45 × 3.45 µm pixel size. 
All brightfield images were taken with a Camera Gain of 1.0 and an Integration Time/
Exposure time of 0.00011 s.

Spatial Transcriptomics sequencing

Sequencing libraries were pooled and diluted with Elution Buffer (EB) to a final con-
centration of 10  nM, using a target sequencing depth of 50,000 mean read pairs/spot 
to determine the dilution for each sample [42]. After sample pooling, pooled library 
concentrations were checked with qPCR (Bio-Rad) before loading into the sequencer. 
Libraries were sequenced on an Illumina NovaSeq 6000 with paired-end, dual-indexed 
sequencing run type, and parameters following those specified in the Visium Spatial 
Gene Expression Reagent Kits for FFPE User Guide sequencing instructions [42] [R1: 28 
cycles, R2S: 50–52 cycles], with a spike-in of PhiX at 1% concentration, except one sam-
ple, 3C, was run with R2S: 75 cycles.

In situ sequencing (ISS)

Optimal RNA integrity and assay conditions were assessed using MALAT1 and RPLP0 
housekeeping genes only using the HS Library Preparation kit for CARTANA technol-
ogy (part of 10X Genomics) and following manufacturer’s instructions on 5 µm tissue 
sections from representative sample 1C. Since the control probes test showed positive 
and expected results, in situ sequencing was then performed on two 5 µm consecutive 
sections from sample 1C and one consecutive section from each control sample (4nC 
and 5nC). Superfrost Plus microscope slides (#631–9483, VWR) containing 5 µm tissue 
sections were stored at 4℃ until processing. FFPE sections were baked for 1 h at 60°C to 
partially melt paraffin and increase tissue adherence. Next, sections were deparaffinized 
using xylene for 2 × 7 min followed by an EtOH gradient to remove xylene and rehydrate 
the sections. Sections were then permeabilized using citrate buffer pH 6.0 (C9999 Sigma 
Aldrich) for 45 min at 95°C. For library preparation, chimeric padlock probes (targeting 
directly RNA and containing an anchor sequence as well as a gene-specific barcode) for 
a custom panel of SARS-CoV-2 S and E genes were hybridized overnight at 37°C, then 
ligated before the rolling circle amplification was performed overnight at 30°C using the 
HS Library Preparation kit from CARTANA technology and following the manufactur-
er’s instructions. All incubations were performed in SecureSeal™ chambers (Grace Bio-
labs). For tissue section mounting, Slow Fade Antifade Mountant (Thermo Fisher) was 
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used for optimal handling and imaging. Quality control of the library preparation was 
performed by applying anchor probes to simultaneously detect all rolling circle ampli-
fication products from all genes in all panels. Anchor probes are labeled probes with 
Cy5 fluorophore (excitation at 650 nm and emission at 670 nm). All samples passed the 
quality control l and were sent to CARTANA (part of 10X Genomics), Sweden, for a 
single cycle in  situ barcode sequencing, imaging, and data processing. Briefly, adapter 
probes and a sequencing pool (containing 4 different fluorescent labels: Alexa Fluor® 
488, Cy3, Cy5, and Alexa Fluor® 750) were hybridized to the in situ libraries to detect 
SARS-CoV-2 gene-specific barcodes. This was followed by multicolor epifluorescence 
microscopy, scanning the whole area and thickness of the tissues. Raw data consisting 
of 20 × magnification images from 5 fluorescent channels (DAPI, Alexa Fluor® 488, Cy3, 
Cy5, and Alexa Fluor® 750) and individual z-stacks, were flattened to 2D using maxi-
mum intensity projection with a Nikon Ti2 Nikon Ti2 (software NIS elements) utilizing 
Zyla 4.2 camera. After image processing, which includes image stitching, background 
filtering, and a sub-pixel object registration algorithm, true signals were scored based on 
signal intensities from individual multicolor images. The results were summarized in a 
CSV file and gene plots were generated using MATLAB.

RNAScope assay and imaging

RNAScope assay was performed on lung 5 µm FFPE sections on Superfrost Plus micro-
scope slides (#631–9483, VWR) cut from depths consecutive to the sections mounted 
on Visium slides. The slides were baked in a dry oven for 1 h at 60°C and then depar-
affinized in xylene (2 × 5  min) and absolute ethanol (2 × 1  min) at room temperature. 
After drying, the sections were incubated in RNAScope Hydrogen Peroxide for 10 min 
at room temperature, followed by washing steps (2x) in distilled water. Target retrieval 
was performed using a 1 × RNAScope Target Retrieval Reagent for 15 min, at a tempera-
ture constantly kept above 99°C in a hot steamer. The slides were then rinsed in distilled 
water, incubated in absolute ethanol for 3 min, and dried at 60°C. After creating a hydro-
phobic barrier, the slides were left to dry overnight. On the second day, the sections were 
incubated in RNAScope Protease Plus solution for 30 min at 40°C, followed by washing 
in distilled water. RNAScope V-nCov2019-S probe, RNAScope Positive Control probe 
(Hs-PPIB), and RNAScope Negative Control Probe (DapB) were hybridized to separate 
sections for 2 h at 40°C, then the slides were washed twice for 2 min in 1 × Wash Buffer. 
The probe-specific signal was developed with an RNAScope 2.5 HD Detection Rea-
gent – RED kit. Sequential hybridization of amplification reagents AMP1-4 happened 
at 40°C for 30–15-30–15 min, while AMP5 and AMP6 were applied at room tempera-
ture for 1 h and 15 min, respectively, with two washing steps in 1 × Wash Buffer after 
each incubation period. For signal detection, each section was incubated for 10 min at 
room temperature in a 120 ul RED Working Solution, consisting of Fast RED-B and Fast 
RED-A reagents in a 1:60 ratio. All the protease digestion, probe hybridization, signal 
amplification, and signal detection steps were performed in a HybEZ Humidity Con-
trol Tray, which were either placed into a HybEZ Oven for the 40°C incubation steps 
or kept at room temperature. Following two washing steps in tap water, the slides were 
counterstained with 50% Gill’s Hematoxylin staining solution for 2  min at room tem-
perature, thoroughly rinsed with tap water, then soaked in 0.02% Ammonia water bluing 
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solution, and finally washed again in tap water. The slides were then dried completely 
at 60°C and then quickly dipped into xylene before mounting them with VectaMount 
Permanent Mounting Medium. The RNAScope signal was imaged and evaluated with 
a Leica DM5500B microscope with an HC PL APO 20x/0.70 DRY objective, using 
Extended Depth of Field (EDoF) imaging in the Leica Application Suite X (LAS X) soft-
ware platform.

Spatial Transcriptomics—data processing

Count matrices generation

The gene expression matrices were generated by space ranger (version 1.3.0) ‘count’ 
(standard settings set except –no-bam). The transcriptome reference was custom-made 
from space ranger ‘mkref ’ using the Human reference dataset (GRCh38 Reference—
2020-A), and SARS-CoV-2 genome assembly (ASM985889v3). The Human Probe Set 
from 10X Genomics (Visium Human Transcriptome Probe Set v1.0) with 10X Genom-
ics custom probes for SARS-CoV-2 probes appended to it, was used as the probe set 
reference in space ranger ‘count’.

Quality control

The filtered count matrices (filtered_feature_bc_matrix.h5), and tissue images from 
space ranger output were analyzed in R (version 4.1.1) using the Load10X_Spatial func-
tion available in Seurat (version 4.0.4) [86]. The filtered count matrices were separated 
into human count data and SARS-CoV-2 count data matrices. Spot level filtering was 
performed on the human count matrices to keep spots with at least 400 genes, and 500 
UMIs. An additional spot filter was applied where a novelty score for each spot was 
calculated by taking the log transform of the ratio of the total genes detected divided 
by the total UMI counts detected in the same spot (Formula: log10(nFeature_RNA) / 
log10(nCount_RNA)). Spots with a score greater than 0.87 were kept. Gene level filter-
ing was applied to omit genes that did not appear in at least 1 spot. These count matrices 
were also filtered for Hemoglobin gene counts (Additional file 2: Table S1). SARS-CoV-2 
count matrices were normalized by dividing the SARS-CoV-2 gene UMI counts by the 
number of probes used to target the respective gene. 1 SARS-CoV-2 UMI was detected 
from two different sections, one control, and one COVID-19, that did not have SARS-
CoV-2 probes added and was considered as a background signal.

Clustering analysis

The Seurat SCTransform function was applied to normalize the individual filtered count 
matrices, and integrated in Seurat using SelectIntegrationFeatures, and IntegrateData. 
Principal Component Analysis (PCA), and UMAP were applied using 50 principal com-
ponents, and 35 were further used in downstream analysis and clustering. Batch effects 
were addressed, and removed using RunHarmony (version 0.1.0; group.by.vars as slide 
ID, and 25 iterations) applied on the PCA-computed matrix [87]. Clustering was applied 
at a resolution of 0.4.
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Differential gene expression

Differentially expressed (DE) genes were found using ‘FindMarkers’ in Seurat, with 
default settings on the SCT normalized matrix, except min.cells.group set to 2 to include 
at least 2 spots from each group. Both the Wilcoxon rank sum test and “bimod” Likeli-
hood-ratio tests were used, with both tests yielding the same results. Both upregulated 
and downregulated DE genes were identified, with an adjusted p-value of 0.005. Cell-
type-specific annotation of the DE genes was performed manually, by using the Human 
Single Cell Atlas [88], PanglaoDB [89], and recently published single-cell transcriptomic 
data of the human lung [36, 51] as main resources.

Colocalization analysis

For the colocalization analysis, a direct spot-level comparison within the COVID-
19 sections was performed. The DE genes distinguishing SARS-CoV-2+ spots from 
SARS-CoV-2− spots were obtained as described in the Methods section "Differential 
Gene Expression" with an additional filter of average logFC ± 1.0. As an extension to 
the colocalization analysis, DE genes between SARS-CoV-2+ and SARS-CoV2− spots 
were also identified for each cluster as well as for selected cell type-dominant spots that 
were determined based on the deconvolution analysis. Differential expression analysis 
for DE genes distinguishing SARS-CoV-2+ spots from SARS-CoV-2− spots were found 
using the Wilcoxon rank sum test and DESeq2 negative binomial distribution tests 
(p-value < 0.05), with both tests giving the same results.

Deconvolution analysis

Spot deconvolution of the ST data was performed using Stereoscope (v0.3) [90] and 
single-cell data set SCP1052 [36] downloaded from the Single Cell portal (https:// singl 
ecell. broad insti tute. org/ single_ cell/ study/ SCP10 52/ covid- 19- lung- autop sy- sampl es# 
study- summa ry). Given that the patient samples included in our study were of a later 
COVID-19 disease stage with 13–17  days from COVID-19 diagnosis to death (Addi-
tional file  3: Table  S2), we selected patients from the single cell study that fell within 
a similar timeframe (13–30 days from symptom onset to death) as our samples. The R 
scripts used to prepare the input data for the deconvolution and generate the summary 
of the results are presented under the deconvolution folder (https:// github. com/ giaco 
mello lab/ DualST_ Study/ tree/ main/R_ scrip ts/ decon volut ion) in our GitHub repository 
DualST_Study (https:// github. com/ giaco mello lab/ DualST_ Study) [91].

SARS‑CoV‑2 gene colocalization

Metrics for the colocalization of the different SARS-CoV-2 genes were calculated from 
the dataset containing the SARS-CoV-2 signal information. The SARS-CoV-2 genes 
count matrix was used to calculate, for each SARS-CoV-2 gene, the total number of 
spots the gene was detected in.

To determine the significantly colocalized SARS-CoV-2 gene pairs across the ST 
spots, we implemented an approach similar to a recent publication that calculated the 
probability of the co-occurrence of different cell type pairs in RNAseq data [92]. Rather 
than cell type pairs, we constructed matrices for SARS-CoV-2 gene pairs (present/
absent × present/absent) across the SARS-CoV-2+ spots (matrices contained the number 

https://singlecell.broadinstitute.org/single_cell/study/SCP1052/covid-19-lung-autopsy-samples#study-summary
https://singlecell.broadinstitute.org/single_cell/study/SCP1052/covid-19-lung-autopsy-samples#study-summary
https://singlecell.broadinstitute.org/single_cell/study/SCP1052/covid-19-lung-autopsy-samples#study-summary
https://github.com/giacomellolab/DualST_Study/tree/main/R_scripts/deconvolution
https://github.com/giacomellolab/DualST_Study/tree/main/R_scripts/deconvolution
https://github.com/giacomellolab/DualST_Study
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of spots with both genes detected, number of spots with only gene 1 detected, number 
of spots with only gene 2 detected, and number of SARS-CoV-2+ spots without either 
gene detected) and calculated the p-value for each gene pair using both the Chi-Square 
test for independence (chisq.test function in R), the Fisher’s exact test (fisher.test func-
tion in R) (to account for some frequencies being higher and some lower), and a per-
mutation test of independence for a two-way contingency table (each SARS-CoV-2 gene 
pair matrix) based on Monte Carlo resampling (10,000 resamples) with a Approximative 
(Monte Carlo) Pearson chi-squared test using the coin R package [93].

Elastic registration workflow

Lung tissue sections of various assays (ST, RNAScope, ISS) from sample 1C were reg-
istered elastically using conformal mapping. To illustrate, we used the registration 
between the ST section and RNAScope section as an instance, and the registration 
between the ST section and ISS section was done in a similar way. Firstly, four corner 
points were manually selected on each tissue section respectively, then each section was 
conformally mapped onto a square with the corners chosen mapped to the square ver-
tices. Since the sections of various assays have been mapped onto the same square, one-
to-one correspondence among ST and RNAScope sections can be easily established. The 
positions of aligned RNAScope section pixels can be transferred from the position of the 
corresponding pixels in the ST section via the aforementioned one-to-one correspond-
ence. Hence, the elastic registration was achieved by displaying the RNAScope section 
pixel colors in the positions of ST section pixels.

Validation by RNAScope

RNAScope and ST images from all samples were manually aligned with Adobe Photo-
shop 2022. The RNAScope chromogenic detection of the S gene with FastRed was used 
to distinguish the RNAScope signal from lung pigmentation and tar deposits. All dots 
of chromogenic red signal were considered as positive SARS-CoV-2 S gene signal, since 
the majority of the signal was above 1 dot per 10 nuclei area, in line with how others 
assessed RNAScope signal in SARS-CoV-2 viral low samples [30, 36, 94]. RNAScope 
was considered the gold standard for comparison to the ST signal. The number of ST 
spots where the SARS-CoV-2 S gene was detected, and where the RNAScope S gene 
signal was also obtained, was calculated. To adjust for the use of consecutive sections 
for ST and RNAScope experiments, the agreement of ST and RNAScope in 200 × 200 
µm2 block areas was evaluated. Since a manual annotation of sample 1C was in close 
agreement with the computational approach, the computational approach to calculate 
the specificity of the SARS-CoV-2 S gene detection by ST was used.

The computational validation was performed as follows: the RNAScope signal was 
detected with an ad hoc Matlab (version R2021b) algorithm, which is specified in the 
next section “Automatic detection of RNAScope signal”; then both the binary ST and 
RNAScope signal images were aligned and binned into 200 × 200 µm2 blocks (Addi-
tional file 1: Fig. S3-S4). Each block in an RNAScope/ST signal image was regarded as 
an observation (those blocks that contain no tissue area were regarded as no observa-
tion and were excluded from any further analysis and counting). The specificity of 
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our method to capture the SARS-CoV-2 expression was calculated by considering the 
RNAScope approach as the ground truth and as follows:

Where the number (#) of True Negatives (TN) was defined as the number of blocks 
containing neither RNAScope nor ST signals and the number of False Positives (FP) as 
the number of blocks containing only ST but no RNAScope signals.

For signal quantification in the sample with the highest viral load (1C), ST, RNAScope, 
and ISS images were elastically registered using conformal mapping (see “Elastic regis-
tration workflow” above). The RNAScope signal was detected as described below under 
“Automatic detection of RNAScope signal”, and quantified as the number of signal pixels 
per area. The signal was normalized by dividing by 80 to place signals on a similar scale 
to ST. Both the ST and RNAScope signal images were aligned and binned into circular 
disks of 300 µm diameter, the positions of which were chosen by merging every seven 
neighboring ST spots (one central spot plus its six neighboring spots) into a larger circu-
lar disk area. The distance between any two neighboring spot centers is 100 µm, and the 
circular disk diameter of 300 µm is just triple that distance. Each disk in an RNAScope/
ST signal image was regarded as an observation (those disks that contain no tissue area 
were regarded as no observation and were excluded from any further analysis and count-
ing). The specificity of our method to capture the SARS-CoV-2 expression was calcu-
lated by considering the RNAScope approach as the ground truth and as follows:

Where the number (#) of True Negatives (TN) was defined as the number of disks 
containing neither RNAScope nor ST signals, the number of False Positives (FP) as the 
number of disks containing only ST but no RNAScope signals, the number of True Posi-
tives (TP) as the number of disks containing both ST and RNAScope signals, and the 
number of False Negatives (FN) as the number of disks containing only RNAScope but 
no ST signals. A Chi-squared test of independence was performed on the resulting con-
fusion matrix using the chisq.test function in R, based on the approach taken by a recent 
study that compared the degree of agreement between virtual staining and immunohis-
tochemistry staining methods [95].

Automatic detection of RNAScope signal

RNAScope signals were detected with a chromatical analytic method. First, the origi-
nal RGB image was transformed into the Hue-Saturation-Value (HSV) format, where the 
bright regions in the hue channel correspond to the RNAScope signals in the original 
histological image. The brightest regions became the foreground by thresholding the hue 
value of the image. Morphological post-processing steps were performed to refine the 
shape of the signal regions, the details of which are available in the code (see “Availability 
of data and materials”). The pixels whose hue was over 0.85, saturation over 0.25, and 

Specificity =
#TN

#TN + #FP

Specificity = #TN
#TN+#FP

Sensitivity = #TP
#TP+#FN
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value over 0.40 were recognized as signal candidates. After performing a morphological 
opening operation, the collection of signal candidates was output as final RNAScope sig-
nals. Additional file 1: Fig. S5 displays the original tissue subimage, the hue channel, and 
the RNAScope signal subimage after the thresholding.

Validation by ISS

ISS consecutive section images and ST images for sample 1C were manually aligned with 
Adobe Photoshop 2022. Due to the use of non-consecutive sections, there was ~ 300 µm 
in between the ST and ISS sections. The agreement between E and S gene signals for ST 
and ISS in block areas of 200 × 200 µm2 was evaluated using the same computational 
approach as used for the RNAScope validation. The quantification of the S gene signal 
in 300 µm2 disk areas was evaluated using the same approach as that for RNAScope 
validation.

Viral load estimation by qPCR

The relative amount of SARS-CoV-2 RNA present in the tissue-extracted RNA was deter-
mined by qRT-PCR targeting the E-gene of the virus using the Takara PrimeDirect probe, 
RT-qPCR mix (Takara Bio Inc, Japan). qRT-PCR was performed in a 25 uL reaction vol-
ume, with 175 ng input RNA, 400 nM each primers (Eurofins, USA; Forward: 5’-ACA GGT 
ACG TTA ATA GTT AAT AGC GT-3’ and   reverse: 5’-ATA TTG CAG CAG TAC GCA CACA-
3’),   200  nM probes (Sigma-Aldrich, UK; 5’- [FAM]-ACA CTA GCC ATC CTT ACT GCG 
CTT CG-[BBQ650]) and cycling conditions of  initial denaturation 90℃ for 3 min, reverse 
transcription 60℃ for 5 min, followed by 45 cycles of 95°C for 5 sec, 58°C for 30 sec (PMID: 
34006825). The human RNase P gene was used as an internal control in the PCR to validate 
the quality of the extracted RNA. The relative quantification of viral copies per ng of input 
RNA was performed by comparing the results to the known viral copies/reaction (Low-
est detectable: 750 copies/reaction) of the All-WHO-CDC-Genes-nCoV-Control-Plasmid 
(Eurofins Genomics, #5004ALL001).

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 023- 03080-y.

Additional file 1: Fig. S1 ‑ S17. Table S3. Confusion matrix comparing RNAScope and ST SARS-CoV-2 S gene signal. 
The confusion matrix is generated from 300 µm disk areas used in the quantitative validation analysis that deter-
mines the SARS-CoV-2 S gene signal in each area for RNAScope and our ST approach.

Additional file 2: Table S1. Spatial transcriptomics genes. The human (16,688) and SARS-CoV-2 (10) gene transcripts 
targeted in the study.

Additional file 3: Table S2. Patient data. Relevant clinical parameters of the 5 patients included in this study are 
summarized.

Additional file 4: Table S4. Spatial transcriptomics sample section summary. Sequence library information for each 
of the 13 patient tissue sections assayed with spatial transcriptomics (ST).

Additional file 5: Table S5. Clustering differentially expressed genes. Differentially expressed (DE) marker genes 
for each spatial transcriptomic (ST) cluster. Differential expression analysis to identify cluster specific DE genes used 
Wilcoxon rank sum test and “bimod” Likelihood-ratio tests, p-value < 0.05.

Additional file 6: Table S6. Cluster 5 subclustered differentially expressed genes. Differentially expressed (DE) genes 
for each subcluster of cluster 5. Differential expression analysis used Wilcoxon rank sum test and “bimod” Likelihood-
ratio tests, p-value < 0.05.
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Additional file 7: Table S7. Differentially expressed genes in COVID-19 vs. control sections. Differentially expressed 
(DE) genes for COVID-19 versus control lung tissue samples. Differential expression analysis used Wilcoxon rank sum 
test and “bimod” Likelihood-ratio tests, p-value < 0.05.

Additional file 8: Table S8. Differentially expressed genes in COVID-19 vs. control per cluster. DE genes per cluster 
for COVID-19 versus control lung tissue samples. Differential expression analysis used Wilcoxon rank sum test and 
“bimod” Likelihood-ratio tests, p-value < 0.05.

Additional file 9: Table S9. Colocalization analysis results of COVID-19 sections. Differentially expressed genes in 
SARS-CoV-2+ vs. SARS-CoV-2- spots in COVID-19 sections. Differential expression analysis between SARS-CoV-2+ and 
SARS-CoV-2- spots in COVID-19 sections overall used Wilcoxon rank sum test and DESeq2 negative binomial distribu-
tion tests, p-value < 0.05.

Additional file 10: Table S10. Colocalization analysis results of COVID-19 sections within ST clusters. Differentially 
expressed genes in SARS-CoV-2+ vs. SARS-CoV-2- spots within ST clusters across COVID-19 sections. Differential 
expression analysis between SARS-CoV-2+ and SARS-CoV-2- spots within ST clusters across COVID-19 sections overall 
used Wilcoxon rank sum test and DESeq2 negative binomial distribution tests, p-value < 0.05.

Additional file 11: Table S11. Colocalization analysis results of COVID-19 sections within cell types. Differentially 
expressed genes in SARS-CoV-2+ vs. SARS-CoV-2- spots within cell types across COVID-19 sections. Differential 
expression analysis between SARS-CoV-2+ and SARS-CoV-2- spots within cell type clusters across COVID-19 sections 
overall used Wilcoxon rank sum test and DESeq2 negative binomial distribution tests, p-value < 0.05.

Additional file 12: Table S12. SARS-CoV-2 ST gene probe sequences. Probe sequence information for the ST SARS-
CoV-2 gene probes used in the study, including the GC content and melting temperature (Tm).

Additional file 13: Table S13. ST SARS-CoV-2 ordered probe sequences. Ordered SARS-CoV-2 probe sequences for 
the ST SARS-CoV-2 gene probes used in the study.

Additional file 14. Review history.
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