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Abstract 

Background: Single-cell gene expression profiling provides unique opportunities 
to understand tumor heterogeneity and the tumor microenvironment. Because 
of cost and feasibility, profiling bulk tumors remains the primary population-scale 
analytical strategy. Many algorithms can deconvolve these tumors using single-cell 
profiles to infer their composition. While experimental choices do not change the true 
underlying composition of the tumor, they can affect the measurements produced 
by the assay.

Results: We generated a dataset of high-grade serous ovarian tumors with paired 
expression profiles from using multiple strategies to examine the extent to which 
experimental factors impact the results of downstream tumor deconvolution 
methods. We find that pooling samples for single-cell sequencing and subsequent 
demultiplexing has a minimal effect. We identify dissociation-induced differences 
that affect cell composition, leading to changes that may compromise the assumptions 
underlying some deconvolution algorithms. We also observe differences across mRNA 
enrichment methods that introduce additional discrepancies between the two data 
types. We also find that experimental factors change cell composition estimates 
and that the impact differs by method.

Conclusions: Previous benchmarks of deconvolution methods have largely ignored 
experimental factors. We find that methods vary in their robustness to experimental 
factors. We provide recommendations for methods developers seeking to produce 
the next generation of deconvolution approaches and for scientists designing 
experiments using deconvolution to study tumor heterogeneity.
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Background
Solid tumors are highly heterogeneous tissues; the malignant cancer cells cohabitate and 
interact with various immune and stromal cells, known broadly as the tumor microen-
vironment (TME), in complex ways [1]. For cancer patients with the same tumor type, 
differences in the TME can yield different outcomes in progression, treatment response, 
and overall survival. TME composition affects immune cells’ ability to locate and kill 
malignant cells, the bioavailability and effectiveness of chemotherapy drugs, the avail-
ability of oxygen and other nutrients needed for cancer cell growth, and the possibility 
of metastasis [2, 3]. For these reasons, thorough characterization of the TME is an active 
area of cancer research [4, 5].

Researchers often use bulk RNA sequencing (RNA-seq) and single-cell RNA-seq 
(scRNA-seq) to examine the TME. Bulk sequencing—extracting RNA from pulver-
ized tissue—is cost-effective and allows for transcriptome-wide coverage of total RNA. 
Many large cancer characterization efforts, such as The Cancer Genome Atlas, have bulk 
RNA-sequenced hundreds or thousands of samples [6]. Unfortunately, bulk RNA-seq 
loses direct information on tumor purity and cell type composition. Single-cell RNA-
seq involves dissociating tissue and characterizing individual cells, retaining cell type-
specific information. However, scRNA-seq is expensive and thus hard to scale to large 
datasets. scRNA-seq also produces much sparser data than bulk RNA-seq [7]. Each data 
modality presents unique experimental opportunities and challenges, but it is possible 
to combine bulk and single-cell data to computationally estimate tissue composition of 
bulk RNA-seq data using single-cell profiles, providing estimates of the TME for larger 
studies.

In the context of the TME, deconvolution describes the challenge of estimating cell 
type abundances from bulk profiles. Methods can be reference-free [8–10] or reference-
based [11–15]. Many reference-based methods use a matrix of signature marker genes, 
but with the advent of single-cell sequencing, reference-based methods using profiles 
drawn from single-cell observations have become widespread. We focus on reference-
based methods in this paper.

Whether or not methods use single-cell data as input, many within-method valida-
tions and cross-method benchmarks rely on single-cell data to assess the accuracy of a 
deconvolution method [16–18]. These assessments aggregate scRNA-seq data to create 
simulated or “pseudo-bulk” tumors with known cell type proportions. This assumes that 
single-cell and aggregated bulk data are biologically equivalent and that performing well 
on one data type indicates capturing similar information on the other. However, there 
are several technical differences that strain this assumption.

One source of technical variability between single-cell and bulk sequencing is dissocia-
tion. Separating cells from each other requires vigorous chemical and/or physical diges-
tion, which can lyse cell membranes or otherwise compromise cell integrity [19]. Certain 
cell types are more sensitive to this process and are systematically underrepresented in 
scRNA-seq data [20]. Deconvolution algorithms that assume complete representation 
of cell types may perform well on pseudo-bulk assessments but could underperform in 
practice.
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Another difference between single-cell and bulk RNA sequencing is the method of 
mRNA enrichment. Most RNA in any given cell is ribosomal RNA, which is undesired 
in most RNA-seq studies [21]. There are two prevailing ways to enrich for non-riboso-
mal RNA [22]. Many bulk RNA-seq experiments use ribosomal depletion which directly 
removes rRNA from a sample. This approach performs well for capturing partially-
degraded RNA, such as that found in formalin-fixed paraffin-embedded (FFPE) tissue 
[23]. An alternative strategy is poly-A capture, which adds primers that ligate to the pol-
yadenylated 3′  ends of mRNA. Many single-cell protocols use poly-A-based methods. 
It is unknown how using reference profiles from poly-A captured single cells affects the 
deconvolution of rRNA-depleted bulk samples.

More obstacles arise for scientists looking to perform deconvolution on tumor data. 
While some deconvolution methods are designed for cancer data [11, 17], compara-
tive benchmarks have been performed predominantly on normal tissue [16, 18]. Solid 
tumors present unique challenges in deconvolution. Aberrant and dysregulated tissue 
growth often yields incomplete dissociation with many cells damaged [24]. Inter-patient 
heterogeneity is also much greater for malignant cells than for normal cell types [25], 
making it harder to generalize patterns across samples. Indeed, robustness to the noise 
contributed by the tumor fraction has been called one of the major challenges deconvo-
lution algorithms face [26], highlighting the need to consider cancer data when compar-
ing utility of deconvolution methods.

In this work, we generate a unique dataset of high-grade serous ovarian tumors and 
use it to directly examine the effects of protocol differences and their ramifications for 
deconvolution. We evaluate the feasibility of generating a reference profile from scRNA-
seq samples that have been pooled across multiple tumors and compare hash and genetic 
demultiplexing as ways to reconstruct sample of origin information. We compare gene 
expression from dissociated and non-dissociated tissue from the same tumors to assess 
how dissociation affects cell type representation. We also perform differential expres-
sion of matched rRNA-depleted and poly-A captured tissues to see how different mRNA 
enrichment methods affect the expression profile. We then compare the consistency of 
six deconvolution methods across protocols and assess their accuracy on cancer data. 
Finally, we propose a series of recommendations for researchers looking to sequence 
cancer samples for use in deconvolution and subsequent at-scale studies of the TME.

Results
Experimental design

Our dataset comprises tumor data from n = 8 high-grade serous ovarian carcinoma 
(HGSOC) patients. HGSOC is known to have considerable inter-patient and intra-
tumor heterogeneity, making deconvolution particularly valuable [27–29]. In addition, 
HGSOC tumors exemplify the kinds of challenges faced in cancer sequencing. Since 
HGSOC easily disseminates through the peritoneal cavity and forms small metastases, 
most debulking surgeries are extensive and take many hours [30], increasing the 
RNA and tissue degradation prior to freezing or fixture. The tumor’s histopathology 
is marked by extensive regions of necrotic tissue [31] resulting in a large amount of 
cellular debris at sequencing. Also, HGSOC cells have high genomic instability and 
a particularly high burden of copy number variants [32, 33]. CNVs can complicate 
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deconvolution by altering the baseline of gene expression in cancer cells in a tumor-
specific manner, therefore increasing inter-patient heterogeneity. By focusing on a 
challenging tumor type, we aim to identify best practices that are robust to real-world 
experimental conditions and thus have relevance to many other solid tumor types.

We used data from eight HGSOC tumors for which frozen tumor chunks and 
frozen dissociated cells were available (Methods). To directly assess the ways different 
library preparation methods affect deconvolution in cancer data, we assayed our 
data in multiple ways (Fig. 1). We performed RNA extraction on the tumor chunks, 
enriched for mRNA with rRNA depletion, and performed bulk RNA-sequencing. We 
will refer to this data type as “rRNA- Chunk.” Ribo-depletion on undigested tissue is 
one of the most common protocols for cancer RNA-seq datasets and is thus likely 
to be used as an input for deconvolution. We also performed rRNA depletion on 
dissociated cells and performed bulk RNA-sequencing. We will refer to this data 
type as “rRNA- Dissociated.” By comparing the  rRNA- Chunk and  rRNA- Dissociated 
data, we examine the effect of dissociation without other confounding factors that 
would be involved in bulk vs. single-cell comparisons. We also performed poly-A (3′) 
capture and performed bulk RNA-sequencing on RNA from dissociated cells. We will 
call this data type “polyA+ Dissociated.”

In addition to our three bulk sequencing data types, we performed two different 
scRNA-seq assay types. For one portion of the dissociated cells, we performed 
scRNA-seq on each tumor separately. We will refer to these as the “scRNA-seq 
Individual” samples. For another portion of the dissociated cells, we added a barcoded 
antibody and pooled the cells into batches (two sets of four samples each) and 
performed scRNA-seq on the pools. We will refer to these as the “scRNA-seq Pooled” 
samples. Performing scRNA-seq both individually and in pools allows us to directly 

Fig. 1 Overview of experimental design. Each tumor was profiled in five different ways, three times with bulk 
RNA-seq (blue box) and twice with scRNA-seq (red box) using two strategies for mRNA enrichment, rRNA 
depletion (green text) and poly-A capture (purple text). Gold text represent analyses that performed prior to 
deconvolution, with gold arrows signifying the datasets that compared in that analysis. Note that every data 
type will be used for the comparison of deconvolution methods
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compare deconvolution results using reference profiles from each data type and also 
evaluate the impact of demultiplexing on deconvolution.

Multiplexing increases scRNA‑seq throughput while preserving sample‑specific 

information

Pooling has the potential to greatly increase the scalability of single-cell profiling, but 
it introduces technical and computational challenges. Pooled samples require a higher 
total number of cells to be loaded for acceptable coverage of each sample. In cancer 
samples with high cellular debris from necrotic tissue, loading more cells may increase 
the risk of clogging the microfluidic device. By splitting our samples into two pools of 
four and adding an extra debris-filtering step on the batched samples (Methods), we 
could sequence cell counts comparable to or higher than the individual single-cell runs 
(Table 1).

Upon successful sequencing, another challenge arises: identifying from which sam-
ple each cell originates. The process of computationally splitting the cells into groups 
by sample or patient of origin is known as demultiplexing. To determine if it is possi-
ble to sufficiently demultiplex cells from cancer tissue to use them as reference profiles 
for deconvolution, we performed two kinds of demultiplexing: hash demultiplexing and 
genetic demultiplexing.

Hash demultiplexing of pooled data is precise but limited at default thresholds

For hash demultiplexing, cells are labeled with an antibody targeting ubiquitous cell 
surface epitopes attached to a unique oligo-tag (one for each sample) and are then 
pooled; after sequencing, the tag on each cell is used to recapitulate the sample of origin 
[34]. We used 10X Genomics’ cellranger multi platform to do this. When performing 
demultiplexing based on antibody hashing in the two batches, 4246 and 3734 of the cells 
respectively (57.7% and 38.0%) were assigned to one sample, with 286 and 145 (3.9% and 
1.5%) cells called as multiplets and 2823 and 5935 (38.4% and 60.5%) cells unassigned 
(Fig. 2A, B, Additional file 1: Tables S1–S2).

When reviewing the assignment probabilities for each cell, we found that many 
unassigned cells mapped to one antibody hashtag with reasonably high probability. 

Table 1 Single-cell count per sample. All numbers are after filtering based on percentage of 
mitochondrial reads

Sample ID Sample type Cells Component samples

2251 Individual 9464

2267 Individual 5345

2283 Individual 7627

2293 Individual 10609

2380 Individual 6300

2428 Individual 283

2467 Individual 6729

2497 Individual 9313

A Pooled 7358 2267, 2283, 2293, 2380

B Pooled 9814 2251, 2428, 2467, 2497
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The default assignment threshold for cellranger multi is 90% probability or greater of 
originating from one sample. When we relaxed this threshold to 85% probability, 4974 
and 3831 cells were assigned (67.6% and 39.0% of total) (Additional file 2: Fig. S1A-B). A 
further relaxed threshold of 80% probability yielded 5536 and 4032 assigned cells (75.2% 
and 41.1% of total) (Additional file 2: Fig. S1C-D).

Given the high number of unassigned cells under default parameters, we checked if 
there was differential antibody adhesion based on cell type, which if present could 
bias downstream deconvolution. We assigned a cell type label to all pooled cells 
using the CellTypist package [35] combined with unsupervised clustering (Methods). 
We found across tested probability thresholds that epithelial cells and fibroblasts 
were proportionally more likely to be unassigned in batch A, whereas T cells were 
proportionally less likely to be unassigned (Additional file  2: Fig. S2A). We did not 
observe a similar bias in batch B (Additional file 2: Fig. S2B). One difference between 
these two batches is that most of the unassigned cells in batch A were assigned to a single 
sample (id 2283) when the probability threshold was relaxed. In contrast, the newly 

−2.5

0.0

2.5

5.0

−3 0 3

UMAP 1

U
M

A
P

 2
Assignment

Hashtag1
Hashtag2
Hashtag3
Hashtag4
Unassigned

Batch AA

−5.0

−2.5

0.0

2.5

5.0

−6 −3 0 3 6

UMAP 1

U
M

A
P

 2

Assignment
Hashtag2
Hashtag3
Hashtag4
Unassigned

Batch BB

−2.5

0.0

2.5

5.0

−3 0 3

UMAP 1

U
M

A
P

 2

Assignment
Donor0
Donor1
Donor2
Donor3
Unassigned

C

−5.0

−2.5

0.0

2.5

5.0

−6 −3 0 3 6

UMAP 1
U

M
A

P
 2

Assignment
Donor0
Donor1
Donor2
Donor3
Unassigned

D

23

1

788

105

3

0

51

954

3

105

5

1

564

1

3

3

4

3

124

1

7

89

3

1405

21

44

36

160

1

24

2079

105

173

150

32

287

Unassigned

Doublet

Donor3

Donor2

Donor1

Donor0

Has
ht

ag
1

Has
ht

ag
2

Has
ht

ag
3

Has
ht

ag
4

M
ult

ipl
et

Una
ss

ign
ed

Hash demultiplexing assignment

G
en

et
ic

 d
em

ul
tip

le
xi

ng
 a

ss
ig

nm
en

t

E

5

1063

72

14

56

5

997

22

5

16

51

4

7

18

4

1304

79

12

26

26

3

19

70

1

869

2644

222

1589

483

128Unassigned

Doublet

Donor3

Donor2

Donor1

Donor0

Has
ht

ag
2

Has
ht

ag
3

Has
ht

ag
4

M
ult

ipl
et

Una
ss

ign
ed

Hash demultiplexing assignment

G
en

et
ic

 d
em

ul
tip

le
xi

ng
 a

ss
ig

nm
en

t
F

Fig. 2 Results of antibody-based and genetic demultiplexing are concordant in cancer data. A, B A UMAP 
representation of the pooled data from batch A (A) and batch B (B), colored by antibody-based assignment 
from cellranger multi. C, D The same samples colored based on genetic demultiplexing assignment from 
vireo. E, F A confusion matrix showing the overlap of assignments with antibody-based and genetic 
demultiplexing in each sample
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assigned cells at lower thresholds were more evenly distributed in batch B, suggesting 
lower overall antibody adhesion in the cells from sample 2283. We posit that in samples 
where overall antibody adhesion is low, perhaps due to insufficient reagent or insufficient 
time for adhesion, antibodies are preferentially likely to bind to the cell surface markers 
of certain cell types, perhaps through greater prevalence or steric availability of CD298 
and/or β 2 microglobulin. Given sufficient time or reagent, however, we posit that the 
antibodies will eventually bind to all cell types, explaining the lack of cell type bias in 
other samples/batches. This emphasizes the importance of titrating reagents based on 
the amount of cellular input, as recommended in the cell multiplexing procol we used 
[36]. These results also highlight the need to scrutinize the data post-sequencing and 
test a range of assignment thresholds, rather than simply relying on default parameters, 
in order to maximize the number of confidently assigned cells. Fortunately, our data 
showed reasonable representation of all cell types across all posterior thresholds. This 
suggests that differential antibody adhesion is unlikely to have a significant impact on 
reference profile quality or downstream deconvolution results, except in extreme cases 
where no cells of a given type are labeled.

Genetic‑based approaches lead to higher cell demultiplexing rates in HGSOC samples

We also performed genetic demultiplexing of the pooled cells. Instead of identify-
ing sample of origin based on an experimentally added antibody, genetic demultiplex-
ing leverages unrelated patients’ innate genetic variation to group cells based on their 
genotype [37]. Genotypes can be called using common variants from publicly available 
data, e.g., from the 1000 Genomes Project, or with genotypes called from another data 
modality in the same samples. The latter allows cells to be directly mapped back to sam-
ples rather than arbitrarily labeled. We used bcftools to genotype our bulk RNA-seq data 
[38], cellSNP-lite to genotype the single cells [39], and vireo to cluster the cells by allelic 
ratios of called genotypes to assign a sample of origin [40]. Under this framework, we 
assigned 6730 and 8866 of the cells respectively (91.4% and 90.3%) to one sample, with 
558 and 705 (7.6% and 7.2%) called as multiplets and 70 and 243 (1.0% and 2.5%) unas-
signed (Fig. 2C, D).

Since genetic demultiplexing relies on the ability to call sample-specific genotypes for 
common variants within single cells, the inherent genomic instability of cancer cells has 
previously been an area of concern. Simulated experiments have indicated that genetic 
demultiplexing was possible in tumor samples [41], and these results offer confirma-
tion in real experimental data. It has been shown that using genotypes from bulk data 
from the sample samples (when available) is preferable for cancer demultiplexing [41]. 
One could imagine that the selection strategy used for bulk data could affect results—for 
example, by unevenly sampling across transcripts. Here, we found that genotypes from 
paired bulk RNA-seq samples appear to be highly consistent across protocol types. We 
performed genotyping on our three bulk RNA-seq datasets  (rRNA- Chunk,  rRNA- Dis-
sociated,  polyA+ Dissociated) and performed genetic demultiplexing with each as a ref-
erence. We found that over 99% of cells had the same genetic demultiplexing assignment 
in each run (Additional file 2: Fig. S3A-C).
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Hash and genetic demultiplexing produce highly concordant cell assignments

Encouragingly, we saw a high degree of overlap in assignments between hash and 
genetic demultiplexing. In cells assigned to a sample by both methods, 94.3% and 95.2% 
of cells were assigned to the same sample (Fig. 2E, F). The biggest area of discordance 
overall was that many cells were assigned by genetic demultiplexing and left unassigned 
by hash demultiplexing. This effect was somewhat lessened at the more permissive 80% 
cellranger multi threshold. We attribute the higher number of assigned cells with genetic 
multiplexing, even after the relaxed hash assignment threshold, to incomplete adhesion 
of the antibody tags. For this reason, we elected to use cells assigned by genetic demulti-
plexing as our single-cell reference profiles for our main deconvolution analyses.

Dissociation causes disproportionate loss of adipocyte and other cell type markers

As mentioned previously, some cell types are more resilient to dissociation than others, 
which can create a bias in deconvolution when using single cells as reference profiles and 
in comparison of bulk to single-cell data. We assessed the effect of dissociation on tumor 
transcriptomic data by comparing two of our bulk RNA-seq datasets:  rRNA- Chunk and 
 rRNA- Dissociated.

Principal component analysis (PCA) of the samples’ expression profiles revealed 
that samples tended to segregate together by patient of origin in the first two principal 
components rather than based on dissociation status (Fig. 3A). This indicated that inter-
patient heterogeneity is strongly present before and after dissociation. We ran differential 
expression using the DESeq2 package [42] (Fig.  3B). The genes with the highest log 
fold-change of expression in the tumor chunks compared to the dissociated cells were 
hemoglobin genes (HBA1, HBA2, HBB) (Additional file 1: Table S3). Hemoglobin genes 
were significantly reduced across all  rRNA- Dissociated samples when compared to their 
 rRNA- Chunk counterparts (Fig. 3C). Erythrocytes (red blood cells) are the predominant 
expressors of hemoglobin, and are lysed and removed by many dissociation protocols 
[43], including the one that we used. We plotted other erythrocyte-specific genes 
[44] and found several were significantly more abundant in the tumor chunks as well 
(Fig. 3B).

Several other highly increased genes in the tumor chunks were associated with adi-
pose tissue (Fig. 3B, Additional file 1: Table S3). Adipocytes are fragile and rarely sur-
vive dissociation [46]. In a comparison of single-cell and single-nucleus RNA-seq data, 
adipocytes were abundant in single-nucleus data and essentially absent from single-cell 
data [45]. Some of our bulk RNA-seq samples expressed adipose-related genes in the 
tumor chunks but less in the dissociated cells. In other samples, adipose gene expres-
sion was low in both tumor chunks and dissociated cells (Fig. 3D). These data support 
a model where some tumors have high numbers of adipocytes, which are lost during 
dissociation, and others lack substantial adipose tissue. While the surgical excision site 
was not recorded for these samples, our data are consistent with certain samples being 
derived from the omentum (a layer of fat lining the peritoneal cavity to which ovarian 
cancer cells preferentially migrate and colonize [47]) and others from other sites.

Many of the genes that were more abundant in the dissociated cells compared to the 
tumor chunks are stress response pathway genes (Fig.  3B, Additional file 1: Table S4). 
These “signatures of dissociation” as annotated by O’Flanagan et al are highly conserved 
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across cell and tissue types [48]; because of this, we hypothesize that stress response 
genes are unlikely to be selected as informative markers by a deconvolution method 
and the chance of introducing cell type-specific bias is low. We thus focused on how 
dissociation may alter cell type abundance. Gene set expression analysis using cell type 
signature genes from the Molecular Signatures Database [49] showed that endothelial 
cells, fibroblasts, macrophages, and other immune cell types are more abundant 
in dissociated cells (Additional file  2: Fig. S4). We confirmed increased endothelial 
expression using marker genes from Emont et  al [45] (Fig.  3B). Indeed, many of 
the stromal and immune cell types one would expect to see in an HGSOC tumor 
are more abundant in the dissociated cells. We hypothesize this is due to increased 
relative abundance rather than a true biological enrichment. When red blood cells and 
adipocytes are disproportionately removed, the relative abundance of markers of the 
remaining cell types necessarily increases.

−20

0

20

P
C

2:
 2

2%
 v

ar
ia

nc
e

−25 0 25 50
PC1: 33% variance

Sample
2251
2267
2283
2293
2380
2428
2467
2497

Status
chunk
dissociated

A
rRNA− Chunk rRNA− Dissociated

0

10

20

30

−3 0 3 6
log2 fold change

−
lo

g1
0 

ad
ju

st
ed

 p
−

va
lu

e

Gene set
Adipocytes
RBCs
Endothelial cells
Dissociation response
Other

B

HBA1 HBA2 HBB

chunk dissociated chunk dissociated chunk dissociated

1

10

100

1000

10000

Status

N
or

m
al

iz
ed

 r
ea

d 
co

un
ts

Sample
2251
2267
2283
2293
2380
2428
2467
2497

C

ADIPOQ CIDEC PLIN1

chunk dissociated chunk dissociated chunk dissociated

1e+01

1e+03

1e+05

Status

N
or

m
al

iz
ed

 r
ea

d 
co

un
ts

Sample
2251
2267
2283
2293
2380
2428
2467
2497

D

Fig. 3 Dissociation causes disproportionate loss of red blood cells and adipocytes. A A principal component 
analysis of the  rRNA- Chunk and  rRNA- Dissociated bulk samples, where color indicates patient of origin and 
shape indicates dissociation status. Two points that are closer together on the PCA plot are more similar in 
their expression profiles. B A volcano plot of the differential expression results based on dissociation status, 
with gene sets of interest colored: genes known to be upregulated in adipocytes [45], endothelial cells [45], 
and red blood cells [44]. C Expression of hemoglobin genes in each sample based on dissociation status. D 
Expression of selected adipocyte-related genes based on dissociation status



Page 10 of 27Hippen et al. Genome Biology          (2023) 24:239 

While some cell type bias in dissociated cells is caused by easily avoided technical arti-
facts—one could alter their dissociation protocol to not include a red blood cell lysis 
step—others are not easily remedied, such as the disproportionate loss of adipocytes and 
other fragile cell types. While adipose marker genes were not completely missing in our 
dissociated bulk samples, we did not find any adipocytes in our annotated paired single-
cell data, consistent with the findings of [45]. Deconvolution using this single-cell data as 
a reference profile would, at best, be unable to detect the presence of or quantify adipo-
cytes. This poses a particular problem for ovarian cancer studies, where adipocytes are 
posited to have a direct role on tumor growth and metastasis [50, 51] and explain some 
aspects of inter-patient heterogeneity. Other cancer types may also have other relevant 
cell types that are disproportionately compromised by dissociation, such as mesothelial 
cells [45]. Methods that assume all cell types have a reference present may exhibit unsta-
ble performance as they minimize residuals that arise from the absent cell types.

mRNA enrichment method affects gene abundance

Many deconvolution experiments use bulk data that has been ribosomal RNA-depleted 
and single-cell reference profiles that have been poly-A captured. While both poly-A 
capture and rRNA depletion have been shown to effectively enrich for mRNA across a 
variety of contexts [23, 52], it is not known if this experimental difference has a down-
stream effect on deconvolution. Comparing two of our datasets,  rRNA- Dissociated and 
 polyA+ Dissociated, allows us to observe the impact different mRNA enrichment meth-
ods have on gene expression profiling.

To visualize the differences across samples and across data types, we used PCA on a 
regularized log-transformed dataset comprising all genes in the  rRNA- Dissociated and 
 polyA+ Dissociated samples. We found that the first principal component segregated 
samples by patient, while second principal component completely separated the  rRNA- 
Dissociated and  polyA+ Dissociated samples from each other (Fig.  4A). The choice of 
mRNA enrichment method exerts a substantial effect on overall gene expression.

We performed differential expression analysis to identify trends in global expression 
profiles (Fig. 4B). All of top 20 most differentially abundant protein-coding genes (based 
on log fold change) in the ribo-depleted samples encoded histone proteins. To see if this 
effect was widespread among all histone genes, we aggregated their counts and found 
1.7-fold to 10-fold enrichment of histone genes in the  rRNA- Dissociated samples com-
pared to the  polyA+ Dissociated samples from the same tumor (Fig. 4C). There is a sim-
ple explanation for this: canonical histone RNAs are not polyadenylated and thus missed 
by poly-A capture protocols [54] (the histone reads we observe in the  polyA+ Dissoci-
ated samples are likely attributable to variant histones that are not cell cycle dependent 
and are polyadenylated). Several other non-polyadenylated transcripts, such as TERC 
(the RNA component of telomerase) and RMRP (an endoribonuclease implicated in 
cancer progression [55, 56]), were also highly differentially abundant in the  rRNA- Dis-
sociated samples [53]. While these genes are not documented marker genes for cell 
types, researchers should expect that these genes will be substantially undercounted or 
missing in poly-A captured samples, which includes many existing tumor maps.

We observed another trend in the opposite direction: of the top 20 most differentially 
abundant protein-coding genes in the poly-A captured samples, 12 originated from 
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the mitochondrial transcriptome (mtRNA) (Additional file 1: Table S6). Examining the 
aggregated counts of all mitochondrial RNA in both sets of samples, we found a 10-fold 
to 30-fold increase in mtRNA reads in poly-A samples compared to their ribo-depleted 
counterparts (Fig. 4D). We initially found these results surprising since most mitochon-
drial RNAs have no connection to ribosomal machinery. However, the widely used kit 
that we used for rRNA depletion has an off-target effect where non-ribosomal mito-
chondrial transcripts are depleted along with the mitochondrial ribosomes [57]. The 
apparent increased abundance of mitochondrial genes in poly-A samples is likely attrib-
utable to this technical artifact.

The percent of mtRNA reads is a major metric used for quality control of scRNA-seq 
data. Dissociation can result in a rupture of the cell membrane and loss of cytoplasmic 
RNA, causing an increase in the proportion of mitochondrial RNA [58]. Cells above a 
certain mitochondrial threshold are usually removed from analysis, assumed to be dead 
or irreparably compromised. If a researcher uses paired bulk RNA-seq that has been 
ribo-depleted as a reference for the expected fraction of mtRNA reads, they may choose 
an overly conservative threshold and lose many potentially informative cells.

Assessing deconvolution accuracy and robustness together improves method evaluation

With more information on the effect different experimental decisions have on the 
data directly, we assessed the extent to which those experimental factors affect tumor 
deconvolution. We applied several commonly used deconvolution methods to our 
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tumor data (Table  2) [11–15, 59]. We chose methods that return proportions of cell 
types, allowing us to directly compare results across methods. Each method has its own 
particular required inputs. In the case of methods that do not use scRNA-seq data, we 
used the marker gene matrices provided by the respective methods [14]. Most methods 
we examined require single cells as cell type reference profiles [11–13, 15, 59]. For these 
methods, we used cells from our pooled single-cell data that could be assigned to a 
sample by genetic demultiplexing and confidently annotated to a cell type (n = 14,608). 
Having two types of single-cell data from the same samples (scRNA-seq Pooled and 
scRNA-seq Individual) allowed us to provide the pooled cells as a reference profile and 
leave the individually sequenced cells to be used for validation without the pitfalls of 
using the same data for reference profiles and assessment.

Deconvolution methods have cell type bias in real and pseudo‑bulk data

We generated pseudo-bulk samples using 7 of our scRNA-seq Individual samples, using 
cells annotated by cell type. We excluded sample 2428 due to an insufficient number 
of cells. We used SimBu [60] to create four datasets of 50 pseudo-bulk samples each, 
spanning a range of potential scenarios that a deconvolution method should be able to 
accurately characterize (Fig. 5A). Each pseudo-bulk sample consisted of count data from 
2000 single cells, sampled according to the scenario parameters. One scenario mirrored 
the proportions of cell types observed in the single-cell samples; we will refer to this 
scenario as “realistic.” Another scenario had approximately equal numbers of all the 
cell types present in the single-cell data; we will call this scenario “even.” A scenario we 
will call “sparse” only included cell types believed to be common in our tumor dataset 
(epithelial cells, endothelial cells, fibroblasts, macrophages, and T cells), to enable us 
to assess how deconvolution methods handle absent cell types. One of the scenarios, 
called “weighted,” is designed to mimic our expectation that many epithelial tumors 
are predominated by cancer cells; in this scenario, the epithelial cell fraction was held 
constant at 70% with random proportions of other cell types. Since cell types have 
different amounts of mRNA contents, most deconvolution methods predict proportions 
of each cell type’s mRNA contribution, not proportions of total cells. We therefore used 
proportion of transcriptional reads deriving from sampled cells of each cell type as a 
ground truth for our pseudo-bulk accuracy analysis (Fig. 5A).

We ran the deconvolution methods on all of the simulated pseudo-bulk datasets and 
calculated the room mean squared error (RMSE) between the estimated and known 

Table 2 Deconvolution methods. All methods used are open source and return proportional 
estimates of the total composition of a tissue sample

Method Implemented by Uses scRNA‑seq data Availability

BayesPrism Chu et al. 2022 [11] Yes R package

Bisque Jew et al. 2020 [12] Yes R package

CIBERSORTx Newman et al. 2019 [13] Yes Web app

EPIC Racle et al. 2017 [14] No R package

MuSiC Wang et al. 2019 [15] Yes R package

NNLS Mullen and van Stokkum 2012 [59] Yes R package
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pseudo-bulk proportions. We found that performance differed both across methods and 
across simulation types, with BayesPrism and CIBERSORTx having the lowest and most 
consistent errors overall (Fig.  5B). We next investigated whether some methods gave 
better estimates of certain cell types than others in pseudo-bulk data. We stratified the 
proportion estimates by method and cell type and subtracted the corresponding pseudo-
bulk mRNA proportion values from them (Fig. 5C). For almost all cell types, all meth-
ods had a mean difference between true and estimated proportions of approximately 0, 
albeit with frequent outliers. The one exception was epithelial cells, whose mRNA abun-
dance was overestimated by three of the six methods.
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Given that we had paired bulk and single-cell data, we could compare our pseudo-
bulk results to the output of deconvolution on real bulk data for each sample. We 
ran deconvolution on each of our three bulk data types  (rRNA- Chunk,  rRNA- Dis-
sociated, and  polyA+ Dissociated). We used the number of cells of each type from 
the individual single-cell data to approximate proportions, with the assumption that 
deconvolution results that are closer to the proportions from the single-cell data will 
be closer to the unknown true proportions comprising the bulk data (we excluded 
sample 2428 from this analysis because of its small number of captured single cells). 
We subtracted proportions estimated from our single-cell data from the decon-
volution-estimated proportions for our bulk data (Fig.  5D). In this comparison, we 
found that most methods undercount macrophages and T cells and most overcount 
endothelial cells, epithelial cells, and fibroblasts. The difference between most other 
cell types’ estimated bulk and matched single-cell proportions was close to 0, which 
is expected given that these cell types are comparatively rarer and so variance is natu-
rally smaller. These trends occur across each of the bulk data types (Additional file 2: 
Fig. S5A-C).

The concordance across methods in undercounting certain cell types and over-
counting others in the real bulk data led us to speculate that it may derive from a 
true difference in cell type proportions between bulk and single-cell data. To explore 
this, we ran differential expression analysis on our  polyA+ Dissociated bulk data com-
pared to our pseudo-bulk data generated from all scRNA-seq Individual cells. Using 
 polyA+ Dissociated bulk data to compare to pseudo-bulk ensured that any differences 
in gene expression were not an artifact of dissociation status or method of mRNA 
enrichment. We found a high number of differentially expressed genes, suggesting 
that discrepancies between bulk and single-cell data extend beyond the experimen-
tal design decisions we controlled for. We filtered differential expression results to 
the cell type unique markers used by MCPcounter [61]. T cell markers were all more 
expressed in the single-cell data than in the bulk, and the overwhelming majority of 
fibroblast and endothelial cell markers were more expressed in the bulk data than in 
the single-cell (Fig. 5E). These results suggest that some step in the technical protocol 
post-dissociation also creates a cell type-specific bias in what cells are captured by 
scRNA-seq. We used microfluidic-based scRNA-seq, so loading the cells into micro-
fluidic droplets could be differentially efficient. Endothelial cells and fibroblasts are 
irregularly shaped and highly integrated into the extracellular matrix (ECM) and 
vasculature; these groups of cells may be more prone to incomplete dissociation and 
being strained prior to loading. This may be particularly true in the context of a high-
grade tumor, where cancer cells establish a dense and highly disorganized ECM and 
vasculature compared to normal tissue. In contrast, T cells are more spherical and 
inherently migratory and are thus more likely to be dissociated and loaded efficiently. 
Additionally, it has been reported that some kinds of T lymphocytes are underrepre-
sented in deconvolution methods that use marker genes [62]. Perhaps the phenotypic 
heterogeneity observed in most T cell lineages makes it harder to identify a unifying 
expression profile for accurate quantification.

Regardless of the cause of the cell type bias in scRNA-seq, its presence suggests 
an uncomfortable truth: bulk and single-cell RNA-seq are substantially different 
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modalities. This challenges the use of accuracy on pseudo-bulk data as a gold stand-
ard for deconvolution because performing well on pseudo-bulked single-cell data 
does not necessarily equate to performing well on real bulk data. It also suggests that 
comprehensive profiles of the tumor microenvironment should include both bulk and 
single-cell assays to allow accurate analysis of the TME.

Deconvolution methods vary in robustness to technical differences

We propose an additional way to evaluate deconvolution methods: robustness of results 
to different experimental and protocol decisions. We posit that a method that returns 
consistent results for the same tissue sample, regardless of what kind of pre-sequenc-
ing processing is done and what reference profile it is given, is likely to give meaningful 
results across a range of real-world settings and studies. The concept of robustness has 
been previously employed in deconvolution with the assertion that constructing better 
marker gene matrices requires taking cross-microarray platform variation into account 
[63]. Here, we extend this concept to single-cell informed deconvolution methods.

Since our three bulk-sequenced datasets originated from the same tumors, we would 
expect a robust deconvolution method to return similar cell type proportions for a 
given tumor using each bulk dataset as input. We compared the variance in proportion 
estimates for each combination of sample, cell type, and method (e.g., the proportion of 
B cells CIBERSORTx reported for sample 2251 in  rRNA- Chunk vs.  rRNA- Dissociated 
vs.  polyA+ Dissociated data) (Fig.  6A). The more abundant cell types in our tumors, 
such as endothelial cells and epithelial cells, had naturally higher variance than the less 
abundant cell types, such as NK cells and plasma cells. MuSiC had the lowest variance 
overall, followed by BayesPrism.

As we have already demonstrated, changes in how the single-cell data are generated 
can change the cell type representation of the reference profile, which can skew decon-
volution results. We used the results from our demultiplexing experiment to deter-
mine what deconvolution methods are more robust to technically driven changes in 
the single-cell reference profile. We ran deconvolution on our bulk data using a refer-
ence comprising only the cells assigned by hash demultiplexing at the default 90% prob-
ability threshold. This represented 51.8% of the cells used in our original profile of cells 
assigned by genetic demultiplexing. Given that each cell type was still reasonably rep-
resented in the smaller single-cell dataset, we would expect a robust method to return 
similar deconvolution results using either reference profile (note that these analyses only 
apply to deconvolution methods that use single-cell reference profiles, so methods that 
use pre-selected marker genes were excluded).

We compared the variance across the single-cell profiles in each combination of 
sample, cell type, method, and bulk type (e.g., the proportion of B cells CIBERSORTx 
reported for sample 2251’s  rRNA- Chunk data using the genetic demultiplexed refer-
ence profile vs. the hash demultiplexed reference profile) (Fig. 6B). We found BayesPrism 
had lower average variance across most cell types, with CIBERSORTx having the next 
lowest, indicating these methods may be more invariant to slight changes in the refer-
ence profile. We next calculated the RMSE between the deconvolution results across 
the two reference profiles (Fig. 6C). BayesPrism and CIBERSORTx had very low error 
across all pseudo-bulk types, but BayesPrism’s errors were lower on the true bulk data. 
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MuSiC performed similarly to CIBERSORTx on true bulk data but had higher errors on 
pseudo-bulk data, with Bisque and NNLS having the highest and most variable errors. 
Seen another way, the difference between the deconvolved cell type proportions using 
either reference profile was relatively small and uniform across bulk data types for Baye-
sPrism, slightly larger but still uniform across bulk types for CIBERSORTX and MuSiC, 
but highly variable in Bisque and NNLS, particularly in the pseudo-bulk types (Fig. 6D).

Halving the size of the reference profile by using the default assignments from Cell 
Ranger multi offered some evidence of how changes in reference profile size affects 
deconvolution results, but even then, the reference profile had thousands of cells with 
even rare cell types represented in the dozens or more. To assess how deconvolution 

−30

−20

−10

0

ba
ye

sp
ris

m

bis
qu

e

cib
er

so
rtx ep

ic

m
us

ic
nn

ls

Method

lo
g(

va
ria

nc
e 

ac
ro

ss
 b

ul
k 

ty
pe

s) Cell type
B cells
DC
Endothelial cells
Epithelial cells
Fibroblasts
ILC
Macrophages
Mast cells
Monocytes
NK cells
pDC
Plasma cells
T cells

A

−50

−40

−30

−20

−10

0

ba
ye

sp
ris

m

bis
qu

e

cib
er

so
rtx

m
us

ic
nn

ls

Method

lo
g(

va
ria

nc
e 

ac
ro

ss
 r

ef
er

en
ce

 p
ro

fil
es

)

Cell type
B cells
DC
Endothelial cells
Epithelial cells
Fibroblasts
ILC
Macrophages
Mast cells
Monocytes
NK cells
pDC
Plasma cells
T cells

B

0.02

0.04

0.06

0.08

rR
NA− 

Chu
nk

rR
NA− 

Diss
oc

iat
ed

po
lyA

+ 
Diss

oc
iat

ed
ev

en

re
ali

sti
c

sp
ar

se

weig
ht

ed

Bulk type

R
M

S
E

 a
cr

os
s 

re
fe

re
nc

e 
pr

of
ile

s

Method
bayesprism
bisque
cibersortx
music
nnls

C

−0.4

−0.2

0.0

0.2

0.4

ba
ye

sp
ris

m

bis
qu

e

cib
er

so
rtx

m
us

ic
nn

ls

Method

P
ro

po
rt

io
n 

(g
en

et
ic

 r
ef

er
en

ce
 −

 h
as

hi
ng

 r
ef

er
en

ce
)

Bulk type
rRNA− Chunk
rRNA− Dissociated
polyA+ Dissociated
even
realistic
sparse
weighted

D

bayesprism

bisque

cibersortx

epic

music

nnls

0.09

0.12

0.15

0.18

−5 −4
Robustness (log(variance) across bulk types)

A
cc

ur
ac

y 
(R

M
S

E
 w

ith
 p

se
ud

o−
bu

lk
 p

ro
po

rt
io

ns
)

E

bayesprism

bisque
cibersortx

epic

music

nnls

0.16

0.18

0.20

−5 −4
Robustness (log(variance) across bulk types)A

cc
ur

ac
y 

(R
M

S
E

 w
ith

 s
in

gl
e 

ce
ll 

pr
op

o
rt

io
ns

)

F

Fig. 6 Deconvolution methods vary in robustness to changes in bulk and single-cell data. A Variance of 
deconvolution results across bulk data type. For each method, we calculated the variance between the 
estimated proportion for a given cell type in a given sample in the  rRNA- Chunk,  rRNA- Dissociated, and 
 polyA+ Dissociated data. B Variance of deconvolution results across reference profile size. For each method, 
we calculated the variance between the estimated proportion of a given cell type in a given sample 
when using cells assigned by genetic demultiplexing (n = 14,608) as a reference vs. using cells assigned 
by antibody-based demultiplexing with default parameters (n = 7574). C The average RMSE between cell 
type proportions using a smaller and larger reference profile. D The average difference between cell type 
proportion estimates using the smaller vs. the larger reference profile, stratified by bulk/pseudo-bulk data 
type. E The final accuracy vs. robustness result for each method based on pseudo-bulk data, with variance in 
estimates for bulk data types and RMSE between estimate and simulated proportions for pseudo-bulk data. 
F Accuracy vs. robustness of each method based on true bulk data, with variance in estimates for bulk data 
types and RMSE between real bulk estimate and real single-cell proportion
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methods handle even smaller reference profiles, we proportionately downsampled 
our pooled single-cell data into several simulated reference profiles, having as few as 
200 total cells (Methods). We ran each of the deconvolution methods on our bulk and 
pseudo-bulk data using these new simulated reference profiles. We found that some 
methods have built-in conditions on the size of the reference profile for rare cell types: 
MuSiC will only quantify a cell type with 2 or more cells in the reference profile, whereas 
CIBERSORTx will only quantify those with 3 or more cells. Finally, we calculated the 
variance of deconvolution proportion estimates in a stepwise fashion, including results 
from a smaller reference profile each time. (Additional file 2: Fig. S6) While all decon-
volution methods produced less consistent results when smaller reference profiles were 
used, evidenced by a higher average variance, BayesPrism still had lower variance than 
the other methods when all sizes of reference profile were considered, with CIBER-
SORTx a close second. We determined that these methods are likely to be more robust 
to variations in the reference expression profile driven that are driven by a small sample 
size.

Finally, to consider robustness and accuracy simultaneously, we plotted a metric of 
each on an axis of a graph (Fig. 6E, F) to determine if there was a tradeoff between meth-
ods, i.e., if some methods return precise-but-not-accurate results across experimental 
conditions and some methods are accurate under some experimental conditions but 
not robust. We used variance across true bulk types as the robustness axis, and for the 
accuracy axis, we used either the RMSE between estimates and pseudo-bulk proportions 
(Fig. 6E) or RMSE between real bulk proportions and single-cell proportions (Fig. 6F). 
BayesPrism and CIBERSORTx scored well on both axes, and while MuSiC had a slightly 
better robustness score and had good accuracy (low RMSE) on pseudo-bulk data, it had 
poor accuracy (high RMSE) on true bulk data.

Relative impact of experimental factors on deconvolution results

In this paper, we have considered several different experimental factors that can alter the 
results of a deconvolution analysis: whether or not the bulk tissue is dissociated prior to 
sequencing, whether rRNA depletion or poly-A capture is performed, the size of the sin-
gle-cell dataset used as a reference profile, and the choice of deconvolution method used. 
In order to contextualize the ultimate impact each of these experimental factors has on 
deconvolution, we performed an analysis of variance (ANOVA) using each of the experi-
mental factors mentioned as a potential explanatory variable for deconvolution results. 
Since proportional estimates of each cell type must sum to 1 and are therefore not inde-
pendent, we limited our analysis to the proportions of the single most variable cell type, 
which was epithelial cells. Unsurprisingly given the variation seen in cell type propor-
tions across methods, choice of deconvolution method was the factor with the most 
significant effect on epithelial cell proportion estimates (F = 53.406, p < 2e−16). The 
choice of an mRNA enrichment method (rRNA depletion or poly-A capture) also had a 
significant effect on epithelial cell proportion estimates (F = 56.628, p = 1.55e−13). The 
size of the single-cell reference profile used was not significant (F = 1.056, p = 0.383), 
suggesting that—barring extremely small reference profiles where entire cell types are 
missing—deconvolution methods are largely invariant to small changes in the single-cell 
reference profile. Dissociation status of the bulk data was also not significant (F = 0.316, 
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p = 0.574). This implies that dissociation does not affect deconvolution methods’ abil-
ity to identify and quantify cell type signals, with the important caveat of cell types like 
adipocytes that are compromised enough by dissociation to be entirely missing from the 
reference profile.

This significant effect of mRNA enrichment method on epithelial cell estimates was 
initially surprising, given that we did not find cell type-specific differences driven by 
mRNA enrichment. However, when we compared the bulk profiles of the  rRNA- Disso-
ciated and  polyA+ Dissociated samples (Fig. 4), samples segregated efficiently by mRNA 
enrichment method in a principle component analysis. Also, there were more signifi-
cantly differentially expressed genes between  rRNA- Dissociated and  polyA+ Dissoci-
ated samples (7588 genes with log fold-change (LFC) > 0 and 7384 LFC < 0, FDR = 0.05) 
than between  rRNA- Chunk and  rRNA- Dissociated (3142 LFC > 0 and 2694 LFC < 0, 
FDR = 0.05). From this, we intuit that large global changes in gene abundance are suf-
ficient to bias a deconvolution method, even without cell type-specific changes.

Discussion
In this study, we designed a unique experiment profiling HGSOC tumors in multiple 
ways to allow for direct characterizations of how experimental design affects the decon-
volution of cancer data. We introduce the metric of robustness across experimental 
protocols to deconvolution methods to ensure results are consistent for a single tumor 
independent of the technical choices made. Performing these analyses on real tumor 
data instead of simulated data establishes a model dataset with which future deconvolu-
tion methods can be evaluated for robustness.

We applied and evaluated six different deconvolution methods for both accuracy and 
robustness. We intend this to be an examination of how different commonly used exist-
ing methods can vary in robustness and not a comprehensive benchmark. We invite 
researchers to use this dataset to evaluate the robustness of other existing and future 
methods. We have included a tutorial on GitHub for running new methods on this data 
(Availability of data and materials).

Our analysis focused on deconvolution methods that return absolute proportions 
of cell types within a sample. Other common methods return unitless scores that can 
be compared across samples to assess relative abundance but which do not indicate an 
absolute proportion of cell types in the sample. We initially applied several such meth-
ods to our data (Additional file 1: Table S7) [61, 64–69]. However, when we attempted 
to assess the accuracy of these methods on our bulk data, based on their correlation 
with the proportions in the single-cell data, correlation values were very low (Additional 
file 2: Fig. S7A-G). Many of these methods focus on granular profiling of the immune 
compartment rather than total deconvolution, so our dataset may not be optimal for 
evaluating such methods.

Methods development for deconvolution is an active area of research. As such, we 
offer recommendations for researchers designing the next generation of deconvolu-
tion methods. One major consideration brought to light by this study is that certain 
cell types are present in the bulk tissue but lost from single-cell data. These cell types 
are thus unquantifiable by existing reference profile-based deconvolution methods. 
At a minimum, we recommend that future methods include a parameter to capture 
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the proportion of “unknown cells” that lack a reference within a sample to quantify 
missing cell types indirectly (this is already implemented in certain methods, such as 
EPIC [14]). Alternatively, a potential area for development would be a method that 
employs single-nucleus data (snRNA-seq) as a reference profile for deconvolution. 
Some cell types that are lost by dissociation can still be profiled using snRNA-seq 
due to the protection of the nuclear membrane [45]. A method that corrects for dif-
ferences between nuclear and cytoplasmic RNA may effectively leverage an snRNA-
seq reference profile to more accurately characterize all cell types present in a given 
tissue. Another option would be a combination of reference profile and marker gene 
strategies, using reference profiles for cell types that can be single-cell sequenced 
and cell type markers obtained from the literature or from bulk sequencing for cell 
types lost in single-cell sequencing. While it does not seem like an arbitrarily large 
reference profile is necessary for accurate deconvolution, combining single-cell data 
across tissue contexts and platforms from public datasets such as the Human Cell 
Atlas may also allow for better quantification of rare cell types [70]. How to account 
for the differences in cell type gene expression across different tissue contexts is a 
promising area for future research.

Regardless of individual algorithmic decisions, developers of new deconvolution 
methods should be sure to test on real bulk and single-cell datasets that have been 
prepared using representative experimental protocols. As we have shown here, dif-
ferent design decisions each introduce biases that can affect deconvolution. Testing 
on only one data type renders these biases invisible. Our results show that pseudo-
bulk data is an inherently limited metric and should not be used as the solitary gold 
standard for evaluation. Also, a recent study by Hu and Chikina confirms that the 
traditional way of simulating data for evaluating deconvolution does not adequately 
represent biological heterogeneity and proposes new ways for better capture het-
erogeneity in simulation [71]. By incorporating robustness evaluations across both 
well-designed simulations and real datasets into their testing process, researchers 
can maximize the utility of their method across many future research questions.

We also have recommendations for scientists interested in designing an experi-
ment to use deconvolution to profile the TME. We note that our study focused on a 
single tumor type, HGSOC, so results may vary for other tumor types, but we believe 
that these principles are likely to be helpful for many kinds of heterogeneous solid 
tumors. For those generating novel data, pooling is an effective way to single-cell 
profile more tumors at a considerably reduced cost. We recommend using genetic 
demultiplexing to assign cells back to their sample of origin since it is independ-
ent of the efficiency of antibody loading and thus results in fewer unassigned cells 
with no observed bias by cell type. Where genetic demultiplexing is not possible, 
e.g., using multiple samples from the same patient or genetically related patients, 
a study by Howitt et al. offers recommendations of alternate software packages for 
hash demultiplexing, even in scenarios with low quality hashtag data [72].

Method of mRNA enrichment appears to be a key consideration when designing a 
bulk sequencing protocol for tumor deconvolution. For those generating novel bulk 
sequencing data, we recommend performing poly-A capture to align more closely 
with the single-cell reference profile. That said, choosing a robust deconvolution 
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method should allow for high performance when using either poly-A captured or 
rRNA-depleted samples. Out of all of the methods we tested, BayesPrism had the 
highest combination of robustness (across bulk expression protocols and single-cell 
reference profile sizes) and accuracy (compared to true pseudo-bulk proportions 
and real single-cell data).

Conclusions
Our results indicate that differences in data generation protocols introduce biases that 
alter the output of most deconvolution methods. This is true across protocols within a 
single data modality, such as bulk RNA sequencing of dissociated vs. non-dissociated 
tissue, but it is also true across different data modalities, namely bulk vs. single-cell 
RNA sequencing. Even when mRNA enrichment methods and dissociation status are 
the same, bulk and pseudo-bulk single-cell data have cell type specific abundance differ-
ences. From this, we intuit that characterizing the true cell type profile of a tissue is more 
complex than is deconvolving a collection of single cells that have been pseudo-bulked. 
Thus, accuracy on pseudo-bulk data is more of a silver standard than a gold standard. 
A well-performing deconvolution method will need to balance the trade-off between 
accuracy and robustness, being careful not to overfit to either silver standard. Out of the 
methods we tested, BayesPrism had the highest combination of robustness and accu-
racy. Development of even more robust deconvolution methods, as well as thoughtful 
design of experiments to generate data for deconvolution, will allow for high-quality 
characterizations of the TME across hundreds or thousands of samples in bulk data-
sets. These large sample sizes will enable a better understanding of the fundamentals 
of tumor biology at a population level and potentially identify opportunities for novel 
targeted therapeutics.

Methods
Experimental methods

Tumor processing/dissociation

Samples were collected from 8 patients with HGSOC by the University of Pennsylva-
nia Ovarian Cancer Research Center’s Tumor BioTrust Collection (RRID: SCR_022387). 
All patients underwent primary debulking surgery and had not received neoadjuvant 
chemotherapy. A 10X enzymatic digest stock solution was made by combining a 500 mL 
bottle of RPMI-1640 (Gibco 61870036), 1000 mg collagenase (Millipore Sigma C9407), 
and 150 KU DNase type IV (Millipore Sigma D5025). Solution was sterile filtered, ali-
quoted, and stored at − 20° C until use. Tumor samples were minced into 1mm pieces. 
Portions of the tumor were flash frozen. Remaining fresh tissue was put into a 1X solu-
tion of the enzymatic digest solution, diluted with RPMI-1640. Tumor tissues were dis-
sociated overnight at room temperature. Dissociate mixture was filtered using a sterile 
100 µ m mesh filter and washed using DPBS. Red blood cells were removed using ACK 
Lysis Buffer. Dissociated cells were resuspended in 90% human AB serum/10% DMSO 
freezing media and frozen at − 80° C in a freezing chamber then transferred to − 150° C 
for long term storage.
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Multiplexing

We grouped samples into two batches of four samples each, in order to balance the cost-
saving potential of multiplexing with minimizing the risk of clogging by loading cells 
from all eight samples at once. For each set of four samples, a portion of the dissoci-
ated cells was thawed and labeled with TotalSeq-B anti-human antibody-oligonucleotide 
conjugates from BioLegend, which are designed to label most cells via binding to both 
CD298 and β 2 microglobulin. The cells were then pooled and prepared for sequencing 
using the 10X Genomics 3’ CellPlex Kit.

Single‑cell sequencing

We performed scRNA-seq using the Chromium Next GEM platform from 10X Genom-
ics. We loaded our thawed dissociated cells into emulsified droplets with Single Cell 3’ 
v3.1 Gel Beads using the Chromium Next GEM Chip G. We then added primers com-
plete with a unique molecular identifier (UMI) and a poly-dT sequence to ligate with the 
mRNA molecules in each droplet and generate cDNA. Droplets were then broken, pool-
ing the labeled cDNA for amplification, fragment size selection, and sequencing.

The multiplexed single-cell samples were prepared in the same way as above, but addi-
tional primers mapping to the cell surface protein feature barcodes were added along-
side the other primers, allowing for specific amplification of the antibody-associated 
oligonucleotides.

All single-cell samples, multiplexed and individually run, were sequenced on an Illu-
mina NovaSeq 6000 system using the S2 Reagent Kit v1.5 (100 cycles).

Bulk sequencing

For each sample, we bulk sequenced thawed tumor chunks; we also bulk sequenced a 
portion of the thawed dissociated cells in two ways: (1) tumor chunks and one set of 
dissociated cells were prepared following Illumina’s TruSeq Stranded Total RNA proto-
col. Ribosomal RNA was depleted using the Illumina Stranded RiboZero Plus kit. Then, 
cDNA was synthesized from the remaining RNA and enriched using PCR. (2) Another 
set of thawed dissociated cells were prepared according to Illumina’s TruSeq Stranded 
mRNA protocol. In this protocol, mRNA molecules attach to oligo-dT magnetic beads 
for purification before cDNA synthesis and enrichment.

All bulk samples were sequenced on an Illumina NovaSeq 6000 system using an S2 
Reagent Kit v1.5 (300 cycles).

Computational methods

Data processing

The single-cell data were processed using 10x Genomics’ Cell Ranger software version 
6.1.2. The raw sequence files were converted to FASTQ files using the cellranger mkfastq 
function, which were then aligned, filtered, counted, and converted into a gene by cell 
matrix by the cellranger count function. These samples were aligned using a GrCh38 
reference genome provided by 10x Genomics (2020-A).

The bulk data were processed using two different aligners in order to account for some 
deconvolution methods requiring raw read counts and others requiring transcripts per 
million (TPM): (1) for methods requiring raw read counts, we processed the samples 
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using the STAR aligner version 2.7.10 [73], using an index generated from the same ref-
erence genome as the single-cell data (10x Genomics GrCh38 2020-A). We used STAR’s 
quantMode parameter to generate per-gene read counts for each bulk sample. (2) Since 
calculating transcripts per million requires consideration of transcript length, we also 
quantified the bulk samples using salmon version 1.9.0 [74]. We used an index generated 
from the GENCODE release 32 reference transcriptome (GRCh38.p13). Salmon returns 
per-transcript quantifications, which we combined across transcripts of a gene to get 
per-gene TPM values.

Demultiplexing

For the pooled single-cell data, we quantified and separated the cells by sample of ori-
gin using Cell Ranger version 6.1.2, specifically the function cellranger multi. In addi-
tion to the normal alignment and cell counting steps, cellranger multi also quantifies the 
provided cell multiplexing oligos (CMOs) and splits each cell’s read values into one of 
several matrices: one for each provided CMO and one for cells that were not able to be 
assigned at the given threshold. It also generates a unique BAM alignment file for the 
reads in each matrix and an assignment report giving the probability estimates for each 
barcode being assigned to each particular sample, called as a multiplet, or called as a 
blank droplet.

For the genetic demultiplexing, we first genotyped the STAR-aligned bulk data using 
the mpileup and call functions of bcftools version 1.7 [38]. To genotype the single-cell 
data, we used the BAM files generated by cellranger multi, concatenated into a single 
file. We genotyped this file using cellsnp-lite version 1.2.2 [39] with the variant calls from 
the bulk data as a reference for sites of heterogeneous genotypes across samples. We 
used vireo version 0.5.7 [40] to assign cells to a donor group based on the cellsnp-lite 
genotypes.

Single‑cell processing and annotation

We used miQC to identify a sample-specific threshold using percent mitochondrial 
reads and library complexity (number of unique genes expressed) to filter out dead and 
compromised cells [75]. All cell counts reported in the paper are from after this filtering 
step.

We assigned cell type labels to our single-cell data, both scRNA-seq Individual and 
scRNA-seq Pooled, using a combination of unsupervised clustering and CellTypist 
[35]. For each sample and pool, we ran unsupervised clustering using the scran (version 
1.24.1) and igraph (version 1.3.5) packages in R [76, 77]. Per-cluster cell type annota-
tions were defined using marker genes, via the findMarkers function in scran. We ran 
CellTypist version 1.1.0 with overclustering to converge similar cells to a single cell type 
assignment. Cells in the pooled samples with concordant assignments based on unsu-
pervised clustering and CellTypist were used as the default reference profile for all sin-
gle-cell-based deconvolution methods.
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Bulk differential expression

Differential expression analysis was done using the DESeq2 package in R (version 1.36.0) 
[36]. For each analysis, we compared the eight samples from each condition (rRNA- 
Chunk vs. rRNA- Dissociated and rRNA- Dissociated vs. polyA+ Dissociated respec-
tively). The sample of origin was used as a covariate to control for sample-specific effects. 
Principal component analysis of the bulk samples was also done using DESeq2.

Pseudo‑bulk data generation

We used SimBu version 1.0.0 [60] as a way to efficiently sample single cells by cell type. 
For each scenario (even, realistic, sparse, weighted), SimBu calculated the appropriate 
percentage of each cell type for the custom designed scenario. For each scenario, we 
simulated 50 samples out of each scRNA-seq Individual sample (n = 7, sample 2428 
excluded). Across each simulated sample, SimBu added a random noise parameter to 
each cell type and then recalculated the proportions to sum to 1. It then multiplied 
these percentages by the desired number of cells, converted it to an integer, and then 
randomly sampled with replacement from the labeled single cells of that cell type. The 
reads from all sampled cells were then combined to form a pseudo-bulk sample. SimBu 
also offers a correction for different cell types having different amounts of mRNA in 
the form of scaling factors, but we did not use these in our analysis in order to preserve 
the integer read counts. Instead, to account for cell type differences in mRNA abun-
dance, we calculated the fraction of transcriptional reads contributed by each of the 
sampled cells, aggregated them by cell type, and used the proportion of RNA contrib-
uted as the pseudo-bulk fraction rather than the proportion of cells.

Deconvolution

We created a snakemake pipeline [78] to run each deconvolution method on our various 
real and pseudo-bulk samples. We used cells from the scRNA-seq Pooled samples as a 
reference profile for those methods that require it. We implemented the methods that 
return cell type scores using the immunedeconv R package [16].

Simulated reference profile generation

We generated simulated reference profiles with desired sizes of 2000, 1000, 500, and 200 
cells. We calculated the proportions of each cell type in our full pooled single-cell data-
set and had each simulated dataset mirror these proportions, with a minimum of one 
cell per cell type (note that rounding the desired numbers of cells to integers meant a 
slightly different number of total cells in some profiles than the named simulation size). 
For each cell type, we randomly sampled cells without replacement from all labeled cells 
of that type.
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