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Abstract 

The increasing availability of multidimensional phenotypic data in large cohorts of gen‑
otyped individuals requires efficient methods to identify genetic effects on multiple 
traits. Permutational multivariate analysis of variance (PERMANOVA) offers a powerful 
non‑parametric approach. However, it relies on permutations to assess significance, 
which hinders the analysis of large datasets. Here, we derive the limiting null distribu‑
tion of the PERMANOVA test statistic, providing a framework for the fast computation 
of asymptotic p values. Our asymptotic test presents controlled type I error and high 
power, often outperforming parametric approaches. We illustrate its applicability 
in the context of QTL mapping and GWAS.

Background
In the past years, the availability of deep phenotype data in large cohorts of genotyped 
individuals has dramatically increased [1]. In addition, recent technological develop-
ments have enabled genome-wide profiling of a variety of molecular traits [2, 3]. The vast 
majority of genome-wide association studies (GWAS) and molecular quantitative trait 
loci (QTL) mapping analyses test for association with genetic variants using a single trait 
at a time, even when multiple traits have been measured [2, 4–7]. Multivariate meth-
ods, however, present several advantages over the standard univariate strategy. Many 
phenotypes share genetic and environmental influences, which may be reflected in their 
correlation structure [8]. Hence, multivariate analysis offers increased statistical power 
to detect genetic associations [9, 10]. The multivariate setting is particularly suitable to 
investigate pleiotropy [11] and can be advantageous even when only a small subset of the 
traits is affected by the genotype [12]. Additionally, it provides a unique framework to 
study the molecular mechanisms through which genetic variants act, allowing joint anal-
yses across multiple phenotypic layers [13]. When the same trait is measured in differ-
ent conditions (e.g., across tissues or environments) or over time, multivariate analyses 
can be used to characterize context-dependent genetic effects [14, 15]. As multivariate 
analysis requires fewer individual tests, the multiple testing burden is also reduced.
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Several methods have been proposed for multi-trait genetic association studies. MV-
PLINK (canonical correlation analysis) [16] and MultiPhen (ordinal regression) [17] 
model the genotype as a dependent variable and test for association with a weighted 
sum of phenotypes. However, this approach hinders the assessment of complex designs 
(e.g., interactions between the genotype and other covariates). In contrast, multivariate 
regression methods treat the phenotypes as dependent variables, offering more flexible 
modeling. This is the case of multivariate analysis of variance (MANOVA) or multivari-
ate linear mixed models (LMMs) [18]. The latter have become very popular, as they can 
naturally account for genetic relatedness among individuals. However, fitting multivari-
ate LMMs is computationally intensive and can be very slow in large datasets, despite 
continuous implementation enhancements [18, 19]. A major drawback of most multi-
variate regression methods is the assumption that the model errors follow a multivari-
ate normal distribution, which often does not hold (consider, for instance, multivariate 
proportions, or count data). In practice, normalization of each individual trait, e.g., via 
rank-based inverse normal transformations, is commonly applied. This, however, does 
not guarantee multivariate normality [20], and may reduce statistical power compared 
to modeling the untransformed traits [21]. Asymptotic multivariate normality is also 
required by approaches that leverage univariate summary statistics, such as MTAR [22] 
or MOSTest [23]. In addition, estimating trait correlations from summary statistics is 
not straightforward and can be affected by trait heritability or linkage disequilibrium 
patterns, among other factors, that need to be accounted for to avoid potential biases 
[22]. While several Bayesian approaches have been proposed for multi-trait association 
studies [12, 24], they often suffer from a large computational cost.

Altogether, this highlights the need of a fast non-parametric method suitable for 
multi-trait GWAS and QTL mapping. Anderson introduced a distance-based approach, 
known as permutational multivariate analysis of variance (PERMANOVA), that extends 
the univariate factorial linear model to multiple dimensions without requiring a known 
probability distribution of the dependent variables [25]. In PERMANOVA, the hypoth-
esis of no-effects is tested by a permutation procedure based on a pseudo-F statistic, 
where the sums of squares in ANOVA are replaced by sums of inter-distances between 
observations. We previously employed PERMANOVA to study alternative splicing (AS) 
across different human populations, using the Hellinger distance between vectors of rel-
ative transcript abundances as dissimilarity metric [26]. However, while this approach 
remains conceptually appealing, the increased size and complexity of current datasets 
requires a precision for p value calculation that turns the permutational procedure infea-
sible. Only for one-way fixed designs, Anderson and Robinson showed the asymptotic 
distribution of the numerator of the test statistic [27]. We used this result, implemented 
in sQTLseekeR, to identify genetic effects on alternative splicing across human popula-
tions [28] and tissues [29]. Nevertheless, p value calculation in more complex designs 
still relied on permutations.

To overcome this limitation, here we obtain the asymptotic distribution of the PER-
MANOVA test statistic for complex designs in the Euclidean distance case. Our result also 
holds after any transformation of the data that preserves the independence of the obser-
vations. We develop a procedure to compute asymptotic p values that we implement in 
the MANTA (Multivariate Asymptotic Non-parametric Test of Association) R package 



Page 3 of 32Garrido‑Martín et al. Genome Biology          (2023) 24:230  

(available at https:// github. com/ dgarr imar/ manta and in the Comprehensive R Archive 
Network (CRAN) at https:// cran.r- proje ct. org/ packa ge= manta). We also provide a con-
tainerized Nextflow pipeline for multivariate GWAS using MANTA, named mvgwas-nf 
(available at https:// github. com/ dgarr imar/ mvgwas- nf). In a typical GWAS setting (e.g., 
5 traits measured in 10,000 individuals tested vs the genotype plus ten additional covari-
ates), our asymptotic approach achieves over a 106-fold reduction in the running time per 
test compared to computing 104 permutations, while producing p values down to 10−14 . 
Through a comprehensive set of simulations, we evaluate the type I error, statistical power, 
and running time of the asymptotic test, in comparison with MANOVA and multivari-
ate LMMs. Overall, our method presents controlled type I error and high power to detect 
genetic associations, comparable to the parametric approaches, and outperforming them 
in several settings (particularly with correlated traits when genetic effects and trait-to-trait 
correlations are concordant). It is also computationally more efficient than these methods, 
especially compared with LMMs.

We illustrate our approach in a number of real-case scenarios. First, we carry out the first 
population-biased splicing QTL (pb-sQTL) mapping analysis across multiple human tissues, 
using the Genotype-Tissue Expression (GTEx) project cohort, and identify genetic variants 
that affect alternative splicing differently in distinct ethnic groups. We show, in particular, the 
case of a pb-sQTL that is potentially a risk factor for kallikrein-5 (KLK5)-related diseases in 
European American, but not in African American individuals. Second, we perform a GWAS 
of the magnetic resonance imaging (MRI)-derived volumes of hippocampal subfields in the 
UK Biobank cohort. This is the largest GWAS of hippocampal subfield volumes carried out 
so far. We identify 41 genome-wide significant loci, dwarfing previous collections based on 
univariate approaches [4]. Most of these loci have not been previously related to the hip-
pocampus. However, many of them have been associated with traits such as intellectual abil-
ity or neurodegenerative and neuropsychiatric disorders. This highlights the importance of 
analyzing MRI-derived endophenotypes to gain insight into the morphological alterations 
that mediate the impact of genetic variation in brain complex traits and diseases [30].

Results
The asymptotic null distribution of the PERMANOVA test statistic

Consider a vector of q response variables and a vector of p predictor variables, both 
observed on n individuals. For example, response variables could be different brain meas-
urements, and predictors may include the patient’s age, disease status, and the genotype at a 
given SNP. We define Y as the n× q matrix of response variables, and X as the n× p matrix 
of predictors. The multivariate multiple linear regression (MMR) regresses Y on X as:

where β is a p× q matrix of parameters, and E a n× q matrix of random errors. Usu-
ally, model (1) includes several predictors of different types (e.g., main factors: genotype; 
interactions: genotype × disease status; continuous covariates: age). Anderson’s approach 
[25], also known as PERMANOVA, can be used to assess the effect of these predic-
tors by imposing conditions on a subset of parameters β0 (i.e., β0 = 0 ). For instance, 
when assessing the effect of the genotype in our example above, β0 would be the sub-
set of parameters corresponding to the genotype term. From the general PERMANOVA 

(1)Y = Xβ + E

https://github.com/dgarrimar/manta
https://cran.r-project.org/package=manta
https://github.com/dgarrimar/mvgwas-nf
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pseudo-F statistic, the following expression can be derived (see the “Methods” section 
and Additional file 1: Supplementary Note 1):

where tr denotes the trace, and H = X(XT
X)−1

X
T is the usual projection matrix (or 

hat matrix) in linear models. Analogously, H0 is the projection matrix corresponding to 
X0 , which is X dropping the columns associated with the subset of parameters β0 in the 
hypothesis.

We show that the numerator in (2) has the following limiting distribution (see 
Lemma 2 in Additional file 1: Supplementary Note 1):

therefore, the trace converges to a weighted sum of q independent chi-square variables 
with p− p0 = rank(H)− rank(H0) degrees of freedom. The coefficients �j are the eigen-
values of � , estimated in practice by the eigendecomposition of the sample covariance 
matrix of the residuals of the full model. The denominator in (2) converges in probability 
to the constant q

j=1 �j (see Additional file 1: Supplementary Note 1).
In order to obtain the asymptotic distribution of (2), we apply some conditions to 

model (1). Mainly, the rows of E must be independent with identical q × q covari-
ance matrix � (see Theorem 1 in Additional file 1: Supplementary Note 1). Mutual 
independence of the rows of E is guaranteed if the observations are independently 
sampled. Hence, any transformation of Y that preserves the independence of the 
observations results in the same type of limiting distribution (see Additional file 1: 
Supplementary Note 1). This includes, among others, the logarithm or the square 
root. In the specific case of proportion data, a square root transformation in (2) 
is equivalent to using the Hellinger distance between observations in Anderson’s 
pseudo-F general expression (see (9) in Additional file  1: Supplementary Note 1). 
Notably, our approach does not make any assumption about the distribution model 
in E, and presents several practical advantages over standard PERMANOVA (see 
below).

The cumulative distribution function (CDF) of the asymptotic distribution in 
(3) can be used to compute p values for the predictors in custom MMR models. 
Although the CDF of a weighted sum of chi-square random variables does not have a 
closed form, it can be approximated with high accuracy, and several algorithms have 
been developed for this purpose [31–33] (Additional file 1: Fig. S1). We have imple-
mented this approach in the MANTA R package, available at https:// github. com/ 
dgarr imar/ manta and in the Comprehensive R Archive Network (CRAN) at https:// 
cran.r- proje ct. org/ packa ge= manta (see the “Methods” section).

Comparison between asymptotic and permutational approaches

To study the properties of our asymptotic approach, we first considered a model with 
two categorical predictors (A, B) plus their interaction (AB). We simulated n = 300 

(2)F̃ =
tr
{
Y
T(H−H0)Y

}
/rank(H−H0)

tr
{
YT(I−H)Y

}
/rank(I−H)

(3)tr
{
Y
T(H−H0)Y

}
d
→

q∑

j=1

�jχ
2
j (p− p0)
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observations of q = 3 multivariate normal response variables, with B under the alterna-
tive hypothesis, H1 (see the “Methods” section). We used our result in (3) to obtain the 
asymptotic null distribution of the test statistic in (2) for the interaction term ( ̃FAB ), and 
compared it with the distribution of permuted F̃πAB values (equivalently, we could have 
studied A instead of AB). Permutations were restricted to occur within the levels of fac-
tor B (see the “Methods” section). As shown in Fig. 1a, the distribution that we derived 
matches exactly the one obtained by permutations, even in the upper tail region. We also 
provide empirical evidence that our theoretical result holds regardless of the distribution 
of Y (Additional file 1: Fig. S2). This contrasts to the result obtained by McArtor et al. 
[34], who suggested a different asymptotic distribution for the pseudo-F statistic. Their 
proposal departs substantially from the distribution obtained by permutations (Addi-
tional file 1: Fig. S3), unless all the model parameters are assumed to be zero in the null 
hypothesis (i.e., the omnibus test).

Provided that our result in (3) only holds asymptotically, the accuracy of the proposed 
asymptotic p values will depend on the total sample size (n). In addition, other factors 
such as the number of response variables (q) or their correlation structure may also have 
an impact. Thus, we evaluated the relative difference between asymptotic and permu-
tation-based p values across a broad range of values of n and q (Fig. 1b). We considered 
independent response variables. Other situations with increasing degrees of correla-
tion (in absolute value) between the response variables would be equivalent to scenarios 
with fewer independent response variables. When the n/q ratio is small, asymptotic and 
permutation-based p values may differ substantially. As the n/q ratio increases, this bias 
converges to 0. Overall, when the asymptotic null does not hold, asymptotic p values 
tend to be conservative. As a result, they can still be used without inflated type I error 
rates (Additional file 1: Fig. S4). When the asymptotic null holds (note that this occurs 
even for relatively small values of the n/q ratio, i.e., n/q ≈ 20), we observe an almost 
perfect correlation between asymptotic and permutation-based p values (Pearson’s r > 
0.9999), even for small p values (Fig. 1c). Analogous results were obtained with different 
distributions of Y and data transformations (Additional file 1: Fig. S5).

Overall, our asymptotic approach produces highly accurate p values, while dramati-
cally reducing the computational cost with respect to the permutation test (Fig. 1d). In 
addition, it allows to compute p values down to a precision limit of 10−14 , difficult to 
achieve through permutations when the number of observations is relatively large (the 
smallest p value that can be achieved via permutation is 1

P+1 , where P is the number of 
permutations). It is also particularly advantageous in complex designs where selecting 
the permutation schema that ensures an exact test is not trivial, or even not possible (see 
the “Methods” section).

Simulation study

We designed a comprehensive set of simulations to evaluate the performance of our 
method in the context of phenotype-genotype association testing. We obtained geno-
type data from the 1000 Genomes Project (1KGP, Phase 3) [35], and generated cohorts 
with different structures (unrelated individuals, population stratification, relatedness, 
actual 1KGP structure) [36]. We simulate phenotypes as the sum of the contribution of 



Page 6 of 32Garrido‑Martín et al. Genome Biology          (2023) 24:230 

the effect of a genetic variant, population structure and residual noise, using an addi-
tive model. We consider a variety of scenarios, modifying the number of traits, their 
distribution and correlation structure, the minimum allele frequency (MAF) of the 
genetic variant, the structure of the population, and the fraction of phenotypic variance 
explained by each term in the model (see the “Methods” section). For a given scenario, 
we obtain 10,000 phenotype-genetic variant pairs and evaluate type I error and power 

Fig. 1 a Null distribution of the PERMANOVA test statistic. Asymptotic distribution of F̃AB (green solid 
line) obtained by simulation as proposed in (3), scaled by 

∑q
j=1 �j , compared to the empirical distribution 

obtained using 106 permutations (red dashed line). Simulation details: n = 300, q = 3, model (5), 
y ∼ N (0, Iq) with factor B simulated under H1 and � = 1 (see the “Methods” section). The upper tail of the 
distribution is zoomed‑in. b Relative bias of asymptotic p values vs n/q ratio. Relative difference between 
asymptotic (pA ) and permutation‑based (pP  , 105 permutations) p values for the interaction term (AB) 
as a function of the ratio between the total sample size and the number of dependent variables (n/q). 
We considered values of n ranging from 20 to 300, and values of q ranging from 2 to 20. For visualization 
purposes, we show values of n/q ∈ [0,50] and relative biases ∈ [− 1,0.5]. The horizontal solid red line marks the 
0. The horizontal dashed red lines mark the 5% relative bias. A polynomial was fitted to the points using local 
fitting (LOESS), in order to describe the trend (fit in green, 95% confidence interval in gray). c Comparison of 
asymptotic and permutation‑based p values when the asymptotic null holds ( n = 300, q = 3). d Empirical 
running time as a function of sample size (n) for the asymptotic and permutation‑based approaches. Each 
point corresponds to the mean running time across 5 runs with different input data (see the “Methods” 
section). Error bars represent the standard error of the mean (i.e., mean ± SEM). Axes are in log10 scale. 
Dashed lines represent running time growth rates of n, n2 and n3
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of asymptotic PERMANOVA (as implemented in MANTA), and compare with those of 
MANOVA and multivariate LMMs (as implemented in GEMMA [18]). To ensure highly 
parallel, portable, and reproducible simulations, we embedded our simulation frame-
work in a containerized Nextflow [37] computational workflow, available at https:// 
github. com/ dgarr imar/ manta- sim.

Type I error

We simulated phenotypes from a cohort of unrelated individuals using model (8) in 
the “Methods” section,  without a causal variant effect term. We set the fraction of 
variance explained by the genetic background, h2g , to 0.2 (see the “Methods” section). 
MANTA displays controlled type I error across different numbers of traits (Fig. 2a). 
As the test does not assume any probabilistic distribution for the residuals, this does 
not affect type I error (Additional file 1: Fig. S6). However, like its parametric coun-
terparts, MANTA is sensitive to heterogeneity in multivariate dispersion [25]. We 

Fig. 2 a QQ‑plot of p values obtained with MANTA for 3, 5, and 10 traits simulated in unrelated individuals 
( n = 1000). Type I errors are shown between parentheses. Simulation details: h2g = 0.2, multivariate normal 
residuals. b QQ‑plot of p values obtained with MANTA (green), MANOVA (purple) and GEMMA (orange) on 
the actual 1000 Genomes Project (1KGP) genotypes ( n = 2504), with 5 genotype principal components 
(PCs) included as covariates in the model (in the case of MANTA and MANOVA). Simulation details: q = 5, 
h2g = 0.2, multivariate normal residuals. Colors are maintained for c–e. c Type I error of the three methods 
when simulating binomial SNPs with a certain minimum allele frequency (MAF) and different degrees of 
heterogeneity (given by τ , see the “Methods” section) between genotype groups at the level of trait variances 
and correlations. d Power of the three methods as a function of the percentage of variance explained by 
the causal variant ( h2v ), using the 1KGP genotypes, across different scenarios: the causal variant has equal 
effects on uncorrelated (left) and correlated (middle) traits, and unequal effects on correlated traits (right). 
Simulation details: actual 1KGP dataset ( n = 2504), q = 5 traits, h2g = 0.2, trait‑to‑trait correlation = 0 (left) and 
0.5 (middle, right), effect size ratio = 1 (left, middle) and 2 (right), 5 genotype principal components (PCs) 
included as covariates in the model in the case of MANTA and MANOVA, Bonferroni corrected p values. e 
Empirical running time as a function of sample size (n) for the three methods. Each point corresponds to the 
mean running time across 5 runs with different input data (see the “Methods” section). Error bars represent 
the standard error of the mean (i.e., mean ± SEM). Axes are in log10 scale. Dashed lines represent running 
time growth rates of n, n2 , and n3

https://github.com/dgarrimar/manta-sim
https://github.com/dgarrimar/manta-sim
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observed that type I error rates can be substantially inflated when there are differ-
ences in the trait variances between genotype groups (Fig.  2c, upper panel). This is 
particularly problematic for lower MAFs. MANOVA and GEMMA display an analo-
gous behavior, with slightly larger type I errors. However, in contrast to the parametric 
approaches, MANTA controls well type I error when the trait correlation structure 
differs between genotype groups [25] (Fig.  2c, lower panel). Heterogeneity in vari-
ances or correlations may arise, for instance, in the presence of epistasis or gene by 
environment effects [38]. In addition, several studies have reported genetic variants 
associated with differences in phenotype variances (i.e., variance QTLs) [38, 39]. We 
also simulated a scenario with strong outliers (see the “Methods” section), known to 
be challenging for type I error control when testing low MAF variants with methods 
assuming normally distributed traits [17, 20]. Although outliers affect all the meth-
ods, across different numbers of traits, MANTA is more robust to its presence than 
MANOVA or GEMMA, specially when many traits are analyzed and trait-to-trait cor-
relations are relatively large (Additional file 1: Fig. S7).

In the context of GWAS studies, population stratification (systematic differences 
in ancestry) and relatedness (either family structure or cryptic relatedness among 
individuals with no known family relationships) are known to result in inflated 
type I errors [40]. When simulating phenotypes from a synthetic cohort formed by 
a small number of distinct populations, or from the actual 1KGP dataset (see the 
“Methods” section), MANTA generates calibrated p values, across different values 
of h2g , by including the top principal components (PC) of the genotype matrix as 
covariates in the model (Fig. 2b and Additional file 1: Fig. S8a). MANOVA behaves 
similarly. When simulating strongly related individuals, however, only LMM-based 
approaches such as GEMMA yield calibrated p values (Additional file  1: Fig. S8a). 
Still, when the fraction of variance explained by relatedness is relatively low, our 
approach (MANTA+PC) performs better than parametric MANOVA+PC (Addi-
tional file 1: Fig. S8b).

Given our previous work with multivariate proportions in alternative splic-
ing analyses [26, 28, 29], we were also interested in evaluating the performance of 
MANTA, MANOVA and GEMMA in this scenario. With this aim, we dropped the 
genetic background term in model (8), simulating trait vectors as points in the sim-
plex (see the “Methods” section). However, while MANTA can deal directly with lin-
early dependent phenotypes, this is not the case of MANOVA, which requires an 
additional transformation. Similarly, numerical optimization in GEMMA tends to 
fail with this type of traits, which deviate substantially from multivariate normality 
(the software produces an error and does not generate any result; this is particularly 
striking when very few traits are analyzed, e.g., with q = 3, only 83 out of 10,000 
tests completed correctly), or results in markedly deflated p values. After transform-
ing the traits (square root), the three methods control well type I error, although 
GEMMA still displays slightly deflated p values (Additional file 1: Fig. S9).

Power

To evaluate power, we simulated phenotypes from the actual 1KGP dataset, given that 
MANTA+PC, MANOVA+PC and GEMMA displayed controlled type I error in this 
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scenario. Figure  2d displays power curves in different settings. First, we considered 
uncorrelated traits with unit variance, and causal variants affecting any number of traits 
and explaining, on average, a fraction of the phenotypic variance ( h2v ) ranging from 0.1 
to 1%. Overall, the three methods behave similarly across trait distributions and num-
bers of traits, and display large power to detect small differences (e.g., a causal variant 
explaining 0.5% of the variance of 1 out of 5 uncorrelated normal traits can be detected 
with power 0.95 after Bonferroni correction, see Additional file  1: Figs. S10 and S11). 
In addition, we simulated different trait variances, correlation structures and types of 
effects. As previously reported, the power of multivariate methods is highly sensitive 
to the specific combination of genetic effects and phenotype correlations [10]. When 
the causal variant has similar effects across traits, as trait-to-trait correlation increases, 
MANTA outperforms MANOVA and GEMMA (Additional file 1: Fig. S12). Although 
the scenario of concordant genetic effects and trait correlations seems more likely [10], 
we also simulated different effects across traits (see the “Methods” section). In this case, 
MANOVA and GEMMA present higher power than MANTA with increasing trait-to-
trait correlations (Additional file 1: Fig. S13).

We also observed power differences regarding the variances of the traits, with 
MANTA providing higher power when the trait variances are relatively similar, and 
MANOVA and GEMMA displaying the opposite behavior (Additional file 1: Fig. S14). 
For each method, we barely observed differences in power when increasing the propor-
tion of phenotypic variance explained by the genetic background at low trait-to-trait 
correlations. However, a drop in power was observed (more marked for MANOVA and 
GEMMA) when both the proportion of phenotypic variance explained by the genetic 
background and the trait-to-trait correlations are large (Additional file 1: Fig. S15). In the 
context of multivariate proportion traits, when simulating genetic effects using a differ-
ent approach (vectors of traits are points in the simplex with different locations, depend-
ing on the genotype at the causal variant and on a parameter � , see the “Methods” 
section), MANTA performs well with both untransformed and transformed (square 
root) traits. As stated above, MANOVA and GEMMA present problems with linearly 
dependent traits. Nevertheless, the three methods show similar power with transformed 
traits (Additional file 1: Fig. S16).

Overall, MANTA presents high power to detect genetic effects on multiple traits, 
comparable to MANOVA and GEMMA, and outperforms them in several scenarios, 
particularly when genetic effects and trait-to-trait correlations are concordant.

Running time and RAM usage

We evaluated the running time and RAM usage of MANTA with respect to the sample 
size (up to n = 100,000 individuals) and the number of traits analyzed (up to q = 20 
traits), in comparison to MANOVA and GEMMA (see the “Methods” section). Results 
are summarized in Fig. 2e and Additional file 1: Fig. S17. The running time and RAM 
usage of MANTA scale approximately linearly with the number of individuals analyzed, 
and sublinearly with the number of responses. MANOVA displays a similar behav-
ior, with slightly increased running times for small sample sizes. However, GEMMA’s 
running time and RAM usage increase dramatically with both n and q. As a result, its 
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application needs to be restricted to the analysis of modest numbers of phenotypes in 
cohorts of moderate size.

Real data applications

Population‑biased splicing QTL mapping

Alternative splicing (AS), the process through which multiple transcript isoforms are 
produced from a single gene, is subject to a tight regulation, often tissue-, cell-type-, 
or condition-specific [41]. However, while population-biased genetic effects on gene 
expression have been explored [2], little is known about the population-dependent 
genetic control of AS across human tissues. AS can be treated as a multivariate pheno-
type, built from the relative abundances of a gene’s transcript isoforms [29]. Thus, here 
we apply asymptotic PERMANOVA to identify cis population-biased splicing quantita-
tive trait loci (pb-sQTLs), across a panel of human tissues. The complete pb-sQTL cata-
log generated is available in Zenodo (https:// doi. org/ 10. 5281/ zenodo. 83494 15) [42].

We obtained transcript expression data from the V8 release of the GTEx Project [2], 
corresponding to up to 54 tissues from 838 deceased donors, and matched genotypes. 
We restricted our analyses to 818 individuals of European or African ancestry (referred 
to as European American (EA) and African American (AA), respectively), and to 31 
tissues with more than 20 individuals of each ancestry (see the “Methods” section and 
Additional file  1: Fig. S18). For cis pb-sQTLs mapping, we developed sQTLseekeR2.
int, a slightly modified version of sQTLseekeR2, which implements asymptotic PER-
MANOVA to assess the significance of the effect on AS of the interaction between the 
donor’s genotype and ancestry (see the “Methods” section).

There are several factors, such as differences in linkage disequilibrium (LD) or allele 
frequencies between populations, that could bias pb-sQTL discovery. However, we did 
not find evidence of genetic variants with large differences in MAF or genes in regions 
with very different LD structure between EA and AA groups, being more (or less) likely 
identified as pb-sQTLs and pb-sGenes, respectively (see the “Methods” section). Over-
all, the distribution of MAF and LD differences between EA and AA groups was not 
significantly different for pb-sQTLs/pb-sGenes and for other tested variants/genes 
(Additional file 1: Fig. S19).

At a 0.1 false discovery rate (FDR), we identified a total of 7719 cis pb-sQTLs affect-
ing 938 genes (i.e., pb-sGenes: 913 protein-coding genes and 25 long intergenic non-
coding RNAs, lincRNAs) (Additional file 1: Table S1). Among them, only one (NQO2) 
is also a pb-eGene in GTEx [2]. These numbers are substantially smaller than the ones 
reported for regular cis sQTLs in the same dataset [29]. This could be explained by the 
more stringent pre-processing applied here (e.g., at least 10 individuals per level of the 
interaction are required, see the “Methods” section), which resulted in a smaller number 
of variant-gene pairs tested (see Additional file 1: Table S1), as well as by the larger sta-
tistical power required to detect significant interactions [43]. However, the major driver 
of this difference is probably the pronounced sample size imbalance between EA and AA 
groups, which substantially reduces statistical power to identify pb-sQTLs, regardless 
of the group where the sQTL effect is present (Additional file 1: Fig. S20). Our observa-
tions are consistent with the numbers reported by the GTEx Consortium on regular and 
population-biased eQTLs [2].

https://doi.org/10.5281/zenodo.8349415
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As expected, the ratio between the number of genes with pb-sQTLs and the number 
of tested genes grows with the tissue sample size (Spearman’s ρ = 0.89, Additional file 1: 
Fig. S21). Skin (sun-exposed) and skeletal muscle present the largest values of this ratio. 
Both tissues are known to have structural and functional differences between EA and 
AA individuals [44, 45]. In addition, skin (not sun-exposed), displays a comparable—or 
even larger—value of this ratio with respect to other tissues with larger sample sizes (e.g., 
lung, thyroid, nerve). We observed that pb-sQTLs are enriched, with respect to matched 
non pb-sQTLs (see the “Methods” section), in functional annotations related to AS, such 
as splice sites or RNA-binding protein (RBP) binding sites, as well as in GWAS hits and 
transcription factor binding sites (Additional file 1: Fig. S22a). pb-sQTLs are also closer 
to splice sites than non pb-sQTLs (two-sided Wilcoxon Rank-Sum test p value < 10−16 , 
Additional file 1: Fig. S22b). Altogether, this suggests that our pb-sQTLs are indeed cap-
turing the biology underlying AS.

Among the pb-sQTLs identified, we found rs2739412, a pb-sQTL for the Kallikrein 
related peptidase 5 (KLK5) gene in skin (both sun-exposed and not sun-exposed). 
rs2739412 affects the relative abundances of the three main AS isoforms of KLK5 in 
EA individuals, but not in AA individuals. In EA individuals, the abundance of isoform 
KLK5-203 increases with the number of copies of the C allele, while isoforms KLK5-201 
and KLK5-202 display the opposite behavior (Fig. 3a). The three isoforms differ in the 
structure of the 5′ untranslated region (5′ UTR), with KLK5-203 having a shorter 5′ 
UTR than KLK5-201 and KLK5-203 (Fig. 3b). We specifically analyzed the reads map-
ping in this region across genotype groups and ancestries, which confirmed our results 
(Fig. 3c, Additional file 1: Table S2).

KLK5 is a serine protease that plays a central role in normal stratum corneum shedding. 
High KLK5 activity has been related to pathological desquamation in Netherton syndrome 
and atopic dermatitis [47]. Given its function in extracellular matrix degradation, it has 
also been proposed as a candidate biomarker for epithelial-cell carcinomas [48, 49]. Spe-
cifically, higher expression of KLK5 isoforms with short 5′ UTRs, including KLK5-203, has 
been reported in ovarian cancer with respect to normal ovarian cells [48, 50]. Since the 5′ 
UTR is an important region for post-transcriptional regulation, and its sequence is a key 
determinant of translation efficiency [51], we investigated the impact of isoform usage on 
the levels of the KLK5 protein. Using a convolutional neural network model (https:// optim 
us5. cs. washi ngton. edu/ MRL), trained on the results of a massively parallel reporter assay 
[52], we predicted the mean ribosomal load (MRL) of the 5′ UTR of KLK5 isoforms. We 
found that isoform KLK5-203 presents almost a 60% larger predicted MRL than KLK5-201 
and KLK5-202 (6.42 vs 4.10 and 3.99, respectively), suggesting that its preferential usage 
could lead to higher levels of the KLK5 protein.

In GTEx V8 skin tissues, rs2739412 is not identified as an eQTL for KLK5, but 
it is an sQTL for intron I3 (chr19:50,952,668–50,952,747) according to LeafCutter 
+ FastQTL [2], with the C allele associated with a decreased intron-excision ratio 
(Additional file 1: Fig. S23). This is consistent with our results, given that this intron 
is present in the 5’ UTR of isoforms KLK5-201 and KLK5-202, but absent from iso-
form KLK5-203. However, the LeafCutter + FastQTL pipeline did not identify other 
introns as significant, such as I1 (chr19:50,952,668–50,952,950), which displays 
clear differences between genotype groups in EA individuals (Fig.  3c, Additional 

https://optimus5.cs.washington.edu/MRL
https://optimus5.cs.washington.edu/MRL
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file 1: Table S2). In addition, the differences in I3 between the heterozygous and CC-
homozygous individuals at rs2739412 are obscured (Additional file 1: Fig. S23), likely 
by the effect of pooling EA and AA individuals, ignoring the effect of ethnicity. This 
highlights the increased power of our multivariate approach over univariate strate-
gies, as well as the value of the analysis of context-dependent genetic effects on AS.

We show additional examples of pb-sQTLs identified by our approach in Addi-
tional file  1: Fig. S24, affecting the lincRNA SNHG8 and the protein-coding gene 
RPUSD4. Regular eQTLs and sQTLs have been identified for both genes in multiple 
tissues [2, 29], but no population-biased effects were reported.

GWAS of hippocampal subfield volumes

The hippocampus is a critical structure for memory, spatial navigation and cognition 
[53], which has been related to several major brain disorders, including Alzheimer’s 

Fig. 3 a Relative abundances of the three most expressed isoforms in skin (not sun‑exposed) from the gene 
KLK5 (chr19:50,943,303–50,953,093, reverse strand, KLK5-201, KLK5-202, and KLK5-203, all protein‑coding), for 
each ancestry (European American, EA, African American, AA) and genotype group at the rs2739412 locus 
(chr19:50,952,558, A/C), represented as boxplots. In boxplots, the box represents the first to third quartiles 
and the median, while the whiskers indicate ± 1.5 × interquartile range. The least abundant isoforms are 
grouped in Others. The number of individuals in each genotype group is shown between parentheses. 
European American individuals that are homozygous for the reference allele (AA) at the SNP locus, 
present larger levels of KLK5-201 (blue), with respect to KLK5-202 (green) and KLK5-203 (red). In contrast, 
CC homozygous express preferentially KLK5-203 (red). Heterozygous individuals exhibit intermediate 
abundances. This is not observed for African American individuals. b Exonic structure of the isoforms of 
KLK5, which differ in the structure of the 5′ untranslated region (5′ UTR). The dotted vertical line marks the 
location of the SNP. c Sashimi plot corresponding to the 5′ UTR, which represents the median coverage and 
splice junction counts across all skin (not sun‑exposed) samples of each ancestry and genotype group at 
rs2739412, obtained using ggsashimi [46]
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disease [54] and schizophrenia [55]. Multiple GWAS have identified genetic variants 
associated with whole hippocampal volume [56, 57]. However, the hippocampus is a 
heterogeneous structure, with different subregions that carry out distinct functions 
[53] and may be differentially affected by disease [58]. While a recent large GWAS 
( n = 21,297) reported genetic associations with individual subfield volumes [4], this 
study analyzed each subfield separately, likely resulting in reduced statistical power. 
In contrast, here we apply asymptotic PERMANOVA (as implemented in MANTA) 
to identify genetic variants affecting jointly the volumes of hippocampal subfields in 
the UK Biobank cohort ( n = 41,414). To the best of our knowledge, this is the largest 
GWAS of hippocampal subfield volumes performed to date. Summary statistics are 
available in Zenodo (https:// doi. org/ 10. 5281/ zenodo. 83494 43) [59].

Briefly, we first obtained magnetic resonance imaging (MRI)-derived volumes of 
12 hippocampal subfields (from anterior to posterior, approximately: parasubiculum, 
presubiculum, subiculum, cornu ammonis (CA) 1, CA  2/3, CA 4, granule cell layer 
of the dentate gyrus (DG), hippocampus-amygdala transition area (HATA), fimbria, 
molecular layer of the DG, hippocampal fissure and hippocampal tail) and genotype 
data from the UK Biobank, corresponding to 41,414 individuals (we summed the cor-
responding volumes in left and right brain hemispheres, given that they are highly cor-
related, Additional file 1: Fig. S25). Then, we used MANTA, embedded in a Nextflow 
pipeline for multivariate GWAS that we named mvgwas-nf (available at https:// github. 
com/ dgarr imar/ mvgwas- nf ), to test for association between hippocampal subfield vol-
umes and a total of 8,197,132 genetic variants (see the “Methods” section).

Our GWAS identified 41 genome-wide significant loci associated with hippocampal 
subfield volumes (Fig. 4, Additional file 1: Table S3). Overlap with the GWAS Catalog 
revealed that, out of them, only 10 (24%) have been previously related to hippocam-
pal volumes. Thirty (73%) have been associated with other MRI-derived brain endo-
phenotypes, and 20 (49%) with cognition, intellectual ability or neurodegenerative and 
neuropsychiatric disorders. 8 (20%) have not been associated with brain-related traits 
before. Remarkably, we replicated 8 out of 10 loci associated with individual hippocam-
pal subfields previously identified using a univariate approach in [4]. For most of these 
loci, the affected subfields were identical in both studies. However, in some cases, our 
multivariate approach identified associations with subfields that were not captured by 
the univariate strategy (Additional file 1: Fig. S26).

Overall, the Experimental Factor Ontology (EFO) terms which correspond to the 
most commonly associated traits with the SNPs in the identified loci are related to brain 
morphology and cognition (Additional file 1: Fig. S27). In addition, GO enrichment of 
genes across the 41 loci revealed functions related to neuronal development and differ-
entiation, as well as processes such as locomotion and exploratory behavior (Additional 
file 1: Fig. S28). The former observation has also been reported in GWAS of cortical and 
subcortical brain measurements [23], while the latter was recently described for genes 
prioritized from loci associated with the volume of the whole hippocampus and the 
hippocampal tail [4]. We also analyzed our results jointly with summary statistics from 
GWAS of Alzheimer’s disease [60] and schizophrenia [61], two diseases for which the 
hippocampus is known to be relevant [54, 55]. In both cases, we observed stronger asso-
ciations with the disease among the SNPs affecting hippocampal volumes (Additional 

https://doi.org/10.5281/zenodo.8349443
https://github.com/dgarrimar/mvgwas-nf
https://github.com/dgarrimar/mvgwas-nf
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file  1: Fig. S29). This highlights the importance of analyzing multi-dimensional MRI-
derived endophenotypes to gain insight into complex brain disorders [30].

As an example of the identified loci, Fig. 4b displays the chr3:190,591,315–190,836,742 
locus, which contains the GMNC gene and its upstream region. GMNC, encoding the 
Geminin coiled-coil domain-containing protein, plays an important role in the generation 
of neural stem cells, which are responsible for proliferation and neurogenesis in the adult 
brain [62]. We show the effect of rs9877502 (chr3:190,669,518, G/A), a SNP located in this 
locus, across several hippocampal subfields (Fig.  4c). In particular, the A allele is associ-
ated with increased CA1-3 volumes and decreased volumes of other subfields, including 
subiculum and presubiculum. rs9877502 has not been previously related to hippocampal 

Fig. 4 a Manhattan plot showing the − log10 p value of association (asymptotic PERMANOVA test as 
implemented in MANTA) between genetic variants and the volumes of 12 hippocampal subfields. The 
horizontal black line corresponds to the genome‑wide significance threshold selected (5 · 10−8 ). b Regional 
plot of the GMNC locus, showing the − log10 p values for association with hippocampal subfield volumes 
for all tested genetic variants (asymptotic PERMANOVA test). Linkage disequilibrium patterns (color‑coded) 
and recombination rates are also displayed. The lower panel represents the location of previous associations 
with brain‑related traits and diseases in the GWAS Catalog (shown as arrows), encoded as follows: (1) 
brain morphology, (2) subcortical volume, (3) nucleus accumbens volume, (4) cortical thickness, (5) lateral 
ventricular volume, (6) brain region volumes, (7) cortical surface area, (8) white matter microstructure, (9) 
cerebrospinal P‑tau181p levels, (10) cerebrospinal T‑tau levels, and (11) Alzheimer’s disease biomarkers. c 
Covariate‑adjusted volumes (mm3 ) of the most changing hippocampal subfields across genotype groups at 
rs9877502 (chr3:190,669,518, G/A) are shown as boxplots. In boxplots, the box represents the first to third 
quartiles and the median, while the whiskers indicate ± 1.5 × interquartile range. The number of individuals 
on each group is shown between parentheses. FDR adjusted p values (Wilcoxon Rank‑Sum test) for each 
pairwise comparison are also displayed, encoded as follows: *** (p ≤ 0.001), ** (0.001 < p ≤ 0.01), * (0.01 < p ≤ 
0.05), n.s. (p > 0.05)
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volumes, but it is associated with Alzheimer’s disease risk, tangle pathology and cognitive 
decline [63]. Another example is the chr16:70,658,224–70,692,574 locus. The most associ-
ated SNPs overlap the IL34 gene, which encodes interleukin 34 (IL-34). This cytokine acts 
as a cell type-specific ligand for the colony stimulating factor 1 receptor. In the brain, IL34 is 
key for the maintenance and differentiation of the microglia [64]. Indeed, modulating IL-34 
levels has been proposed as a selective approach to control microglial proliferation in neu-
rodegenerative disorders [65]. IL-34 seems also to play a relevant role in the clearance of 
amyloid β-protein, a major hallmark of Alzheimer’s disease [66]. An intronic variant of IL34 
(rs78927322, chr16:70,636,538 C/G, not tested in our analysis due to low MAF), located 
22 Kb upstream from the locus that we defined, had been previously associated with hip-
pocampal volume in Alzheimer’s disease patients (Alzheimer Disease Neuroimaging Initia-
tive (ADNI) cohort) [67]. Additional file 1: Fig. S30 shows the regional plot corresponding 
to the IL34 locus, as well as the effects of the lead SNP rs68049363 (chr16:70,662,480, C/G), 
mainly affecting CA1 volume. In addition to the identification of genetic associations, as 
we used age as an independent variable in our MANTA model, we further recapitulated 
the well-known effect of aging [54] across hippocampal subfields (p value for age 1 · 10−14 , 
Additional file 1: Fig. S31).

Finally, to complement our comprehensive benchmark based on simulations, we aimed 
at comparing MANTA with multivariate LMMs (as implemented in GEMMA) in the con-
text of real data. However, running GEMMA in the complete hippocampal subfield data-
set (41,414 individuals, 12 traits, over 8 million genetic variants) would be computationally 
infeasible. Hence, we downsampled the dataset to 10,000 individuals, and performed 
GWAS with the two methods. Both approaches identified three genome-wide signifi-
cant loci, two of them in common (Additional file 1: Fig. 32a and Table S4). The three loci 
identified by MANTA (but not the one identified only by GEMMA) are also significant at 
genome-wide level in the analysis of the complete dataset. Overlap with the GWAS Catalog 
shows that all the loci, except for the one identified only by GEMMA, are enriched in vari-
ants associated with hippocampal volumes and other brain-related traits (Additional file 1: 
Fig. 32b). In particular, the locus on chromosome 5 found by MANTA replicates one of 
the loci identified in a recent large univariate GWAS of hippocampal subfields [4], despite 
using only half of their sample size. Overall, despite small differences, the results obtained 
by MANTA and GEMMA are comparable. This is consistent with our simulation results, 
which show that both methods present similar power in the majority of scenarios, although 
in some cases the specific combination of genetic effects and trait-to-trait correlations may 
result in power differences. However, the computation time required by the two methods 
is very different (from a few hours in the case of MANTA to almost 6 days in the case of 
GEMMA).

Discussion
In this work we obtain the limiting distribution of the PERMANOVA test statistic 
under the null hypothesis, for complex designs and Euclidean distances. Our result 
also holds for relatively small values of the ratio between the sample size and the 
number of dependent variables, and after any data transformation that preserves 
the independence of the observations. We provide an efficient approach to compute 
asymptotic p values for the association between any quantitative multivariate response 
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and a set of predictors of interest that we have implemented in the MANTA R pack-
age (available at https:// github. com/ dgarr imar/ manta and in the Comprehensive R 
Archive Network (CRAN) at https:// cran.r- proje ct. org/ packa ge= manta). MANTA 
produces highly accurate p values, down to a precision limit of 10−14 , while dramati-
cally reducing the running time with respect to the permutation test. This also avoids 
having to select the appropriate permutation schema, which may not be straightfor-
ward [68]. Our comprehensive simulation study in the context of genotype-phenotype 
association testing, and our analyses using real datasets, demonstrate that asymptotic 
PERMANOVA is a valuable non-parametric alternative to identify genetic effects on 
multiple traits in the context of GWAS and QTL mapping.

In extensive simulations, we show that the asymptotic test yields calibrated p values 
independently of the number and distribution of the traits of interest. In contrast to para-
metric approaches (i.e., MANOVA, multivariate LMMs), the test is robust to differences 
in the trait correlation structure between genotype groups, and displays smaller type I 
error rates in the presence of outliers and heterogeneity in trait variances. In addition, it 
presents large power to identify genetic associations, comparable to the parametric tests, 
and outperforms them in several scenarios. Particularly, our test seems more powerful 
when genetic effects and trait correlations are concordant. Regarding empirical running 
time and RAM usage as a function of the number of observations and traits analyzed, 
our method behaves similarly to MANOVA, and performs orders of magnitude better 
than multivariate LMMs. Among the three methods evaluated, only asymptotic PER-
MANOVA can deal with untransformed linearly dependent phenotypes, such as propor-
tions. We also highlight the value of providing the community with a reproducible and 
portable simulation pipeline to evaluate multivariate methods in the context of pheno-
type-genotype association studies (available at https:// github. com/ dgarr imar/ manta- sim).

To illustrate the versatility and power of asymptotic PERMANOVA, we have employed 
it specifically to identify genetic associations with intrinsically multivariate phenotypic 
traits. First, we used it to generate the first catalog of population-biased cis genetic effects 
on alternative splicing across human tissues. In particular, we identified 7719 pb-sQTLs 
in the GTEx V8 cohort, mainly in tissues with known differences between individu-
als of European and African ancestry (i.e., skin [44] or muscle [45]), but also in others 
such as thyroid or blood. There are multiple reasons, other than true different genetic 
effects, why an association could be observed in one population but not in another, such 
as different LD structure, different allele frequencies, different power due to unbalanced 
sample sizes, etc. However, we have specifically looked at these factors, and they do not 
seem to have a significant impact. In addition, as with population-biased eQTLs, iden-
tifying these associations with GTEx sample sizes is challenging [2], especially given the 
large sample size imbalance between ancestry groups. However, in a scenario with highly 
correlated traits that depart substantially from normality (i.e., relative transcript abun-
dances), our multivariate, non-parametric method offers increased power. Despite its 
modest size, the generated catalog can help to gain insights into the population-specific 
regulation of alternative splicing, both in health and disease contexts, as we show for the 
KLK5 gene. In this case, we have identified a genetic variant that is associated with the 
alternative usage of KLK5 isoforms in European Americans, but not in African Ameri-
cans. Since this alternative usage may be linked to disease risk [48, 50], the responsible 

https://github.com/dgarrimar/manta
https://cran.r-project.org/package=manta
https://github.com/dgarrimar/manta-sim
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allele would be a risk factor only in individuals of European ancestry. This is an exam-
ple of how the European bias of genetic association studies could lead to inaccurate risk 
assessment in non-European populations, and strongly argues for increasing the diver-
sity of such studies, by including individuals of under-represented ancestries [69].

Second, we employed our asymptotic approach to perform the largest GWAS of hip-
pocampal subfield volumes to date (UK Biobank cohort, n = 41,414). Due to the highly 
shared genetic architecture of brain-related traits and disorders, this is a paradigmatic 
scenario where multivariate approaches are better tailored to capture underlying biol-
ogy than the conventional univariate strategy [23]. Indeed, we identified 41 (31 novel) 
genome-wide significant loci, over four times more than the largest previous study on 
individual subfields [4]. Subsequent functional enrichment revealed a large overlap with 
loci associated with a variety of brain-related traits, gene sets with functions in neurode-
velopment and links to disease (schizophrenia, Alzheimer’s disease). We also identified 
some candidate genes, such as GMNC or IL34, with key roles in brain pathophysiology. 
Overall, these results contribute to understand the mechanisms through which genetic 
variants impact complex organismal traits, via their effects on molecular and higher 
order endophenotypes, such as organ morphology.

Beyond the specific case-studies above, a wide variety of traits in Biology are intrin-
sically multivariate (e.g., size and connectivity of brain regions, cardiometabolic traits, 
facial and allometric measurements, neuropsychiatric symptoms, composition of the 
gut microbiota, gene networks, single-cell multi-omics, etc.) and—often—not normally 
distributed. Hence, these traits are well-suited for the analysis with asymptotic PER-
MANOVA. Consider also the measurements obtained from wearable devices [70] or the 
information that can be automatically extracted using deep learning techniques, such as 
features obtained from histological images via convolutional autoencoder networks [71]. 
In addition, fast multi-trait interaction tests offer the opportunity to investigate (pleio-
tropic) context-dependent genetic effects and epistasis [72] genome-wide. Although in 
this work we have focused on testing the association between genetic variants and bio-
logical traits, note that our approach, as implemented in MANTA, can be applied to any 
set of predictor and (quantitative) response variables of interest, expanding its usage to 
multiple fields (Biology, Chemistry, Economics, Epidemiology, Psychology, Physics, etc.).

Nevertheless, our method also presents some limitations. First, while it does not 
make any assumption on the distribution of the traits, it still requires homoscedastic-
ity (homogeneity of trait dispersions) and independence between the observations. 
Both are common assumptions in most linear modeling strategies, although they can 
be relaxed in generalized linear models or mixed models. However, these require 
either defining a priori the variance structure, which can be particularly difficult in 
large and complex biological datasets, or inferring it from the actual data, which is 
often highly inefficient. Our assumption of independence can be violated in the pres-
ence of population stratification or genetic relatedness between individuals [40]. 
Although we can account for the former by including the top genotype PCs as covari-
ates in the model, the latter can only be corrected via mixed models. Nevertheless, 
as we show here, multivariate LMMs can have prohibitive running times even when 
analyzing few traits in medium-sized cohorts. In addition, asymptotic PERMANOVA 
seems more robust than MANOVA to this assumption, and genetic relatedness can 
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be reliably inferred [73], being straightforward to discard related individuals prior to 
GWAS. Recently, PERMANOVA was modified to incorporate information of genetic 
relatedness in a mixed model manner [74]. Evaluating whether our asymptotic result 
can be applied in this context would be a potential avenue for future research. A sec-
ond limitation is that asymptotic PERMANOVA, as with most multivariate meth-
ods, does not provide an estimate of the effect size that can be directly employed in 
downstream analyses, unlike univariate approaches. Finally, our statistical framework 
is currently limited to Euclidean distances, which may be too restrictive for some 
applications.

Conclusions
We propose asymptotic PERMANOVA as a fast, powerful exploratory method, that 
can be followed up by more detailed analyses to further characterize the relationship 
between predictors and dependent variables. We provide an efficient, user-friendly 
implementation in the MANTA R package, and a containerized Nextflow pipeline 
for highly parallel, portable, and reproducible multivariate GWAS analyses (mvgwas-
nf ). As the size, the multidimensionality and the overall complexity of biological data 
continues to grow, our approach will enable non-parametric, multivariate analyses of 
millions of individuals in reasonable running times.

Methods
The PERMANOVA test statistic

Following the notation of the “Results” section, the n× q matrix of response variables, 
Y = (yij) collects n independent observations of a vector of q random variables, and the 
n× p matrix X , the values of p predictor variables. Anderson proposed a geometric, 
permutation-based method (permutational multivariate analysis of variance or PER-
MANOVA) [25] in order to study the effects of X . This approach uses a n× n suitable 
distance matrix between the n individuals based on the Y outcomes, allowing the com-
putation of a pseudo-F statistic. If the Euclidean distance is used, some properties can 
be studied in the context of the standard multivariate multiple linear regression (MMR) 
(see Additional file 1: Supplementary Note 1). The aim of MMR is to regress Y on X fol-
lowing the model in (1) and generalizes some of the multiple regression results (that is, 
when q = 1). For instance, the ordinary least squares (OLS) estimation of the β̂ param-
eters is β̂ = (XT

X)−1
X
T
Y , provided that X has full rank. β̂ is the solution of the q simul-

taneous multiple linear regressions on each column of Y . Each column in β̂ corresponds 
exactly to the individual multiple regression of the associated column in Y.

In the Euclidean distance case, if the null hypothesis of interest is β = 0 (all the 
parameters of every predictor are null, i.e., the omnibus test), the PERMANOVA and 
MMR test statistics are equivalent with expression:

(4)F̃ =
tr
{
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T
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}
/rank(H)

tr
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}
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=
tr(β̂
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tr(YTY − β̂
T
XTXβ̂)/rank(I−H)
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where H is the usual projection matrix in linear models and tr denotes the trace. Expres-
sion (2) in the “Results” section shows the test statistic used when testing hypotheses on 
a subset of parameters.

Null distribution of the test statistic under permutation

The empirical null distribution of the PERMANOVA test statistic ( ̃F ) can be character-
ized using permutations, that is, by recomputing F̃ after random shuffling of the data. 
Then, p values are obtained by comparing the observed value of F̃ to the distribution of 
permuted F̃π values. The only assumption of the permutation test is that the observa-
tions are exchangeable under the null hypothesis ( H0 ). In complex designs, however, it is 
unclear how to ensure this in order to obtain an exact test (i.e., a test with a type I error 
rate exactly equal to the significance level selected a priori) [68].

In the case of a model with two main factors (i.e., A and B) and an interaction term 
(i.e.,  AB), observations are exchangeable between the different levels of A and B only 
under the global null hypothesis. However, in the presence of main effects (A or B under 
the alternative hypothesis, H1 ) observations are exchangeable only within levels of other 
main factors. For example, if B is under H1 , an exact permutation test for A that con-
trols for the effect of B requires permutations to be restricted to the levels of B. In this 
scenario, unrestricted permutation of raw data yields an approximate test. See [68] for 
a detailed discussion. Notably, there is no exact test for the interaction term controlling 
for the effect of both main factors, as in this case the only possible value of the permuted 
test statistic is the one obtained on the original data.

Computation of asymptotic p values and MANTA R package

As we describe in this work, the null distribution of the test statistic converges to a 
weighted sum of independent chi-square variables (see the “Results” section). To com-
pute asymptotic p values, we can rely on its cumulative distribution function (CDF). 
Although such distribution does not have a closed form, it can be approximated with 
high accuracy, and several approaches are available. We focused on three of these 
algorithms: Imhof [31], Davies [32] and Farebrother [33], as implemented in the Com-
pQuadForm R package [75]. While the first two rely on the numerical inversion of 
the characteristic function, the third takes advantage of the fact that the CDF can be 
expressed as an infinite series of central chi-square distributions [75].

To compare their performance, we simulated uniform sets of weights 
( �j ∼ U(a = 0, b = 1) , with j ∈ {1, . . . , q} ), considering different values of q and degrees 
of freedom for the chi-square distribution. Then, for a range of values of the test sta-
tistic we evaluated the obtained p values and the computation time. Note that any set 
of weights can be scaled to obtain values in the interval [0,1], and that scaling both the 
weights and the test statistic results in identical asymptotic p values. The typical behav-
ior of each algorithm is shown in Additional file 1: Fig. S1.

Overall, we found almost identical p values between the three methods down to a pre-
cision of 10−10 . However, while Farebrother p values decreased monotonically with the 
value of the test statistic, down to the precision limit ( ≈ 10−14 ), Imhof and Davies p val-
ues below 10−10 displayed an erratic behavior, with values ≤ 0 . In addition, regarding 
speed, Farebrother outperformed Imhof and Davies in the majority of scenarios. Hence, 
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we selected the Farebrother method for p value calculation. Only when �j/
∑q

j=1 �j ≈ 0 , 
for one or more j in {1, . . . , q} , this approach displayed longer running times, especially 
for large values of the test statistic. To solve this problem, we dropped the weights for 
which �j/

∑q
j=1 �j < t . We tried several values of t, and found that t = 10−3 provides a 

good balance between speed and accuracy.
We have implemented the asymptotic PERMANOVA test in the MANTA R package, 

available at https:// github. com/ dgarr imar/ manta and in the Comprehensive R Archive 
Network (CRAN) at https:// cran.r- proje ct. org/ packa ge= manta. MANTA enables 
asymptotic p value calculation for the predictors in user-defined MMR models, using 
the Farebrother method. It allows to select different types of sums of squares (i.e., I, II, or 
III), as well as logarithm and square root data transformations.

Simulations to compare asymptotic and permutation tests

Model

We considered the following MMR model, in which the response variables are regressed 
on two categorical predictors (i.e., factors A and B) and their interaction (AB):

where ykli is the q-dimension vector corresponding to the k, l, i observation, µ the vector 
of means, αk the q vector of parameters (one component per response variable) associ-
ated with level k of factor A and, similarly, β l the vector of parameters of level l of factor 
B, αβkl the vector corresponding to level k,  l of the interaction AB, and ǫkli the vector 
of random errors. We selected 2 and 3 levels for A and B, respectively, in a completely 
crossed, balanced design.

Data generation

Observations of the vector of response variables ( y , a row of Y ) were generated by 
random sampling from a given multivariate distribution. We considered several dis-
tributions, varying the total sample size (n) and the number of response variables 
(q). We simulated both the null hypothesis ( H0 ) of no association between predictors 
and responses and the alternative hypothesis ( H1 ) of factor B associated with all the 
responses. To illustrate that transformations of Y that preserve the independence of 
the observations result in the same limiting distribution, in some scenarios we applied 
square root and logarithm transformations.

• Multivariate normal. We considered first this scenario, as it is assumed in many mul-
tivariate linear modeling approaches. Under H0 , the vector of responses was simu-
lated as y ∼ N (0, Iq) , where Iq is the q × q identity matrix. Under H1 , we generated 
y in the first and second levels of B with means 1 and −1, respectively, ensuring that 
E(y) = 0.

• Vectors of proportions. Our interest in this scenario is related to our previous work with 
multivariate proportion data for the study of alternative splicing [26, 28, 29], and corre-
sponds to the generation of points in the q − 1 simplex. Here, y ∼ S(p, σg ) , where p is 

(5)ykli = µ+ αk + β l + αβkl + ǫkli

https://github.com/dgarrimar/manta
https://cran.r-project.org/package=manta
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a given point in the simplex and σg is the standard deviation of the generator model. We 
obtained p so that p1 =

L
(q+L−1) and pj =

1
(q+L−1) , ∀j ∈ {2, . . . , q} , with 

L ∈ {1, 2, . . . , 10} . Note that L = 1 corresponds to the center of the simplex, while 
L > 1 to locations that range from the center of the simplex to one of its vertices, 
e1 = (1, 0, . . . , 0) . Unless stated otherwise, we set L = 1 . To generate observations in 
the q − 1 simplex with certain variability (given by σg ) around p , ensuring that 
E(y) = p , we implemented an approach that performs small random displacements 
from p towards the simplex vertices (see Additional file  1: Supplementary Note 2). 
Under H1 , we generated observations of the responses in the first level of factor B as 
y ∼ S(p�, σg ) , where p� is obtained from p advancing along the geodesic that joins p 
with the simplex vertex e1 = (1, 0 . . . , 0) . This displacement depends on a parameter � 
(see Additional file 1: Supplementary Note 2). Analogously, in the second level of B, we 
obtained y ∼ S(p−�, σg ) to ensure that E(y) = p . Once Y was obtained, we applied a 
square root transformation. This is equivalent to using the Hellinger distance on the 
untransformed data, as pointed out in the “Results” section.

• Gaussian copula with uniform marginals. In this scenario, y ∼ C(R) , where R is the 
correlation matrix of y . We set R to Iq . We used the normalCopula function from the 
copula R package [76], with uniform U(a = 0, b = 1) marginals, to generate Y , which 
was eventually centered and scaled. We also simulated observations of the responses 
under H1 by adding (subtracting) 1 to the rows of Y corresponding to the first (second) 
level of factor B.

• Multinomial. In this scenario, y ∼ M(N ,p) , where N and p are the num-
ber of trials and the vector of event probabilities, respectively. We set N to 1000 
and simulated p as in the multivariate proportion scenario (see above). Under 
H1 , we simulated observations of the response variables in the first level of B as 
y ∼ M(N ,p�) , where p� is obtained from p as in the multivariate proportion sce-
nario (see Additional file 1: Supplementary Note 2). Likewise, in the second level of 
B, y ∼ M(N ,p−�) to ensure that E(y) = Np . Once Y was obtained, we applied a 
logarithm transformation.

Evaluation of running time

To compare the running time of asymptotic vs standard PERMANOVA, we simulated mul-
tivariate normal data with increasing size (from 1000 to 10,000 observations, q = 3) follow-
ing model (5), under H0 (see above). We measured the running time to perform a single 
test, repeated 5 times with different input data. In the case of standard PERMANOVA, we 
considered 103 , 104 , and 105 permutations. All running times were measured on a single 
core of an Intel Xeon Platinum 8160 CPU (2.10GHz).

Simulations in the context of genotype‑phenotype association studies

Model

We employed the following MMR model, in which multiple phenotypes are regressed on 
a set of continuous covariates, in addition to the genetic variant of interest:
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where yi is the vector of q traits measured in the ith individual, µ the vector of inter-
cepts, ci the vector of covariates corresponding to the ith individual, W  the k × q matrix 
of covariate effects on the q traits, xi the genotype (scalar, i.e., 0, 1, or 2) of variant X in 
this individual, β the vector of genetic effects of X on each of the q traits, and ǫi the vec-
tor of random errors.

We further considered a second model, without additional covariates, which incorpo-
rates a random term to account for population structure:

where ui is the vector of random effects due to population structure.
Here, we refer to population structure, not only as large-scale, systematic differences 

in ancestry, but also as other forms of relatedness between individuals. Note that the 
former may be also accounted for by including the top k principal components of the 
genotype matrix as covariates in model (6) [40].

Data generation

Genotypes and population structure We obtained genotype data from the 1000 
Genomes Project (1KGP, Phase 3). We considered 8,046,946 biallelic SNPs and short 
indels with minimum allele frequency (MAF) ≥ 0.05, measured in 2504 individuals. In 
addition to the real 1KGP dataset, we simulated cohorts of n = 1000 individuals with 
different population structures (unrelated individuals, population stratification, related-
ness) as described in [36]. In short, we first assigned randomly A ancestors from the real 
1KGP dataset to each new individual. Then, we simulated the individual’s genotype as 
a mosaic of blocks of 1000 variants, each coming from one of the ancestors selected at 
random. Genetic relatedness in the simulated cohort depends on the number of ances-
tors A (e.g.,  A = 2 for highly related individuals, A = 10 for approximately unrelated 
individuals). Population stratification can also be simulated by sampling the ancestors of 
an individual from the same sub-population. To simulate unrelated and related individu-
als we set A = 10 and A = 2 , respectively, with ancestors sampled from all European 
populations (CEU, FIN, GBR, IBS, TSI). To simulate population stratification, we set 
A = 10 , with each individual’s ancestors sampled from the same European population.
For running time and RAM usage evaluation (see below), we simulated cohorts mim-
icking the 1KGP data structure ( A = 10 , each individual’s ancestors sampled from the 
same sub-population, considering all sub-populations available), with sample sizes in the 
range 1000−100,000. To study the impact of heteroscedasticity and outliers on type I 
error as a function of MAF (see below), we simulated biallelic SNPs with a given MAF 
under a binomial model, with xi ∼ B(N , p) , where N = 2 and p = MAF. We considered 
MAFs ∈ {0.2, 0.1, 0.05, 0.01, 0.005}.

Phenotypes We simulated different numbers (q) of phenotypes, as the sum of the con-
tribution of the effect of a causal variant, population structure and residual noise, follow-
ing an additive model analogous to (7):

(6)yi = µ+ ciW + xi β + ǫi

(7)yi = µ+ xi β + ui + ǫi
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equivalently, in matrix form:

where Y is the n× q matrix of phenotype values, x the vector of genotypes at variant X 
for n individuals, β the vector of genotype effects on the q traits, U the n× q matrix of 
random effects due to population structure, and E the n× q matrix of random errors.

Random errors were simulated by random sampling from a multivariate distribution:

• Multivariate normal. Here,  ǫ ∼ N (0,�) . We simulated structured covari-
ance matrices as follows. First, we set all pairwise trait correlations to r, where 
r ∈ {0, 0.2, 0.5, 0.8} . Then, we obtain � = V

1
2RV

1
2 , where R is the trait correlation 

matrix and V  a q × q diagonal matrix containing the trait variances. We considered 
either unit variances or equally spaced variances in the range {1, . . . , σ 2

max} , with 
σ 2
max > 1 . We also generated random covariance matrices as � = AA

T , where A  is 
a q × q matrix with elements ajk ∼ N (0, 1) . Note that we obtained � so that it is 
positive definite. In this scenario, we simulated heteroscedasticity by setting covari-
ance matrices to � , τ+1

2 � and τ� , respectively, depending on whether the genotype 
at the variant is 0, 1, or 2. We further simulated differences in the correlation struc-
ture (but not in the trait variances) between genotype groups, by scaling covariances 
accordingly to obtain correlation matrices R , 2

τ+1R , and 1
τ
R , respectively, depending 

on whether the genotype at the variant is 0, 1, or 2. We set τ ∈ {2, 3, 4}.
• Multivariate t . Here, ǫ ∼ tν(0,�) . We set ν = 3 degrees of freedom. This distribu-

tion is similar to multivariate normal but presents very heavy tails. We simulated unit 
variances and different trait correlations as in the multivariate normal case.

• Vectors of proportions. Here, ǫ ∼ S(p, σg ) , where p is a given point in the simplex 
and σg is the standard deviation of the generator model. Details on the simulation are 
given in a previous section.

• Gaussian copulas with different marginals. Here, ǫ ∼ C(R) , where R is the trait cor-
relation matrix. We considered unit variances and different trait correlation struc-
tures as in the multivariate normal case. We simulated different marginal distri-
butions: either uniform U(a = 0, b = 1) , beta Beta(α = 0.5,β = 0.5) , or gamma 
Ŵ(k = 1, θ = 10) . Details on the simulation are given in a previous section.

• Multinomial. Here, ǫ ∼ M(N ,p) , where N and p are the number of trials and the 
vector of event probabilities, respectively. Details on the simulation are given in a 
previous section.

Population structure effects were simulated by random sampling from a matrix normal 
distribution [18, 36]:

where K is the known n× n relatedness matrix, obtained as K = 1
gGG

T , where G is the 
centered and scaled genotype matrix corresponding to g genome-wide variants observed 

yi = xi β + ui + ǫi

(8)Y = xβT +U + E

U ∼ MN (0,K,�U)
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in n individuals. �U is the trait-to-trait covariance matrix due to population structure, 
obtained as �U = AA

T , where A is a q × q matrix with elements ajk ∼ N (0, 1).
We simulated the null hypothesis ( H0 ) of no association between the genetic variant 

and the traits, by setting null genetic effects ( β = 0 , i.e., dropping the variant term in 
(8)). Additionally, we simulated the alternative hypothesis ( H1 ) where a causal variant 
affects t ≤ q traits with equal ( β = 1 ) or different effects ( βj equally spaced in the range 
{1, . . . ,βmax} , with βmax > 1 ). Note that the former and the latter correspond, respec-
tively, to concordant and discordant genetic effects and trait-to-trait correlations. When 
generating multivariate proportion or multinomial traits, we simulated concordant 
genetic effects as β1 = 1 , βj = −1

(q−1) , j > 1 . We re-scaled matrices xβT , U and E so that 
the fractions of variance explained by the genetic variant and population structure were 
h2v and h2g , respectively. We selected h2v ranging from 0.001 to 0.01, and 
h2g ∈ {0, 0.2, 0.4, 0.6, 0.8}.

Finally, to generate traits (rather than residuals), that are vectors of proportions (i.e., 
sum up to 1), we followed the steps depicted in a previous section to obtain points in 
the simplex. To simulate H1 (i.e., a causal variant associated with the traits), we gener-
ated values of the traits in individuals with genotypes 0, 1, and 2 at the causal variant as 
y ∼ S(p−�, σg ) , y ∼ S(p, σg ) and y ∼ S(p�, σg ) , respectively (see above for details). Note 
that in this case population structure is not taken into account.

Evaluation of type I error and power

We selected a significance level of α = 0.05. For each combination of conditions, we sim-
ulated m = 10,000 phenotype-genotype pairs (Y, x ). Under H0 , we evaluated the type I 
error for asymptotic PERMANOVA test, MANOVA (Pillai’s trace), and the multivariate 
LMM—implemented in GEMMA [18]—(Wald test), as follows:

where p is the p value of the association and I the indicator function. We employed 
an analogous setting to estimate power when simulating phenotype-genotype pairs 
under H1 . We evaluated power after adjusting p values for multiple hypothesis testing 
(Bonferroni).

Evaluation of running time and RAM usage

To evaluate the running time and RAM usage of MANTA, MANOVA and GEMMA as a 
function of sample size, we simulated cohorts mimicking the population structure of the 
1KGP dataset (see above), with increasing size (from 1000 to 100,000 individuals). We 
fixed the fraction of variance explained by population structure at 0.2 and the number of 
traits at 3. We measured the running time to perform 10,000 tests on the same number 
of phenotype-genotype pairs, simulated under H0 (no causal variant effects). In the case 
of MANTA and MANOVA, 20 genotype principal components (PC) were included as 
covariates in the model. In the case of GEMMA, we also considered the time required 
to build the relatedness matrix. Each run was repeated 5 times with different input data. 
Analogously, we evaluated the running time of the three methods as a function of the 

Type I error =

m∑

i=1

I(p ≤ α)

m
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number of traits (from 2 to 20), simulating cohorts with sample size 1000. All running 
times were measured on a single core of an Intel Xeon Platinum 8160 CPU (2.10GHz). 
Regarding RAM usage, we report the peak RSS (resident set size) for the corresponding 
processes, estimated by Nextflow via ps -o rss.

Implementation

We used the implementation of standard PERMANOVA available in the vegan R pack-
age (adonis method). Asymptotic p values were computed using our implementation 
of asymptotic PERMANOVA test, available at https:// github. com/ dgarr imar/ manta 
(MANTA v1.0.0). MANOVA p values were computed using the manova method in the 
stats R package, with default parameters. We employed the implementation of the mul-
tivariate LMM available in GEMMA [18] v0.98.3 (https:// github. com/ genet ics- stati stics/ 
GEMMA), which relies on Wald test for p value calculation (default). Model (5) was 
assessed by MANTA with default parameters. Both MANTA (type I sums of squares, 
p values computed only for the genotype term via the option subset) and MANOVA 
assessed model (6). GEMMA assessed model (7). Numerical optimization in GEMMA 
failed (and consequently, the software produced an error and did not generate any 
result) for a small fraction of the tests performed. However, the number of failures was 
large in certain scenarios, e.g., when the trait distribution deviated substantially from 
multivariate normality or the number of traits analyzed was relatively large. All the sim-
ulations were performed using R v3.5.2 and Python v3.5.3. For parallelization and port-
ability purposes, we embedded our code in a pipeline (available at https:// github. com/ 
dgarr imar/ manta- sim) built using Nextflow (v20.04.1), a framework for computational 
workflows [37]. We also used Docker container technology (https:// www. docker. com) to 
ensure the reproducibility of our results.

Population‑biased splicing QTL mapping

GTEx data and population definition

Transcript expression (transcripts per million, TPM) and variant calls were obtained 
from the V8 release of the GTEx Project (dbGaP accession phs000424.v8.p2, https:// 
www. ncbi. nlm. nih. gov/ proje cts/ gap/ cgi- bin/ study. cgi? study_ id= phs00 0424. v8. p2). 
These correspond to 15,253 samples from 838 deceased donors with both RNA-seq 
in up to 54 tissues and Whole Genome Sequencing (WGS) data available. Metadata at 
donor and sample level was also retrieved. GTEx V8 uses the hg38/GRCh38 human ref-
erence genome assembly and the GENCODE v26 annotation (https:// www. genco degen 
es. org/ human/ relea se_ 26. html). Further details on GTEx data preprocessing and quality 
control (QC) pipelines can be found in [2].

We considered individuals of European and African ancestry (97.6% of all individuals). 
We defined European Americans (EA, n = 715) and African Americans (AA, n = 103) 
as the subset of self-reported White and Black individuals, respectively (field “RACE” 
in the GTEx metadata). Self-reported ancestry was confirmed via genotype PCA (Addi-
tional file 1: Fig. S18). Following [2], we restricted our analysis to 31 tissues with sample 
sizes >20 in both populations.

https://github.com/dgarrimar/manta
https://github.com/genetics-statistics/GEMMA
https://github.com/genetics-statistics/GEMMA
https://github.com/dgarrimar/manta-sim
https://github.com/dgarrimar/manta-sim
https://www.docker.com
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000424.v8.p2
https://www.gencodegenes.org/human/release_26.html
https://www.gencodegenes.org/human/release_26.html
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pb‑sQTL mapping

For cis population-biased sQTL (pb-sQTL) mapping, we developed a slightly modified 
version of sQTLseekeR2, named sQTLseekeR2.int, which implements asymptotic PER-
MANOVA test to assess the significance of the association between alternative splic-
ing (AS) on one side, and the genotype, the condition of interest (i.e., ancestry), and the 
interaction between the two on the other. In sQTLseekeR2.int, as in sQTLseekeR2, AS is 
modeled as a multivariate outcome, composed by the relative abundances of the alterna-
tive transcript isoforms of a gene (splicing ratios), after a square root transformation. In 
this context, a significant interaction should be interpreted as a genetic effect on the AS 
phenotype that differs between EA and AA individuals. However, sQTLseekeR2.int does 
not provide information about the specific transcript isoforms affected or the size of the 
multi-trait effect. To help with interpretation, it reports the absolute maximum differ-
ence (MD) in mean adjusted transcript relative expression between genotype groups 
[29], for both EA and AA individuals (although the two transcripts involved in MD cal-
culation for EA and AA individuals may not coincide). sQTLseekeR2.int was run using a 
containerized Nextflow pipeline. The software and the pipeline are available at the inter-
action branch of the https:// github. com/ guigo lab/ sQTLs eekeR2 and https:// github. com/ 
guigo lab/ sqtls eeker2- nf repositories, respectively.

Under the assumption that most variants with cis effects on alternative splicing are 
likely to be carried on the sequence of the primary transcript or its close vicinity [29], 
the cis window was defined as the gene body plus 5 Kb upstream and downstream the 
gene boundaries. We considered protein conding genes and long intergenic non-coding 
RNAs (lincRNAs) expressed ≥ 1 TPM in at least 80% of the samples (samples with lower 
gene expression were removed from the analysis of the gene), with at least two isoforms 
and a minimum isoform expression of 0.1 TPM (transcripts with lower expression in 
all samples were removed). These filters correspond to the default parameters of sQTL-
seekeR2.int. We analyzed only biallelic SNPs and short indels (autosomal + X) with 
MAF ≥ 0.01. We required at least 10 samples per observed level of the interaction term. 
Both genotype and population were treated as categorical variables. Donor ischemic 
time, gender and age, as well as the sample RIN (RNA integrity number) and genotyping 
platform were regressed out from the splicing ratios prior to association testing.

In total, 687,737 variants and 14,122 genes were analyzed. To correct for the fact that 
multiple variants are tested per gene, we used eigenMT [77]. eigenMT estimates the 
effective number of independent tests ( Meff  ) per gene, considering the LD structure 
among the tested variants. Meff  is then used instead of the total number of tests (M) 
in Bonferroni correction. We set α = 0.05. As our test statistic is sensitive to the het-
erogeneity of the splicing ratios’ variability between the levels of the interaction term, a 
permutation-based (104 permutations) multivariate homoscedasticity test [78] was also 
performed for each gene-variant pair. Pairs failing this test after multiple testing correc-
tion by eigenMT were not reported as significant pb-sQTLs. eigenMT allows to com-
pute a gene-level p value (corresponding to the smallest—corrected—p value per gene). 
To account for the fact that multiple genes are tested genome-wide, we applied Ben-
jamini-Hochberg false discovery rate (FDR) to gene-level p values [77]. We set a FDR 
threshold of 0.1.

https://github.com/guigolab/sQTLseekeR2
https://github.com/guigolab/sqtlseeker2-nf
https://github.com/guigolab/sqtlseeker2-nf
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We evaluated the impact that differences in allele frequency or linkage disequilibrium 
(LD) between EA and AA individuals could have in pb-sQTL discovery. Regarding allele 
frequencies, we estimated the MAF of all the tested genetic variants, separately in the 
EA and AA cohorts. Then, for each variant, we obtained �MAF = MAFEA −MAFAA . 
The percentage of pb-sQTLs and not pb-sQTLs (other tested variants not identified as 
pb-sQTLs) with large differences in MAF ( |�MAF| > 0.3) was not significantly different 
(2.4% vs 2.2%, respectively, χ2 test p value 0.28). As for LD, we computed the average r2 
(i.e., r2 ) between all pairs of variants tested for association with a given gene, separately 
in the EA and AA cohorts. Then, for each gene, we obtained �r2 = r2EA − r2AA . The 
percentage of pb-sGenes and not pb-sGenes (other tested genes not identified as pb-
sGenes) with large differences in LD ( |�r2| > 0.3) was not significantly different (3.4% vs 
3.7%, respectively, χ2 test p value 0.66).

We also investigated the effect of sample size imbalance between EA and AA cohorts 
on statistical power to identify pb-sQTLs. Particularly, we were interested in evaluat-
ing whether sample size imbalance could result in differences in power to detect EA-
specific vs AA-specific effects. We simulated the splicing ratios of 1000 genes with q = 3 
splicing isoforms, measured in n = 1000 individuals (as in the vectors of proportions 
scenario depicted above). We generated a factor with two levels, mimicking the two 
ancestry groups, with decreasing proportions of the less represented ancestry, and 1000 
binomial SNPs with MAF = 0.3, matching the median MAF of the variants tested in the 
GTEx dataset analysis. We simulated population-specific (present in one of the ancestry 
groups but absent in the other), additive sQTL effects of arbitrary size ( δ = 0.005). We 
used MANTA to assess the significance of the interaction term, as in the analysis of the 
real GTEx dataset. We estimated power as previously described. To account for the vari-
ability in power estimates, we repeated the simulation and power calculation procedure 
100 times.

Functional enrichment of pb‑sQTLs

We obtained eCLIP peaks in HepG2 and K562 cell lines for 113 RBPs [79] from the 
ENCODE Portal (https:// www. encod eproj ect. org, accessed 2019-07-04). For each RBP, 
we selected the peaks significant at FDR < 0.01 and with a fold-change (FC) with respect 
to the mock input ≥ 2. We further required a minimum overlap between replicates (50% 
of the length of the union of a given pair of peaks). Splice donor and acceptor sites from 
protein-coding and lincRNA genes were derived from the GENCODE v26 annotation 
(https:// www. genco degen es. org/ human/ relea se_ 26. html). Disease and complex-trait 
associated variants were retrieved from the GWAS Catalog (https:// www. ebi. ac. uk/ 
gwas, accessed 2021-01-29), extended to include GTEx variants in high linkage disequi-
librium ( r2 > 0.8) with the GWAS hits. We obtained ChIP-seq peaks for 66 transcription 
factors from the Ensembl Regulation dataset (ftp:// ftp. ensem bl. org/ pub/ relea se- 86/ regul 
ation/ homo_ sapie ns/ Annot atedF eatur es. gff. gz). The coordinates of these functional ele-
ments were overlapped with all the tested variants (either pb-sQTLs or not) to obtain a 
functional annotation per variant. Then, pb-sQTLs were compared to a null distribu-
tion of 1000 sets of randomly sampled variants not identified as pb-sQTLs (i.e., non pb-
sQTLs), of the same size of the pb-sQTL set. Non pb-sQTLs were matched to pb-sQTLs 
in terms of relative location within the gene and MAF. The enrichment was calculated 

https://www.encodeproject.org
https://www.gencodegenes.org/human/release_26.html
https://www.ebi.ac.uk/gwas
https://www.ebi.ac.uk/gwas
ftp://ftp.ensembl.org/pub/release-86/regulation/homo_sapiens/AnnotatedFeatures.gff.gz
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Page 28 of 32Garrido‑Martín et al. Genome Biology          (2023) 24:230 

as the odds ratio (OR) of the frequency of a certain annotation among pb-sQTLs to the 
mean frequency of the same annotation across the 1000 non pb-sQTLs sets. The signifi-
cance of each enrichment was assessed using a two-sided Fisher’s exact test.

GWAS of the volumes of hippocampal subfields

UK Biobank data

We obtained magnetic resonance imaging (MRI)-derived hippocampal subfield volumes, 
corresponding to 41,414 unrelated (pairwise KING [73] kinship coefficient < 0.0884) 
individuals with genotype data available, from the UK Biobank. Hippocampal sub-seg-
mentation from T1-weighted structural images was performed with FreeSurfer v6.0 
(http:// surfer. nmr. mgh. harva rd. edu), based on the atlas described in [80], in the frame-
work of an image-processing pipeline developed and run on behalf of the UK Biobank 
[81]. We also obtained metadata at individual level. Further details on image acquisition, 
quality control, and analysis are available at Resource 1977 (https:// bioba nk. ctsu. ox. ac. 
uk/ cryst al/ refer. cgi? id= 1977). Additional information on genotyping, genotype QC, and 
imputation can be found at Category 100319 (https:// bioba nk. ndph. ox. ac. uk/ ukb/ label. 
cgi? id= 100319) and at [82] (human reference genome assembly: hg19/GRCh37). The 
complete list of Data-Fields retrieved can be found in Additional file 1: Table S5.

Genome‑wide association analysis

The traits of interest were the volumes of 12 hippocampal subfields. From anterior to 
posterior, approximately: parasubiculum, presubiculum, subiculum, cornu ammonis 
(CA) 1, CA 2/3, CA 4, granule cell layer of the dentate gyrus (DG), hippocampus-amyg-
dala transition area (HATA), fimbria, molecular layer of the DG, hippocampal fissure, 
and hippocampal tail. We obtained the total volume of each subfield by summing its cor-
responding volume in (i) hippocampal tail and body and (ii) left and right brain hemi-
spheres. The correlation of subfield volumes between hemispheres was large (Additional 
file 1: Fig. S25). We considered individual’s age, gender, total hippocampal volume (sum 
of all subfields minus the hippocampal fissure), and the first five genotype principal com-
ponents (PCs) as relevant covariates. We analyzed only biallelic SNPs and short indels in 
autosomes with MAF ≥ 0.01, missingness < 0.05 and at least 10 individuals per genotype 
group.

We used MANTA v1.0.0 (https:// github. com/ dgarr imar/ manta) (with type I sums 
of squares) to test for association between genetic variants and the volumes of the 12 
hippocampal subfields. We defined a model that included the covariates plus the gen-
otype. Except for gender, all predictors were treated as continuous variables. p values 
were computed only for the genotype term via the option subset in MANTA. In total, 
8,197,132 variants were tested for association. The analysis was run within a container-
ized Nextflow pipeline, that we named mvgwas-nf (v1.0.0), available at https:// github. 
com/ dgarr imar/ mvgwas- nf. We adopted the common 5 · 10−8 threshold for genome-
wide significance.

http://surfer.nmr.mgh.harvard.edu
https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977
https://biobank.ctsu.ox.ac.uk/crystal/refer.cgi?id=1977
https://biobank.ndph.ox.ac.uk/ukb/label.cgi?id=100319
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Functional analysis

Loci definition was carried out by the Functional Mapping and Annotation of Genome-
Wide Association Studies (FUMA) platform [83], with default parameters. The identi-
fied loci, as well as the actual genome-wide significant variants, were overlapped with 
the GWAS Catalog (including the Experimental Factor Ontology (EFO) annotations for 
the GWAS terms, https:// www. ebi. ac. uk/ gwas, accessed 2021-01-29). We identified the 
closest genes to genome-wide significant variants, and performed hypergeometric tests 
to assess Gene Ontology (GO) Biological Process term over-representation. We selected 
as gene universe all protein-coding genes, and set a FDR threshold of 0.1. GWAS sum-
mary statistics for Alzheimer’s disease—or family history of Alzheimer’s disease— [60] 
and schizophrenia [61] were also retrieved and overlapped with our set of genome-wide 
significant variants, extended to include variants in high linkage disequilibrium ( r2 ≥ 
0.8).

Comparison between MANTA and GEMMA

We randomly downsampled the hippocampal subfield dataset to n = 10,000 individu-
als, and performed a GWAS with both MANTA and GEMMA. Given the slightly differ-
ent filtering strategies, we focused on the common set of 7,077,024 tested variants. We 
used mvgwas-nf (v1.0.0) to run MANTA as above. To run GEMMA, we implemented 
gemma-nf (v1.0.0), a containerized Nextflow pipeline available at https:// github. com/ 
dgarr imar/ gemma- nf. We used the same covariates as above, except for genotype PCs, 
which were excluded from GEMMA’s analysis (LMMs can naturally account for popu-
lation structure). We compared p value inflation between MANTA and GEMMA. As 
MANTA p values do not come from a normal distribution, we used an equivalent to 
�G computed on p values, �X = median(− log10 pobserved)/median(− log10 pnull)  [84]. 
Inflation factors for MANTA and GEMMA were �X = 1.07 and �X = 1.02, respectively. 
GEMMA seems to do only slightly better accounting for population stratification than 
5 genotype PCs. We used FUMA for loci definition, and the resulting loci were over-
lapped with the GWAS Catalog, as described above. We also obtained the complete EFO 
ontology (https:// www. ebi. ac. uk/ efo) in Open Biomedical Ontologies (OBO) format. We 
used the ontologySimilarity R package [85] to compute the pairwise semantic similarity 
(method =  resnik) between the GWAS terms identified, and built a similarity matrix, 
S. From it, we derived a distance matrix, D, as max(S)− S , which allowed to perform a 
hierarchical clustering of the terms.
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