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Background
For a growing number of crops and plants, there are now multiple genome assemblies 
available in public repositories. These data are driving the analysis of the pangenome, the 
union of all known genomes of a species. For instance, recently published pangenome 
reports include staple crops wheat and barley [1, 2]. While these efforts have greatly 
advanced our understanding of the variability of genomes within species, they have also 
prompted a new class of problems, those related to annotating and naming genes across 
cultivars. Different strategies are possible. For instance, the barley pangenome consor-
tium lifted-over gene models from three genotypes (Morex, Barke, HOR10350) to all 
other assemblies. This procedure biases the gene space to that of the reference cultivars. 
In contrast, in other species, fresh gene annotations have been produced for different 
individuals or sampled populations [3]. In this case, care should be taken to follow the 
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same annotation protocols throughout to avoid inflating the number of population-spe-
cific genes [4] or to conserve gene identifiers.

In this context, it is useful to define a pangene, a gene model or allele found in some 
or all individuals of a species in a similar genomic location. A pangene should integrate 
additional naming schemes, e.g., so that a cluster of gene models can share a common 
identifier that links back to their original gene identifiers. A pangene set defines our cur-
rent understanding of the total coding potential of a species and can assist in gene model 
curation, by providing a pool of possible gene models for assessment.

Pangenes can be produced by a variety of approaches, such as iterative mapping and 
assembly [5], local alignments of nucleotide sequences [6], molecular phylogenies of 
chromosome-sorted proteins [7], or as a secondary product of genome graphs [8–10]. 
Whatever the approach, a common use case for pangenes is to capture presence-absence 
variation (PAV) at the gene level. However, previous work has observed that absent gene 
models are rarely caused by complete sequence deletions; instead, they might not be 
expressed in certain conditions or the underlying genomic regions might contain genetic 
variants such that the criteria for calling a gene model are not satisfied. For instance, 
sequence variants in introns or splice sites can reduce evidence for a gene model [11]. 
Mapping transcript isoforms from orthologous loci is also a useful way to determine 
whether a gene model is intact [12].

Here we present an approach to identify and analyze pangenes in sets of plant 
genomes which can explicitly confirm or reject PAVs by lifting-over viable gene mod-
els on candidate genomic segments. This approach requires computing pairwise whole 
genome alignments (WGAs), which are then used to estimate gene model overlaps 
across individuals. Finally, pairs of overlapping genes are iteratively merged to produce 
pangene clusters. The algorithm produces pangene clusters that are not biased towards 
the reference annotation and that can optionally be used to refine individual gene model 
annotation with information from all cultivars. We benchmark this approach on diverse 
datasets that cover monocots and dicots, as well as small and large genomes.

Results
A protocol for calling pangenes based on whole genome alignments

The first result from this work is the design of a protocol for calling pangenes in a series 
of related genomes. A pangene is defined as a gene model found within a homologous 
region in a set of genomes. In order to find pangenes, WGAs are computed, which in 
turn produce pairs of collinear genomic segments. Collinear evidence is stored in TSV 
files and can be produced by two WGA algorithms: minimap2 and GSAlign. The proto-
col is represented as a flowchart in Fig. 1A. As illustrated schematically in Fig. 1B, WGAs 
are used to project the coordinates of gene models across assemblies. By default, a pair 
of genes are said to be collinear when at least half the length of one matches the other in 
genomic space (Fig. 1C). Finally, clusters of genes (pangenes) emerge by merging pairs of 
collinear genes from different input taxa (Fig. 1D).

An example collinear region of Oryza sativa Japonica group (bottom) and Oryza 
nivara (dataset rice3) as displayed in the Ensembl Plants genome browser is shown in 
Fig. 2, together with a summary of the supporting WGA evidence. Besides five 1-to-1 
collinear gene pairs, it can be seen that the gene ONIVA01G00100 was mapped to two 
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consecutive O. sativa models (Os01g0100100, Os01g0100200) and that two O. sativa 
genes map to unannotated genome segments in O. nivara. In a nutshell, this figure shows 
that WGA evidence allows matching of long genes to split genes if they are collinear, as 
well as matching annotated gene models to homologous regions in other genomes, even 
if the genes in question failed to be annotated.

Benchmark on several plant datasets

A systematic benchmark of get_pangenes.pl was performed with the four datasets 
in Table 1. In order to describe the performance several variables were collected. As 
computing WGAs is costly, particularly for large genomes, the maximum amount 
of RAM consumed by pairwise genome alignments was recorded. The size of the 
collinear fragments produced by WGA is captured in two variables, N50 and the 

Fig. 1 Features of get_pangenes.pl. A Flowchart of the main tasks and deliverables of script get_pangenes.
pl: cutting cDNA and CDS sequences (top), calling collinear genes (middle, panels B and C) and clustering 
(bottom, panel D). By default, only cDNA and CDS sequences longer than 100 bp are considered. Whole 
genome alignments (WGA) can be computed with minimap2 (default) or GSAlign, and the input genomes 
can optionally be split in chromosomes or have their long geneless regions (> 1 Mbp) masked. Resulting 
gene clusters contain all isoforms and are post‑processed to produce pangene and percentage of conserved 
sequences (POCS) matrices, as well as to estimate pan‑, soft‑core‑, and core‑genomes. GSAlign also produces 
average nucleotide identity (ANI) matrices. Several tasks can be fine‑tuned by customizing an array of 
parameters, of which alignment coverage is perhaps the most important. B WGA of genomes A and B 
produces BED‑like files that are intersected with gene models from B. Intersected coordinates are then used 
to transform B gene models to the genomic space of A. Finally, overlapping A gene models on the same 
strand are defined as collinear genes. C Feature overlap is computed from WGAs and gene coordinates from 
source GFF files. When checking the overlap of A and B gene models, strandedness is required. Overlaps can 
also be estimated between gene models annotated in one assembly and matched genomic segments from 
others. D Making greedy clusters by merging pairs of collinear genes. This algorithm has a key parameter, 
the maximum distance (in genes) among sequences of the same species that go in a cluster (default = 5). 
Its effect is illustrated on the right side, where gene g34 is left unclustered for having too many intervening 
genes
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percentage of fragments that contain blocks of 3 or more genes. Several further vari-
ables were also calculated to describe the clusters of collinear genes produced by the 
protocol: the total number of clusters, the number of pangenes present in all geno-
types (core clusters), the pangenes present in 95% of genotypes (soft-core clusters), 
and the percentage of complete BUSCOs, which are universal single-copy orthologs. 
The results are summarized in Table 2 (minimap2) and Table 3 (GSAlign). Here the 
outcomes of both algorithms are compared. Although GSAlign consumes more RAM 
than minimap2 as genome size grows, this is not a fair comparison; in fact, while 
GSAlign was fed raw genome sequences, minimap2 only completed the WGAs for 
barley and wheat after masking long geneless genomic regions. The collinear seg-
ments aligned by minimap2 are longer and contain more genes than those produced 
by GSAlign. Additional file 1: Figs. S1 and S2 confirm that collinear gene models have 
large overlaps and that the genomic segments that contain them are generally syn-
tenic along chromosomes. Additional file 1: Table S1 shows that the number of hits 
per gene is similar for both algorithms, with minimap2 failing to map more genes 
than GSAlign. Despite these differences, the numbers of pangenes clustered using 
WGA evidence from both algorithms are comparable: 86.3% of all clusters are identi-
cal (95.5% for core clusters, see Additional file 1: Fig. S3).

As an extra test, clusters of cDNA and CDS sequences resulting from the rice3 anal-
ysis were aligned locally to compute their sequence identity both at the nucleotide 
and protein level. Note that these clusters contain all isoforms annotated, so often 
there might be several sequences for the same gene. The results, plotted in Additional 
file 1: Fig. S4, yielded median sequence identities of 99.6% for nucleotides (cDNA and 
CDS). For protein sequences, the median values are 98.3% (GSAlign) and 98.1% (min-
imap2). This means that annotated sequences clustered together are nearly identical, 
although as seen in Additional file 1: Fig. S5, that does not guarantee that the same 
protein sequence is always encoded by clustered genes, as a result of divergent gene 

Fig. 2 Aligned genomic region in chr1 of Oryza nivara (top) and Oryza sativa Japonica group cv. Nipponbare 
(bottom) as displayed in the Ensembl Plants browser. Genes on the forward strand ( >) are above contigs, 
whilst those in the negative strand ( <) are underneath. As a result of the genomic alignment, genes of 
O. nivara overlap with gene models from O. sativa. This evidence can be used to identify collinear genes 
that take equivalent positions in different genomes, as illustrated with gene models ONIVA01G00130 and 
Os01g0100500, which overlap over 2.4 kb (yellow rectangle). The example shows that overlapping gene 
models might share only some exons. The table below shows the collinear gene models identified based on 
minimap2 and GSAlign alignments, together with the corresponding overlapped base pairs
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model annotation. Note that we also found some cases, 273/30,705 for minimap2 
and 320/30,129 for GSAlign, where cDNA sequences of the same cluster could not 
be aligned. These occur when overlapping genes do not share exons. Nevertheless, 
these pangenes are not filtered out by default as such gene models could encode loss 
of function alleles that might be valuable to capture.

Tables 2 and 3 also contain a summary of BUSCO analysis. BUSCOs are sets of uni-
versal single-copy orthologs tailored to different taxa and are typically used to esti-
mate the completeness of genome assemblies. In this context, BUSCOs provide a 

Table 1 Datasets used in this study. Geneset sources correspond to Ensembl Plants releases (EP) 
and the barley gene annotation from IPK [13]. Wheat genotypes are all Triticum aestivum. Barley 
genotypes are Hordeum vulgare landraces and cultivars, except B1K‑04–12, which is H. vulgare subsp. 
spontaneum 

Dataset Species/genotype INSDC accession Geneset Size (MB) # Genes

ACK2 Arabidopsis thaliana GCA_000001735.1 EP52 116 27,655

Arabidopsis lyrata GCA_000004255.1 EP52 200 32,667

rice3 Oryza sativa Nipponbare GCA_001433935.1 EP54 363 37,960

Oryza sativa indica 93–11 GCA_000004655.2 EP54 414 40,745

Oryza nivara
IRGC:100I897

GCA_000576065.1 EP54 327 36,313

chr1wheat10 Chinese Spring GCA_900519105.1 EP52 1,736 18,017

Arinalrfor GCA_903993985.1 EP52 1,725 13,542

Jagger GCA_903993795.1 EP52 1,740 17,810

Julius GCA_903994195.1 EP52 1,729 17,669

Lancer GCA_903993975.1 EP52 1,721 17,951

Landmark GCA_903995565.1 EP52 1,738 17,792

Mace GCA_903994175.1 EP52 1,713 17,724

Sy Mattis GCA_903994185.1 EP52 1,718 17,941

Norin61 GCA_904066035.1 EP52 1,726 18,091

Stanley GCA_903994155.1 EP52 1,737 17,767

barley20 MorexV2 LR722616‑LR722623 IPK2020 4,210 46,294

Akashinriki ERS4201448 IPK2020 4,401 44,446

B1K‑04–12 ERS4201449 IPK2020 4,142 44,566

Barke ERS4201450 IPK2020 4,073 45,999

Golden Promise GCA_902500625.1 IPK2020 3,946 42,464

HOR10350 ERS4201451 IPK2020 4,086 45,810

HOR13821 ERS4201452 IPK2020 4,324 44,714

HOR13942 ERS4201453 IPK2020 4,249 44,718

HOR21599 ERS4201454 IPK2020 4,344 44,456

HOR3081 ERS4201455 IPK2020 4,201 45,146

HOR3365 ERS4201456 IPK2020 4,722 47,588

HOR7552 ERS4201457 IPK2020 4,228 44,641

HOR8148 ERS4201458 IPK2020 4,212 45,026

HOR9043 ERS4201459 IPK2020 4,270 45,028

Hockett ERS4201460 IPK2020 4,201 46,450

Igri ERS4201461 IPK2020 4,202 45,213

OUN333 ERS4201462 IPK2020 4,392 44,699

RGT Planet ERS4201463 IPK2020 4,213 45,413

ZDM01467 ERS4201447 IPK2020 4,540 44,746

ZDM02064 ERS4201446 IPK2020 4,153 45,050
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biologically meaningful metric based on expected gene content [14]. When we say 
an assembly is more “BUSCO complete” than others, it means it encodes more com-
plete BUSCOs. The ACK2 dataset contains the two most divergent genomes, with 
84.7% nucleotide identity (see Table 3). The core pangenes found across A. thaliana 
and A. lyrata contain a higher percentage of complete BUSCOs with minimap2 than 
with GSAlign (94.1% vs 74.9%). In the rice3 dataset, the nucleotide identity rises to 
96% and the core pangene set contains ca. 85% complete BUSCOs with both WGA 
algorithms. As BUSCO analysis does not make sense for a single chromosome, the 
wheat dataset was left out. As for the barley20 dataset, the nucleotide identity is gen-
erally higher than that of rice3 and the benchmark produced core sets with close to 
86.6% (minimap2) and 61.6% (GSAlign) complete BUSCOs. This number increased 
to 95.3% and 82.5% when all soft-core pangenes are considered, revealing a superior 
performance of minimap2 in this dataset. To put all these BUSCO scores in perspec-
tive, please see the scores of individual input genome annotations in Additional file 1: 
Table S2.

Finally, Table 3 also shows the average nucleotide identity values computed by the 
GSAlign algorithm for pairwise genome alignments. These values are useful to meas-
ure the divergence of the genomes being compared.

Table 2 Summary of pangene analyses based on minimap2 whole genome alignments (WGA). N50 
values, that describe the length of aligned genomic fragments, are shown as ranges of observed 
[min, max] values. The percentage of genes in blocks of 3 + contiguous genes is also shown as a 
range. Note that barley and wheat datasets require optional argument ‑H, which masks geneless 
regions longer than 1Mbp, where repeated sequences accumulate. Maximum RAM use was 
measured for pairwise WGA batch jobs

Max RAM 
(GB)

WGA N50 
(Kbp)

% Genes 
blocks3 + 

Total clusters (Soft) core 
clusters

% BUSCO 
complete

ACK2 4.5 6.1 34.0 38,785 20,647 94.1

rice3 1.4 [27.4, 29] [75.1, 77.8] 61,913 19,170 85.2

chr1wheat10 
(‑H)

64.5 [80.8, 142.4] [38.8, 53.8] 25,280 9937

barley20 (‑H) 46.3 [43.6, 75.7] [25.4, 35.3] 165,544 23,811 (29, 
226)

86.6 (95.3)

Table 3 Summary of pangene analyses based on GSAlign whole genome alignments (WGA). N50 
values, that describe the length of aligned genomic fragments, are shown as ranges of observed 
[min, max] values. The percentage of genes in blocks of 3 + contiguous genes and the Average 
Nucleotide Identities (ANI) are also shown as ranges. Maximum RAM use was measured for pairwise 
WGA batch jobs

Max RAM 
(GB)

WGA N50 
(Kbp)

% Genes 
blocks3 + 

Total 
clusters

(Soft) core 
clusters

% BUSCO 
complete

% ANI

ACK2 4.5 4.3 24.6 43,282 16,476 74.9 84.7

rice3 3.3 [15.2, 16.9] [53.0, 57.9] 62,747 18,726 84.6 [96.4, 97.6]

chr‑
1wheat10

83.4 [40.9, 72.1] [20.4, 34.3] 30,005 7833 [98.9, 99.4]

barley20 113.1 [17.1, 34.3] [10.8, 16.2] 168,880 15,567 
(23,625)

61.6 (82.5) [96.9, 99.3]
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Comparison to ancestral karyotype and Ensembl orthogroups

Additional analyses were carried out to gain insights into the performance of our pro-
tocol by comparing our results to data produced independently.

First, we estimated its recall on the ACK2 dataset, which represents the most dif-
ficult scenario tested due to having the lowest nucleotide identity. This experiment 
counted the number of collinear genes identified by minimap2 and GSAlign within 
23 blocks of the Ancestral Crucifer Karyotype. The results, summarized in Additional 
file 1: Table S3, indicate that in these conditions, 65% (minimap2) and 52% (GSAlign) 
of the genes making up the blocks are called collinear.

Second, taking advantage of the fact that the genomes in datasets ACK2 and rice3 
are included in Ensembl Plants, it was possible to compare the pangenes to precom-
puted Ensembl Compara orthogroups. In this comparison, clusters are said to match 
orthogroups when they include all the orthologues annotated in Ensembl; the results 
are shown in Table 4.

The analysis of the challenging ACK2 dataset shows that get_pangenes.pl recov-
ers 90.3% (minimap2) and 70.2% (GSAlign) of core clusters found among Compara 
orthogroups, while producing more clusters with multiple copies. This means that 
ANI limits the recall of our protocol more severely for GSAlign than for minimap2. 
Nevertheless, 91% (18,792/20,647 minimap2) and 89.9% (14,817/16,476 GSAlign) of 
pangenes group together proteins that share InterPro domains, similar to Compara 
orthogroups (18,259/20,174; 90.5%). This indicates that pangene clusters are gener-
ally biologically relevant. Moreover, in the case of minimap2, the resulting core set is 
slightly more “BUSCO complete” than the Compara core.

Table 4 Summary of pangene clusters obtained for datasets ACK2 and rice3 and the corresponding 
orthogroups in Ensembl Plants. Core clusters contain genes from all analyzed genomes; in rice, shell 
clusters contain genes from two species. BUSCO completeness percentages for core sets are shown 
in parentheses. Clusters with multiple copies have several genes from the same species. gDNA 
segments are shell clusters that bring together a gene model and a matching genomic segment 
from the underlying WGA. Column ‘match Compara’ shows the number of pangene clusters that 
contain the same genes as the corresponding Compara orthogroups. The last column shows the 
number of pangene clusters that contain sequences that share an InterPro domain (the number in 
square brackets is for core clusters only)

Dataset Core 
clusters 
[%BUSCO]

Multiple 
copies

Shell 
clusters

gDNA 
segments

Match 
Compara

Share 
InterPro 
domains

Compara 
orthogroups

ACK2 20,192 [90.6] 161 [18,259]

minimap2 
clusters

ACK2 20,647 [94.1] 731 18,245 [18,792]

GSAlign 
clusters

ACK2 16,476 [74.9] 454 14,181 [14,817]

Compara 
orthogroups

rice3 13,020 [65.6] 219 6386 16,766 
[11,571]

minimap2 
clusters

rice3 22,880 [85.2] 3360 7825 6521 18,281 23,062 
[19,239]

GSAlign 
clusters

rice3 20,399 [84.6] 2885 9730 6103 17,103 22,834 
[17,135]
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The rice3 benchmark revealed that 79.9% (minimap2) and 83.8% (GSAlign) of pan-
gene clusters match Compara orthogroups, with get_pangenes.pl calling over 7000 more 
core pangenes than Compara. As a quality check of these core pangenes, we counted 
how many encoded proteins share at least one InterPro domain. We found that 84.1% 
(19,239/22,880 minimap3) and 84% (17,135/20,399 GSAlign) of clusters are consistent in 
functional terms, compared to 89% (11,571/12,997 Compara). Although there seems to 
be a drop in the functional consistency of pangenes, this is compensated by their larger 
% BUSCO completeness (ca. 85% vs 65.6%).

Inspection of the examples on Additional file 1: Fig. S6 demonstrate that our protocol 
is able to cluster together overlapping gene models which might be split or incomplete 
in reference annotations [15, 16]. This would illustrate why pangene clusters are more 
likely to group together multiple sequences from the same species. Note that incomplete 
gene models, or clusters with sequences of contrasting length, would in turn explain 
why some clusters contain sequences that do not encode a common protein domain 
(see Additional file 1: Fig. S7). The table also shows that over 6000 shell pangene clusters 
are produced that pair an annotated gene model with an overlapping genomic segment 
(gDNA) from a different species. Additional file 1: Table S4 shows how core and shell 
clusters are represented as a BED-like pangene matrix produced by get_pangenes.pl.

Confirming gene presence‑absence variation

A use case of pangenome analysis of plants and other organisms is to find genes which 
might be present and functional only in some individuals or populations. These would 
be annotated by our pipeline as shell genes. As discussed in the previous section, the 
get_pangenes.pl protocol can produce gDNA sequence clusters that contain the genomic 
intervals of annotated gene models plus overlapping unannotated segments from other 
species. This feature takes advantage of pre-computed WGAs, which match genomic 
segments whether they harbor gene models or not. Such clusters can effectively be used 
to lift-over or project gene models from the species where they are annotated to other 
individuals. In particular, CDS or cDNA isoform sequences from annotated genes can 
be mapped to the matching genomic segments and the resulting alignment will directly 
confirm whether exon/intron boundaries and the embedded coding sequence are con-
served. When conserved, the segment likely contains an overlooked gene model; when 
not, it probably contains a gene fragment or a pseudogene. A flowchart in Additional 
file 1: Fig. S7 summarizes how the script check_evidence.pl retrieves the WGA evidence 
supporting a pangene cluster, defines consensus and outlier isoform sequences, and 
then projects consensus CDS or cDNA sequences on candidate genomic segments with 
GMAP (see “Materials”). Note that, in addition to missing gene models, lifting-over can 
also merge split gene models or, conversely, divide gene models that might have been 
merged during gene annotation. Either way, when the projection succeeds and a com-
plete open reading frame is aligned, a patch GFF file is created that conveys the genomic 
coordinates of the projected gene.

Using shell CDS clusters of occupancy > 9 resulting from the minimap2 analy-
sis of dataset barley20, we carried out a survey to see how often the different scenar-
ios (missing, split, merged gene) occur in a real dataset. Out of 41,655 clusters, our 
approach detected 74 cases where a long model could be potentially corrected, 30 
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cases of incorrectly split genes, and 9839 potentially missing genes. We selected one 
candidate missing gene to illustrate the most common situation, pangene Horvu_
MOREX_1H01G011400. In this example, the original pangene grouped together gene 
models from 13 barley genotypes, supported by the WGA evidence shown in Additional 
file 1: Table S5. When CDS nucleotide sequences from those 13 cultivars were aligned to 
candidate genomic segments of the remaining genotypes, a perfect match was found in 
the genome sequence of OUN333. The encoded lifted-over protein sequence is shown 
at the bottom of the multiple alignment in Fig. 3, being identical to others in the cluster. 
The resulting patch GFF file that would add this gene model to OUN333 is shown in 
Fig. 3B. This test case suggests the combination of WGA evidence and gene model pro-
jection could be a powerful way to refine gene annotation across individuals of the same 
species. Moreover, as shown in the example, lift-over alignments can be used to confirm 
or reject observed PAV. In this case, we can hypothesize this gene model is actually pre-
sent in cultivar OUN333 and probably missing in the remaining genotypes. Additional 
data beyond sequence evidence would be required to fully characterize such genes, such 
as expression data and, ultimately, proteomics evidence.

Curation of barley flowering genes

The protocol for pangene clustering was further tested with an increased set of barley 
assemblies and gene annotations. In this final experiment, the barley20 dataset plus the 

Fig. 3 Multiple alignment of protein sequences encoded in barley pangene cluster Horvu_
MOREX_1H01G011400, produced with Clustalx. This cluster contains isoforms from 13 gene models, but 
none from genotype OUN333. The last sequence is encoded by a CDS sequence lifted‑over from cultivar 
HOR3081 on the genome of OUN3, spanning 3 exons (exon boundaries are marked with asterisks. B, Patch 
GFF file with the coordinates of the exons lifted‑over from gene model Horvu_3081_1H01G015200. The 
underlying CDS nucleotide sequence was aligned with 411 matches, no indels and no mismatches with 
check_evidence.pl ‑f
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high-quality MorexV3 and BaRTv2 gene annotations were pooled and a subset of 26 
genes known to regulate flowering and spike architecture extracted from the resulting 
clusters. The curated results are summarized on Table 5, where it can be seen that in all 
cases these genes were found in 19 or more barley annotations. The results in this gene 
survey were curated and we found some cases (HvFT3/Ppd-H2, HvLUX, HvGRP7b, 
HvLHY) where a gene was missing from a cluster in some cultivars but there was a can-
didate genomic region harboring part of that sequence. That would be the case for culti-
vars Igri and HOR3081 and locus HvFT3/Ppd-H2. As explained in the previous section, 
we lifted-over the collinear CDS nucleotide sequences from all the other cultivars and 
we obtained identical matches but only for exon 4 (see Additional file 1: Fig. S9), rep-
licating previous observations that exons 1 to 3 of this gene have been deleted in some 
genotypes [17].

Another interesting case was locus HvPRR37/Ppd-H1, which was found to be absent 
also in cultivar Igri, despite the gene being cloned in this cultivar with accession 

Table 5 Survey of flowering‑related pangenes in a collection of 22 barley genotypes, including the 
barley20 dataset plus the MorexV3 and BaRTv2 high‑quality annotations. Column “Occup” indicates 
how many annotations contain a gene model, with the number in brackets being the number of 
matched genomic segments in cases where a gene was absent in some cultivars. Column “Split” tells 
how many gene models are split in each pangene cluster with respect to the mode gene model. 
Column “Tand” says how many extra tandem gene models are in each cluster. Column ‘Inv’ states 
how many genes were found inverted in whole genome alignments

Locus Gene identifier in MorexV3 Occup Split Tand Inv

HvCO9 HORVU.MOREX.r3.1HG0058180 22

HvFT3/Ppd‑H2 HORVU.MOREX.r3.1HG0077240 19 [2] 1

HvELF3 HORVU.MOREX.r3.1HG0095050 22 8

HvPRR37/Ppd‑H1 HORVU.MOREX.r3.2HG0107710 21 1

HvBM3 HORVU.MOREX.r3.2HG0127410 22

HvBM8 HORVU.MOREX.r3.2HG0156870 22

HvCEN HORVU.MOREX.r3.2HG0166090 21 8

Vrs1 HORVU.MOREX.r3.2HG0184740 22

HvGI HORVU.MOREX.r3.3HG0238250 22

HvFT2 HORVU.MOREX.r3.3HG0244930 22

HvOS2 HORVU.MOREX.r3.3HG0311160 22 1

HvLUX HORVU.MOREX.r3.3HG0328340 19 [1] 4

HvGRP7a HORVU.MOREX.r3.4HG0333810 22 1

PRR59 HORVU.MOREX.r3.4HG0350680 22 20

HvFKF1 HORVU.MOREX.r3.4HG0369880 22 2

HvPRR73 HORVU.MOREX.r3.4HG0385940 22

HvGRP7b HORVU.MOREX.r3.5HG0421460 20 [1] 1 1

HvELF4‑likeA HORVU.MOREX.r3.5HG0478460 22

HvPRR95 HORVU.MOREX.r3.5HG0498830 22

HvZTL HORVU.MOREX.r3.6HG0560010 22

HvTOC1 HORVU.MOREX.r3.6HG0595250 21 1

HvCO2 HORVU.MOREX.r3.6HG0611620 22 1

HvFT1 HORVU.MOREX.r3.7HG0653910 22

HvCO1 HORVU.MOREX.r3.7HG0671540 22 1

HvLHY HORVU.MOREX.r3.7HG0699010 20 [1]

HvZTLa HORVU.MOREX.r3.7HG0729460 22 2
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AY970701.1 [18]. As it turns out, the Igri genome assembly placed this gene model 
(Horvu_IGRI_Un01G026500) outside of the pseudo-chromosomes; instead, it is located 
in chrUn, and therefore, it cannot be collinear to the homologous genes in other culti-
vars when only homologous chromosomes are compared (option -s). This error can be 
avoided by not using option -s, which in practice means that chromosomes are com-
pared all against all.

We also found several instances where genes were found in inverted genome regions, 
known to be valuable to reconstruct the history of crops [19]. In the case of HvCEN, 
shown in Additional file 1: Fig. S10, this observation matches previous reports [1], but 
we found other cases such as HvELF3 or HvLUX. These examples show the value of 
using whole genome alignments for the definition of pangenes, as the strand of genes 
conveys chromosomal and evolutionary information.

Among the curated genes, there’s also Vrs1, a homeodomain-leucine zipper home-
obox gene known to control row number in barley spikes [20]. Some alleles of this locus 
encode proteins with frameshifts that change the phenotype and result in amino acid 
sequences that cannot be properly aligned. Additional file  1: Fig. S11 shows that the 
WGA-based strategy tested here was able to cluster together these alleles despite their 
low terminal protein identity.

Finally, in this set of genes used by barley breeders, we also observed instances of gene 
models found to be split in some annotations or genes with extra copies. An example 
of the former is cluster HORVU.MOREX.r3.3HG0311160, which corresponds to barley 
locus HvOS2 and encodes MADS-box protein ODDSOC2 [21]. This case is illustrated in 
Fig. 4 and Additional file 1: Fig. S12.

Pangenes with multiple tandem copies in barley

Some gene families have tandem copies scattered in the genome. The way our protocol 
addresses these cases was already illustrated on Fig.  1D, with a parameter controlling 
how many neighbor genes of the same species can go into the same cluster. In this sec-
tion, we look at how this affects the pangene clusters produced by the protocol in the 
same set of barley annotations used in the previous section. As we had observed that 
often a gene might be split in two in some assemblies, we looked for cases where specifi-
cally 3 or more gene models from the same cultivar/annotation clustered together. We 
found 830 such pangenes clusters out of 181,519 (0.4%). These are highly polymorphic 
clusters, as in 613 out of 830 (73.8%), the gene in question is missing in one or more bar-
ley cultivars. A representative example is provided in Additional file 1: Fig. S13, where 
a gene family is shown that has up to 6 tandem copies in some genotypes (Barke) but is 
missing in others (GoldenPromise). The figure also suggests these genomic regions are 
specially hard to annotate, as independent annotations for the same genotypes (Morex, 
Barke) can be quite different.

Discussion
The protocol presented here defines pangenes across annotated assemblies of the 
same or related species, which in our benchmark are plant genome sets with ANI val-
ues ≥ 95. Although minimap2 worked reasonably well with the ACK2 dataset (84.7% 
identity), the comparison of protein sequences should perform better as the distance 
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among the assemblies of interest grows. Indeed, whole genome alignments degrade 
with decreasing % sequence identity, as seen with GSAlign on the ACK2 dataset 
or with both algorithms when computing gene model overlap ratios. Our bench-
mark also considered the comparison of WGA-based clusters to more conventional 
approaches based on protein alignments and collinearity. This was performed on two 
datasets for which Compara orthogroups filtered by collinearity and gene order con-
servation could be retrieved. We observed that minimap2-based nucleotide clusters 
for ACK2 are comparable in quality to Compara orthogroups and that both minimap2 
and GSAlign yield more core clusters with conserved protein domains than Com-
para in the rice3 dataset. In both cases, our protocol yielded more BUSCO complete 
core sets. We conclude that pangene clusters can be successfully derived from WGAs 
for closely related assemblies, which is the scope of application of our protocol. For 
assemblies with ANI < 80, protein-based clusters should probably be used instead.

Two algorithms for the computation of WGA were tested in this work, as we wanted 
to see how much the choice of aligner affected the results. This way, we also demon-
strated that any aligner able to produce WGAs in PAF or other compatible formats 
can be integrated in this protocol. In our hands, minimap2 produced better results 
than GSAlign, yielding longer and more contiguous collinear regions, and pangene 
sets with higher BUSCO scores. For these reasons, we made minimap2 the default. 

Fig. 4 Genomic context of pangene cluster HORVU.MOREX.r3.3HG0311160 (green arrows), which 
corresponds to barley locus HvOS2. The genome fragment on top corresponds to reference genome 
MorexV3 and the tracks below show collinear genes found in other barley assemblies and annotation sets. 
In this example, the BarkeBaRT2v18 gene is split in two partial models. Note that white gene models might 
not be collinear as they could be encoded in a different genome fragment. Figure generated with script 
check_evidence.pl and pyGenomeViz (https:// github. com/ moshi4/ pyGen omeViz)

https://github.com/moshi4/pyGenomeViz
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However, GSAlign is superior to minimap2 in two aspects. First, it can estimate ANI 
values from WGAs, which measure the distances among the genomes analyzed. Sec-
ond, it can cope with large WGAs such as those in the chr1wheat and barley20 data-
sets, provided that enough RAM is available. On the contrary, in our tests, minimap2 
could not complete those alignments unless geneless regions larger than 1 Mbp were 
masked. We suspect this is not simply a genome size matter, as other large genomes 
can be aligned with minimap2, such as the human one. Instead, this is due to the 
repetitive nature of these genomic segments. More work is needed to explore this.

Barley pangene clusters were automatically evaluated by lifting-over CDS sequences 
across cultivars. This is a unique feature of the protocol presented here, as collinear, 
geneless genome segments can be extracted from WGAs. The results revealed that the 
combination of multiple annotations of the same species can potentially add a large 
number of intact gene models that were missing in the original annotation source. As 
discussed in the literature, these might be genes with low-expression or defective pro-
moters [6, 11]. They could also be bona fide gene models that simply were not captured 
in RNAseq experiments for being expressed in specific tissues. Either way, these exam-
ples highlight one of the most important features of our protocol, that of confirming 
gene PAV across cultivar. Alternative approaches that do not use genome sequences, or 
use only gene order information, cannot carry out this task. Approaches based on pro-
tein sequences could potentially do something similar with tools such as miniprot [22].

Manual curation of a set of barley pangenes involved in flowering control was useful 
to further benchmark our protocol. Initially, we expected these genes to be mostly part 
of the core pangenome, as they all have important functions. However, we found some 
genes to be missing in some cultivars. In one example, we could confirm that PAV was 
caused by loss-of-function alleles described in the literature. In other cases, gene models 
could be recovered by lift-over. In another case, one cultivar had a missing gene caused 
by an optional algorithmic choice (-s) that restricts the computation of WGAs to pairs of 
homologous chromosomes and leaves unplaced contigs out of the picture. Finally, analy-
sis of another gene revealed that calling pangenes by genomic overlap is able to group 
together wild type and mutated frameshifted protein-coding allelic isoforms. Together 
with the observed split gene models, these cases highlight the challenges of consistently 
annotating individuals of the same species. In fact, they confirm that analyzing soft-core, 
instead of core genes, is probably a good idea to tolerate the situations encountered.

The inspection of barley pangenes also helped us understand how the protocol handles 
gene families with tandem copies. By using default settings, we found a relatively small 
number of clusters with 3 or more neighbor gene models from the same cultivar. The 
correct handling of gene families of interest will require optimal values of the param-
eter (-N) that controls the maximum distance among neighbor genes to be in the same 
cluster. If a given family has a number of tandem copies larger than the parameter value, 
some copies will be placed in individual clusters.

Conclusions
This paper presents a general protocol for the definition of pangenes in, ideally, sets of 
genomes of the same species. Benchmarks with several plant datasets showed that pan-
gene clusters can be successfully derived from WGAs. Although minimap2 performed 
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generally better than GSAlign, this required masking long repetitive parts of the genome 
in barley and wheat. Comparison to Compara protein-based orthogroups in rice demon-
strated that pangene clusters are of similar quality in terms of encoded protein domains, 
while recovering more complete core sets. Further evaluation on a set of curated barley 
genes revealed that pangenes can successfully capture their allele diversity and helped 
diagnose commonly occurring situations, such as missing, inverted or split genes.

As pangenes are computed based on gene models overlapping in aligned genomes, the 
resulting cluster files contain all known isoforms, both as cDNA and CDS, as opposed 
to one sequence per gene. In this way, pangenes capture the whole annotation diver-
sity of a gene, including potentially non-coding isoforms or frame-shifted alleles, that 
produce mutated protein sequences. The main advantage of building pangene clusters 
as described here is that genome alignments support lifting over gene models across 
assemblies, which can be effectively used to confirm or reject the presence-absence of 
certain genes. With curation work, this should improve the quality of pangene sets and, 
ultimately, pangenome analyses.

Methods
Genome sequences and genesets

A total of four datasets were used in this study (Arabidopsis ACK2, rice3, chr1wheat10 
and barley20) of increasing size and complexity. They are listed in Table 1, where ACK 
stands for the Ancestral Crucifer Karyotype [23] and chr1wheat10 for chromosome 1 
in ten different hexaploid wheats. Note that ACK2 and rice3 include different species 
(Arabidopsis lyrata and Oryza nivara); the others include cultivars of the same species. 
The ranges of average nucleotide identity (ANI) among genomes in each dataset are 
indicated in Table 3.

Protocol for calling pangene clusters based on WGA evidence

The repository https:// github. com/ Ensem bl/ plant- scrip ts/ tree/ master/ pange nes con-
tains documentation, examples, and source code for calling pangenes. The main script 
(get_pangenes.pl), illustrated in Fig.  1, sequentially runs the scripts _cut_sequences.pl, 
_collinear_genes.pl, and _cluster_analysis.pl. These tasks can be performed serially on a 
Linux computer (default) but can also run in batches over a high performance computer 
cluster. Four types of sequences (cDNA, CDS [amino and nucleotide] and gDNA) are cut 
so that they can be subsequently added to pangene clusters. cDNA and CDS sequences 
are cut with GffRead with arguments -w, -y, and -x [24]. Genomic segments (gDNA) are 
cut with bedtools getfasta [25]. WGAs in PAF format are computed with minimap2 with 
parameters –cs -x asm20 –secondary = no -r1k,5  k [26] or GSAlign with parameters 
-sen -no_vcf -fmt 1 [27]. Unlike minimap2, GSAlign provides ANI estimates. Feature 
overlap is computed with bedtools intersect with parameters -f 0.5 -F 0.5 -e [25] after 
converting WGAs to BED files, which requires parsing the CIGAR strings contained in 
PAF files. When features are actual gene models, strandedness is also required. With the 
exception of dataset ACK2, which includes two genomes with low ANI, the analyses pre-
sented in Tables 2 and 3 were obtained with get_pangenes.pl and optional argument -s, 
which computes whole genome alignments only with homologous chromosomes. This 

https://github.com/Ensembl/plant-scripts/tree/master/pangenes
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was indicated with the regular expressions ’^\d + ’, ’^\d + [ABD]$’, and ’^chr\d + H’ for 
rice, wheat, and barley respectively.

Pangenome terminology

We will often use pangenome-related terms to describe the pangene clusters output by 
our protocol. We define occupancy as the number of genomes represented in a cluster. 
Core clusters contain sequences from all analyzed genomes. Soft-core clusters contain 
sequences from 95% of the input genomes. Finally, in this paper, shell clusters are those 
with less occupancy than soft-core clusters after excluding singletons (occupancy = 1).

Dotplots

The _dotplot.pl script can be used to make a genome-wide dotplot of collinear gene 
models resulting from a pairwise WGA stored in TSV format. This is done in two steps: 
(i) the TSV file is converted to a PAF file and (ii) the dotplot is produced with R package 
pafr, available at https:// github. com/ dwint er/ pafr.

BUSCO analysis

In order to evaluate the completeness of the core and soft-core collections of pangenes 
produced by get_pangenes.pl, the corresponding protein FASTA files containing all 
known isoforms of genes were analyzed with the conda version of BUSCO v5.4.3 [14]. 
The poales_odb10 lineage was selected for all datasets except ACK2, where brassicales_
odb10 was used instead.

Venn diagrams

Comparisons of CDS pangene sets produced with both WGA algorithms were carried 
out with script compare_clusters.pl from the GET_HOMOLOGUES-EST software [6]. 
As explained in the GitHub documentation, other scripts from this package can be used 
to simulate and plot the pangene set growth. The resulting Venn diagrams were plotted 
with Venn-Diagram-Plotter v1.6.7458 (https:// github. com/ PNNL- Comp- Mass- Spec/ 
Venn- Diagr am- Plott er).

Ensembl orthologues and InterPro annotations

High-confidence orthogroups produced with Ensembl Compara [28] were retrieved with 
script ens_syntelogs.pl [29] from Ensembl Plants [30]. The following commands were 
used: ens_syntelogs.pl -d Plants -c oryza_sativa -r oryza_sativa -o oryza_nivara -a and 
ens_syntelogs.pl -d Plants -c arabidopsis -r arabidopsis_thaliana -a. These orthogroups 
are derived from phylogenetic trees of aligned protein sequences from most plant spe-
cies in Ensembl and have extra supporting collinearity evidence. Only pairs of ortho-
logues with WGA score ≥ 50% and gene order conservation (GOC) ≥ 75% were taken. In 
other words, only genes with ≥ 50% exonic coverage in whole genome alignments and 3 
out of 4 conserved neighbor genes were retrieved and considered collinear (GOC allows 
for inversions and gene insertions). Ensembl Compara is periodically benchmarked and 
compared to other popular tools for orthology inference [31].

For ACK2 and rice3 genomes, pre-computed InterPro protein domains were 
retrieved from Biomart in Ensembl Plants [32]. These were then used to annotate the 

https://github.com/dwinter/pafr
https://github.com/PNNL-Comp-Mass-Spec/Venn-Diagram-Plotter
https://github.com/PNNL-Comp-Mass-Spec/Venn-Diagram-Plotter
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pangenes produced in this work. To check whether a pangene cluster is functionally 
consistent, first InterPro domains are assigned to genes in the clusters. Only if one or 
more domains are encoded by all genes in the cluster is it called consistent.

Lifting‑over gene models on genomic segments

The script check_evidence.pl uses precomputed collinearity evidence, stored in a TSV 
file, and lift-over alignments to project cDNA/CDS sequences on a reference genomic 
sequence. Briefly, collinear genome sequences are extracted with bedtools getfasta 
and then pre-clustered cDNA/CDS sequences are mapped to them with GMAP, a 
software tool that efficiently connects exons while accurately defining splice sites and 
jumping intervening introns [33]. GMAP is run with parameters -t 1 -2 -z sense_force 
-n 1 -F. Increasing the verbosity of the script produces the actual GMAP sequence 
alignments, which are useful to inspect failed lift-over attempts (i.e., partially aligned 
proteins, premature stop codons, length not multiple of 3).

Flowering genes

A collection of 26 genes relevant in barley breeding due to their roles in flowering 
control and spike architecture was compiled. Pangene clusters were produced for the 
union of the barley20 dataset and two more high-quality gene annotations: MorexV3 
[34] and BaRTv2 [35]. The former is the IPK annotation from http:// doi. org/ 10. 5447/ 
ipk/ 2021/3 (35,826 gene models, assembly GCA_904849725.1) and the latter the JHI 
annotation from https:// ics. hutton. ac. uk/ barle yrtd/ bart_ v2_ 18. html (39,281 gene 
models, assembly ERS4201450). The script get_pangenes.pl was run with arguments 
-s ’^chr\d + H’ -H -t 0. The resulting clusters were aligned with Clustalx 2.1 for man-
ual curation [36].
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