
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate‑
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo‑
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHOD

Zhao et al. Genome Biology          (2023) 24:219  
https://doi.org/10.1186/s13059-023-03068-8

Genome Biology

CEGA: a method for inferring natural 
selection by comparative population genomic 
analysis across species
Shilei Zhao1,2,3†, Lianjiang Chi1,2† and Hua Chen1,2,3,4*   

Abstract 

We developed maximum likelihood method for detecting positive selection or bal‑
ancing selection using multilocus or genomic polymorphism and divergence data 
from two species. The method is especially useful for investigating natural selection 
in noncoding regions. Simulations demonstrate that the method outperforms existing 
methods in detecting both positive and balancing selection. We apply the method 
to population genomic data from human and chimpanzee. The list of genes identified 
under selection in the noncoding regions is prominently enriched in pathways related 
to the brain and nervous system. Therefore, our method will serve as a useful tool 
for comparative population genomic analysis.
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Background
Comparative analysis of genomic sequences from multiple species is useful for study-
ing the origin and evolution of novel traits [1]. In recent years, with the development 
of sequencing technology, population genomic data of numerous species have become 
available. Integrative evolutionary analysis of both between-species divergence and 
within-species polymorphism, aka comparative population genomics, potentially has 
higher power and achieves more accurate inference of parameters by using more data 
information and is thus in increasing demand for population and comparative genomic 
studies. Some well-known methods include the McDonald-Kreitman (MK) test [2] and 
Hudson-Kreitman-Aguadé (HKA) test [3]. The MK test identifies recurrent selection on 
a protein-coding gene by evaluating the excess or deficiency of nonsynonymous diver-
gent sites over synonymous divergent sites using within-population polymorphic sites 
as a neutral control. The HKA test also involves comparing genomic divergence between 
two species to polymorphism data within a species. The HKA test does not classify 
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mutations into nonsynonymous and synonymous sites; instead, it compares the ratios 
of divergent sites over polymorphic sites across different loci. Therefore, the HKA test 
requires polymorphism and divergence data from multiple genomic regions but is appli-
cable to noncoding genomic regions.

Both the HKA and MK tests use the chi-squared test or Fisher exact test to evalu-
ate the fit of data to the null hypothesis of neutrality. The chi-squared test has limited 
power and provides no insights into the selective process without inferring parameters. 
Multiple methods were proposed to tackle the problem of low power. Some methods 
modify the HKA test and include more summary statistics [4], and other more com-
plicated parametric methods model the data pattern by incorporating the evolutionary 
processes. The MKPRF approach [5] extends the MK test using the Poisson random field 
framework [6]. The method was developed by assuming that the entries of the MK table 
follow independent Poisson distributions, and the expected values of the entries are pre-
dicted theoretically with a population genetic model composed of multiple parameters, 
including selection intensity. MKPRF was later extended to high-dimensional MKPRF by 
exploiting patterns of polymorphism and divergent sites of multiple species (HDMKPRF 
[7]). Analogously, MLHKA [8] is a model-based method for HKA. It explicitly models 
the numbers of divergent sites between two species and polymorphic sites in a popu-
lation of a single species and applies a maximum likelihood ratio test to detect direc-
tional selection. Gronau et al. developed a similar approach, INSIGHT [9], which models 
the polymorphism pattern within a single population using an empirical approach by 
treating the allele frequency of the mutant under selection as an unknown parameter; 
INSIGHT uses a hidden Markov model to identify the putatively selected genomic 
regions. Parametric methods explicitly model the effect of selection on the genetic poly-
morphism pattern, and thus, in addition to being significant tests, these methods are 
useful for inferring parameters of the selective sweep processes. Numerous studies have 
concentrated on applying these methods to analyze genomic data to characterize the 
essential parameters of natural selection, such as the distribution of fitness effects and 
the rate of adaptation [10–16].

In addition to directional selection, HKA-type methods are also useful and applied 
extensively to identify balancing selection. Balancing selection favors heterozygous 
genotypes in populations (species) and tends to increase the genetic diversity within a 
population (species) and shared polymorphic sites between populations (species). Other 
than HKA-type methods, several new methods have been developed recently to identify 
loci under balancing selection using genomic polymorphisms. Two composite likelihood 
ratio tests ( T1 and T2 ) were developed for detecting long-term balancing selection using 
the expected allele frequencies and the fixation probability of nearby mutations [17], 
which require extensive simulations under a known demographic history. The summary 
statistics β(1) and β(2) were proposed to detect balancing selection based on the cluster-
ing pattern of multiple mutations with similar frequencies around the selected alleles 
[18, 19]. Simulations demonstrated that β statistics outperform the other existing meth-
ods, including HKA and composite likelihood ratio tests [17, 18].

In this paper, we present a new parametric approach, CEGA, for detecting natu-
ral selection in the comparative population genomic framework. CEGA takes multiple 
genomic sequences from two species. It has several advantages over existing approaches. 
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First, CEGA models within-species polymorphisms and between-species divergent sites 
and thus can analyze both coding regions and noncoding regions, satisfying the growing 
need for studies on regulatory and noncoding genomic regions. Second, CEGA explic-
itly models the shared genetic polymorphisms among closely related species, which are 
ignored in existing methods, and appropriate for analyzing species data with a wide 
range of divergence times. Thus CEGA has higher power to detect selection than exist-
ing methods, especially for closely related species. Third, CEGA is computationally very 
efficient and can analyze large-sample genome-wide data within several hours, while the 
existing parametric methods, e.g., MLHKA, require intensive computation due to the 
inclusion of Markov chain Monte Carlo (MCMC) approaches. Fourth, CEGA can iden-
tify both positive selection and balancing selection and outperforms the existing meth-
ods in terms of power for detecting selection; furthermore, the method can accurately 
infer evolutionary parameters, including selection intensity, providing more insights into 
the selection process.

We applied the method to population genomic data of humans and chimpanzees and 
identified a set of genes under lineage-specific positive selection in humans and enriched 
in gene regulatory pathways, metabolism, and immune-system-related pathways. Fur-
thermore, the method identified 342 novel genes with selection signals only in regula-
tory and noncoding regions, including the human accelerated regions. Multiple genes 
in this set are functionally critical in the brain and nervous systems. We also compiled 
a list of genes under balancing selection, of which a high proportion are related to the 
immune system, including the well-known major histocompatibility complex (MHC) 
loci. We expect CEGA to be a useful tool for evolutionary comparative genomic analysis.

Results
Model

Suppose that n1 and n2 aligned genomic sequences are collected from two species 
(Fig. 1A). The genomes can be divided into L loci or regions according to physical posi-
tions or biological functions for identifying locus-specific effects of natural selection. 
For each locus l , the between-species divergence and within-species polymorphism pat-
tern of the two species can be summarized into four summary statistics, including the 
polymorphic sites within species 1 ( Sl1 ), polymorphic sites within species 2 ( Sl2 ), shared 
polymorphic sites of both species 1 and 2 ( Sl12 ) and divergent sites that are fixed but 
with different alleles in species 1 and species 2 ( Dl ) (Fig. 1B). In the PRF framework, the 
four types of sites are assumed to be independent and follow a Poisson distribution with 
the mean parameterized according to population genetic models [6], and correlations 
between the summary statistics are known to have a weak effect on inference [3, 8].

The population genetic parameters include two categories. The global demographic 
parameters are shared among genome-wide loci, including the divergence time of the 
two species Td and the effective population sizes of the ancestral species ( N0 ) and of the 
two descendent species ( N1 and N2 ). The locus-specific parameters include the mutation 
rate µl and two scaling coefficients �l1 and �l2 of N1 and N2 at locus l, 1 ≤ l ≤ L . �l1 and �l2 
are added to model the locus-specific effect of natural selection and will be discussed in 
more detail in the following paragraphs. The expected values of the aforementioned 
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four types of mutation sites are derived explicitly as a function of the parameters 
Ŵ = {N0,N1,N2,Td ,µ

l , �l
1
, �l

2
, 1 ≤ l ≤ L} , as shown in Eqns. 4, 5, 6 and 7.

Polymorphism pattern ( S1 , S2 , S12 , and D ) under neutral evolution

The expected values of S1 , S2 , S12 , and D are obtained from the analytical equations of 
the joint allele frequency spectrum (JAFS) of multiple populations derived using coales-
cent theory [20]. Si,j(n1, n2) denotes an entry of JAFS, representing the number of sites 
with i copies of the derived allele in a sample of n1 haplotypes from Population 1 and j 
copies of the derived allele in a sample of n2 haplotypes from Population 2. The JAFS for 
two species (populations) is obtained by summing two components: the “ancient” seg-
regating sites that arose in the ancestral population and the “new” segregating sites that 
arose in the two descendant populations,

where 1(·) is the indicator function and E Si,j(n1, n2)  denotes the JAFS of two species. 
The “ancient” segregating sites E

(
Sai,j(n1, n2)

)
 are

(1)
E
(
Si,j(n1, n2)

)
= E

(
Sai,j(n1, n2)

)
+ 1

(
j = 0

)
E
(
Sni,0(n1, 0)

)

+1(i = 0)E
(
Sn0,j(0, n2)

)

Fig. 1 Illustration of the CEGA method. A Parameters of the CEGA model. Global parameters: divergence 
time Td , effective population sizes of the two differentiated species N1 and N2 and of the common ancestor N0 . 
Locus‑specific parameters: scaling coefficients �l

1
 and �l

2
 of N1 and N2 . B Four locus‑specific summary statistics 

of the observed data, S1 , S2 , S12 , and D . C Examples of gene genealogies of samples under positive selection 
(red) and balancing selection (blue). The genealogies were constructed from simulated data using MEGA (v. 
11)
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where gn1,m1(Td) is the distribution of ancestral lineages at time Td of the n1 haplotypes 
at present; p(k1 → i|n1,m1 ) is the Polya-Eggenberger distribution; and 
E

(
S0k1+k2

(m1 +m2)

)
 is the expected number of segregating sites in the common ances-

tral population N0 , which is E
(
S0k1+k2

(m1 +m2)

)
= 2N0µ/(k1 + k2).

The newly occurring (“new”) segregating sites in the two descendant species 
E
(
Sni,0(n1, n2)

)
 are

where µ is the mutation rate and E(Tk |m1 ) is the conditional coalescent time. The details 
of the exact form can be found in Chen (2012) [20].

The expected values of S1 , S2 , S12 , and D can then be obtained by summing the corre-
sponding entries of E(S(n1, n2)) directly,

where ES′12 is the expected number of recurrent mutations that occur at the same locus 
simultaneously in the two species since the divergence time. Note that the above equa-
tions are valid for populations with constant sizes and work for small samples from each 
population, making them applicable for most existing comparative population genomic 
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data. For samples with large sizes or from populations with temporally variable sizes, the 
formulae from Chen and Chen (2013) can be adopted [21].

Modeling lineage‑specific positive selection and balancing selection

The above equations are for polymorphism patterns under neutrality. The hitchhiking 
effect of one-wave directional selection can be modeled by approximating the hitch-
hiking effect with a sampling formula [20] or a linear transformation [22] or by assum-
ing that the sites are causal mutants under direct selection [23]. CEGA focuses on the 
numbers of segregating and fixed sites under recurrent selective sweeps. We use the two 
scale coefficients �1 and �2 of N1 and N2 to model the effect of lineage-specific selection 
on genetic polymorphism and divergence. When recurrent positive selection acts on a 
gene locus in species j , the polymorphism level within species j is reduced due to the 
hitchhiking effect, and the divergence between the two species is increased due to the 
increased fixation rate, which is similar to the pattern caused by a decreased effective 
population size in species j . We thus can model the effect of positive selection on genetic 
diversity and divergence by scaling the effective population size Nj with a factor �lj < 1.0 
for the selected locus. Former theoretical studies provided a detailed derivation of �j as a 
function of recombination rate, selection intensity, and the frequency of beneficial muta-
tions, which can be further used to infer these parameters of the underlying selective 
process ([24, 25] and others, see details in the section “Parametric inference of recurrent 
sweeps”). In contrast, balancing selection acting on locus l can increase the polymor-
phism within species and decrease the divergence between species, resulting in a pattern 
identical to �j > 1.0 (Fig. 1C). Under neutrality, �1 and �2 have a specific value of 1.

Maximum likelihood inference and significant test

We employ a two-step approach for maximum likelihood inference of the parameters. 
In the first step, we assume �l1 = 1 and �l2 = 1 . We estimate the global parameters of 
the model, including N0 , N1 , N2 , and Td with genome-wide data. In the second step, we 
focus on inferring the locus-specific parameters �l1 and �l2 and mutation rate µl , and keep 
all the global parameters fixed at the value inferred in the first step. Further details on 
the likelihood functions can be found in the “Methods” section.

Two methods are used to assess the significance of a test. The first one, denoted as 
CEGA-� , uses the genome-wide distribution of � values as the null distribution under 
neutrality. The distribution of � is skewed, and we employ Box-Cox transformation to 
align it with a standard normal distribution (Additional file 1: Figs. S1 and S2). The sig-
nificance of � can be directly obtained from quantiles of the normal distribution (see 
details in the Supplementary information).

The second approach is to use the likelihood ratio test (CEGA-LRT, Additional file 1: 
Fig. S3). The null hypothesis is: �l1, �

l
2 = 1, and µl is free. To test if species 1 is under 

selection, the alternative hypothesis is set to be: �l2 = 1, �l1 and µl are free. To test if spe-
cies 2 is under selection, the alternative hypothesis is: �l1 = 1, �l2 and µl are free (see 
details in the Supplementary information). We compared the performance of the two 
significance tests on detecting selection signals. CEGA-� outperforms CEGA-LRT for 
both positive selection and balancing selection (Additional file 1: Figs. S4 and S5). The 
following analysis is based on the CEGA-� unless otherwise specified.
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Parametric inference of recurrent sweeps

In addition to detecting selection, it is of great interest to infer parameters related to 
the selective process, e.g., the intensity of selection acting on a local genomic region. � 
can be approximated with � ≈ H/Hneu = N/Nneu , the relative ratio of reduced effective 
population size attributed to selection and the effective population size under neutrality. 
Following [25–27] (see “Methods” for details), focusing on a selected mutant which is 
with c distance (recombination fraction, in units of Morgan) away from the focal neutral 
locus, we can obtain the reduction of expected heterozygosity due to the hitchhiking 
effect from a single selective sweep,

where s is the selection intensity, Ŵ is the incomplete gamma function and α = 2Ns . h(c) 
can be viewed as the probability of the neutral locus avoiding the hitchhiking effect by 
recombination during the selective sweep process. We can obtain kh(c) , the expected 
number of selected substitutions that drag the neutral locus to fixation through hitch-
hiking effects in 2N  generations,

Here N  is the effective population size, mf  is the expected number of fixed advanta-
geous substitutions (per generation). For the coalescent process of two lineages of the 
focal neutral locus, the expected coalescent time is 1/(1+ Kh(c)) , which lead to the 
expected heterozygosity H = 4Nµ/(1+ kh(c)) . � , the mean of H/Hneu , can be obtained 
by averaging heterozygosity over the 2 L′ neutral loci of the whole region,

where ρ is the recombination rate per nucleotide. Equation  10 links � to a function 
of selection intensity and recombination rate of a focal region, providing the feasibil-
ity of inferring the selection intensity (a more detailed explanation can be found in 
“Methods”).

Power to detect positive selection

We evaluated the performance of CEGA in detecting positive selection using data sim-
ulated under different selection intensities and demographic histories (see details of 
simulation in the “Methods” section) and compared it with that of HKA and MLHKA. 
The results showed that CEGA outperforms HKA and MLHKA over the whole range of 
selection intensity values and under both scenarios with divergent times of 200,000 gen-
erations and 40,000 generations (Additional file 1: Figs. 2A and 2B). It is prominent that 
CEGA significantly outperforms the other two methods under low selection intensity 
and recent divergence (Fig. 2B). This is attributed to explicit modeling of the “ancient” 
segregating sites arising before the split of two populations by CEGA. Ancient sites are 
related to the four summary statistics S1 , S2 , S12 , and D and are informative for inferring 
the parameters N0 , N1 , N2 , and Td . This is especially important when the two species are 

(8)h(c) = 2c
s α

−2c/sŴ

(
−2c
s , 1

α

)

(9)kh(c) = 2Nmf (1− h(c))

(10)� = 1
L′

L′∑

l=1

1
1+Kh(lρ)
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closely related. As shown in Additional file 1: Figs. 2C and D, the estimates of N0 and 
Td are much more accurate for scenarios with recent divergence than those with deep 
divergence.

Inference accuracy of selection intensity for recurrent sweeps

To evaluate the performance of CEGA in estimating selection intensity, we conducted 
a new forward simulation with recurrent sweeps. The selected locus is with the length 
of 50 bp located in the middle of the whole segment, and the neutral region is with the 
length of 2 L′ = 10 kb. The other parameters are kept consistent with previous simula-
tions (see “Methods” for more details). Two hundred samples were generated for each 
selection intensity level. As shown in Additional file 1: Figs. 2E and F, CEGA provides 
unbiased and relatively precise estimates of selection intensity for both two scenarios 
with deep and recent divergence time. The results demonstrate that the theoretical 

Fig. 2 Performance of detecting positive selection. A, B Proportion of significant results as assessed by 
simulation with long‑term divergence (200,000 generations ago, A) and short‑term divergence (40,000 
generations, B). C, D Accuracy of estimation of global parameters for simulations with long‑term divergence 
(C) and with short‑term divergence (D). E, F Accuracy of estimation of selection intensity for simulations with 
long‑term divergence (E) and short‑term divergence (F). The true values of parameters are indicated with 
dashed lines (C–F). Error bars correspond to standard deviations (E, F)
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model of recurrent sweeps effectively characterizes the hitchhiking effect on the reduc-
tion of genetic heterozygosity [25, 27]. However, it should be noted that the inferred 
selection intensity values exhibit a large variance for large s, which is likely attributed to 
the randomness of the number of fixed advantageous substitutions mf  . Overall, in addi-
tion to serving as a test for natural selection, CEGA also enables efficient inference of 
selection intensity.

Power to detect balancing selection

We compare the performance of CEGA with that of β(2) (implemented with BetaScan2) 
in detecting balancing selection (see the “Simulation” section) since β(2) has higher 
power to detect balancing selection than other existing methods, including HKA, T1, 
and β(1) [19]. The data are generated with the procedures in the “Methods” section. We 
set a window with a size of 2 kb for running CEGA. We maximized the performance of 
β(2) by assuming the values of all parameters except the selection coefficient; e.g., diver-
gence time and the mutation rate were the true values, and the unfolded allele frequen-
cies of single-nucleotide polymorphism (SNP) loci were known without uncertainty. In 
Fig.  3, we show the receiver operating characteristic (ROC) curves for scenarios with 
the selection coefficient s = 0.001 and the overdominance coefficient h = 2 . CEGA-InSel 
outperforms β(2) in all four scenarios with different selection onset times, including 
Ts = 80,000 and 160,000 for selection beginning after the species split and Ts = 240,000 
and 280,000 for selection beginning before the species split. The mean power under a 

Fig. 3 ROC curves of CEGA and BetaScan2 for detecting balancing selection signals at different selection 
onset times Ts = 80,000 and 160,000 (after the species split) and Ts = 240,000 and 280,000 (before the species 
split). The other parameters are selection intensity s = 0.001 and overdominance coefficient h = 2 ; the 
haploid sample sizes are n1 = n2 = 20
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1% false positive rate (FPR) is 0.6062 for CEGA and 0.4813 for β(2) . The power under 1% 
FPR for the four scenarios is 0.16, 0.57, 0.865, and 0.83 for CEGA and 0.05, 0.41, 0.685, 
and 0.78 for β(2) , respectively. More results of comprehensive simulations with different 
parameters can be found in Additional file 1: Fig. S7.

Adaptive evolution in the human lineage

We applied CEGA to whole-genome sequencing data from nine Homo sapiens and nine 
Pan troglodytes [28]. The whole genome was divided into 2,416,717 windows with a 
window size of 10 kb and a step size of 1 kb. The effective population sizes of ancient 
species, humans, and chimpanzees are inferred to be N0 = 24, 001 , Nh = 21, 369 , and 
Nc = 29, 461 , respectively, and the divergence time is Td = 214, 935 generations ago. The 
ratio of Nc/Nh = 1.3787 is close to 1.3978 estimated by Zhao et al. [7]. A total of 6937 
and 7446 windows were identified as being under positive selection in the human and 
chimpanzee lineages, and correspondingly, 1145 and 1081 genes (including the 10  kb 
upstream regions) overlapped with the positively selected windows.

Gene-set enrichment analysis of the 1145 human-specific positively selected genes 
was performed with KOBAS-i [29], and the results are shown in Table 1. The significant 
level of enrichment of pathways or gene sets is evaluated by KOBAS-i using the hyper-
geometric test and Fisher’s exact test. The number of background genes used in Homo 
sapiens is 39,244. The most significant pathway is gene expression (transcription), with a 
corrected p value of 2.74 × 10−7 , including 84 significantly selected genes. Multiple top 
significantly enriched pathways are related to gene expression, including generic tran-
scription (73 genes, corrected p value = 4.28× 10−7 ), RNA polymerase II transcription 
(76 genes, corrected p value = 1.93× 10−6 ), and transcriptional regulation by TP53 (26 
genes, corrected p value = 0.0023) (Additional file 2: Table S2). This is consistent with 
previous studies showing that evolutionary changes in gene expression regulation played 
an essential role in the origin and development of Homo sapiens [7, 30, 31].

Immune system-related pathways are another class of pathways enriched for human-
specific positive selection signals, including immune system (109 genes, corrected p 
value 2.74 × 10−7 ), adaptive immune system (48 genes, corrected p value 5.72× 10−5 ), 
innate immune system (55 significant genes, corrected p value 0.0013), immunoregu-
latory interactions between a lymphoid and a nonlymphoid cell (12 significant genes, 
corrected p value 0.0209), B-cell receptor signaling pathway (9 genes, corrected p value 
0.0307), and signaling by interleukins (32 genes, corrected p value 0.0329) (Additional 
file 2: Table S2). The adaptive evolution of genes of the immune system may be driven by 
exposure and resistance to human-specific pathogens.

The third class of significantly enriched pathways is related to metabolism (103 genes, 
corrected p value = 6.27× 10−6 ), including metabolism of xenobiotics by cytochrome 
P450 (12 genes, corrected p value = 7.49× 10−4 ), proteins (91 genes, corrected p value 
= 9.01× 10−4 ), drug metabolism—cytochrome P450 (11 genes, corrected p value 
0.0019), drug metabolism-other enzymes (11 genes, corrected p value 0.0034), porphy-
rin and chlorophyll (8 genes, corrected p value = 0.0051), steroid hormone biosynthe-
sis (9 genes, corrected p value = 0.0076), pentose and glucuronate interconversions (7 
genes, corrected p value = 0.0079), lipids (39 genes, corrected p value = 0.0089), and glu-
curonidation (6 genes, corrected p value = 0.0100) (Additional file  2: Table  S2). These 
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Table 1 Enrichment analysis of genes under positive selection in humans

1145 genes (with upstream 10 kb) that overlap with positively selected windows (p value < 0.0005) are included in the 
enrichment analysis. Only the top terms from the enrichment results are shown in the table, and the full list of terms is 
shown in Additional file 2: Tables S2-S4

Term Input (Background) Corrected p value

Pathway (top 15 terms)

 Gene expression (transcription) 84 (1448) 2.74E − 07

 Immune system 109 (2096) 2.74E − 07

 Generic transcription pathway 73 (1193) 4.28E − 07

 RNA polymerase II transcription 76 (1316) 1.93E − 06

 Metabolism 103 (2075) 6.27E − 06

 Adaptive immune system 48 (748) 5.72E − 05

 Metabolic pathways 74 (1433) 1.25E − 04

 Chemical carcinogenesis 13 (82) 3.28E − 04

 Metabolism of xenobiotics by cytochrome P450 12 (76) 7.49E − 04

 Metabolism of proteins 91 (2012) 9.01E − 04

 Post‑translational protein modification 69 (1412) 1.13E − 03

 Innate immune system 55 (1043) 1.28E − 03

 Drug metabolism—cytochrome P450 11 (72) 1.89E − 03

 Cell cycle 38 (629) 1.89E − 03

 Transcriptional regulation by TP53 26 (359) 2.34E − 03

Disease (top 15 terms)

 Schizophrenia 20 (181) 1.37E − 04

 Obesity‑related traits 44 (691) 1.87E − 04

 Longevity 9 (32) 2.44E − 04

 Platelet counts 11 (77) 2.91E − 03

 Age‑related macular degeneration 10 (64) 3.29E − 03

 Alzheimer’s disease 8 (47) 8.16E − 03

 Other diseases 17 (204) 8.33E − 03

 Mental and behavioral disorders 16 (189) 9.83E − 03

 Alzheimer’s disease (late onset) 8 (50) 1.00E − 02

 Autism 5 (15) 1.00E − 02

 Metabolite levels (HVA/MHPG ratio) 5 (17) 1.45E − 02

 Congenital disorders of metabolism 36 (695) 2.06E − 02

 Gambling 4 (10) 2.10E − 02

 Nervous system diseases 42 (859) 2.11E − 02

 Bipolar disorder 12 (131) 2.39E − 02

GO (top 15 terms with < 500 background genes)

 Glutamatergic synapse 27 (354) 9.44E − 04

 Signaling receptor activity 20 (214) 9.90E − 04

 Neuron projection 26 (336) 1.04E − 03

 Transcription factor binding 25 (325) 1.58E − 03

 Glucuronosyltransferase activity 7 (23) 1.71E − 03

 Brain development 20 (231) 2.24E − 03

 Ubiquitin protein ligase binding 23 (294) 2.34E − 03

 Protein kinase binding 30 (461) 3.39E − 03

 Amyloid‑beta binding 11 (80) 3.55E − 03

 Neuronal cell body 26 (376) 4.17E − 03

 Neuron projection development 13 (116) 4.72E − 03

 Postsynaptic density 20 (251) 5.02E − 03

 Flavone metabolic process 4 (5) 5.45E − 03

 Chaperone cofactor‑dependent protein refolding 7 (32) 6.36E − 03

 mRNA 3’‑UTR binding 10 (73) 6.69E − 03
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metabolism-related pathways cover a wide range of physiological processes. Some may 
be of fundamental function, and some may reflect human evolution driven by the shifts 
in diet and nutrition during the process of hominin evolution.

We found that multiple enriched terms in the disease category may reflect the spe-
cific cognitive features of humans compared to other living apes. These terms include 
schizophrenia (20 genes, corrected p value 1.37× 10−4 ), Alzheimer’s disease (8 genes, 
corrected p value 0.0082), mental and behavioral disorders (16 genes, corrected p value 
0.0098), Alzheimer’s disease (late onset) (8 genes, corrected p value 0.0100), autism (5 
genes, corrected p value 0.0100), nervous system diseases (42 genes, corrected p value 
0.0211), bipolar disorder (12 genes, corrected p value 0.0239), and Alzheimer’s disease 
(cognitive decline) (6 genes, corrected p value 0.0629) (Additional file  2: Table  S3). 
Notably, among the gene ontology (GO) terms, the human-specific positively selected 
genes are enriched in brain development (20 genes with a corrected p value of 0.0022, 
Additional file 2: Table S4 and Additional file 1: Figs. S13-S32), which included B3GNT5, 
CCDC39, CASP2, IMMP2 L, ADGRL3, NFIB, SYT1, KCNAB1, MEIS2, AK4, PTPRG, 
CLN5, CNTNAP2, PITPNM1, MACROD2, TMX2, MTOR, OXCT1, PBX2, and ATXN1, 
serving as an interesting candidate list for further functional investigation. Consistent 
with the pathway enrichment results, the terms of diseases related to metabolism are 
also significant, including obesity-related traits and congenital disorders of metabolism 
(Additional file 2: Table S3).

Adaptive evolution in the noncoding regions of the human lineage

A subset of 342 genes under positive selection showed signals only in the noncoding 
regions (Additional file  2: Table  S5). We further performed gene enrichment analysis 
on these genes (Table 2, Additional file 2: Tables S6-S8). Interestingly, multiple signifi-
cant terms in pathway, disease, and GO categories are related to the brain and nervous 
system, including neuronal system (13 genes, corrected p value 0.0066), dopaminergic 
synapse (6 genes, corrected p value 0.0325), schizophrenia (9 genes, corrected p value 
0.0058), Alzheimer disease (cognitive decline) (4 genes, corrected p value 0.0300), brain 
connectivity (2 genes, corrected p value 0.0458), learning or memory (6 genes, corrected 
p value 0.0054), synapse (14 genes, corrected p value 0.0054), postsynapse (7 genes, 
corrected p value 0.0054), regulation of neuron apoptotic process (4 genes, corrected 
p value 0.0055), neuron projection (12 genes, corrected p value 0.0062), GABA-ergic 
synapse (6 genes, corrected p value 0.0062), brain morphogenesis (4 genes, corrected 
p value 0.0066), dendrite (13 genes, corrected p value 0.0079), axon cytoplasm (5 genes, 
corrected p value 0.0128), postsynaptic membrane (7 genes, corrected p value 0.0159), 
vocalization behavior (3 genes, corrected p value 0.0222), neurotransmitter receptor 
activity (5 genes, corrected p value 0.0301), and anchored component of presynaptic 
membrane (2 genes, corrected p value 0.0379). The above terms are associated with 69 
unique genes.

Among these genes, MAD1L1 (Additional file 1: Fig. S33) shows significant selection 
signals in intron 18 with the data pattern S1 = 0 , S2 = 65 , S12 = 0 , D = 139, �1 < 0.001 , 
p value < 10−20 . MAD1L1 is known as human accelerated region 3 and is one of the 
49 human genomic segments that are conserved throughout vertebrate evolution but 
starkly divergent in the human lineage and thus may have played a key role in human 
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Table 2 Enrichment analysis of the noncoding regions of genes under positive selection in humans

342 genes with promoter (10 kb upstream) or intron regions overlapping with positively selected windows (p 
value < 0.0005) are included in the enrichment analysis (excluding 639 genes that also overlap with exons). Only the top 
terms in the enrichment results are shown in the table, and the full list of terms is shown in Additional file 2: Tables S5-S8

Term Input (Background) Corrected p value

Pathway (top 10 terms)
 Metabolism 36 (2075) 6.23E − 03

 Porphyrin and chlorophyll metabolism 5 (42) 6.23E − 03

 Neuronal system 13 (402) 6.60E − 03

 Retrograde endocannabinoid signaling 8 (148) 6.60E − 03

 EGF receptor signaling pathway 7 (114) 7.40E − 03

 Signaling by interleukins 16 (619) 9.10E − 03

 Diseases of signal transduction 12 (374) 9.63E − 03

 Cell cycle 16 (629) 1.01E − 02

 Oocyte meiosis 7 (128) 1.17E − 02

 Negative regulation of the PI3K/AKT network 6 (96) 1.49E − 02

Disease (top 10 terms)
 Obesity‑related traits 21 (691) 4.41E − 04

 Schizophrenia 9 (181) 5.76E − 03

 Height 12 (395) 1.31E − 02

 Immune response to smallpox (secreted IL‑2) 3 (13) 1.69E − 02

 Myocardial infarction (early onset) 3 (14) 1.92E − 02

 Metabolite levels (HVA/MHPG ratio) 3 (17) 2.61E − 02

 Bone mineral density (hip) 3 (18) 2.87E − 02

 Alzheimer’s disease (cognitive decline) 4 (46) 3.00E − 02

 Renal function‑related traits (BUN) 3 (19) 3.00E − 02

 Bone mineral density 5 (85) 3.16E − 02

GO (top 20 terms with < 500 background genes)
 Learning or memory 6 (60) 5.45E − 03

 Transmitter‑gated ion channel activity involved in regula‑
tion of postsynaptic membrane potential

5 (35) 5.45E − 03

 Synapse 14 (420) 5.45E − 03

 Postsynapse 7 (93) 5.45E − 03

 Regulation of neuron apoptotic process 4 (17) 5.54E − 03

 Regulation of translation 6 (63) 5.54E − 03

 Myoblast differentiation 4 (18) 5.72E − 03

 Transcription factor binding 12 (325) 5.72E − 03

 Flavone metabolic process 3 (5) 5.72E − 03

 Neuron projection 12 (336) 6.23E − 03

 GABA‑ergic synapse 6 (70) 6.23E − 03

 Flavonoid glucuronidation 3 (6) 6.23E − 03

 Brain morphogenesis 4 (21) 6.60E − 03

 Coumarin metabolic process 3 (7) 7.40E − 03

 Glucuronosyltransferase activity 4 (23) 7.40E − 03

 Neuron projection development 7 (116) 7.92E − 03

 Dendrite 13 (420) 7.92E − 03

 Xenobiotic glucuronidation 3 (8) 8.26E − 03

 Positive regulation of catalytic activity 6 (82) 8.82E − 03

 Gamma‑aminobutyric acid signaling pathway 4 (27) 1.01E − 02
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evolution [32, 33]. Genome-wide association studies (GWASs) indicate that MAD1L1 is 
related to multiple traits, including self-reported educational attainment, bipolar disor-
der, and schizophrenia [34–38]. The intronic SNP rs11764590 of MAD1L1 is associated 
with bipolar disorder via functional alterations in the reward system [35], an intermedi-
ate phenotype for bipolar disorder. rs4236274 and rs4332037 in the intron regions of 
MAD1L1 have also been reported to be significantly associated with bipolar disorder in 
GWASs [34, 36, 37].

The peak of − log10(p value) in ZEB2 overlaps with the promoter/enhancer 
GH02J144502 (Additional file 1: Fig. S34) [39]. Compared with that of other apes, the 
brain of humans features a large volume, which is approximately 3.5 times larger than 
that of the chimpanzee brain [40]. A recent study revealed that ZEB2 is responsible for 
the difference in the duration of brain expansion in humans and other great apes, lead-
ing to a larger brain in humans [41].

Four mTOR-related genes associated with intracranial volume and intellectual dis-
ability [42], namely, PPP2R5A, PPP2R5C, AKT2, and MTOR, are among the top list of 
positively selected genes in the human lineage (Additional file 1: Figs. S35-S37, and S29). 
Specifically, PPP2R5A, PPP2R5C, and AKT2 show selection signals only in the regulatory 
regions. mTOR-controlled signaling pathways regulate many integrated physiological 
functions of the nervous system, e.g., neuronal development, synaptic plasticity, mem-
ory storage, and cognition. mTOR signaling is also known to be associated with autism 
and other neurological and psychiatric disorders, suggesting its role in the recent evolu-
tion of the human brain [43–46]. In some recent single-cell and organoid studies, mTOR 
signaling was proven to regulate the morphology of outer radial glia in the development 
of the human cerebral cortex, which is a critical component of the human brain [47, 48].

Adaptive evolution in noncoding regions of the human genome may play important 
roles in shaping human brain morphogenesis. Four genes, namely, FOXO3, SLC4A10, 
HTT, and FBXW11, were identified as being under positive selection in the human line-
age (Fig. 4), with a corrected p value of 0.0066 for the gene-set enrichment analysis. In 
contrast, there is no evidence of accelerated evolution within the noncoding regions of 
these genes in chimpanzees after the split of the two species.

FOXO3 may help regulate the long-term regenerative potential of neural stem/pro-
genitor cells (NSPCs) under age- or injury-related brain environmental changes such 
as elevated oxidative stress [49]. FOXO3 is related to brain weight, according to mouse 
experiments [50, 51], probably by affecting the neural stem cell pool. The cerebral cortex 
underlies the higher-order cognition of humans, and GWASs indicate that intronic vari-
ants of FOXO3 are correlated with the surface area of the human cerebral cortex [52, 53], 
cortical thickness [53, 54], brain volume [55], vertex-wise sulcal depth [54], intelligence 
[56, 57], and schizophrenia [58, 59].

SLC4A10 plays an essential role in regulating the intracellular pH of neurons, the 
secretion of bicarbonate ions across the choroid plexus, and the pH of the brain extra-
cellular fluid. Physiology and behavior, such as synaptic plasticity, learning, and neuro-
degeneration, can be dramatically altered through pH-sensitive receptors and channels 
when pH fluctuates [60–64]. Significantly decreased expression of SLC4A10 helps 
explain reduced cerebrospinal fluid (CSF) formation and turnover in Alzheimer’s disease 
(AD), resulting in impaired clearance of toxic metabolites and neuroinflammation [65]. 
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Moreover, SLC4A10 knockout (KO) mice have decreased brain ventricle sizes, indicating 
reduced CSF production [66, 67]. The human brain is characterized by its high meta-
bolic cost, consuming approximately 20% of oxygen intake while accounting for only 2% 
of body mass [68, 69]. Metabolic intensity may coevolve with a pH-regulating capacity, 
resulting in positive selection of genes such as SLC4A10. Variants of SLC4A10 correlate 
with cognitive performance [70], cortical surface area [71], etc.

FBXW11 is one of the top differentially expressed genes in the prefrontal cortex 
between AD cases and controls and is among the hub genes in the protein‒protein inter-
action network [72]. Genetic variation in FBXW11 correlates with cortical surface mor-
phology [73]. HTT correlates with Huntington’s disease, a neurodegenerative disorder. 
The knockdown of HTT in neuroepithelial cells of the neocortex results in disturbed 
cell migration, reduced proliferation, and increased cell death [74]. GWASs demonstrate 
that genetic variations in HTT are associated with vertex-wise sulcal depth [54], mathe-
matical ability [70], etc. The leading window among those with positive selection signals 
on HTT overlaps with the elite enhancer GH04J003190 [39].

Balancing selection

Seventy-nine genes were identified as being under balancing selection in both humans 
and chimpanzees by CEGA. The results of KOBAS-i gene-set enrichment analy-
sis (Table  3) demonstrate that immune system-related pathways are under long-term 

Fig. 4 Four genes of the brain morphogenesis pathway show signals of positive selection only in noncoding 
regions in the human lineage. This pathway is significant in the gene‑set enrichment analysis, with a 
corrected p value of 0.0066. Red dots: − log10(p value) of normalized � values in humans; blue dots: − log10(p 
value) of normalized � values in chimpanzees. Top panel: gene structure annotation and identified promoter 
and enhancers
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balancing selection, among which the pathway “translocation of ZAP-70 to immu-
nological synapse” (6 genes, corrected p value = 1.58× 10−9 ) is the most significantly 
enriched. This is consistent with the findings of previous studies [75].

Specifically, we found strong evidence of balancing selection on MHC class II genes 
in humans (HLA genes) and chimpanzees (Patr genes) (Fig. 5). The shared genes under 
balancing selection in human and chimpanzee lineages are significantly enriched in the 
GO terms MHC class II protein complex (corrected p value = 1.28× 10−9 ) and MHC 
class II receptor activity (corrected p value = 7.08× 10−9 ). The highly polymorphic 
MHC alleles retained by balancing selection may be caused by the immune response 

Table 3 Enrichment analysis of genes under balancing selection in both the human and 
chimpanzee lineages

79 genes that overlap with windows under balancing selection (p value < 0.0005) in both the human and chimpanzee 
lineages are included in the enrichment analysis. Only the top terms in the enrichment results are shown in the table, and 
the full list of terms is shown in Additional file 2: Tables S14-S16

Term Input (Background) Corrected p value

Pathway (top 15 terms)
 Translocation of ZAP‑70 to immunological synapse 6 (18) 1.58E − 09

 Phosphorylation of CD3 and TCR zeta chains 6 (21) 2.20E − 09

 PD‑1 signaling 6 (22) 2.20E − 09

 Generation of second messenger molecules 6 (32) 7.94E − 09

 Olfactory transduction 11 (448) 5.21E − 08

 Costimulation by the CD28 family 6 (65) 2.25E − 07

 Asthma 5 (31) 2.83E − 07

 Allograft rejection 5 (38) 6.23E − 07

 Graft‑versus‑host disease 5 (41) 8.07E − 07

 Interferon gamma signaling 6 (90) 8.19E − 07

Disease (top 15 terms)
 Lymphoma 4 (12) 6.85E − 07

 Nephropathy 4 (19) 2.07E − 06

 Cervical cancer 3 (8) 1.63E − 05

 Alzheimer’s disease (late onset) 4 (50) 4.36E − 05

 Systemic sclerosis 3 (17) 9.19E − 05

 Hypothyroidism 3 (34) 5.65E − 04

 Dilated cardiomyopathy 3 (35) 6.03E − 04

 Hepatitis B 2 (7) 1.46E − 03

 Ulcerative colitis 4 (138) 1.64E − 03

 Sjögren’s syndrome 2 (8) 1.67E − 03

Go (top 10 terms with < 500 background genes)
 MHC class II protein complex 6 (15) 1.28E − 09

 Integral component of lumenal side of endoplasmic 
reticulum membrane

6 (28) 6.22E − 09

 MHC class II receptor activity 5 (10) 7.08E − 09

 Clathrin‑coated endocytic vesicle membrane 6 (32) 7.94E − 09

 Transport vesicle membrane 6 (41) 2.71E − 08

 ER to Golgi transport vesicle membrane 6 (53) 8.39E − 08

 Endocytic vesicle membrane 6 (66) 2.28E − 07

 Interferon‑gamma‑mediated signaling pathway 6 (71) 2.83E − 07

 Peptide antigen binding 5 (31) 2.83E − 07

 Olfactory receptor activity 10 (427) 2.83E − 07



Page 17 of 27Zhao et al. Genome Biology          (2023) 24:219  

to a wide range of pathogens [76]. The genes under balancing selection in humans are 
also significantly enriched in the GO term MHC class I protein complex (corrected p 
value = 0.0287 in humans, Additional file 2: Table S20). Interestingly, in chimpanzees, we 
instead detected a signature of strong positive selection around the Patr-A gene, which 
is the counterpart of human MHC I genes (p value < 10−20 , Additional file 2: Table S9). 
Multiple lines of evidence indicate that chimpanzees experienced an ancient selective 
sweep leading to severe reduction of the MHC class I repertoire [77–80]. According to 
functional studies, HIV-1/SIV-like retrovirus may be responsible for the loss of diversity 
[81]. The positively selected chimpanzee genes are also significantly enriched in the reac-
tome pathway HIV infection (corrected p values of 0.0741 in chimpanzees and 0.2627 in 
humans, Additional file 2: Tables S2 and S10).

In addition to MHC/HLA, several other genes also demonstrate signals of balancing 
selection in the noncoding regions. IGFBP7 (Additional file  1: Fig. S38) shows sig-
nificant balancing selection signals in introns with the data pattern S1 = 84, S2 = 108 , 
S12 = 9 , D = 30 , �1 = 3.87 , �2 = 3.71 , with p values of 6.86× 10−5 in humans 
1.15× 10−4 in chimpanzees. The region overlaps with the enhancer GH04J057050. 
IGFBP7 was also identified as being under ancient balancing selection in previ-
ous research, with shared SNPs of humans and chimpanzees occurring in a likely 
enhancer [75]. IGFBP7 plays a role in innate immunity [82] and can promote the for-
mation of type II rosettes [83]. Another region showing significant signals of balanc-
ing selection in the human lineage in our study is the ABO groups (Additional file 1: 
Fig. S39), with the data pattern S1 = 107 , S2 = 27 , S12 = 1 , D = 52 , �1 = 4.21 , p value 
2.34 × 10−5 . The ABO locus has been hypothesized to be under balancing selection 
for a long time [84, 85].

Fig. 5 Balancing selection signals in the MHC region of humans and chimpanzees. Red dots: − log10(p value) 
of normalized � values of humans; blue dots: − log10(p value) of normalized � values of chimpanzees. Top 
panel: gene structure annotation
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Discussion
There are several potential improvements that can be made to the current approach. 
Instead of using the four summary statistics for sequences from the two species, an alter-
native approach could be to utilize the conditional allele frequency spectrum of a species 
with two outgroups [86] or use the full joint allele frequency spectrum (JAFS) of multi-
ple species ( p ) [20], which contains np entries of summary statistics and provides more 
information. However, the data fitting process becomes challenging, and computational 
intensity increases rapidly with the sample size. Another improvement worth consider-
ing is to extend the method to analyze the joint data pattern across multiple species, 
similar to the HDMKPRF method [7]. As we demonstrated in this paper, CEGA models 
the joint site pattern in two species, in contrast to MLHKA, which models the polymor-
phism in a single population, and boosts the power to detect selection by gaining more 
information. In addition to the increased power, this novel method can be extended to 
multiple populations allowing for pinpointing the occurrence of selection at different 
stages and in turn construct a temporal map of natural selection across multiple species.

CEGA approximates the demographic history of different species with constant effec-
tive population sizes. The approximation is reasonable since CEGA focuses on recurrent 
selective sweeps or balancing selection over a relatively long-term period. Simulations of 
five non-equilibrium demographic scenarios were carried out to evaluate the simplified 
model of CEGA, including ancient severe bottleneck, ancient mild bottleneck, recent 
severe bottleneck, recent mild bottleneck, and recent exponential growth (see Supple-
mentary Section 6 for detailed parameter settings). As shown in Additional file 1: Figs. 
S8-S10, the polymorphic and divergent site patterns are approximately equivalent to 
those from constant-size model with the effective population size inferred using CEGA. 
This suggests the robustness of the method to simplified demographic history mod-
els. While approximating with constant effective population sizes works well for non-
equilibrium demographic histories, CEGA is capable of accommodating more complex 
demographic models if it is necessary. A parametric model with changing population 
sizes can be fitted using the joint allele frequency spectrum methods ([20, 23, 87] and 
others), and then the expected values of the four summary statistics under the inferred 
demographic model can be obtained using former theoretical results and incorporated 
into the likelihood function of CEGA [21, 88].

Another practical issue arises from the fact that the method was developed based on 
the model assumption of random mating species and recombinant genomes. For certain 
species with distinct breeding histories, such as a selfing species, or species exhibiting 
very low or zero recombination rates, the method is not applicable.

CEGA is computationally efficient, making it feasible to apply to genome-wide data 
analysis. Additionally, CEGA provides multi-threaded mode, which allows for parallel 
processing and further improves the efficiency. As an example, it takes 8 h for CEGA 
to analyze the whole genome of nine Homo sapiens and nine Pan troglodytes with 
2,416,717 sliding windows of 10 kb (using 40 threads, Intel(R) Xeon(R) Gold 6230 CPU 
@ 2.10GH).

The application of CEGA to the genomic data of humans and chimpanzees identified 
a list of genes under positive selection and balancing selection. Importantly, a subset of 
genes with signals only in the noncoding regions in the human lineage are significantly 
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enriched in pathways related to the brain and nervous system, including brain morpho-
genesis, synapse activity, learning or memory, and brain disease, suggesting their critical 
roles in the development and functionality of human cognition. This set of genes serves 
as a foundation for further investigation, which may provide insights into the origin of 
human-specific phenotypes.

Conclusions
A comparative population genomic method, CEGA, is developed for detecting direc-
tional selection and balancing selection using both within-species genomic polymor-
phism and between-species divergence. CEGA is based on the HKA framework and the 
JAFS from coalescent theory [20]. Although multiple methods have been developed for 
evolutionary comparative genomic analysis, CEGA complements existing methods with 
multiple advantages. For example, CEGA does not assume models of protein codon sub-
stitution, making it applicable to analyses of both coding regions and noncoding regions, 
and thus it is especially useful for investigating the evolution of regulatory regions. 
CEGA also has higher power than existing methods over a wide range of selection inten-
sity values for populations with ancient and recent divergence times. Furthermore, it 
provides inferred parameters of the evolutionary process. CEGA is computationally effi-
cient and can be used to analyze large samples of genomic data. CEGA thus provides a 
useful tool for analyzing population genomic data from two species or populations.

Methods
Two‑step maximum likelihood estimation of parameters

After the derivation of expected values of ES1 , ES2 , ES12 , and ED , we infer model param-
eters and detect natural selection by implementing the following two-step maximum 
likelihood estimation. In the first step, we estimate the global model parameters N0 , N1 , 
N2 and Td by maximizing the likelihood function,

where Pr(·) denotes the probability function of the Poisson distribution.
When estimating the global parameters using Eq. 11, we assume that the global muta-

tion rate is known, and �l1 = 1 and �l2 = 1 are set for all loci. After the global parameters 
are inferred, we implement the second step to estimate the locus-specific parameters �l1 
and �l2 and mutation rate µl by maximizing the likelihood function over the three param-
eters with the other parameters fixed to values inferred in the first step,

where ESl1 , ES
l
2 , ES

l
12 , and EDl are calculated with Eqns. 4, 5, 6, and 7 as a function of 

�
l
1N1 , �l2N2 and the locus-specific mutation rate µl.
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Parametric inference of selection intensity of recurrent selective sweeps

In this section, we show how to connect the parameter � with the selection inten-
sity of recurrent selective sweeps acting on a genomic region. � is the ratio of effec-
tive population size under recurrent selective sweeps to the effective population 
size under neutrality. We consider a genomic segment of length 2L′ +ms bases that 
undergoes recurrent selective sweeps, and beneficial mutations occur at the ms bases 
located in the middle of the segment. All beneficial mutations are with fixed selec-
tion intensity of s (the heterozygote individuals are with the fitness of 1 + s). These 
assumptions can be easily extended to more general cases. We assume that ms is small 
enough to avoid fixation of multiple advantageous mutants simultaneously. Under the 
above assumptions, � can be derived as a function of selection intensity s of recurrent 
selective sweeps following previous studies [25–27].

First, for a neutral locus linked to a selected mutant, the reduction in the expected 
heterozygosity caused by the hitchhiking effect from a single selective sweep is [25, 27]

where c is the recombinational distance (in units of Morgan) between the neutral locus 
and the selected substitution, Ŵ is the incomplete gamma function, s is the selection 
intensity, α = 2Ns , and N is the effective population size. h(c) is equal to the “escape 
probability” that the neutral locus avoids the hitchhiking effect by recombination 
occurred between the neutral locus and the selected mutant during the selective sweep 
process [25].

We further investigate the hitchhiking effects from recurrent sweeps. Since the fixa-
tion probability of a new advantageous allele under selection is approximately [89]

The expected number of fixed advantageous substitutions (per generation) within 
the local segment is

where µ denotes the mutation rate per nucleotide site per generation. We consider the 
accumulated effect of these fixed advantageous substitutions at the neutral locus. Then, 
the expected number of selected substitutions (per 2N generations) that drag the neutral 
locus to fixation is

In the coalescent framework, as the process traces back in time, the occurrence rate 
of a coalescent or a hitchhiking event of the neutral locus is 1+ kh(c) per 2N gen-
erations. The expected coalescent time is then 1/(1+ kh(c)) . Since the expected het-
erozygosity H is known to be the probability of observing two distinct alleles in the 
two copies of the neutral locus), we have

h(c) =
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s
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kh(c) = 2Nmf (1− h(c)).
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� of the single neutral locus can be approximately equal to H/Hneu = 1/(1+ kh) . Finally, 
the expected value of � is the mean of H/Hneu across all sites within the local segment 
[25, 27]:

where ρ denotes the recombination rate per nucleotide site per generation.
The above results can be easily extended to recurrent selective scenarios with more 

general assumptions, e.g., the selected substitutions occurring randomly along the whole 
region (see [25]).

Simulation

Genomic sequences were simulated using the forward simulator SLiM 3.6 [90]. We 
simulated genomic data under two scenarios of demographic history for the three spe-
cies shown in Fig. 1A. In scenario I, the simulation process started from the common 
ancestor of human, chimpanzee, and gorilla ( Na ), with 100,000 generations of burn-in to 
achieve the equilibrium state. The common ancestor of humans and chimpanzees ( Na ) 
existed for 120,000 generations with an effective population size of N0 = 10, 000 . After 
that, it split into two species, humans and chimpanzees, with effective population sizes 
of Nh = 10, 000 and Nc = 20, 000 , respectively. The two species then evolved for another 
200,000 generations. Twenty chromosomes were randomly sampled from each spe-
cies. In scenario II, all the demographic parameters were identical to those in scenario 
I except that the split time of the two species was 40,000 generations ago (see details of 
the forward simulations in the Supplementary information). Scenarios I and II corre-
spond to distantly related species and closely related species, respectively.

Three types of genome segments of 100  kb (under neutrality, positive selection and 
balancing selection) were simulated with a point mutation rate of µ = 2.5× 10−8 per bp 
and a recombination rate of 1× 10−8 per bp. For a positively selected segment, 1% of the 
new mutations were set to be beneficial. For a segment under balancing selection, one 
variant under balancing selection is located at the center of the segment.

For positive selection, data were simulated with five different selection intensities 
s = 0.0005, 0.001, 0.002, 0.005, and 0.01. The occurrence of positively selected mutants 
started 200,000 generations ago in scenario I and 40,000 generations ago in scenario II.

For balancing selection, the selection intensity was set to s = 0.001 . The overdomi-
nance coefficient of the mutation was set to h = 2. The selection onset times were 80,000 
and 160,000 generations ago in the human lineage and 240,000 and 280,000 generations 
ago in the common ancestor lineage. If the mutation under selection was lost due to ran-
dom sampling, the simulation process was restarted.

To evaluate the performance of CEGA in detecting positive selection, we integrated 19 
neutral segments with one positively selected segment (we used 10-kb segments in the 
center of the simulated segments, the same below). Two hundred samples were gener-
ated for each selection intensity. MLHKA and CEGA were tested with the same data 
set. We used 20 segments since this is the maximum number of segments restricted by 

(15)H = 2× 2Nu× 1
1+kh(c)

= 4Nu
1+kh(c)

� =
1

L′

∑L′

l=1

1

1+ Kh(lρ)
,
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MLHKA, although CEGA can handle many more segments to obtain a more accurate 
estimate of the global model parameters.

Two hundred samples were generated for each selection onset time to evaluate the 
performance of CEGA in detecting balancing selection. For each simulated data set, 19 
neutral segments were simulated together with one segment under balancing selection. 
We also tested the performance of CEGA on segments with different sizes, including 
500 bp, 1 kb, 2 kb, 4 kb, 6 kb, and 10 kb. When evaluating the FPR of the methods, 20 
neutral segments were generated for each simulated data set, and 1000 samples were 
generated.

Implementation of MLHKA, HKA, and BetaScan2

MLHKA was downloaded from https:// github. com/ rossi barra/ MLHKA [8]. The MCMC 
chain of MLHKA was run for 1,000,000 iterations, and the initial values of parameters 
were set to real values to accelerate the convergence of the chain. The convergence of 
MCMC was tested by comparing the results from several MCMC chains with different 
initial values of parameters and seeds.

The HKA test was implemented using the slightly modified version of Wang and Hey 
(1996), which was proven to have a higher power by testing the largest deviation values, 
regardless of species or locus and regardless of whether the observation corresponds to 
polymorphism or divergence [91].

BetaScan2 was downloaded from https:// github. com/ ksiew ert/ BetaS can [19]. Stand-
ardized Beta2 scores were calculated with the true divergence time and mutation rate 
(-B2 -DivTime 10.0 -std -Theta 0.001). The unfolded allele frequency with substitutions 
was analyzed by assuming that the ancestral states of mutations were known. We set a 
window size of 1000 bp (default value).

Data filtering

We applied CEGA to genomic sequences of humans and chimpanzees from Prado-Mar-
tinez et  al. [28]. The data were generated via next-generation sequencing (NGS) tech-
nology with an average sequencing depth of 25. The details of the SNP calling pipelines 
and filtering criteria can be found in the original article. After excluding several indi-
viduals based on further criteria described in Cagan et al. [92], the final data set in our 
analysis includes nine Pan troglodytes and nine Homo sapiens. We used a strict filter-
ing strategy as described by Cagan et al. [92] to avoid artifact bias in analyzing genomic 
data. Genome segments with tandem repeats, segmental duplication, genomic gaps, and 
structural variants were excluded according to UCSC tracks [93]. We only analyzed the 
autosomal regions. When estimating global model parameters in the first step of param-
eter inference, we excluded CpG islands to reduce the shared polymorphic sites that are 
recurrent mutations from identical by state processes rather than identical by descent 
processes [75]. We also excluded gene regions and their upstream and downstream 
flanking regions of 10 kb to minimize the effect of selection on the estimation of global 
parameters. The genomic locations of CpG islands were downloaded from the UCSC 
genome browser, and the gene regions were obtained from UCSC refGene.

https://github.com/rossibarra/MLHKA
https://github.com/ksiewert/BetaScan
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Genomic data analysis

In the first step of parameter estimation, we excluded gene coding regions and the 
10-kb flanking regions (upstream and downstream) to minimize the bias caused by 
natural selection. In the second step of inferring local parameters, we divided the 
genome into sliding windows with a window size of 10 kb and a step size of 1 kb. We 
excluded windows with a remaining length < 2  kb after quality filtering; windows with 
S1 + S2 + S12 + D < 50 were excluded from the analysis due to limited information. A 
total of 2,416,717 windows (84.10% of the 2,873,545 total windows) with a mean length 
of 8856 bp were kept for further analysis.

We corrected the skewness of the distributions of �1 and �2 using the Box-Cox method 
(Additional file  1: Figs. S2 and S3). The corrected distributions were converted to a 
standard normal distribution. Windows with a normalized � value <  − 3.2905 were iden-
tified as under positive selection, and windows with a normalized � value > 3.2905 were 
identified as under balancing selection.
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