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Abstract 

We define and identify a new class of control genes for next‑generation sequencing 
called total RNA expression genes (TREGs), which correlate with total RNA abundance 
in cell types of different sizes and transcriptional activity. We provide a data‑driven 
method to identify TREGs from single‑cell RNA sequencing data, allowing the estima‑
tion of total amount of RNA when restricted to quantifying a limited number of genes. 
We demonstrate our method in postmortem human brain using multiplex single‑
molecule fluorescent in situ hybridization and compare candidate TREGs against classic 
housekeeping genes. We identify AKT3 as a top TREG across five brain regions.
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Bioconductor

Background
In genomic analyses, researchers frequently face the decision of whether to use a list of 
genes identified a priori for an analysis or to identify new genes in a data-driven manner 
that have specific desirable qualities to answer a biological question. This duality reflects 
the nature of how our knowledge evolves as experimental assays generate more data 
and provide further insight into our understanding of biological systems. This expan-
sion of knowledge is reflected in approaches such as single cell or nucleus RNA sequenc-
ing (sc/snRNA-seq) where known cell-type marker genes are used to annotate cells, and 
the annotations are used to find new cell-type marker genes [1–3]. Similarly, in spatially 
resolved transcriptomics, previous knowledge of genes with distinct spatial expression 
can be used to annotate cells in situ but also identify anatomical domains leading to the 
identification of new spatially variable gene sets [4, 5].
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Methods for gene selection, either data-driven or based on previous knowledge 
from the literature [6], are not only relevant to genes with high variability but also to 
identify “control” genes with stable levels of expression used, for example, in normali-
zation, such as microarray channel [7] or quantitative PCR normalization [8]. One 
data-driven approach to identify control genes for these assays when samples contain 
different amounts of RNA is to rely on a rank-invariant approach [9].

Different cell types contain variable amounts of RNA due to differences in cell size 
and transcriptional activity. In brain tissue, this variation in cell size and RNA abun-
dance can negatively impact the accuracy of bulk RNA-seq deconvolution methods, 
which aim to identify cell type proportions in homogenate tissue by using sc/snRNA-
seq reference profiles [10]. For example, neurons are larger and more transcription-
ally active than glia and therefore have more RNA content and more genes detected 
per nucleus in snRNA-seq data [11]. With the exception of two methods [12, 13], the 
majority of existing bulk RNA-seq deconvolution methods [10] fail to incorporate this 
variation and hence report potentially biased estimates of the relative fraction of RNA 
attributable to each cell type rather than the true proportion of cell types [14]. This is 
a challenge for bulk RNA-seq deconvolution algorithms that have to properly take 
into account heterogeneous cell types when estimating the proportions of cell types 
[15]. However, methods to robustly estimate cell or nuclear size and total RNA abun-
dance in the same assay are limited as approaches that capture global RNA expres-
sion, such as snRNA-seq, require tissue homogenization preventing the acquisition 
of cell size measurements. Here, we introduce total RNA expression genes (TREGs), 
which can be used in combination with histological approaches such as single mole-
cule fluorescence in situ hybridization (smFISH) to link estimates of cell size and total 
RNA abundance in the same assay.

One approach to measure nuclear size and relative RNA abundance is to use 
RNAscope smFISH technology [16], which allows quantification of both cell morphol-
ogy and gene expression for a small number of target genes. Specifically, RNAscope fluo-
rescently labels individual RNA transcripts, which are represented as “dots” or puncta in 
the image that can be segmented and used to quantify gene expression per nucleus [17]. 
In parallel, these images can be used to estimate spatially resolved nuclear size across 
heterogenous cell types in situ. A TREG can be used in combination with RNAscope to 
estimate total RNA expression in differently sized cell types by utilizing one channel of 
the multiplex assay. However, there are no rigorous and data-driven approaches to iden-
tify candidate target genes to estimate total RNA abundance compatible with smFISH 
assays, such as RNAscope.

Here, we propose a data-driven approach using sc/snRNA-seq data to identify TREGs 
to estimate total RNA abundance in heterogeneous cell types. These genes should ideally 
be highly correlated with total RNA abundance and predictive of transcriptional activity 
(Fig. 1a). In the postmortem human brain, single-unit measurements are limited to the 
nucleus, but it has been established that nuclear RNA content is representative of the 
whole cell [18]. In other research settings, single-unit measurements could encompass 
the whole cell using scRNA-seq. When TREGs are applied in smFISH using RNAscope, 
they can be used to link spatially resolved size and total RNA expression in different 
cells.
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Using sc/snRNA-seq data, we define a candidate TREG as a gene that (1) has non-
zero expression in most cells/nuclei across groups of interest, such as tissue-specific 
cell types, and (2) is expressed at a constant level with respect to other genes across 
different cell types of a given tissue. To be compatible with RNAscope, candidate 
TREGs also meet the following criteria: (1) expressed in the top 50% of genes for easy 
detection, (2) have a dynamic range of puncta to provide a continuous metric, and (3) 
expressed at a level that individual puncta can be accurately counted.

While TREGs theoretically share some similarities with classical housekeeping 
(HK) genes, such as being expressed in every cell, they have other distinct properties. 
By definition, TREGs are tissue-specific and are associated with total RNA expres-
sion. In other words, TREGs are identified in one reference dataset specific to an 
experimental condition; therefore, TREGs are not necessarily generalizable to other 
experimental conditions. Furthermore, they are not defined by the function of the 
protein they encode. In contrast, classic HK genes are associated with cell mainte-
nance, tissue agnostic, and expressed at a constant level regardless of cell type and 
condition [19].

While TREG is a general method, our research focus is motivated by understanding 
the transcriptional landscape in the human brain and identifying changes associated 
with psychiatric disorders [20]. We are interested in identifying a TREG that could 

Fig. 1 Overview of TREG motivation and methodology. a Illustration of the relationship between the 
expression of a TREG and the total RNA expression of a nucleus. TREG expression can be quantified with 
puncta (white dots) in a nucleus (blue area), where the nucleus is identified with DAPI. b Illustration of 
the distribution of expression rank, which is the rank of the expression of a given gene among all genes, 
computed individually for each cell/nucleus, depending on the measurement technology used: sc or 
snRNA‑seq. Two theoretical genes are shown: gene 1 with high rank invariance and gene 2 with low rank 
invariance across cells/nuclei. c Rank invariance workflow to identify a TREG (the “Rank invariance calculation” 
section), with a gene expression matrix with genes on the rows and cells/nuclei on the columns. (i) Filter for 
low‑expressed genes (the “Expression and proportion zero filtering” section). Onward working with one cell 
type at a time; (ii) compute expression rank of each cell/nucleus for each gene (example distribution in b); (iii) 
calculate the mean gene expression across all cells/nuclei for one cell type and then its rank expression; (iv) 
per gene, find the difference of the rank expression against the mean rank expression for each cell/nucleus 
in a given cell type; (v) calculate the mean of the absolute expression rank differences for each gene; (vi) 
rank the mean absolute expression rank differences; (vii) repeat steps ii–vi for each cell type; (viii) per gene, 
compute the sum of the previous ranks across all cell types and then rank these sums across genes such that 
the highest rank is given to the gene with the smallest sum. This is the final rank invariance value
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be used in multiple cortical and subcortical brain regions linked to psychiatric dis-
orders [20]. We focused on broad cell type categories that are diverse across size and 
expression levels and are frequently present in these brain regions [20, 21]. With this 
in mind, we demonstrated the use of TREGs by applying our approach to snRNA-seq 
data from five brain regions, with focused RNAscope analyses in the dorsolateral pre-
frontal cortex (DLPFC). We compared candidate TREGs against classic HK genes and 
identified AKT3 as the best-performing TREG in the DLPFC. To identify candidate 
TREGs in other tissues, we provide open-source software available as an R/Biocon-
ductor package at https:// bioco nduct or. org/ packa ges/ TREG.

Results
Overview of method to identify TREGs

Our approach to identify total RNA expression genes (TREGs) was inspired by rank-
invariance methods originally developed for microarrays that were used to identify sta-
bly expressed genes within normalization methods applied to unbalanced transcriptome 
data (or containing different amounts of RNA) [7–9]. Briefly, after applying a filter to 
remove lowly expressed genes in a given sc/snRNA-seq reference dataset, our approach 
compares the ranks of expression across cells/nuclei (rather than comparing the gene 
expression values themselves across cells of different sizes) and identifies genes that are 
consistently ranked (or high “rank invariance”) (Fig. 1b). In our algorithm, to identify a 
TREG, we compared the stability of each gene’s expression rank within and across cell 
types to identify high rank invariant genes (Fig. 1c, the “Rank invariance calculation” sec-
tion). Genes consistently expressed in all cells/nuclei across all cell types were identified 
by high rank invariance values and were considered TREG candidates. We implemented 
our data-driven method in an open-source R/Bioconductor package (https:// bioco nduct 
or. org/ packa ges/ TREG) [22] to identify candidate TREGs in any sc/snRNA-seq dataset. 
The package includes functionality for both gene filtering and rank invariance methods.

Datasets and TREG experiment overview

We applied our method to identify TREGs in a publicly available snRNA-seq dataset 
from the human postmortem brain. Specifically, the dataset included 70,527 nuclei from 
eight donors across five brain regions [20]. We identified candidate TREGs among 10 
broad cell types across these brain regions: amygdala (AMY), dorsolateral prefrontal 
cortex (DLPFC), hippocampus (HPC), nucleus accumbens (NAc), and subgenual ante-
rior cingulate cortex (sACC) (the “snRNA-seq reference data” section, Additional file 1: 
Table  S1). Gene expression from top candidate TREGs was measured with smFISH 
using RNAscope technology and compared to a classic housekeeping gene, POLR2A 
[23], to evaluate TREG predictiveness of total RNA expression.

Filtering genes from the snRNA‑seq data in the postmortem human brain

To maximize detection compatibility with the RNAscope assay, the expression data was 
filtered for highly expressed genes, specifically the top 50% of the 23,038 genes in the 
snRNA-seq dataset, retaining 11,519 genes. Genes were also filtered to remove those 
with a high maximum proportion zero (ranges between 0 and 1) expression across all 
cell type and brain region combinations (the “Expression and proportion zero filtering” 

https://bioconductor.org/packages/TREG
https://bioconductor.org/packages/TREG
https://bioconductor.org/packages/TREG
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section). The proportion zero filtering process avoids rank ties in the downstream steps 
due to the high number of genes with no expression. A high proportion zero also 
suggested that a gene may not be observable in most nuclei in that population using 
RNAscope. Frequently, nuclei from a specific cell type and brain region combination 
had a high frequency of genes whose proportion zero exceeded 0.75 for common cell 
types including astrocytes, microglia, oligodendrocytes, oligodendrocyte precursor 
cells, excitatory and inhibitory neurons (Fig.  2a), and for more rare cell types includ-
ing endothelial, macrophages, mural, and T-cells (Additional file 2: Fig. S1). After filter-
ing the genes for a maximum proportion zero of less than 0.75 across all cell types and 
region combinations, 877 genes remained (3.8% out of the initial 23,038 genes). The clas-
sic housekeeping gene POLR2A showed a high proportion zero in many cell types across 
brain regions and did not pass this filtering step unlike AKT3, ARID1B, and MALAT1 
(Fig. 2b, Additional file 2: Fig. S2a).

Identification of TREG candidates in the postmortem human brain

After applying the filtering steps, the rank invariance workflow (Fig.  1c) was applied 
to the five brain regions in the postmortem human brain to identify candidate TREGs 
(the “Rank invariance calculation” section). From the top ten rank invariance values, we 

Fig. 2 Overview of the proportion zero filtering process. a Histogram frequency of proportion zeros for each 
nuclei population for a given cell type and brain region combination. These combinations are arranged with 
cell types along the rows [astrocytes (Astro), microglia (Micro), oligodendrocytes (Oligo), oligodendrocyte 
precursor cells (OPC), excitatory (Excit), and inhibitory neurons (Inhib)] and by brain region along the columns 
[amygdala (AMY), dorsolateral prefrontal cortex (DLPFC), hippocampus (HPC), nucleus accumbens (NAc), and 
subgenual anterior cingulate cortex (sACC)]. Consistent with the inhibitory neuron‑rich cell type composition 
of the NAc, there were no excitatory neurons found in this region and therefore no data to report. The red 
dashed line represents the 0.75 cutoff for filtering. b Proportion zero filtering process detailed for AKT3, 
ARID1B, and MALAT1 compared to the classic HK gene POLR2A. If any cell type and brain region combination 
(individual colored points) has a proportion zero > 0.75, then the gene fails the filtering step. Unlike AKT3, 
ARID1B, and MALAT1, POLR2A fails proportion zero filtering
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selected three candidate TREGs (AKT3, ARID1B, and MALAT1) for further evaluation 
based on the commercial availability of RNAscope probes. MALAT1 was the top rank 
invariance gene and also the gene with the highest mean expression. The expression rank 
of these TREGs has a small variance across 70 k nuclei (Fig. 3a), as well as within dif-
ferent cell types (Fig. 3b). This is in contrast to the HK gene POLR2A, which shows a 
more variable expression rank distribution (Fig.  3b). We note that this same relation-
ship holds if we compare the distribution of log-transformed gene expression across cell 
types, which is more variable than using the expression rank distribution (Additional 
file 2: Fig. S3).

By definition, the expression of a TREG should be predictive of the total expression of 
RNA in a cell (or nuclear expression when limited to snRNA-seq data). We compared 
the relationship between the gene expression of a TREG and the total expression of 
RNA in a nucleus (estimated by the log2 sum of all counts) and quantified the strength 
of the association by fitting a linear model for all nuclei within each cell type. We found 
a strong linear relationship for MALAT1 (Fig. 3c), AKT3, and ARID1B (Fig. 3, Additional 
file  2: Fig. S4, Additional file  1: Table  S3; the “Total RNA linear regression” section). 
Among the genes passing the proportion zero filter, the strength of their association with 
total RNA expression generally increased as their rank invariance increased (Additional 
file  2: Fig. S2b). Furthermore, Gene Ontology enrichment analysis with the top 20 or 
50 candidate TREGs showed that these genes are enriched for key biological processes 
such as chromatin binding and transcription regulator activity (Additional file  2: Fig. 
S5; the “Gene Ontology and KEGG pathway enrichment analysis” section). Among the 
GO-enriched terms, ARID1B was a very frequent contributor, whereas for the KEGG-
enriched pathways, AKT3 was the principal contributor (Additional file 1: Table S2).

We ran the filtering process and TREG candidate identification independently for 
each of the five brain regions and identified the top 50 rank invariance genes (Additional 
file 1: Table S3). We identified 13 TREGs common across all five brain regions; therefore, 
for the main analysis, we used the combined dataset (Additional file 2: Fig. S6). The top 
13 TREGs across the brain regions included AKT3, ARID1B, and MALAT1.

Identification of TREGs in a case–control dataset

To examine the stability of the method using data collected from a disease state and con-
trol donors, we performed the rank invariance workflow on a snRNA-seq dataset con-
taining samples from neurotypical donors and donors with autism spectrum disorder 
from Velmeshev et al. [24]. We identified a list of the top 50 candidate TREGs from this 
dataset as a whole, then separately for the case and control samples. We found that 34 
genes (50.7% of 67 unique genes between all sets) were present in all three sets of can-
didate TREGs (Additional file 2: Fig. S7a). This shows that the rank invariance workflow 
is able to identify the same TREG candidates between disease states. MALAT1 was the 
top rank invariance gene in all three conditions. We also noted the gene CADM2 was 
identified in the top 15 candidate TREGs across our evaluations of the Velmeshev et al. 
dataset, as well as in the top ten TREGs identified in our primary analysis in the Tran-
Maynard et al. data. Like other highlighted TREG candidates, CADM2 shows expression 
rank stability across most cell types and between diagnosis (Additional file 2: Fig. S7b).
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Validation of TREGs with smFISH using RNAscope technology

Next, we chose to further evaluate TREGs in DLPFC tissue given its implication in 
several psychiatric disorders. We used multiplex fluorescent smFISH with RNAscope 
technology to label candidate TREGs AKT3, ARID1B, and MALAT1 as well as HK gene 

Fig. 3 Distribution of ranks and relationship between total nuclear expression and expression of candidate 
TREGs. a Distribution of the expression rank (y‑axis) over all nuclei for genes AKT3, ARID1B, and MALAT1 
(three candidate TREGs) and POLR2A (a known HK gene). The candidate TREGs show higher rank invariance 
compared to POLR2A (related to Fig. 1b). b The distribution of the expression ranks (y‑axis) over all cell types 
(x‑axis) for the three candidate TREGs shows less expression rank variability across most cell types compared 
to POLR2A. c Scatter plot of the total RNA expression (estimated by the nuclei log2 sum of all counts) against 
the nuclei gene expression (log2 of the count plus one) for MALAT1, overlaid with the linear fit for each cell 
type and colored by cell type. d Linear fits of total nuclear RNA expression against the gene expression in the 
nuclei, similar to c for POLR2A, AKT3, and AR1D1B. The expression of candidate TREGs show consistent positive 
linear relationships with total RNA expression in each nucleus across all cell types, unlike POLR2A where the 
neurons have a different pattern than other cell types
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POLR2A in different cell types in DLPFC tissue sections from an independent brain 
donor (n = 9 tissue sections with 3 tissue sections per gene, Fig.  4a; the “Postmortem 
human tissue” section). We performed RNAscope with three probe combinations (Addi-
tional file  1: Tables S4 and S6; the “RNAscope multiplex single molecule fluorescent 
in situ hybridization (smFISH)” section). Each combination probed a TREG with a panel 
of cell type marker genes including SLC17A7, GAD1, and MBP (labeling excitatory neu-
rons, inhibitory neurons, and oligodendrocytes, respectively). POLR2A and MALAT1 
were hybridized in the same experiment, and due to limitations in multiplexing, GAD1 
was omitted. Following high-magnification imaging, AKT3, ARID1B, and POLR2A tran-
scripts were detected as discrete puncta (white dots) within individual nuclei (Fig. 5a–c; 
the “Image acquisition” section). However, due to high expression, individual puncta 
could not be observed for MALAT1 and fluorescent signals were too saturated for quan-
tification (Fig. 5d).

For TREGs showing discrete puncta, image segmentation and transcript quantification 
were performed using the HALO software (the “Image analysis with HALO” section). 
HALO identified 1,099,931 individual nuclei across the nine DLPFC tissue sections, with 
80 k–109 k nuclei segmented per tissue section (Additional file 1: Table S7). After qual-
ity control for poorly segmented regions (the “Quality control and spatial quantification 
of HALO data” section, Additional file 2: Fig. S8), the number of nuclei per section was 
reduced to 68 k–106 k (Additional file 1: Table S7). We show accurate segmentation of 

Fig. 4 Overview of the smFISH RNAscope experiment and DLPFC anatomy. a Illustration of RNAscope 
experimental design where a single DLPFC tissue block was used to generate 9 spatially adjacent slices. 
These 9 slices were hybridized with 3 RNAscope probe combinations noted as the AKT3, ARID1B, and 
MALAT1/POLR2A experiments (related to Additional file 1: Tables S4‑S5). Candidate TREGs and POLR2A are 
shown in black, while GAD1, SLC17A7, and MBP are cell‑type marker genes for inhibitory neurons (red), 
excitatory neurons (blue), and oligodendrocytes (orange), respectively. b Annotated image of DLPFC 
tissue, noting the location of gray matter (GM), white matter (WM), and sulcus. c Spatial distribution of cells 
expressing MBP for each sample. MBP is an oligodendrocyte cell type marker gene enriched in white matter
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fluorescent signals in a representative DLPFC tissue section including neuron-enriched 
gray matter and glial-enriched white matter (Figs. 4b, c and 6). As expected, quantifica-
tion of nuclear area based on DAPI signal confirmed that neurons located in the gray 
matter have a larger nuclear area than glia located in the white matter (Fig. 6a, Addi-
tional file  2: Fig. S8). Quantification of AKT3 puncta within nuclei confirmed higher 
expression of AKT3 in neuron-enriched gray matter, which is consistent with higher 
transcriptional activity in neurons compared to glia (Fig.  6b). ARID1B and POLR2A 
also showed elevated expression in neurons located in the gray matter across the 3 dif-
ferent tissue sections (Additional file 2: Fig. S9). Segmentation of SLC17A7 (excitatory 
neurons), GAD1 (inhibitory neurons), and MBP (oligodendrocytes) fluorescent signals 
revealed the expected spatial distribution of these cell types within the gray and white 
matter (Fig. 6c).

Image segmentation and transcript quantification revealed that candidate TREGs 
were consistently expressed in the majority of nuclei across cell types. Specifically, TREG 
expression was recorded in over 86% of nuclei (Table  1). The HK gene POLR2A had 
puncta that could be quantified in 78% of nuclei with RNAscope, which was unexpected 
given that only 30% of nuclei had non-zero expression values in snRNA-seq. Addition-
ally, AKT3 and ARID1B provided a larger dynamic measurement range given that the 
mean puncta per nucleus is 4.09 and 2.08, respectively, compared to 2.75 for POLR2A 
(Table 1).

Next, we evaluated how the number of measured puncta (for each TREG) in a nucleus 
related to total nuclear RNA expression measured by snRNA-seq for excitatory neu-
rons, inhibitory neurons, and oligodendrocytes in the DLPFC. DLPFC snRNA-seq data 
showed that excitatory neurons have the highest total nuclear RNA expression (esti-
mated with the sum of total UMI counts per nucleus), followed by inhibitory neurons, 
and then oligodendrocytes (Fig. 7a). We quantified this pattern using the standardized 

Fig. 5 Expression of TREGs in individual nuclei using smFISH with RNAscope. Representative 
high‑magnification images showing the expression of candidate TREGs a AKT3, b ARID1B, c HK gene POLR2A, 
and d MALAT1 and in human DLPFC. Insets show individual nuclei with high expression (yellow arrow), 
low expression (green arrow), or in rare cases (≤ 14% for candidate TREGs and 22% for POLR2A, Table 1) no 
expression (purple arrow). Each puncta represents a single transcript, as illustrated in Fig. 1a. MALAT1 shows 
extremely high expression in the majority of nuclei such that individual puncta cannot be quantified (yellow 
arrow). Scale bar is 20 um
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regression coefficient for total nuclear RNA expression vs. cell types, which is − 1.33 
(95% CI =  − 1.35, − 1.31, Table 1; the “Linear regression of puncta across cell types” sec-
tion). For candidate TREGS AKT3 and ARID1B, we measured the number of puncta 
per nucleus across cell types and found that AKT3 tracks the closest with the pattern of 
total RNA expression measured by snRNA-seq and has a more symmetric distribution 
than POLR2A, particularly for oligodendrocytes (Fig.  7b). Excitatory neurons contain 
the most puncta, followed by inhibitory neurons, and then oligodendrocytes. ARID1B 
breaks from the expression pattern shown in the reference snRNA-seq data, given that 
inhibitory neurons are higher than excitatory neurons, although neurons still show 
more expression than the oligodendrocytes. POLR2A was only measured in two cell 
types, excitatory neurons, and oligodendrocytes but also follows this pattern with higher 
expression in neurons compared to glia. The standardized regression coefficient for 
number of puncta vs. cell types for AKT3 is − 1.07 (95% CI =  − 1.07, − 1.06) and is the 

Fig. 6 Quantification of candidate TREG AKT3 in differently sized cell types in human DLPFC. Representative 
tissue section showing a raw fluorescence for nuclear DAPI signals and a’ corresponding mean nuclear 
area size. The nuclear area based on the DAPI signal shows larger excitatory neuron nuclei in gray matter 
from smaller glial nuclei in the white matter, related to Fig. 4b. b Raw fluorescence for DAPI and AKT3 and b’ 
corresponding quantification of the mean number of AKT3 puncta per nucleus. c Raw fluorescence for DAPI 
and one of the following (SLC17A7, GAD1, and MBP) compared to c’ the quantified distribution of the number 
of SLC17A7 + excitatory neurons (Excit), GAD1 + inhibitory neurons (Inhib), and MBP + oligodendrocytes 
(Oligo), respectively. Scale bar in a for a–c is 1 mm
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closest to the snRNA-seq coefficient (− 1.33, 95% CI =  − 1.35, − 1.31) of the experimen-
tally validated genes (Table  1). This pattern is also consistent when considering other 
cell types (Additional file 2: Fig. S10). By measuring total nuclear RNA abundance and 

Table 1 Proportion of nuclei that displayed any TREG candidate or POLR2A puncta. Proportion of 
nuclei with a non‑zero count in the DLPFC snRNA‑seq data compared against the mean proportion 
of non‑zero puncta in the nucleus and mean number of puncta observed in the RNAscope data for 
the candidate TREGs and POLR2A. Beta values are the slope of the linear fit of the number of puncta 
over ordered cell types and the 95% confidence interval. The standardized beta is the slope of the 
linear fit of the number of puncta divided by the standard deviation of the number of puncta for 
each gene. Standardized betas enable the comparison between snRNA‑seq and RNAscope data. 
The standardized beta in snRNA‑seq is − 1.33 (− 1.35, − 1.31). With RNAscope, AKT3 is the TREG that 
most similarly follows the trend across all genes in snRNA‑seq (see also Fig. 7). Due to the inability to 
resolve individual puncta for MALAT1, the observed trend (Additional file 2: Fig. S10) is unreliable

Gene Prop. 
non‑zero 
in DLPFC 
snRNA

Mean 
prop. 
non‑zero 
puncta 
in the 
nucleus

Mean n 
puncta

β (95% CI) Standard 
deviation

Standardized β (95% CI)

AKT3 0.92 0.88 4.09  − 5.52 (− 5.55, − 5.49) 5.18  − 1.07 (− 1.07, − 1.06)

ARID1B 0.94 0.86 3.08  − 2.63 (− 2.65, − 2.6) 3.42  − 0.77 (− 0.77, − 0.76)

MALAT1 1.00 0.98 2.07  − 1.22 (− 1.24, − 1.21) 1.53  − 0.8 (− 0.81, − 0.79)

POLR2A 0.30 0.78 2.75  − 3.49 (− 3.51, − 3.47) 3.34  − 1.05 (− 1.05, − 1.04)

All genes in 
snRNA-seq

NA NA NA  − 21,844.07 (− 22,172.45, − 21,515.68) 15,560.76  − 1.33 (− 1.35, − 1.31)

Fig. 7 Boxplots of total RNA nuclear expression in the nucleus across cell types. a Distribution of total 
nuclear RNA expression (estimated with the sum of total UMIs per nucleus) in DLPFC snRNA‑seq data across 
excitatory neurons (Excit), inhibitory neurons (Inhib), and oligodendrocytes (Oligo). b Distribution of the 
number of puncta quantified by RNAscope for each observed gene across the same cell types as in a. The 
number of puncta by RNAscope estimates the total RNA expression by snRNA‑seq (Fig. 1a). POLR2A was only 
evaluated in excitatory neurons and oligodendrocytes as it was multiplexed with MALAT1 and GAD1 was 
omitted
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nuclear area across cell types in the same experiment, we demonstrate that the relation-
ship between RNA content and nuclear area changes across cell types (Additional file 2: 
Fig. S11).

Discussion
In this work, we showed that our new data-driven rank invariance method successfully 
determines candidate total RNA expression genes (TREGs) from snRNA-seq data that 
can be used in combination with smFISH to accurately estimate relative RNA abun-
dance in distinct cell types of varying sizes and transcriptional activity. We investigated 
the properties of TREGs by evaluating the consistency of the expression ranks and 
their relationship with total RNA expression in snRNA-seq data. We further validated 
TREG candidates by quantifying puncta with smFISH using RNAscope, which found 
that ATK3 best reconstructed the pattern between cell type and total RNA expression 
observed in human DLPFC snRNA-seq data. While the rank invariance method was 
successful, it cannot guarantee that candidate TREGs will be experimentally compatible 
for downstream needs. For example, MALAT1 was the top candidate TREG in our study, 
but MALAT1 was incompatible with resolving individual puncta by RNAscope because 
of its extremely high expression. 10x Genomics advises users that independent of pro-
tocol MALAT1 is frequently observed in poly-A captured RNA-seq data [25], which is 
consistent with comparisons between polyA selection versus rRNA depletion proto-
cols [26] and could be due to its structure [27]. Furthermore, MALAT1 has been used 
as a proxy for nuclear expression linked to damaged cells in scRNA-seq data [28]. We 
thus recommend that TREGs be evaluated in the assay or experimental setting of choice 
before implementing experiments using rare and valuable samples.

The rank invariance method demonstrated stability over biological states by return-
ing a similar set of candidate TREGs across disease states as evaluated in the Velmeshev 
et al. dataset [24]. The gene CADM2 was a highly ranked TREG candidate when evaluat-
ing either case or control data separately, or the full dataset (which we recommend), as 
well as in the control-only Tran, Maynard et al. dataset [20]. CADM2 may be another 
TREG of interest for the human cortex, which could be validated in future studies.

To identify relevant TREGs for a particular study, it is important to use sc/snRNA-seq 
data that is compatible with the experimental design. That is, sc/snRNA-seq data should 
contain the tissue and cell types combinations of interest, as well as match the exper-
imental conditions for which the TREG will be used, such as age, sex, diagnosis, and 
experimental exposure. Otherwise, candidate TREGs might be less reliable for quantify-
ing total RNA as they could be specific to an organism, tissue, cell type, or experimental 
condition. As more snRNA-seq datasets come online across tissues and experimental 
organisms, our rank invariance methodology can be used to identify TREGs in different 
experimental settings. Furthermore, the mean absolute differences (Fig. 1c, arrow v.) will 
be more stable when larger numbers of cells/nuclei are present per cell type. Thus, the 
rank invariance process might be less reliable for datasets with rare cell types, for which 
it might be best to perform a sensitivity analysis without the rare cell types to compare 
resulting TREGs and ultimately identify reliable TREGs.
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While TREGs share some similarities with housekeeping (HK) genes, they are by def-
inition different. A HK gene typically has a defined central molecular function and is 
expected to be expressed at a constant level across multiple tissues [19]; for example, the 
GTEx Portal [29] shows less variable expression across tissues for POLR2A than AKT3 
(https:// gtexp ortal. org/ home/ gene/ POLR2A vs https:// gtexp ortal. org/ home/ gene/ 
AKT3). In contrast, the RNA level of a TREG should be quantifiable in most cells among 
all cell types in a particular experimental setting, and most importantly, it should be 
highly predictive of the total RNA expression of those cells or nuclei. In our snRNA-seq 
data, POLR2A and other HK genes had high proportion zero and were not as strongly 
predictive of total nuclear RNA expression as other candidate TREGs. Interestingly, 
by RNAscope, POLR2A could be measured in a larger percent of nuclei compared to 
snRNA-seq (78% vs 30%, Table 1). We note that TREGs were detected in the majority 
of nuclei by RNAscope as expected, but we did observe some nuclei lacking expression. 
This could be due to only a fraction of the nucleus being present in the 10  µm tissue 
section plane or technical limitations in multiplex fluorescent slide scanning with spec-
tral imaging, including low resolution and image acquisition in only the x and y dimen-
sions, with no z-axis component [30]. However, AKT3 was present in 88% of nuclei by 
RNAscope and had a higher mean number of puncta compared to POLR2A (4.09 vs 
2.75). AKT3 best recapitulated the observed trend in snRNA-seq data (Fig. 7b). Thus, 
while POLR2A performed better than expected on RNAscope, ATK3 still outperformed 
POLR2A across different metrics.

The protein encoded by AKT3 is a member of the AKT/protein kinase B family of ser-
ine/threonine protein kinases. AKT plays a key role in the phosphatidylinositol 3-kinase 
(PI3K)-Akt-mTOR signaling cascade, which regulates numerous biological processes 
such as cell proliferation, growth, apoptosis, and metabolism [31]. AKT3 is one isoform 
of AKT that is predominantly expressed in the human and mouse brain and plays a sig-
nificant role in brain development [32]. Dysfunction of AKT3 is implicated in a vari-
ety of neurodevelopmental and neurodegenerative brain disorders and tumors, such as 
glioma [32, 33]. The AKT3 gene has also been associated with risk for neuropsychiat-
ric disorders [34]. AKT3 is an important enzyme whose function needs to be carefully 
regulated at the protein level. Thus, the AKT3 gene expression is likely highly regulated 
across cell types, which is consistent with its dynamic expression in neurons and glia 
(Additional file 2: Fig. S3). While candidate TREGs, such as AKT3 and ARID1B, are clin-
ically relevant [30, 32–37], the snRNA-seq data used in this study is from neurotypical 
control subjects. As more snRNA-seq datasets are generated from subjects with neu-
ropsychiatric and neurological disorders, it will be important to assess candidate TREGs 
in the context of brain disorders. More generally, other candidate TREGs identified in 
our neurotypical control tissue are functionally implicated in chromatin binding and 
transcription (Additional file 2: Fig. S5, Additional file 1: Table S2), which is consistent 
with the notion that a TREG should be predictive of total RNA expression. However, we 
do not expect that candidate TREGs in other biological contexts will be enriched for the 
same biological functions or pathways.

In contrast to rank-invariant methods [7–9], the method we developed here is 
not a normalization method, but a method for gene selection that is specific to the 
desired properties of a TREG, namely correlation with total RNA expression. Our 

https://gtexportal.org/home/gene/POLR2A
https://gtexportal.org/home/gene/AKT3
https://gtexportal.org/home/gene/AKT3
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implementation is thoroughly tested with 100% code coverage [38] and available via Bio-
conductor at https:// bioco nduct or. org/ packa ges/ TREG [22]. While our list of candidate 
TREGs could be valid for other DLPFC studies (Additional file 1: Table S3), we recom-
mend that you use our R package with your own sc/snRNA-seq data. TREGs could be 
useful for other research purposes and other contexts than the ones envisioned here. 
For example, emerging spatial transcriptomics technologies such as MERFISH [39] and 
Xenium [40] (where a limited number of probe targets must be selected) can employ 
TREGs as a complementary class of genes to traditional housekeeping genes to aid in 
cell type characterization.

We used smFISH with RNAscope technology to validate candidate TREGs across 
three major cell types in the human DLPFC: oligodendrocytes, excitatory neurons, and 
inhibitory neurons. We selected only 3 cell types due to the limitations in multiplexing 
with RNAscope (the V2 assay supports a maximum of 4 targets). In the future, we plan 
to expand our experimental design to include other major cell types captured in snRNA-
seq data, such as astrocytes, microglia, and oligodendrocyte progenitor cells. Another 
limitation of our study is that we focused only on TREG expression in the nucleus, but 
many TREGs are also expressed in the cytoplasm. Currently, the HALO FISH-IF module 
will only quantify puncta within a nucleus or a dilated area around the nucleus, which 
is a limitation when working with cell types that are not oval in shape, such as neurons 
and glia. While our analysis was focused only in the nucleus, previous work suggests that 
gene-level expression between the nucleus and cytoplasmic compartments are compara-
ble [18, 41]. In future studies, we aim to improve cell segmentation to be able to estimate 
cell size and RNA content instead of restricting analyses to the nucleus.

While sc/snRNA-seq and bulk RNA-seq data is commonly derived from pulverized 
tissue, our work suggests considering a different experimental design. In particular, if 
you are designing a paired sc/snRNA-seq and bulk RNA-seq study where you will use 
the snRNA-seq data as a reference for deconvolution of bulk RNA-seq, generating spa-
tially adjacent dissections in order to use them for RNAscope experiments could be 
useful to “future-proof” your datasets [15]. With this experimental design, you could 
identify cell types in the sc/snRNA-seq data, then identify candidate TREGs based on 
those cell types, and use these candidate TREGs with smFISH to quantify the size and 
total RNA content for the cell types of interest (Additional file 2: Fig. S11). These cell 
metrics could improve the precision of deconvolution algorithms and generate a poten-
tial gold standard dataset to evaluate the performance of the deconvolution methods.

Conclusion
Through the data-driven rank invariance process, we have identified several candidate 
genes as total RNA expression genes (TREGs) in five postmortem human brain regions. 
RNAscope validation experiments revealed that AKT3 is a strong proxy for total nuclear 
RNA expression in the DLPFC. Future work will use individual TREGs to estimate total 
RNA abundance in differently sized cell types of the DLPFC to bolster deconvolution 
approaches. As more snRNA-seq data comes online, this rank invariance methodology 
could facilitate the identification of TREGs in other experimental settings with differ-
ences in cell types, donor demographics, brain regions, tissues, or species. Similar to 
highly variable genes or housekeeping genes, TREGs represent an important class of 

https://bioconductor.org/packages/TREG
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genes that could be used for a variety of assays and downstream analyses. Our method 
for identifying TREGs is accessible, integrated with the Bioconductor ecosystem [42], 
and available at https:// bioco nduct or. org/ packa ges/ TREG [22].

Methods
R [43] and HALO (version 3.3.2541.383, Indica Labs) were used for the data analysis, 
and plotting was done with the ggplot2 [44] and UpSetR [45] packages.

snRNA‑seq reference data

The single-nucleus RNA sequencing (snRNA-seq) reference data used for the rank invar-
iance process is a publicly available dataset (10 × Genomics, single-cell 3′ gene expres-
sion) from postmortem human brain, which includes tissue from eight donors and five 
brain regions, including the amygdala (AMY), dorsolateral prefrontal cortex (DLPFC), 
hippocampus (HPC), nucleus accumbens (NAc), and subgenual anterior cingulate cor-
tex (sACC) [20]. The original study classifies many region-specific subtypes of inhibi-
tory and excitatory neurons; however, for the purpose of this study, a lower resolution of 
broad cell types was used: astrocytes (Astro), endothelial cells (Endo), microglia, mural 
cells, oligodendrocytes (Oligo), oligodendrocyte precursor cells (OPC), T-cells, excita-
tory (Excit), and inhibitory neurons (Inhib). Specialized medium spiny neurons found 
exclusively in the NAc were classified as Inhib (Additional file 1: Table S1).

Expression and proportion zero filtering

In R [43], by default, the rank() function returns high ranks for high values, where equiv-
alent values or ties are given an average value. To reduce the occurrence of ties, we 
removed genes that would introduce many low-value ties. The data was first filtered to 
the top 50% of expressed genes. The nuclei were grouped by cell type and brain region, 
the proportion zero counts were calculated for each gene in each group and is defined as 

PZi,j,k =

nj,k

z=1

I Ci,j,k > 0 /nj,k where ci,j,k,z is the number of snRNA-seq counts for cell/

nucleus z for gene i, cell type j, and brain region k, and nj,k is the number of cells/nuclei 
for cell type j and brain region k. In our dataset, if the cell type was rare (less than or 
equal to 100 total nuclei, as was the case for Endo, Macro, Mural, and T-cells), the nuclei 
from different regions were combined into one group, effectively ignoring the brain 
region from which the cell type was derived (Additional file 2: Fig. S1). The distribution 
of proportion zeros for each group was visualized and used to select a cutoff value of 
0.75, which included the peak of the proportion zero distributions (Fig. 2a). Then, for 
each gene, the maximum proportion zero across groups was required to be less than the 
cutoff (i.e., < 0.75) to pass the filtering step (Fig. 2b). 

Rank invariance calculation

After proportion zero filtering, the remaining genes were evaluated for rank invariance 
jointly across all five brain regions; thus, the nuclei were grouped only by cell type. The 
normalized expression (logcounts) of each gene was ranked for each nucleus, and the 
result was a matrix of expression rank values (the number of nuclei * number of genes). 
Within each cell type, the mean expression for each gene was ranked, and the result was 

https://bioconductor.org/packages/TREG
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a vector called mean expression rank (length is the number of genes). Then, the abso-
lute difference between the expression rank of each nucleus and the mean expression 
rank was found. From here, the mean of the differences for each gene was calculated and 
then ranked. These steps were repeated for each cell type, and the result was a matrix 
of ranks, (number of cell types * number of genes). From here, the sum of the ranks for 
each gene were reverse-ranked such that low values were given a high rank. This pro-
cess resulted in the final value for each gene called the rank invariance value (Fig. 1b). 
The genes with the highest rank invariance were considered as candidate TREGs. Classic 
housekeeping (HK) genes [46, 47] and brain data-driven HK genes [6] that fail these fil-
tering steps are shown in Additional file 2: Fig. S2.

Total RNA linear regression

We tested for an association between the expression of each gene and the 
overall RNA expression of each nucleus using a linear regression model 
log2(counts + 1) ~ log2(sum) + cellType with limma package version 3.48 and “voom” 
[48, 49] (Fig. 3c, d). The t-statistics from this analysis are plotted in Additional file 2: Fig. 
S2. The combination of the rank invariance values and the rank of the t-statistics from 
this linear model were used to help identify the best candidate TREGs.

Gene ontology and KEGG pathway enrichment analysis

Of the 877 genes evaluated for rank invariance, the top 20 or top 50 were evaluated for 
Gene Ontology and KEGG pathway enrichment. Of the 11,519 genes expressed in the 
top 50% in the snRNA-seq dataset, 10,875 (94.41%) have ENTREZ ids and were used as 
the universe. The enrichment analysis was performed with the compareCluster() func-
tion from clusterProfiler package version 4.8.1 [50, 51]. Ontologies biological processes 
(BP), cellular components (CC), molecular function (MF), and KEGG pathways were all 
tested.

Postmortem human tissue

The human postmortem brain used in this study for RNAscope was obtained by autopsy 
from the Offices of the Chief Medical Examiner of the District of Columbia and of the 
Commonwealth of Virginia, Northern District, with informed consent from the legal 
next of kin (protocol 90-M-0142 approved by the NIMH/NIH Institutional Review 
Board). Details regarding curation, diagnosis, tissue handling, processing, and quality 
control measures have been described previously [52]. The study included a single neu-
rotypical control adult donor (Br1531). A small piece of frozen DLPFC was dissected 
under visual guidance with a handheld dental drill on dry ice by a neuroanatomist. Gray 
and white matter tissue from the crown of the middle frontal gyrus was obtained from 
the coronal slab corresponding to the middle one-third of the DLPFC (along its rostral-
caudal axis) immediately anterior to the genu of the corpus callosum. Microdissected 
DLPFC tissue was stored at − 80 °C until cryosectioning.

RNAscope multiplex single molecule fluorescent in situ hybridization (smFISH)

DLPFC tissue was cryo-sectioned at 10  μm on a Leica cryostat. Three tissue sections 
were collected per slide. Prior to use, the slides were stored at − 80 °C. Using RNAscope 
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technology (RNAscope Multiplex Kit V2 and 4-plex Ancillary Kit: Cat # 323,100, 
323,120, Advanced Cell Diagnostics, Newark, CA), probe hybridization and labeling 
were completed following the manufacturer’s instructions. Briefly, the protocol includes 
fixing the tissue sections in 10% neutral buffered formalin solution (Cat # HT501128-4L, 
Sigma-Aldrich, St. Louis, MO), dehydration in a series of ethanol solutions, pretreat-
ment with hydrogen peroxide, and permeabilizing with proteases. Each slide was then 
incubated with one of the following probe combinations: AKT3/GAD1/SLC17A7/MBP; 
ARID1B/GAD1/SLC17A7/MBP; POLR2A/MALAT1/SLC17A7/MBP (Additional file  1: 
Table S4). These combinations were named according to the candidate TREGs or house-
keeping (HK) gene included (i.e., AKT3, ARID1B, or POLR2A/MALAT1) (Cat # 434211, 
404031-C2, 415611-C3, 411051-C4, 551721, 310451, 400811-C2, Advanced Cell Diag-
nostics, Newark, CA). After washing briefly, the slides were stored in 4 × saline-sodium 
citrate (Cat # 351–003-101, Quality Biological, Gaithersburg, MD) overnight at 4  °C. 
Probes were then fluorescently labeled using opal dyes (Opal 520, Opal 570, Opal 620, 
and Opal 690, Perkin Elmer, Waltham, MA). Dyes were assigned to probes and diluted in 
concentration as described in Additional file 1: Table S4 and Additional file 1: Table S5. 
The nuclei were labeled with DAPI (4′,6-diamidino-2-phenylindole) and coverslipped 
with fluoromount-G mounting media.

Image acquisition

Slides were imaged at × 20 magnification using a Vectra Polaris Automated Quantitative 
Pathology Imaging System (Akoya Biosciences), which performs multi-spectral imaging. 
For each probe combination, a scanning protocol was created. Each protocol optimized 
the exposure time for a given opal dye in each probe combination as listed in Additional 
file  1: Table  S6. Scanning generated a large.qptiff image file, which was then pre-pro-
cessed in Phenochart (Akoya Biosciences). Briefly, the boundary of each slide (including 
the 3 tissue sections) was traced, and the individual.tiff tiles making up the scan area 
(1141–1489 tiles per slide) were extracted. These tiles were then subjected to linear 
unmixing in InForm (Akoya Biosciences). Unmixed.tiff tiles were then fused in HALO 
(version 3.3.2541.383, Indica Labs). 

Image analysis with HALO

Fused images from each scanned slide were annotated in HALO by drawing a bound-
ary around each tissue section. The annotated areas across tissue sections ranged from 
156,716,789.46 to 162,640,367.42 µm2 and annotations were consistent among the tis-
sue sections on each slide. The FISH-IF module (version 2.1.5) was then used to seg-
ment cells and assign phenotype (i.e. cell type). Briefly, we first assigned dyes to either 
FISH or immunofluorescence (IF). While these experiments were exclusively FISH, the 
distinction between FISH and IF dyes allows for visualization and segmentation of dif-
fuse staining vs. individual puncta. DAPI, GAD1, SLC17A7, and MBP were assigned IF 
values given their strong signals resembling diffuse labeling. The FISH dye assignment 
changed for each experiment (AKT3, ARID1B, POLR2A/MALAT1). Segmentation was 
optimized for each dye for each tissue section by adjusting several values with reference 
to the manufacturer’s guidelines: HALO 3.3 FISH-IF Step-by-Step guide (Indica Labs, 
version 2.1.4 July 2021) and Quantitative RNAscope Image Analysis Guide (Indica Labs). 
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Size thresholds for nuclei, cytoplasm, cells, and FISH probe puncta were held constant 
across all tissue sections. Once the puncta counting was completed, the object data and 
settings were exported as.csv files (available via Globus at “jhpce#TREG_paper”) and.txt 
files (available on GitHub), respectively. 

Quality control and spatial quantification of HALO data

Visual inspection of the images revealed some technical artifacts related to cryosection-
ing and slide scanning (Additional file 2: Fig. S8), including tissue tears/shredding, small 
bubbles, and out-of-focus fields. Out-of-focus fields caused the nuclei to appear bigger 
and blurred together multiple puncta so they were not clearly resolved. The nuclei from 
these regions were excluded from the data analysis during these quality control steps.

The nuclei with only MBP expression were classified as oligodendrocytes (Oligo), with 
only SLC17A7 expression as excitatory neurons (Excit), and with only GAD1 expression 
as inhibitory neurons (Inhib). The nuclei with the expression of multiple marker genes 
that could not definitively be assigned a cell type were classified as “Multi.” The nuclei 
with no markers were classified as “Other” and likely represent other non-neuronal 
cell types in the brain that were not labeled, including astrocytes and microglia. As the 
MALAT1/POLAR2A samples were not labeled with GAD1 due to technical limitations 
in multiplexing (Additional file  1: Table  S4), the number of Inhib nuclei could not be 
determined for these samples (Additional file 1: Table S7).

Linear regression of puncta across cell types

TREG candidates were evaluated by the proportion of cells where any puncta were 
recorded in the HALO-segmented nuclear area, as well as the mean number of puncta 
recorded (Table 1). The pattern of expression across cell types was compared to the sum 
of total counts of that cell type in the reference snRNA-seq data (Fig.  7). To quantify 
this relationship, we estimated the regression coefficient of total RNA over the three cell 
types that were sampled (Excit, Inhib, Oligo), for the snRNA-seq total RNA of a nucleus 
was estimated by the sum of UMIs. For the RNAscope data, total nuclear RNA is esti-
mated by the number of segmented puncta. To compare these different data types, the 
standardized regression coefficient was calculated by dividing by the standard deviation 
of the total UMIs and number of puncta respectively.

External data replication in case–control data

A second snRNA-seq dataset from Velmeshev et  al.’s case (autism spectrum disorder) 
and control samples from the prefrontal cortex and anterior cingulate cortex was used to 
validate this process in a more diverse biological context [24]. Cell types were evaluated 
at a similar seven broad cell type level as used in the Tran et al. data for the main analy-
sis. The data was evaluated in all samples, then case samples only, and control samples 
only. In the expression and proportion zero filtering step, the proportion zero limit was 
set to 0.85 for all three groups instead of 0.75 as this dataset was more sparse than the 
Tran et al. dataset. The rank invariance calculation was performed on the resulting set 
of genes for each group. The fifty genes with the highest rank invariance were consid-
ered TREG candidates, and compared to evaluate the stability of the analysis between 
the case and control conditions.
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