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Abstract 

Malaria remains one of the deadliest infectious diseases. Transcriptional regulation 
effects of noncoding variants in this unusual genome of malaria parasites remain elu-
sive. We developed a sequence-based, ab initio deep learning framework, MalariaSED, 
for predicting chromatin profiles in malaria parasites. The MalariaSED performance 
was validated by published ChIP-qPCR and TF motifs results. Applying MalariaSED 
to ~ 1.3 million variants shows that geographically differentiated noncoding variants 
are associated with parasite invasion and drug resistance. Further analysis reveals 
chromatin accessibility changes at Plasmodium falciparum rings are partly associ-
ated with artemisinin resistance. MalariaSED illuminates the potential functional roles 
of noncoding variants in malaria parasites.

Background
Malaria remains one of the largest global public health challenges, with an esti-
mated ~ 241 million cases worldwide in 2020 despite remarkable achievements in reduc-
ing this deadly disease over the past decade. It has been reported that some noncoding 
regions in P. falciparum are associated with artemisinin resistance (ART-R) [1, 2] or 
regulate a group of genes related to crucial biological processes, such as antigen varia-
tion [3, 4], merozoite invasion [5–7], and gametocytogenesis [6]. Therefore, understand-
ing the effects of genomic variants in malaria parasites is critical for monitoring the 
spread of drug resistance and the escape of the host immune response. Unlike genomic 
variants in protein-coding regions whose impacts can often be deduced from resultant 
codon changes, functional effects associated with noncoding variants cannot be so easily 
assessed. Despite the large number of noncoding genomic variants recorded in the pub-
lic variant-tracking resource MalariaGEN [8] (~ 1.31 million noncoding vs. ~ 1.35 million 
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coding), detecting the contribution of mutations located at noncoding regions is still 
challenging, and establishing the role of the vast noncoding space in the genetic basis of 
crucial parasite phenotypes remains difficult.

Genome-wide association studies (GWASs) have been widely used to identify vari-
ants in the P. falciparum genome significantly associated with drug resistance [1, 9–18]. 
However, GWAS is an a posteriori approach requiring many historical samples that take 
time to acquire. Although functional screens have been implemented previously [15, 19], 
these had limited throughput for testing the whole repertoire of noncoding variants, and 
these procedures are also time-consuming and expensive [20].

Sequence-based prediction models provide a new perspective on the effects of 
genomic variants on gene regulation. However, the majority of available models were 
developed in model organisms [21–24], and their applicability to malaria parasites 
whose genomes have several unusual features [25] requires careful evaluation. The most 
striking trait of the P. falciparum genome is its high AT content (~ 80% on average, ris-
ing to ~ 92% in intergenic regions). Additional features complicating the applicability 
of existing predictive models include the outsized contributions of a relatively small 
27-member sequence-specific transcription factor (TF) family known as ApiAP2s to 
transcriptional regulation [26]. In comparison, the similarly sized genome of the yeast 
Saccharomyces cerevisiae contains ~ 170 sequence-specific TFs [27]. A sequence-based 
model accounting for these peculiarities is required for the accurate prediction of gene 
expression profiles associated with noncoding variants specifically for malaria parasites.

In this work, we have leveraged recent advancements in deep learning (DL) to develop 
a sequence-based computational framework, MalariaSED, for chromatin profile peak 
prediction in malaria parasites. To our knowledge, this is the first time in malaria para-
sites using DL to learn regulatory sequence patterns, including TF binding, chromatin 
accessibility, and histone modification profiles. MalariaSED predicts the probability of 
presenting the signal peak of different chromatin profiles and can be applied to predict 
epigenetic effects based on sequence alterations at single-nucleotide resolution, enabling 
us to trace the associated biological process.

Results
MalariaSED accurately predicts chromatin profiles from genomic sequences in malaria 

parasites

The unusual genome property (e.g., ~ 80% AT content on average, rising to ~ 92% in 
intergenic regions) of malaria parasites requires careful evaluation of the existing deep 
learning approaches for understanding the regulatory sequence code from parasite non-
coding sequences. To this end, we developed the first sequence-based deep learning 
framework, MalariaSED (Additional file 1: Table S1), for malaria parasites, which learns 
the sequence code of transcriptional regulatory elements by training in large-scale epi-
genetic experimental data. The data includes four open chromatin accessibility (ATAC-
Seq) [28] profiles across P. falciparum intraerythrocytic development cycle (IDC), six 
transcription factors (TFs) with their nine binding profiles during P. falciparum and P. 
Berghei IDC and sexual stages, and two H3K9ac histone mark profiles in P. falciparum 
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mid- and late IDC stage [5–7, 29, 30]. MalariaSED computes the probability of present-
ing the chromatin profile peaks, f (s) , for a sequence s using three stages:

Here, s is an input sequence represented as a 4 × l matrix, where each column rep-
resents a position in the sequence with a “1” in the row corresponding to the nucleo-
tide at that position and has zeros otherwise (Fig. 1A). Our results indicate that the 1-kb 
sequence context substantially improves the performance of MalariaSED (Additional 
file  2: Fig. S1). The convolution layer (Conv) is a motif scanner analogous to a posi-
tion weight matrix. The bidirectional long short-term memory (LSTM) uses forward 
and reverse complement features as input to capture the relationship between a set of 
sequence information outputted from the convolution layer. The LSTM is crucial since 
TF binding sites may have a group of sequence patterns separated from each other by a 
long distance. We showcased the significance of LSTM by substituting it with a convo-
lutional layer, and this comparison can be found in the following paragraph. We used 
the flatten layer and sigmoid function (“net” in the equation) to generate chromatin 
prediction scores. The high predictive performance for 15 chromatin profiles at multi-
ple parasite stages in both P. falciparum and P. berghei demonstrates that the Malari-
aSED architecture can capture important patterns in DNA sequences (evaluation on 
random splitting strategy, see the “Methods” section for detail, average area under the 
receiver operating characteristic curve (auROC) = 0.96, area under the precision-recall 
curve (auPRC) = 0.73, Fig.  1B, Additional file  3: Table  S2). We also tested the Malari-
aSED performance on a chromosome-splitting strategy with specific chromosomes 
separated as a test set, achieving an average auROC = 0.93 and auPRC = 0.59 (Addi-
tional file 4: Table S3). We note that this is the preferred evaluation strategy as it avoids 
biases that result from potentially overlapping examples [31]. Figure  2 illustrates an 
agreement between the predicted PfAP2-G binding profile and ChIP-seq/input ratio 
[6] across a genomic region of chromosome 10 throughout commitment and early 

f (s) = net(LSTM(Conv(s)))

Fig. 1  MalaiaSED accurately predicts the chromatin profiles in malaria parasites. A The general framework of 
the deep learning model. The input DNA sequence is encoded into the four-row matrix by one hot encoder, 
where each element represents the appearance of a nucleotide at a specific location. The following two 
convolutional layers capture the cumulative effects of short sequence patterns by analogy to motif scan. The 
bidirectional LSTM layer follows up to summarize long-term dependencies between captured DNA patterns. 
Outputs are fed into the flatten and full connection layers. We calculate the final score by dense layer with 
sigmoid activation. B Performances of the deep learning framework are measured by area under the curve in 
multiple experimental epigenetic profiles in P. falciparum and P. berghei 
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gametocytogenesis. We developed a web interface to facilitate users to easily access 
MalariaSED (malariased.charleywanglab.org).

The LSTM layer enhances the performance of MalariaSED in comparison to using solely 

convolutional layers

We test the DL model with LSTM replacement to a convolutional layer since the 
convolution DL networks have achieved high prediction accuracy in yeast [22] and 
the human genome [24, 32]. Furthermore, this would demonstrate the contribution 
of LSTM in MalariaSED. We set the kernel number of each convolution layer the 
same as the DL network previously published in the human genome [24, 32] (Addi-
tional file  5: Table  S4, see the “Methods” section for details). The hyperparameters 
in the three-layer convolutional network were optimized by Bayes optimization [33] 
and compared with MalariaSED. The comparisons indicate MalariaSED with LSTM 
layer achieved better performance in most chromatin profile predictions than the 

Fig. 2  MalariaSED can predict the binding dynamic of PfAP2-G throughout commitment and early 
gametocytogenesis. High agreement between log2-transformed PfAP2-G ChIP/input ratio and predicted 
genomic tracks from MalariaSED over a region of chromosome 10. The PfAP2-G ChIP intensity covers the 
parasite stage committed schizonts, sexual ring, and stage I gametocyte
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three-layer convolutional network (average auROC 0.96 vs. 0.93, auPRC 0.73 vs. 0.71 
in test set; Additional file 3: Table S2). The only two exceptional cases were PbAP2-O 
and PfAP2-G in the sexual stages.

CRISPR/Cas9 mutations in ApiAP2 binding sites demonstrate the capacity of MalariaSED 

to identify damaging genetic mutations

Unidirectional flow from sequence information to consequent epigenetic status in the 
MalariaSED framework provides a novel technique for estimating the noncoding variant 
effects in malaria genomes. We tested this capability in predicting ChIP profile changes 
at multiple TF binding motif mutations generated by the CRISPR–Cas9 system. These 
ChIP-qPCR profiles are currently available for three TFs, PfAP2-G5 [34], PfAP2-G [6], 
and PfAP2-I [5], in P. falciparum. Four PfAP2-G5 motif mutations, S1-mutation (mut), 
S2-mut, S3-mut, and S3-deletion (del), were generated at the ap2-g gene upstream regu-
latory region [34]. Their surrounding [− 100, + 100 bp] regions are illustrated in Fig. 3A 
and as S1, S2, and S3. The PfAP2-G5 ChIP-Seq results indicate a strong binding affinity 
of PfAP2-G5 at S1 and S2, whereas S3 presents a moderate level. The mutations S1-mut 
and S2-mut from the original ChIP-qPCR profiles showed minor binding effects, but 
S3-mut and S3-del strongly weakened PfAP2-G5 binding sites. Further comparison 
between S3-del and S3-mut indicated higher binding effects at S3-mut. We validated the 
predictions from MalariaSED by these ChIP profiles. The estimated PfAP2-G5 binding 
probability from MalariaSED, represented as S1-WT, S2-WT, and S3-WT in Fig. 3B, is 

Fig. 3  PfAP2-G5 and PfAP2-G binding affinity predicted from MalariaSED are consistent with previously 
published ChIP-qPCR results. A PfAP2-G5 ChIP-Seq intensity along the promoter region of ap2-g during the 
trophozoits stage. ChIP-seq results come from a recent study [34]. The flanking region [− 100, + 100 bp] of 
each mutation on PfAP2-G5 binding sites is highlighted as S1 (dark red), S2 (black), and S3 (brown). B The 
binding affinity predicted from MalariaSED is consistent with the recently published ChIP-qPCR results [34]. 
The height of each bar indicates the predicted binding affinity of PfAP2-G5 in three mutants highlighted in A. 
C PfAP2-G ChIP-Seq intensity [6] along the promoter region of ap2-g in early sexual rings. The S4 (dark yellow) 
indicates flanking region [− 100, + 100 bp] of the mutation of the PfAP2-G motif. D Similar to B, but showing 
the predicted binding affinity of the mutant S4 in C. The results are in concordance with the published 
ChIP-qPCR result [6] that PfAP2-G is not able to bind in the mutant
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correlated with the ChIP-Seq profiles. In contrast, the binding effects shown as S1-mut, 
S2-mut, S3-mut, and S3-del in Fig. 3B are in concordance with the original ChIP-qPCR 
results. We also used MalariaSED to predict the PfAP2-G binding change at a region 
containing eight GTAC motifs (S4 in Fig. 3C). A previous study showed that mutation 
of the three motifs by CRISPR/Cas9 significantly reduced the binding of PfAP2-G [6]. 
This result supports the predictions from MalariaSED, which shows a strong decrease in 
PfAP2-G binding probability in Fig. 3D. An exceptional case for MalariaSED application 
in TF binding prediction occurred at the promoter region of the pfmsp5 gene, where 
ChIP-qPCR in the original publication showed PfAP2-I binding but exhibited weak 
binding signal in the ChIP-Seq result [5]. Since MalariaSED was trained in the ChIP-Seq 
signal, it only captured the sequence patterns that contribute significantly to the high 
profile of the ChIP-Seq signal. The MalariaSED was not able to predict a PfAP2-I bind-
ing in this case with a probability lower than 0.1 for both the WT and ATGCA motif 
mutations.

Single‑nucleotide substitutions at the TF motif weaken TF binding

The successful validations of TF binding changes in CRISPR/Cas9-generated motif muta-
tions imply potential DNA motif contributions to MalriaSED prediction. To validate this 
globally, we used MalariaSED to interrogate the average TF binding effects of all possible 
single nucleotide substitutions (SNSs) at the reported motifs (Additional file 6: Table S5, 
see the “Methods” section for definition). Basically, for each site of a reported motif, the 
reference nucleotide was in turn changed by all other three nucleotides as motif muta-
tion sets (e.g., a DNA motif comprising 5 nucleotides generates 5 × 4 = 20 motif muta-
tions). Each generated sequence in the mutation sets was individually selected to replace 
the TF motifs that appeared in all the predicted TF binding regions. The average bind-
ing effect of all these SNSs was used to evaluate the motif contribution to TF binding. 
All other k-mer sequences with the same length as the investigated motif were used as 
the control sets (shown as “ALL” in Fig. 4). Additional file 7: Table S6 displays the aver-
age binding effects of all sequences with the same length for each investigated motif. We 
used this strategy to check the reported motifs of the parasite-specific TF PfAP2-G, a key 
determinant of sexual commitment in P. falciparum. We observed a significantly reduced 
binding affinity of PfAP2-G after incorporating SNSs at its binding motif GTRC (commit-
ted schizonts) and GTAC (sexual rings and stage I gametocytes) (Fig. 4A, Wilcoxon test 
p < 2.2e − 16). Similarly, for PfAP2-I, a key regulator of red blood cell invasion, SNSs at the 
reported motif (GTGCA) significantly weakened its binding affinity at the schizont stage 
(Fig. 4B, Wilcoxon test p < 2.2e − 16). Previous results indicate that two motifs (GGTCG 
and CTTGC) at other DNA-binding domains of PfAP2-I are not required for PfAP2-I 
binding during the RBC stage [5]. MalariaSED prediction also showed that SNSs in these 
two motifs did not significantly reduce PfAP2-I binding (Fig. 4B). When another invasion 
regulator, PfBDP1, was examined, SNSs introduced into the PfAP2-I GTGCA motif led 
to a significantly reduced binding level in schizonts (Fig. 4C, Wilcoxon test p < 2.2e − 16), 
supporting the conclusion that PfBDP1 is likely to form a protein complex with PfAP2-I 
to regulate invasion genes [5, 7, 35]. For the parasite trophozoite stage, we also checked 
the DNA binding change of PfBDP1 by introducing SNSs at the PfAP2-I motif GTGCA 
(Fig. 4C) and did not observe significant changes compared with other 5-mer sequences. 
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This result supports that PfBDP1 binds many gene promoters not bound by PfAP2-I in 
trophozoites and is in line with the conclusion that PfBDP1 and PfAP2-I are involved in 
a protein complex in trophozoites but not in schizonts [7]. Furthermore, the predicted 
results from MalaraSED do not show significant binding effects of the motifs TAACT 
and ACAAC on PfBDP1 binding sites (Additional file 2: Fig. S2). It has been shown that 
TAACT, the second motif of PfBDP1 binding, co-occurs with the micronemal DNA motif 
ACAAC in the promoters of several micronemal and rhoptry neck genes [5]. The limited 
contributions of these two motifs suggest that some other unidentified TFs may recruit 
PfBDP1 to regulate micronemal gene expression. We also tested MalariaSED on two AP2 
family TFs, PbAP2-G2 and PbAP2-O, in P. berghei [29, 30]. PbAP2-G2 represses asex-
ual genes to support conversion to the sexual stage, while AP2-O plays a critical role in 
regulating mosquito midgut invasion. MalariaSED identifies SNSs in two binding motifs, 
GTTG for PbAP2-G2 and GCTA for PbAP2-O, which are more likely to abolish their 
binding (Fig. 4D, Wilcoxon test p < 2.2e − 16). Taken together, these results suggest that 

Fig. 4  TF binding effects of genomic variants predicted by the DL framework demonstrate the contribution 
of previously identified sequence motifs. A Potential single-nucleotide substitutions (SNSs) at reported 
pfAP2-G motif, GTRC (committed schizonts), and GTAC (sexual rings and stage I gametocytes) significantly 
reduce the binding affinity of PfAP2-G. Comparisons are between reported PfAP2-G motifs and all 4-mers 
(ALL) appeared on predicted ApAP2-G binding sites. B The PfAP2-I binding effects of base substitutions at 
the reported motif GTGCA are significant compared with all 5-mers (ALL) in P. falciparum genome during 
schizonts. The other two motifs (GGTCG and CTTGC) from PfAP2-I binding domains 1 and 2 are not able 
to show significantly reduced PfAP2-I affinity, which is consistent with experimental results [5]. C The 
significantly reduced binding affinity of SNSs at reported PfBDP1 binding motif GTGCA in schizonts supports 
the previous conclusion that PfAP2-I and PfBDP1 may form a protein complex to bind DNA. However, SNSs 
at the GTGCA motif are not likely to disrupt PfBDP1 binding at the trophozoite stage. D, E Single-nucleotide 
substitutions at two reported binding motifs in P. Berghei significantly weaken PbAP2-G2 and PbAP2-O 
binding sites. ***Wilcoxon test compared with whole-genome background p < 2.2e − 16



Page 8 of 20Wang et al. Genome Biology          (2023) 24:231 

MalariaSED can capture crucial DNA sequences responsible for TF binding. Critically, 
MalariaSED predicted TF binding  disruptions at TF binding motifs  in mutants from 
sequence data alone, demonstrating the utility of sequence-based models for interpreting 
functional variants in malaria parasites.

Geographically differentiated variants at noncoding regions are more likely to alter their 

surrounding chromatin environments

Approximately six million curated genomic variants (including SNPs and short indels) 
from 7000 P. falciparum samples recently made available on MalariaGEN show the 
enrichment of geographically differentiated SNPs in nonsynonymous variants [8]. 
Further analysis indicates that genes harboring the top geographically variable non-
synonymous SNPs tend to be involved in the process of parasite transmission by the 
mosquito vector and are associated with drug resistance. Despite noncoding variants 
showing the second highest geographic differentiation after nonsynonymous variants, 
the limited functional annotation of malaria parasite noncoding regions restricts our 
understanding of noncoding-variant contributions to this process. Our initial analysis 
of ~ 1.3 million noncoding variants [8] (trimming off ~ 1.4 million noncoding loci with 
low Low_VQSLOD provided by MalariaGEN) indicates that noncoding variants with 
high levels of geographic differentiation (global FST > 0.1) are located closer to their near-
est gene (Fig. 5A, Wilcoxon test p < 2.2e − 16 compared with genomic variants showing 

Fig. 5  Noncoding variants with high levels of geographic differentiation tend to alter their surrounding 
chromatin profiles. A Noncoding variants strongly differentiated at the global level are closer to their 
neighboring genes. We used global Fst > 0.1 to identify variants with high levels of geographic differentiation. 
***Wilcoxon test compared with the remaining noncoding variants, p < 2.2e − 16. B Noncoding variants that 
acquired high geographic differentiation (Fst > 0.1) are predicted to bring in significant epigenetic changes at 
their ± 100-bp surrounding regions
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global FST < 0.1), suggesting that the differentiation process at the noncoding region may 
partly be due to the selection of regulatory activity. We used MalariaSED to predict the 
impact of chromatin profiles of noncoding variants (Additional file 2: Fig. S3, Additional 
file 8: Table S7). We observed significant alteration of chromatin profiles in the group 
of genomic variants presenting strong geographic differentiation (Fig. 5B, Wilcoxon test 
p < 2.2e − 16 compared with noncoding variants showing limited geographic differentia-
tion). The higher chromatin effects observed at these geographically differentiated vari-
ants indicate that P. falciparum may use epigenetic mechanisms to locally regulate the 
expression of genes of certain biological pathways to benefit its survival.

Drug resistance and red blood cell invasion‑related pathways are associated 

with geographic differentiation in P. falciparum noncoding regions

We next investigated the biological pathways associated with strong geographic 
differentiation at noncoding regions by assigning variants to their nearest genes 
(FST > 0.1, distance to the nearest gene < 3  kb). Only the noncoding variants leading 
to significantly predicted chromatin profile changes (the top 1% of chromatin effects) 
were selected. Pathway enrichment analysis indicated that oxidative stress defense 
(S-nitrosylation and S-glutathionylation), proteasome degradation (ubiquitin-protein 
conjugates), and food vacuoles were associated with noncoding variants predicted 
to cause significant chromatin accessibility changes in the ring and early trophozoite 
stages (Fig. 6A, B, Additional file 9: Table S8 for the complete list of enriched path-
ways). Other enriched pathways included protein transport (PTEX export), epigenetic 

Fig. 6  The enriched functions or pathways upon noncoding variants with strong geographic differentiation. 
The height of the yellow bar indicates the number of genes assigned to noncoding variants that are strongly 
geographically differentiated and significantly change the chromatin profile. To estimate the number of 
genes expected to observe for each function or pathway term, the gene fraction in the P. falciparum genome 
presenting the specific functional term is multiplied by the number of assigned genes to geographic 
differential variants exhibiting the high chromatin effects (hypergeometric test, FDR-corrected p-value < 0.1, 
check Additional file 9: Table S8 for full list)



Page 10 of 20Wang et al. Genome Biology          (2023) 24:231 

modifications, and the palmitome. Notably, most of these pathways have been pre-
viously demonstrated to be associated with altered transcription profiles in ART-R 
parasites [36, 37]. Our results suggest that geographically diverse noncoding variants 
may enable the parasite to modulate the transcription of key pathways underlying the 
artemisinin response, ultimately allowing survival under drug pressure. Interrogating 
enriched genes around each geographically differentiated variant leading to binding 
affinity changes for the TFs PfBDP1, PfAP2-G, and PfAP2-I (Fig. 6C–E), we identified 
a group of genes related to merozoite invasion, including EBA181, AARP, RhopH2, 
RhopH3 and SRA, RON2, MSP9, RAP1. PfBDP1 is a chromatin-associated protein 
responsible for regulating the expression of genes involved in red blood cell (RBC) 
invasion [7]. TF PfAP2-I has been shown to associate with PfBDP1 and positively 
regulate the transcription of invasion-related genes [5]. As a known pivotal activa-
tor of early gametocyte genes, PfAP2-G was also recently reported to have a poten-
tial role in regulating genes important for RBC invasion [6]. P. falciparum strains 
present broad diversity in invasion phenotypes and gene expression across popula-
tions [38]. The TF binding affinity changes surrounding noncoding variants upstream 
of invasion-related genes may explain how parasites maintain this diversity of gene 
expression.

Significant chromatin accessibility changes surround artemisinin resistance‑related eQTLs

The large-scale expression quantitative trait loci (eQTL) and transcriptome-wide 
association studies (TWAS) study conducted by Tracking Resistance to Artemisinin 
Collaboration I (TRACI) identified more than 13,000 SNS-expression linkages in 773 
parasite isolates from the Greater Mekong Subregion (GMS) [1]. The result provides 
a new perspective to understand ART-R associated with SNSs through the unidirec-
tional flow of information from sequence changes to consequent gene expression 
changes and, ultimately, phenotype alteration. However, the extensive gaps in our 
understanding of genomic changes and the resulting transcriptional alterations in 
malaria parasites impede the use of TWAS. Considering the correlations between 
chromatin accessibility and neighboring gene activity [28], we reasoned that the sur-
rounding chromatin profile changes resulting from eQTLs would lead to gene tran-
scription changes. To test the associations between the eQTL and its surrounding 
chromatin profiles, we investigated the capacity of different chromatin profile effects 
to distinguish local intergenic eQTLs from SNS reported in MalariaGEN [8]. Our 
results show that chromatin accessibility in rings outperforms other epigenetic mark-
ers in different parasite stages as an indicator/predictor of eQTLs (auROC = 0.7, 
Fig. 7A, Additional file 10: Table S9), consistent with skewness toward the ring-stage 
parasites collected in the TRACI study [1]. We further tested this on a group of local 
eQTLs linked with ART-R by regulating ART-R-related gene expression (see the 
“Methods” section). Ring-stage chromatin accessibility also presented the highest pre-
dictive performance in identifying ART-R-associated eQTLs (auROC = 0.73, Fig. 7B), 
indicating that transcriptional regulatory activity changes may lead to neighboring 
gene transcriptional alterations associated with ART-R phenotypes. Taken together, 
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these results demonstrate that MalariaSED is informative for predicting the transcrip-
tional impact of common noncoding variants in P. falciparum, such as eQTLs.

Multiple chromatin profile alterations at the schizont stage show signatures of intergenic 

selection

Previous analysis of single-cell sequencing data revealed strong evidence that de novo 
mutations are under selection in P. falciparum populations [39]. This evidence includes 
the skewness toward protein-coding regions, high nonsynonymous vs. synonymous 
substitution ratio, and elevated expression levels of de novo mutations-targeted genes. 
Because of the limited functional annotation of P. falciparum intergenic regions, this 
analysis was focused on coding regions. We used MalariaSED to investigate the chro-
matin effects of the 35 noncoding de novo mutations reported in the SCS study. Com-
pared with the genome-wide background distribution generated from all SNSs reported 
in MalariaGEN [8], significant changes were observed in schizonts, including chromatin 
accessibility, H3K9ac, and two TFs, PfAP2-I and PfAP2-G binding affinities (Fig. 8, Wil-
coxon test p < 0.05, Additional file 2: Fig. S4 for other chromatin profiles). Our results 
show signatures of selection for intergenic variants in schizonts, which could result in 
neighboring gene expression changes.

Fig. 7  Chromatin accessibility alternation is surrounding previously identified eQTLs in the TRACI study. 
A The chromatin effects of reported eQTLs in the TRACI study are used to discriminate them from all SNPs 
gathered in MalariaGEN. B The eQTLs linked with ART-R-associated transcriptions were also investigated. The 
eQTL prediction performance of different chromatin profiles is measured by area under the curve
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Discussion
This work presents the first sequence-based computational framework, MalariaSED, 
that learns regulatory sequence codes in malaria parasites. The DL-based framework 
enables us to predict the chromatin effects of sequence alterations with single-nucleo-
tide sensitivity, thereby providing a means to assess the functional relevance of noncod-
ing variants. We demonstrated this by using previously published ChIP–qPCR data from 
CRISPR/Cas9-generated mutations in AP2 TF-family binding motifs [6, 34]. Nonethe-
less, one exceptional case occurred at the pfmsp5 promoter, which was not identified 
in PfAP2-I ChIP-seq but was detected in the ChIP–qPCR experiment [5]. MalariaSED 
could not predict PfAP2-I binding in either the wild type or parasites carrying muta-
tions at the PfAP2-I binding motif at the pfmsp5 promoter. We reason that some DNA 
sequence patterns may be related to discrepancies between the ChIP–qPCR and ChIP-
Seq results. This DNA sequence pattern is reflected at the pfmsp5 promoter and cannot 
be captured by MalariaSED trained in ChIP-seq data. We also demonstrated the signifi-
cant contributions of previously identified DNA motifs to known TF binding, such as the 
members in the PfAP2 family, PfBDP1, PbAP2-O, and PbAP2-G2 [5–7, 29, 30]. We are 
not clear on the reasons for MalariaSED not capturing previously reported PfAP2-G5 
binding motifs, although it achieves prediction performance auROC > 0.95 and validates 
previous CRISPR/Cas9 results. One explanation is that MalariaSED may use DNA pat-
terns far apart from each other in P. falciparum genome for AP2-G5 binding predictions.

We used MalariaSED to explore the epigenetic effects of large amounts of noncod-
ing variants released from MalariaGEN partner studies [8]. The results indicate that 
noncoding variants that acquire high levels of geographic differentiation significantly 
likely impact the surrounding epigenetic profiles. This suggests that some noncoding 
regions have been at least in part subjected to natural selection, which is consistent with 
the previous analysis results on coding regions. It is unclear why all epigenetic mark-
ers present significant changes surrounding geographic differentiation variants. Further 
study is needed to understand the dependence of each chromatin profile. An alternative 
explanation is deleterious changes that have spread to high frequency due to hitchhik-
ing with selected coding variants. We test one of the consequences of this argument, 
which is that geographically differentiated variants accompanied by different chromatin 

Fig. 8  The results from MalariaSED indicate de novo mutations at noncoding regions discovered from the 
single-cell study have a higher chance to alter their surrounding chromatin profiles in schizonts. *Wilcoxon 
test compared with noncoding SNPs collected from MalariaGEN, p < 0.05
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profile effects in the noncoding region are more likely closer to genes with high levels 
of geographic differentiation. The analysis was based on the global Fst score calculated 
by MalariaGEN [8] for each gene based on the highest-ranking non-synonymous vari-
ants within the gene. We observed that geographically differentiated noncoding vari-
ants with higher alternation in AP2-G binding profile in commit schizonts, AP2-G5 in 
trophozoites, chromatin accessibility, and euchromatin tend closer to the gene harbor-
ing highly differentiated non-synonymous variants (Additional file 2: Fig. S5, Wilcoxon 
test p < 0.05). The results imply that the non-synonymous variants with high geographic 
differentiation in the malaria parasite could hitchhike neighboring noncoding variants 
to enhance or repress the gene expression by altering the chromatin compactness. We 
speculate that some histone modifications may recruit specific TFs and that the binding 
affinity alterations may result from these marker changes. Our reanalysis of ~ 1.3 million 
noncoding variants also provides new insight into parasite local geographical adapta-
tion driven by noncoding variations. The associated potential transcriptional change in 
protein trafficking, epigenetic and translational machinery, and the alternations of many 
PfAP2-G binding affinities provide new evidence that parasites trade off reproduction 
(transmission to new hosts) and growth (within-host replication) to adapt to different 
local regions where parasites present diverse transmission intensity [40]. We need to 
point out that the PfAP2-G binding change regions tend to be located upstream of genes 
important for RBC invasion. This is further demonstrated by the overlapping gene list 
with PfAP2-I and PfBDP1, as well as the limited functional enrichment in sexual rings 
and stage I gametocytes for PfAP2-G binding site changes. We also observed that a 
group of geographic differentiation variants located at noncoding regions are likely to 
regulate gene functions in food vacuoles, oxidative stress defense, and proteasome deg-
radation. This reflects the evolution of genetically distinct P. falciparum subpopulations 
that are thought to occur due to high drug pressure and oxidative stress [1, 41]. The sub-
sequent step involves assessing the fitness cost of these noncoding variants. It is plausi-
ble that these variants may exert mild deleterious effects, contributing to resistance or 
other potential advantageous phenotypes for parasite growth. To explore this further, 
a large-scale genetic screen is required to investigate the reported noncoding variants 
under the parasite’s normal growth conditions. Such investigations would provide valu-
able insights into the functional implications of these variants and their impact on the 
overall fitness of the parasite.

To test the epigenetic contributions resulting from intergenic variants to tran-
scriptional change, we used chromatin effects to discriminate reported eQTLs [1] 
against the nontrait-associated SNSs collected in MalariaGEN partner studies [8]. We 
observed high concordance between the chromatin accessibility change at the ring 
stage and the local eQTL discovered in P. falciparum clinical isolates. This result is 
also shown in the subset of eQTLs linked with ART-R via transcriptional profiles. The 
agreement between the clinical isolate stage (high skewness toward rings) and the ring 
stage of the chromatin profile supports a previous study showing that the chromatin 
accessibility pattern correlates with neighboring gene expression values [28]. Fur-
thermore, MalariaSED bridges the gap in our understanding between DNA sequence 
changes and the resulting epigenetic profile alterations in malaria parasites. Build-
ing on the known association between gene transcription and parasite phenotype, 
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the directional flow of information from sequence variation to consequent chromatin 
profile change to gene transcription alternation and further to ART-R effect will allow 
us to extract the causality of variant(s). Based on currently available chromatin pro-
files, we are not able to identify any chromatin profiles associated with distal eQTLs 
(auROC < 0.65 for all 13 chromatin profiles here). This may be due to limited epige-
netic data available in P. falciparum and the fact that only one chromatin profile in 
rings can be implemented in MalariaSED. It will be interesting to study these distal 
eQTL hotspots when new epigenetic data are available for MalariaSED training.

MalariaSED facilitates the functional explanations of de novo mutations discov-
ered in single cell sequencing studies. The significant de novo mutations enrichment 
in coding regions and the disproportionate genes targeted by de novo mutations 
suggested strong selection in the P. falciparum population collected in Chikhwawa, 
Malawi [39, 42]. This includes the ApiAP2 gene family, implying selection in the epi-
genetic regulation mechanism. We used de novo mutations to investigate the chro-
matin effects of intergenic de novo mutations and identified significant changes in 
schizonts, including H3K9ac, PfAP2-G, and PfAP2-I binding affinities, as well as 
chromatin accessibility. However, due to the limited number of intergenic de novo 
mutations in the single-cell sequencing study, we are hesitant to make conclusions 
about potential functions associated with these 35 noncoding de novo mutations. 
Further study is required when more single-cell sequencing datasets are generated.

MalariaSED proved to be a successful application in malaria parasites, shedding 
light on the potential regulatory changes arising from noncoding variants. However, to 
enhance and validate MalariaSED’s performance, additional endeavors are necessary to 
integrate it with established DL frameworks in model organisms [21, 24, 32]. We con-
ducted a comparison with a convolutional network that employed the same number of 
kernels as the model previously developed for the human genome [24, 32]. While we 
optimized the hyperparameters for this convolutional network, further investigation is 
required to examine the impact of different kernel sizes on the prediction performance. 
Moreover, it is crucial to explore the potential application of sophisticated DL models, 
such as Enformer [21], in the context of malaria parasites. In our study, we conducted 
tests using various sequence inputs for Enformer and observed promising results, 
achieving an overall Pearson correlation of 0.63 (Additional file 11: Table S10). To fully 
unlock the potential of Enformer in malaria parasites, further efforts are required to 
optimize its hyperparameters. Fine-tuning the model’s parameters can potentially lead 
to improved performance and more accurate predictions.

We need to notify our training process is based on randomly splitting 200-bp inter-
genic genome segments into training/validation/test sets. Since the extension of each 
input 200-bp sequence to 1 kb, this may bring in the sequence in the training set had 
highly overlapping regions with the test set, thereby inflating the test results. To break 
the dependence between samples in training, validation, and test sets, we used a chro-
mosome splitting strategy to split samples such that all samples on the same chro-
mosome were all in one of the training, validation, and test sets. We used the same 
training process for both the random splitting and chromosome splitting data set The 
results show an average 0.03 decreased performance in auROC (0.96 vs. 0.93) and 0.14 
decrease in auPRC (0.73 vs. 0.59, the former indicates random splitting) compared 
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with the random splitting data set (Additional file  4: Table  S3). The results indicate 
the importance of properly evaluating the chromatin profile prediction method by 
rigorously segregating the training, validation, and test sets.

In the long run, we expected that sequence-based regulation analysis would become a 
crucial part of malaria parasite research, especially to help unveil the regulatory activity 
of noncoding genomic regions, which are currently poorly understood in malaria para-
sites. Such analyses could, in the future, be implemented to prioritize noncoding vari-
ants potentially perturbing gene expression contributing to parasite immune escape and 
drug resistance. With the increasing data availability of functional variants, the approach 
can be readily trained, adapted, and further improved.

Conclusions
We have effectively showcased the utilization of a deep learning framework for predict-
ing chromatin profiles in the atypical genome of malaria parasites. Our developed frame-
work, MalriaSED, has been utilized to investigate the epigenetic regulatory implications 
of reported noncoding genetic variations. Our findings provide evidence suggesting 
that the malaria parasite may potentially exploit this resulting regulatory adaptability 
as a survival strategy to escape the immune system and resist drug pressures. Malari-
aSED offers an efficient and accessible platform that can facilitate further research into 
unraveling the mechanisms underlying noncoding genetic effects in malaria parasites. 
We anticipate that MalariaSED will play a pivotal role in uncovering regulatory insights 
within the extensive, yet poorly understood, noncoding regions of the parasite’s genome. 
Furthermore, it stands to contribute significantly to our understanding of the mecha-
nisms enabling drug resistance and immune evasion in these parasites.

Methods
Datasets for MalariaSED development

The previously published ATAC-Seq datasets [28], nine ChIP-seq datasets, including 
PfAP2-I [5], PfAP2-G [6], PfAP2-G5 [34], PfBDP1, and histone modification H3K9ac 
[7], from P. falciparum RBCs to the gametocyte stage and two ChIP-Seq datasets for 
PbAP2-O and PbAP2-G2 [29, 30] in P. berghei, were used to develop the MalariaSED 
framework. The whole genome is divided into bins of 200 bp, yielding more than 50,000 
bins not overlapped with the coding regions. A bin is labeled “positive” if more than 60% 
of it overlaps with ChIP or ATAC peaks, while the remaining bins are used as negative 
datasets. We used the ratio 7/1.5/1.5 to divide all extracted bins into training, test, and 
validation sets. The number of bins used for MalariaSED training for different epigenetic 
markers is listed in Additional file 3: Table S2. MalariaSED was also trained and tested in 
a chromosome-splitting strategy, where bins on the same chromosome were all assigned 
to one of the training, validation, and test sets. We select chromosome combinations in 
the training, validation, and test sets so that the ratio is close to 7/1.5/1.5 for the chro-
matin profiles with low positive samples (positive bin number < 1100). For the remaining 
chromatin profiles, bins on chromosomes 10 and 11 were selected as the validation set 
and chromosomes 9 and 12 as the test set. The bins in all other chromosomes were used 
as a training set (Additional file 4: Table S3).
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Deep neural network models with long short‑term memory (LSTM) layers (MalariaSED)

For each bin 200  bp in length, we extended it by 400  bp in both directions, resulting 
in a 1-kb input sequence. The 200-bp bin and its surrounding 1-kb sequence context 
have been successfully used to predict chromatin profiles in the human genome [32, 43]. 
We used one-hot encoding to convert each 1-kb sequence into a 1000 × 4 bit matrix, 
where “1” represents a specific nucleotide present and “0” does not. The architecture of 
the MalariaSED framework is shown in Fig. 1A. Two 1D convolutional layers followed 
up with max pooling and drop-out layers are combined with bidirectional LSTM to cap-
ture dependencies of DNA sequence patterns contributing to specific epigenetic mark-
ers. Regularization and constraint are applied to all layers to minimize overfitting. After 
the flatten layer, the final predictions are computed through sigmoid activation in dense 
layers. The Adam optimizer was used to search for model parameters based on binary 
cross-entropy. We use early stopping to halt the parameter optimization process if there 
is no improvement in validation auPRC for ten consecutive epochs. Bayesian optimi-
zation [33] was used to optimize the hyperparameters objective to maximum auPRC. 
Additional file 1: Table S1 lists the range of all hyperparameters in Bayesian optimiza-
tion. MalariaSED was trained independently in 15 chromatin profiles from P. falciparum 
and P. Berghei. MalariaSED was implemented in TensorFlow (v2.4.0) and was trained on 
4 GPU Tesla V100 with batch size 2000. The best model was determined by the highest 
auPRC in the validation set and evaluated by the test set. The evaluation results are listed 
in Additional file 3: Table S2 and Additional file 4: Table S3. The ROC and PR curves 
were generated based on the MalariaSED prediction from the network output and the 
label assigned for each 200-bp bin.

Deep neural network models with three‑layer convolutional network

We used a three-layer convolutional network to demonstrate the outperformance of 
MalariaSED in the malaria parasites to the prediction frameworks developed in model 
organisms [22, 24, 32]. We replaced the LSTM layer in MalariaSED with a convolutional 
layer using kernel number 960. This can also provide evidence of the contribution of 
the LSTM layer. We set the kernel numbers of the first and second convolutional lay-
ers as 320 and 480. All kernel number was set the same as the DL network previously 
published in the human genome [24, 32]. Additional file 5: Table S4 provides all hyper-
parameters considered in the Bayesian optimization. All hyperparameters’ search range 
is the same as the convolutional layer and dense layer in MalariaSED. The same train-
ing, validation, and test sets in MalariaSED development were used to evaluate the per-
formance of the three-layer convolutional network. We use early stopping to seize the 
parameter optimization process if there is no improvement in validation auPRC for ten 
consecutive epochs.

Enformer application in the malaria parasite

We used Enformer to predict 13 chromatin profiles in P. falciparum. We select the input 
length 12.8, 32, and 64  kb to optimize the input sequence length. At least a threefold 
shorter input sequence was used here since ~ 22.9 mb length of P. falciparum genome, 
which is 290-fold shorter than the human genome. Also, it has been demonstrated the 
lack of long-range interactions in P. falciparum genome [44, 45]. We set Enformer to 



Page 17 of 20Wang et al. Genome Biology          (2023) 24:231 	

take input with l × 4 tensor, where l represents the input sequence length, and number 4 
indicates one-hot-encoded DNA sequence. The input sequence l(l = 12.8, 32, 64kb) was 
reduced to a l/128 positions by the convolutional blocks in Enformer, where each posi-
tion represents a 128-bp sequence. After the transformer blocks, the cropping layer in 
Enformer trims half of the positions from both sides, resulting l/128/2 positions. Addi-
tional file 11: Table S10 lists the number of training, validation, and test sets for differ-
ent input l . We incorporate 13 chromatin profiles in P. falciparum genome for Enformer 
training, indicating the output shape l/128/2× 13 from Enfomer. The Enformer has 
trained 1000 epochs for the step same as the training sample number, meaning each 
epoch goes through all training samples. The selected training model with the highest 
Pearson correlation in the validation set and the Pearson correlation results in the test 
set is listed in Additional file 11: Table S10.

Sequence pattern contribution to MalariaSED

To estimate the sequence contributions to MalariaSED predictions, we predict chro-
matin profile changes by generating all possible SNSs along with each site of the k-mer 
sequence. Each 200-bp region predicted as positive from MalariaSED was extended by 
400  bp in both directions, resulting in a 1-kb sequence window. SNS generation was 
then performed for every positive 1 kb bp region covering all 4-mer or 5-mer sequences. 
For each 4/5-mer sequence, we took the average chromatin effects resulting from all 
SNSs as the contribution to MalariaSED. The effect of an SNS on a specific chromatin 
marker was measured by the absolute value of log2-fold change of odds predicted from 
MalariaSED. This measurement was also successfully utilized to evaluate the chromatin 
effects of genomic variants in the human genome [24, 32].

Functional enrichment for geographic differential variants at intergenic regions

The intergenic variants presenting high geographic differential (Fst > 0.1) from Malaria-
GEN partner studies [8] were selected for this analysis. We further picked up the geo-
graphic differential variants predicted to change the particular chromatin profile at the 
top 1% level to explore the potential biological function change. A gene is used for func-
tional enrichment analysis if its distance to at least one selected variant using the above-
mentioned criteria is shorter than 3 kb. To identify GO terms enriched in the gene list of 
interest, Fisher’s exact test was used to test whether more genes with this GO term were 
observed compared with the background comprising the whole genome.

Chromatin profile prediction surrounding eQTLs

We downloaded 13,257 eQTLs from the TRACI study [1]. Only local intergenic eQTLs 
(15 kb between an eQTL and its regulated target(s)) were selected for the positive data-
set in DL predictions. We strengthened the ART-R-associated eQTLs by the cutoff of an 
absolute value of 0.1 for the adjusted Spearman correlation between the eQTL-regulated 
transcriptional profile and parasite clearance time. All SNSs gathered in MalariaGene [8] 
are used as the negative dataset. Each reported eQTL or SNS is extended to include the 
surrounding 1-kb DNA sequence to fit the input requirement of MalariaSED. The chro-
matin effects of each variant were measured by the log2-fold change difference of odds, 
which was previously used in human genetic studies [32].
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