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Abstract 

Genomic benchmark datasets are essential to driving the field of genomics and bio‑
informatics. They provide a snapshot of the performances of sequencing technolo‑
gies and analytical methods and highlight future challenges. However, they depend 
on sequencing technology, reference genome, and available benchmarking methods. 
Thus, creating a genomic benchmark dataset is laborious and highly challenging, often 
involving multiple sequencing technologies, different variant calling tools, and labo‑
rious manual curation. In this review, we discuss the available benchmark datasets 
and their utility. Additionally, we focus on the most recent benchmark of genes 
with medical relevance and challenging genomic complexity.

Keywords: Genetic variation, SNPs, Indels, Structural variant, Benchmark datasets, 
Medical genes, Sequencing technology

Background
Novel bioinformatics methods and DNA sequencing technologies are being developed 
regularly. This enables more accurate detection of genetic variations with higher reso-
lution [1–3]. Nevertheless, as Baron Kelvin proclaimed, “If you cannot measure it, you 
cannot improve it,” and therefore, it is crucial to assess the accuracy of identifying vari-
ants, paving the way to advance the field of genomics in sensitive clinical applications 
[4, 5]. Correct measurement is at the mercy of having appropriate controls, such as 
benchmark datasets, which are the yardstick to evaluate bioinformatics methods and the 
performance of sequencing technologies [4]. In other words, benchmark datasets con-
taining well-established variant calls are needed to develop, optimize, and analytically 
validate variant detection methods, which can ultimately be translated into systematic 
research studies and clinical practices. Such benchmark datasets are useful for a diverse 
range of researchers involved in sequencer manufacturing, library preparation, bioinfor-
matics method development, and clinical studies.

Historically, multiple different benchmark datasets have been created using simulated 
data pipelines [6–9]. While these simulated datasets typically suffer from a simplistic 
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representation of real genomics data, they often prove to be useful, in metagenomics [10] 
for example. Synthetic benchmark datasets [11] (e.g., spike in [12] or a specific artificial 
sample) overcome this simplicity issue partially, but often still suffer from a less reliable 
representation of the underlying challenges found in real datasets. More recently, bench-
mark datasets created with fully characterized “real” data have emerged. These rely on 
stable cell lines obtained by genetic manipulation of primary cells from an individual 
and the usage of multiple sequencing technologies [11, 13, 14]. The benefits from using 
real datasets are highly dependent on how accurately it was characterized. This charac-
terization is the most challenging part of creating such a benchmark dataset, but it best 
represents the challenges that scientists face when analyzing their genomic samples [15].

Here, we describe the current state-of-the-art genomic benchmark datasets that are 
publically available to the community. We give special attention to the most recent 
Genome in a Bottle (GIAB) benchmark, focusing on 386 Challenging Medically Rele-
vant Genes (CMRG) [16]. This represents the currently most challenging benchmark, 
including 17,000 single-nucleotide variants (SNVs), 3600 small insertions and dele-
tions (indels, 1–49 bp long), and 200 structural variants (SVs 50 + bp) across 273 genes, 
most of which are in highly repetitive or complex regions. Furthermore, we discuss the 
impact and emergence of new sequencing technologies, as well as challenges and oppor-
tunities for future genomic benchmark datasets. This includes recent improvements 
in new sequencing technology and updates on reference genomes and their impact on 
creating such datasets. This review ends with an overview of tools for benchmark cura-
tion and their challenges, followed by the discussion of potential future directions for 
benchmarks.

Overview of genomic benchmarks
Nowadays, we have multiple benchmark datasets available for the assessment of genomic 
variations (Table 1). A genome variant benchmark dataset serves as a vital resource for 
evaluating the effectiveness and accuracy of newly developed variant callers, whether 
they focus on small or large genomic alterations. This dataset comprises known curated 
genomic variants. To ensure a comprehensive assessment, it is crucial for the benchmark 
dataset to include relevant information about the specific genomic regions associated 
with these variants. This distinction is essential as it helps differentiate these regions 
from those that were not considered in the benchmark dataset, such as regions that are 
not assembled or lack support from multiple callers [16]. This information is typically 
captured and represented in a BED file format, ensuring that researchers have precise 
details regarding the genomic coordinates and regions associated with each variant.

These genomic variations can be categorized as SNVs, indels, and SVs [17, 18]. Meth-
odologies used to identify these different variations vary [1, 17]. Their individual bench-
mark datasets are typically kept separated along with their unique benchmarking tools.

Although attaining 100% accuracy and sensitivity is challenging due to technologi-
cal limitations, benchmark datasets strive to provide the highest accurate representa-
tion for genomic variations. To achieve this, creating a benchmark dataset involves 
utilizing diverse sequencing technologies such as long-reads, short-reads, and linked-
reads, each with varying insert sizes and high coverage. Additionally, a range of vari-
ant calling tools and methods that rely on both mapping and assembly techniques 
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are integrated to mitigate methodological biases. The key ingredient, however, is the 
manual and often wet lab assessment of the variance across a community effort [14].

In the construction of a benchmark dataset, several other criteria are carefully con-
sidered. For instance, regions where callers exhibit systematic errors or misrepresent 
genotypes are typically excluded [11]. Similarly, areas demonstrating high complexity 
may also be excluded to ensure a more accurate representation of genomic variations 
[14]. These selection criteria help to enhance the quality and reliability of the bench-
mark dataset, providing researchers with a robust and comprehensive resource for 
evaluating variant calling algorithms.

The common practice when trying to evaluate new variant calling methods is to 
order a DNA sample (e.g., the HG002 sample), from institutions such as the GIAB 
Consortium of the National Institute of Standards and Technology (NIST) or the 
Coriell Institute, sequence it and identify variants (Fig. 1). These samples are stored 
and can be obtained either as dried DNA or as immortalized cell lines. These cell 
lines were obtained by using the Epstein-Barr virus to perform genetic manipula-
tion on either B lymphoblastoid or induced pluripotent stem cells from individu-
als [19]. When it comes to choosing the sequencing approach, any technology can 
be used, from short reads (e.g., Illumina) to long read (e.g., ONT: Oxford Nanopore 

Fig. 1 Importance of benchmark datasets in genomics and clinical setting. These datasets are beneficial 
in assessing different tools and methods. First, a benchmark dataset is established by using a myriad of 
dependable variant calling methods, forming a collection of reliable variant calls, normally stored as a 
VCF file (green box; step 1). New DNA sequencing technologies could be evaluated by comparing their 
corresponding called variants with the benchmark dataset on the same DNA sample. This showcases the 
reliability of their sequenced reads. The same process can be used to test new algorithms developed for read 
alignment or variant calling (step 2). Clinical research studies also benefit from such benchmark datasets, by 
incorporating newly well‑established variant calling methods and sequencing technologies (step 3)
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Technologies or PacBio: Pacific Biosciences), or even optical mapping (Bionano) or 
other technologies [20, 21].

After sequencing, essential analysis steps including read alignment or genome assem-
bly should be performed together with variant calling [22–24] to obtain a result that can 
then be compared against the benchmark dataset (e.g., the GIAB benchmark of SNVs or 
SV for the HG002 sample, see Fig. 1). This is done over specific SNVs or SVs benchmark 
methods that compare the results with that of the benchmark and provide a clear metric 
on the calls (precision and recall/sensitivity) of the analysis. This provides a comprehen-
sive insight if the sequencing technology and the computational pipeline being tested are 
reliable. Depending on the sequencing method of choice, some parameters need to be 
adjusted during the evaluation of the data, for example, the minimum size of the vari-
ants for optical mapping or the constraints of sequenced resolved representation. Over 
the past years, this process not only helped establish pipelines and technologies, but also 
drove the development of new sequencing approaches [15].

The curation of such benchmark datasets is often a tedious process and typically 
involves multiple sequencing technologies to leverage their strengths, overcome each 
other’s limitations, and avoid any systematic errors from a single platform. Short-read 
sequencing (e.g., Illumina) is still one of the most accurate technologies and is well-
established to identify SNVs and especially indels [25, 26]. However, short-read methods 
often struggle to characterize repetitive regions of the genome and have become known 
to also have limitations for SV detection [1].

Since genome sequence began to be an informative resource for clinical diagnosis 
[27, 28], there have been several endeavors either to produce a benchmark dataset or to 
identify regions of complexity to reduce false-positive variants (Table 1; Fig. 2). Many 
of these benchmark papers have been highly cited (Fig. 2A) but differ significantly in 
the ratio of the reference genome they cover (Fig. 2B). Table 1 holds detailed informa-
tion across the available benchmarks. Historically, Zook et al. suggested the first SNVs 
and indels benchmark dataset for the sample NA12878/HG001 [13]. They integrated 
five sequencing technologies across 14 datasets, different aligners, and variant call-
ers. In addition, they made the data publicly available [13]. In 2016, Mandelker et  al. 
introduced an exome-wide catalog representing high homologous exome regions to 
laboratories using short reads to identify variants correctly, especially for diagnostic 
applications [29]. There have been different attempts to enhance or produce bench-
mark datasets including the Genome in a Bottle Consortium (GIAB) using alignment, 
and de novo assembly [13, 19] and Platinum Genome [30], which are limited to specific 
regions. However, the Platinum Genome benchmark dataset introduced biases towards 
easily accessible genomic regions by only considering consensus variants from all algo-
rithms. Thus, others suggested using the hydatidiform mole Chm13 to provide a variant 
benchmark, which only represents homozygous SNVs. This leads to mitigating short 
variant caller biases based on de novo PacBio assembly methods [11].

Later, Zook et  al. enhanced the GIAB benchmark datasets by using linked-read 
sequencing in addition to short-read and enlarging the benchmarked regions by 12% 
[4]. They used two technologies in the latest version of GIAB (v.4.2.1) for sequenc-
ing seven samples (HG001, HG002, HG003, HG004, HG005, HG006, and HG007) 
with linked [32] and long-read [33] to characterize segmental duplication and 
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hard-to-align regions which were traditionally often avoided. Using the previously 
mentioned technologies, the authors were able to add 16% more exonic regions, many 
of which are medically important [14]. In total, they have added more than 300,000 
SNVs and 50,000 indels that were not available in the previous version; v.3.3.2 [4]. 
Additionally, they established a benchmark across the Major Histocompatibility 
Complex (MHC) region [34]. It is of note that each benchmark dataset covers a por-
tion of the reference genome, which varies from 77 to 96% (Fig. 2B). It is important 
to note that benchmarks can vary significantly in terms of the number of variants 
they include, ranging from a few tens to millions [14, 15] (Fig. 2C). These benchmarks 
have been of great interest to the community as being cited by thousands of other 
studies (Fig. 2A). While in this review, we focus on genomic benchmarks, it is impor-
tant to note that there exist additional benchmark datasets that play a pivotal role in 
evaluating RNA-sequencing tools. Specifically, Tang et al. have provided a benchmark 
dataset and a tool for evaluating the performance of RNA-seq quantification. They 
presented statistical summaries in terms of specificity and sensitivity at both the tran-
script level and gene level [35]. Another notable benchmark dataset focuses on simu-
lating RNA-seq count data by considering two distributions: negative binomial and 
log-normal. This dataset was employed to compare the performance of various tools 

Fig. 2 A Number of citations for benchmark studies using Entrez submodule of the BioPython package [31]. 
B The percentage of reference genome that is included in different benchmark studies is shown for different 
benchmark datasets. Besides, the sample sizes are also depicted as point size, which vary for different 
datasets. Another difference across them is the variant types that are included. Some benchmark datasets 
characterize SNVs and indels, while others cover SVs as well. C The number of variants (SNVs, SVs, and indels) 
for each benchmark dataset is represented on the y‑axis, while the publication PMID is displayed on the x‑axis
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in identifying differentially expressed genes [36]. Moreover, to evaluate the effective-
ness of between-sample normalization methods, an integral step in RNA-seq data 
analysis, an experimental ground truth was established by compiling publicly avail-
able RNA-seq assays with external spike-ins [37]. These spike-ins, typically added to 
biological samples at known concentrations, provide a reliable reference for evalu-
ation. Finally, RNA counting in single-cell RNA-sequencing (scRNA-seq) also ben-
efited from spikes [38]. However, there has been a controversy about the usefulness of 
this approach; see [12, 39, 40] for further discussion.

Benchmarks for challenging medically relevant genes
Several initiatives and consortia, including GIAB, have set ambitious objectives to 
develop benchmark datasets of SNVs, indels, and SVs [13, 17–19, 34, 41] (Table 1). These 
efforts play a substantial role in the development of tools and medical research pipelines, 
in addition to quality control analysis. Mandelker et al. introduced one of the first lists 
of medically relevant genes that were difficult or impossible to analyze via the sequenc-
ing technology of their time [29]. This list includes 193 genes originating from Online 
Mendelian Inheritance in Man (OMIM), Human Gene Mutation Database (HGMD), 
and ClinVar databases (Fig.  3A). The challenge was that short reads could not resolve 
these genes due to their complexity (e.g., repetitive regions). Thus, they were identified 
as medically relevant genes with low mappability (Fig. 3A). Around 88% of these genes 
were then included in the GIAB benchmark database version 4.2.1 thanks to the use of 
linked- and long-read technologies [14]. Using HiFi long-read [32], Wagner et al. assem-
bled a list of 5175 genes from COSMIC, OMIM, HGMD, and ClinVar databases, adding 
to those genes commonly tested in inherited diseases [16] (Fig.  3B). Only 5027 (4697 
autosomal genes) have coordinates on GRCh38 genome assembly, and they ended up 
with 395 genes that have at maximum 90% of the gene body included in either GRCh37 

Fig. 3 A Mandelker et al. [29] selected 193 challenging medical genes from three public databases that are 
concerned with genes causing diseases (OMIM, HGMD, and ClinVar) based on their low mappability and the 
percentage of gene body and number available in other GIAB dataset. B The development of the 273 genes 
dataset
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or GRCh38 (386 if evaluating GRCh38 alone). They managed to resolve these 395 genes 
by the genome assembly approach using the Hifiasm assembler [42]. Of note, the above-
mentioned genes are hard to analyze because of their complexity rather than consider 
the relative medical importance of the original 5175 genes. Finally, they managed to 
characterize 273 genes from the haplotype-resolved whole-genome assembly. Moreover, 
they reported more than 17,000 SNVs and 3600 indels plus 200 SVs for GRCh37 and 
GRCh38 [16].

The Challenging Medically Relevant Genes (CMRGs) is a benchmark dataset created 
specifically for the purpose of testing new tools [16]. It is a list of medically relevant genes 
of high complexity. For a gene to be included, the presence of its whole sequence plus 
20 kb flanking regions on both sides is required in a single assembled contig. In addi-
tion, it needs to be aligned as one contig to GRCh37 and GRCh38 with no breaks. Albeit 
it may overlap with segmental duplications. Only 273 out of 395 genes described in the 
CMRG study by Wagner et al. were fully resolved and included in the CMRG benchmark 
dataset [16]. It is worth mentioning that at least 15% of the gene body of 99% of the 
273 genes are either challenging to sequence or contain challenging variants to detect 
(due to the low mappability of these regions and the presence of repeats). In addition, 
11% of CMRG indels are with a size of > 15 bp, making it challenging for tools to detect 
them and lowering their precision and recall. The other 122 genes of the list of 395 genes 
are absent from the benchmark set for various reasons. One reason is the shortcomings 
of the reference genomes, which include gaps in the reference sequence, being resolved 
only on one of the references but not the other (as happened for the KCNJ18 gene), or 
duplications in HG002 compared to GRCh38 [16]. Another reason is having multiple 
contigs or suffering from multiple possible forms of representations (e.g., LPA and CR1), 
hampering a correct benchmarking [43]. The remaining 273 CMRGs represent hard-to-
assess regions of the genome that are important to obtain correct variant information 
and are thus challenging current available methodologies from sequencing, alignment 
up to variant calling and representation.

Towards clinical usability and implementation of variation benchmarks
In contrast to previous genome-wide efforts, the CMRGs benchmark dataset (Fig. 4) 
is not focused on resolving the largest portion of the genome, but challenging genes 
with medical importance that were not fully resolved (Fig.  3A) in previous bench-
mark efforts from GIAB [16]. These genes vary in sizes and complexity (Fig. 4B) and 
thus represent unique challenges for the analysis and sequencing technologies. Each 
gene in the list of CMRGs has been studied in-depth in the literature and is related 
to one or multiple diseases. This is also exemplified by the number of ClinVar (i.e., a 
database to include variations and their impact on diseases) variants that are overlap-
ping these genes (Fig. 4C). Out of 386 total resolved genes found in GRCh38 alone, 
208 of them are correlated with neuronal diseases, such as KBG syndrome (associated 
with the genes ANKRD11 and CDH15 from CMRGs), neurofibromatosis (APOBEC1), 
filamentary keratitis (FLG), and spinal muscular atrophy (SMN1), based on the Gen-
eCards database [44] (Fig. 4A). Particularly, the variations of SMN1 were investigated 
thoroughly in the CMRG study, as this gene has been of keen interest in the commu-
nity. SMN1 resides within a large segmental duplication on chromosome 5 making it 
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a challenging case for variant calling. It is known that the biallelic pathogenic variants 
in SMN1 can result in spinal muscular atrophy [45]. This progressive disorder is iden-
tified by muscle weakness and atrophy because of neuronal cell loss in the spinal cord 
[46–48]. Additionally, 117 of the genes in the CMRGs list are correlated with blood, 
eye, and immune diseases. Genes related to respiratory, skeletal, nephrological, and 
skin diseases are also included in this list.

Cardiovascular disease is another category also covered in the CMRG gene list. That 
includes atypical coarctation of aorta (RNF213), right bundle branch block (TRPM4), 
and pseudo-von Willebrand disease (GP1BA), as described in the GeneCards data-
base. The third category that we mention here is immune diseases. Autoimmune 
lymphoproliferative syndrome (CASP10, CD4), neutropenia (G6PC3, ANKRD11, 
TYMS), anemia, autoimmune hemolytic (CD4, RHCE), and chronic granulomatous 
disease (NCF1) were found related to this category in the literature. Importantly, 
NCF1 is known to be associated with 20% of cases of chronic granulomatous disease. 
Finally, several genes in the CMRG list had been surveyed in cancer-related studies, 
including colon adenocarcinoma (BAX), colorectal cancer (BAX, BRAF), hepatocel-
lular carcinoma (AXIN1, TERT), adenocarcinoma (BRAF, H19), and prostate cancer 
(BAX, PTEN). Phosphatase and tensin homolog (PTEN), a tumor suppressor gene, is 
mutated in many cancers [49]. Specifically, it is commonly inactivated or lost in breast 
and ovarian cancers [50]. This gene may be a target for tandem duplications generat-
ing out-of-frame exon duplications [51].

Importantly, several hundreds of ClinVar variants intersect with the CMRGs list, as 
depicted in Fig. 4C. All in all, the CMRGs list with their genetic variations is a precious 
resource paving the way for answering a diverse range of clinical research questions.

Fig. 4 A Percentage of genes from Challenging Medically Relevant Genes (CMRG) list per disease category. 
B Histogram of gene length of CMRG list. C Number of ClinVar variants per gene for the top 30 genes in the 
CMRG list. Note that these variants are not part of the benchmark
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Emerging sequencing technologies
There is a cyclic reliance between the development of benchmark datasets and the emer-
gence of new sequencing technologies and bioinformatic methods to detect variants. 
While in former times, the methods and technologies were developed without bench-
marks, this has dramatically changed these days as benchmarks provide a form of pre-
senting emerging technologies. In turn, once these new technologies are established, 
they are often integrated to form novel benchmarks. In this section, we describe novel 
approaches and technologies in DNA sequencing.

While short-read technologies such as Illumina’s exome sequencing are widely used 
for studying many genetic diseases because of their low cost and high accuracy, they 
still have their limitations [1, 52, 53]. Other sequencing technologies such as long-read 
sequencing technology have the potential to delineate a large number of SVs that could 
be contributing to some diseases and were undetected with short-read sequencing [54]. 
The two main companies that manufacture long-read DNA sequencing devices are 
PacBio and ONT. Using the single molecule real-time (SMRT) technology, the PacBio 
system produces high-fidelity (HiFi) reads which are around 15 kbp and with an error 
rate of less than 1% [33]. On the other hand, the ONT PromethION platform typically 
produces ~ 20kbp reads [55] and could reach up to 4 million base pair (Mbp) [56] with 
higher throughput at a lower cost, but they are less accurate (5% error rate) than HiFi 
reads [52, 55]. Nevertheless, both platforms perform similarly when it comes to identify-
ing SVs [52, 57].

The ONT MinION instrument is a portable and economical sequencer. It has a DNA 
yield of around 20 gigabases providing a ~ 7 × coverage of the human genome [58, 59], 
which is insufficient for variant calling in poorly covered regions [60]. Nevertheless, it 
can also perform targeted enrichment during sequencing, which is possible thanks to the 
adaptive sampling technology [61]. It allows the pore to selectively sequence DNA mol-
ecules based on genomic regions of interest [61]. As the DNA molecule is sequenced, 
the nascent sequencing read is analyzed, and the software can opt to reject it, forcing 
the nanopore to eject the DNA molecule before sequencing is finished, opening space 
for sequencing a different DNA molecule. There are two recent approaches for adap-
tive sequencing: UNCALLED [58] and Readfish [58, 59]. Thus, adaptive sequencing can 
reduce the costs and lab work to sequence genes of interest.

In October 2022, PacBio launched a new sequencing instrument for long reads called 
Revio. This is an upgrade in capacity having four SMRT cells run in parallel, with each 
having a capacity of 25 million zero-mode waveguides (previously 8 million). Thus, the 
Revio extends the yield over the Sequel IIe by around 15 times, enabling a reported max-
imum of 1300 human whole genomes sequenced per year at 30 × coverage [62].

Long-read sequencing, regardless of whether it is PacBio or ONT, has played a pivotal 
role in addressing key challenges in genomics. It has been instrumental in filling gaps 
within the human genome, allowing us to obtain a comprehensive understanding of its 
structure for the first time in history.

Moreover, as we previously highlighted, the utility of long-read sequencing extends to 
the precise delineation of SVs, as well as the identification of SNVs and indels within the 
complex human genome regions (repetitive or duplicated regions). The application of 
long-read sequencing technology has had far-reaching implications, particularly in the 
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field of medicine. It has played a crucial role in resolving numerous medical cases by 
facilitating the identification of disease-causing genetic variations, allowing for accurate 
diagnosis, such as solving CGG-repeat expansion in the fragile X gene [17, 48, 57–62]. 
Furthermore, new sequencing technologies emerged that also utilize genomic bench-
mark datasets to showcase their advantages [15, 63]. These technologies will likely be 
necessary to further improve current benchmark datasets. Here, we describe five novel 
sequencing technologies: AVITI, Illumina Complete Long-Read technology, TeLL-seq, 
SBB, and Ultima (Table 2). These technologies provide sequencing reads at a lower cost 
or higher quality, paving the way for better service in both research and clinical applica-
tions. Nevertheless, independent benchmarking is currently often sparse, so we rely here 
often on reports from different companies.

AVITI is a sequencing system commercialized by Element Biosciences based on 
Avidity Chemistry [64]. In this technology, DNA attached to the flow cell is identified 
by a multi-pronged scaffold carrying fluorescence which is then measured by an opti-
cal imaging system, which needs fewer chemical reagents. This reduces the cost and 

Table 2 Comparing different whole genome sequencing technologies

a https:// miroc ulus. com/ wp- conte nt/ uploa ds/ 2022/ 07/ Elemet- AVITI- App- Note- 03A. pdf
b https:// www. pacb. com/ wp- conte nt/ uploa ds/ Proce dure- Check list- Prepa ring- HiFi- SMRTb ell- Libra ries- using- SMRTb ell- 
Expre ss- Templ ate- Prep- Kit-2. 0. pdf
c https:// www. pacb. com/ techn ology/ hifi- seque ncing/ sequel- system/
d https:// emea. illum ina. com/ syste ms/ seque ncing- platf orms/ novas eq. html
e https:// www. illum ina. com/ conte nt/ dam/ illum ina/ gcs/ assem bled- assets/ marke ting- liter ature/ illum ina- dna- pcr- free- loadi 
ng- conce ntrat ion- tech- note- 770- 2020- 007/ illum ina- dna- pcr- free- loadi ng- conce ntrat ion- tech- note- 770- 2020- 007. pdf
f https:// nanop orete ch. com/ sites/ defau lt/ files/ s3/ liter ature/ Prome thION- broch ure. pdf
g https:// sages cience. com/ wp- conte nt/ uploa ds/ 2020/ 03/ TELL- Seq_ AGBT_ 2020_ print. pdf
h https:// www. scien ce. org/ conte nt/ artic le/ 100- genome- new- dna- seque ncers- could- be- game- chang er- biolo gy- medic ine
i 900$ for the kit https:// www. unive rsals equen cing. com/ shop
j https:// www. illum ina. com/ produ cts/ by- brand/ compl ete- long- reads- portf olio. html

Technology Company Device name Read length 
(bp)

Input DNA 
(microgram)

Cost Sequencing 
time (hour)

Sequencing by 
synthesis

Illumina NovaSeq 6000 100–300 0.3e $ 44d

Single 
Molecule Real‑
Time

PacBio Sequel IIE ~ 15 k 5b $$$ 30c

Nanopore ONT PromethION Up to 4 m 30f $$ 60

Tell‑seq Universal 
Sequencing 
Technology

TELL‑Seq 
Library Prep 
Kit

100 k range 
information

5ngg $i + Illumina 
cost

3 + Illumina 
run

Illumina 
Complete 
Long‑Read 
technology 
(previously 
announced as 
“Infinity”)

Illumina N/A Up to 10 k 50ngj $ N/A

AVITI Element Element AVITI 
System

2*150 or 10 k 0.1–0.5 $ 48a

Ultima Ultima 
Genomics

UG 100 300 0.25 $h 20

Sequencing by 
binding

PacBio 
(formerly 
Omniome)

N/A 200 N/A N/A N/A

https://miroculus.com/wp-content/uploads/2022/07/Elemet-AVITI-App-Note-03A.pdf
https://www.pacb.com/wp-content/uploads/Procedure-Checklist-Preparing-HiFi-SMRTbell-Libraries-using-SMRTbell-Express-Template-Prep-Kit-2.0.pdf
https://www.pacb.com/wp-content/uploads/Procedure-Checklist-Preparing-HiFi-SMRTbell-Libraries-using-SMRTbell-Express-Template-Prep-Kit-2.0.pdf
https://www.pacb.com/technology/hifi-sequencing/sequel-system/
https://emea.illumina.com/systems/sequencing-platforms/novaseq.html
https://www.illumina.com/content/dam/illumina/gcs/assembled-assets/marketing-literature/illumina-dna-pcr-free-loading-concentration-tech-note-770-2020-007/illumina-dna-pcr-free-loading-concentration-tech-note-770-2020-007.pdf
https://www.illumina.com/content/dam/illumina/gcs/assembled-assets/marketing-literature/illumina-dna-pcr-free-loading-concentration-tech-note-770-2020-007/illumina-dna-pcr-free-loading-concentration-tech-note-770-2020-007.pdf
https://nanoporetech.com/sites/default/files/s3/literature/PromethION-brochure.pdf
https://sagescience.com/wp-content/uploads/2020/03/TELL-Seq_AGBT_2020_print.pdf
https://www.science.org/content/article/100-genome-new-dna-sequencers-could-be-game-changer-biology-medicine
https://www.universalsequencing.com/shop
https://www.illumina.com/products/by-brand/complete-long-reads-portfolio.html
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simultaneously provides flexible read length and highly accurate sequencing data. The 
sequencing reads could range from 300 to 10 kbp, with a maximum throughput of 800 
million reads for each flow cell [65]. AVITI sequencing offers the advantages of accu-
rate and cost-effective short-read representation, along with a low read duplication rate. 
These characteristics make AVITI likely playing a role in the detection of mosaicism in 
metagenomics studies.

Illumina Complete Long-Read technology (previously announced as “Infinity”) is a 
novel long-read sequencing assay that is being developed by Illumina using the sequenc-
ing by synthesis (SBS) chemistry. Of note is that these Complete Long-Read (CLR) 
should not be confused with PacBio Continuous Long-Read (CLR) technology [1]. The 
sequencing reads of Infinity can be up to 10 kbp long, requiring 90% less DNA input 
compared to other long-read technologies. The company claimed that the throughput 
is ~ 10 × higher than that of traditional long-read technologies. Likewise, it can be used 
on Illumina NovaSeq 6000 sequencing system machines [66, 67]. This technology will 
play a crucial role in the assessment of repetitive and highly complex regions, all while 
maintaining cost-efficiency and requiring a small amount of input DNA.

A recent technology called transposase enzyme-linked long-read sequencing (TELL-
seq) commercialized by the Universal Sequencing Technology (UST) company ena-
bles barcoding of as little as nanograms of genomic DNA in a single PCR tube with 3 h 
library construction, without any dedicated specialized instrument. This can generate 
over 100  kb of long-range sequencing information via linked reads. In the PCR tube, 
millions of clonally barcoded beads are used to uniquely barcode long DNA molecules in 
an open bulk reaction without dilution and compartmentation [68]. The de novo assem-
bly of the human genome, structural variant detection, short tandem repeat detection, 
and MHC phasing of the NA12878 sample are the major analyses performed using this 
technology [68, 69]. It provides a cost-effective alternative to native long-read sequenc-
ing methods such as (PacBio and ONT).

Although new long-read technologies are being developed, new short-read systems 
are also under their way. Sequencing by binding (SBB) is a new method of short-range 
sequencing which was first proposed by Omniome company and was acquired by PacBio 
in 2021. The technology is based on the fact that binding of bases on the gold sensing 
surface triggers strong spectral variations within the nanohole optical response [58, 61, 
70]. The analysis provided by PacBio shows a better variant calling performance in terms 
of precision and recall for the NA12878/HG001 individual using 40 × coverage com-
pared to competitors at a lower cost [67, 71]. The high sequencing accuracy will likely 
enable the assessment of mosaic variant and cell-free DNA.

A very recent technology called Ultima [72] is capable of producing billions of high-
quality sequencing reads (Q30 > 85%) with a length of around ~ 300 bp. The sequencing 
takes less than 20 h at a very low cost. Such a read dataset was used to call the SNVs and 
indels (length < 10) of GIAB samples HG001-7 showing an accuracy of 99.6 and 96.4% 
[72]. The main features of the device that make this possible are open fluidics, optic 
systems, and their new technology called “mostly natural sequencing chemistry”. This 
enables bypassing the high cost of sequencing dominated by consumables flow cells and 
the sequencing reagents. Given the reduced cost, this technology will likely enable large 
RNA-Seq quantitative analysis.
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As aforementioned technologies have recently been presented, no independent stud-
ies have yet been performed comparing these to well-established state-of-the-art tech-
nologies with each other. Nevertheless, in one study provided by PacBio’s website that 
was not peer-reviewed, the F1 score (a combination of precision and recall values) of 
SNVs calling are reported for Element (SNVs:99.5%, indels: 99.6%), Ultima (SNVs:99.6%, 
indels: 99.6%), Illumina’s NovaSeq (SNVs: 99.7%, indels: 98.1%), and SBB (SNVs: 99.7%, 
indels: 99.2%), which may not be representative enough [73]. It is noteworthy that 
assessments of SVs and SNVs calling of different sequencing technologies are affected by 
benchmark datasets and the included regions across the genome (e.g., tandem repeats 
and telomers) [11, 13, 14]. Besides, the development of variant calling tools such as Clair 
[74], Deepvariant [75], Longshot [76], and Sniffles [77] depends on benchmark datasets 
to measure the performance of new tools. Having comprehensive benchmark datasets 
including a diverse range of variations indeed provides a more accurate assessment, 
showing the importance of developing and establishing new datasets.

Impact of reference genome
One major challenge for creating genomic benchmark datasets is that they are often 
dependent on the quality of the underlying reference genome. The first human ref-
erence genome was released in 2000 covering only the euchromatin fraction of the 
genome [78, 79]. The human reference genome GRCh38 (a.k.a. hg38) was released by 
the Genome Reference Consortium in 2013 as a replacement for GRCh37 (a.k.a. hg19) 
presented in 2009 [80]. GRCh38 was lastly updated in 2022 with a minor new patch, 
GRCh38.p14. This reference genome includes sequences originally derived from a few 
individuals with African and European ancestries [80].

The reference genome is a fundamental resource for biomedical research, human 
genetics, and clinical studies. Interestingly, 151 Mbp of GRCh38 are unknown sequences 
which are distributed all over the chromosomes [81]. Another shortcoming of GRCh38 
is the short arm of chromosome 21 which is represented falsely duplicated and poorly 
assembled [82]. The impact of such shortcomings is investigated in a study for variant 
calling performance specifically for CMRG genes, including KCNE1, CBS, CRYAA, 
TRAPPC10, DNMT3L, and KMT2C [83]. Notably, some initiatives are making efforts to 
improve the quality of the reference genome, including the T2T consortium [81].

The T2T consortium presents a complete sequence of a human genome, called T2T-
CHM13 adding around 200 Mbp to the GRCh38 reference [81]. These cover around 99 
protein-coding genes in addition to more than 2000 candidate genes. Besides, T2T cor-
rects several structural errors in the current reference sequence [83, 84]. T2T-CHM13 
comprises 3.055 billion bp, 4.5% more than GRCh38. The number of annotated genes 
has increased from 60,090 to 63,494. In a study by Ji et al. [85], copy number variation 
(CNV) signal was detected using long-read sequencing data from 41 human individuals 
across 19 populations in 179 CMRG genes on GRCh38. This number increases to 263 
genes on T2T-CHM13. This clearly shows the importance of the reference genome to 
correctly identify and compare variants.

Despite such progress, some argue that the linear reference genome cannot represent 
the diverse genetic information of all human populations and discuss that thousands of 
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genetic variations are absent from the reference genome. This leads to the emergence of 
building human reference pangenomes [43, 86, 87].

Pangenomes could be represented as a genome graph which includes variations 
among the population. There are several approaches to building such a structure, the 
most prominent one is based on using a reference genome (as a FASTA file) together 
with genetic variation (stored in a VCF file) as the alternative paths in the graph [88]. 
Sequencing reads can be aligned into this reference graph [89], which improves the read 
alignments [80, 90]. Its advantages were shown previously for characterizing repetitive 
regions and resolving complex structural variants of medically relevant genes [87]. How-
ever, building such graph reference genome and downstream analysis is still computa-
tionally expensive, hampering wide applicability in diverse scenarios.

Recently, the Human Pangenome Reference Consortium (HPRC) released the first 
draft of the human pangenome reference, which encompasses 47 phased diploid assem-
blies. In comparison to GRCh38, the pangenome contains over 119 Mbp of euchromatic 
sequences, with approximately 90 Mbp residing in SVs. The quality of the assemblies was 
evaluated using the benchmark dataset of GIAB v.4.2.1 [91].

The released pangenome represents a significant advancement in the field of genom-
ics. In a recent study, the all-versus-all comparison of the human pangenome (HPRCy1) 
was beneficial for investigating the short arms of the human acrocentric chromosomes 
13, 14, 15, 21, and 22 (SAACs), as these chromosomes share large homologous regions. 
Specifically, the study demonstrated that SAACs contigs formed a cohesive community 
characterized by high nucleotide identity [92]. Another study leveraged the efforts of 
HPRC to systematically study the differences in SNVs between unique and duplicated 
regions of the human genome, utilizing phased genome assemblies from 47 individuals. 
The findings indicated a 60% increase in SNVs within segmental duplications compared 
to unique regions. Notably, more than 23% of these differences were attributed to inter-
locus gene conversion [93].

Emerging improved reference genomes offer a great opportunity to have more accu-
rate benchmark datasets of genetic variations. However, every new reference brings new 
challenges with itself. As each benchmark is developed for a specific reference genome 
and lifting to another reference needs a new manual curation, which is not always 
straightforward, limiting the applicability of these new datasets in the long run.

Challenges of benchmark curation: overview of tools
Creating a benchmark dataset is a challenging task. It requires high-quality DNA sam-
ples, on which multi-platform sequencing machines should be run. Then, several state-
of-the-art software packages should be used to align the read to the reference genome 
or assemble the genome de novo, call the variant, and analyze the result. For some chal-
lenging regions, manual curation is also needed. In this section, we provide an overview 
of current literature on these steps.

In a typical pipeline for developing benchmark datasets, the first step is to map the 
DNA sequencing reads to the reference genome. A plethora of tools have been devel-
oped for mapping reads to reference including, but not restricted to minimap2 [94], 
NGMLR [95], BWA-MEM2 [96], LRA [97], Vulcan [98] and Winnowmap2 [99]. After 
mapping the reads to the reference genome, the next step is calling variants. For calling 
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SNVs and indels, several tools are available such as FreeBayes [100], Strelka [101] and 
GATK [102] for short-reads DeepVariant [75], PEPPER-Margin-DeepVarian [103] and 
Clair2 [104] for long reads. While for SVs, Manta [105], DELLY [106] and Parliament2 
[107] are used for short reads and Sniffles2 [77], pbsv [108] and CuteSV [109] are avail-
able for calling SVs using long reads [17].

Such a pipeline for developing benchmark datasets is tolerant to low coverage, indels, 
and resolving heterozygosity; thus, more suitable for population-scale studies. However, 
de novo genome assembly is the most accurate way to give a sample genome represen-
tation, but it is computationally demanding [110, 111]. Comparing the assembly to the 
reference reveals the genomic variations [112]. Some methods use both ONT and HiFi 
[113] or only ONT [114, 115], while others use HiFi reads solely [42] and still manage to 
provide a diploid assembly encompassing both haplotypes [33, 113, 116]. Then, one can 
use Dipcall to identify SNVs based on haplotype-resolved assembly. Comparing assem-
bly methods and technologies for detecting variants is out of the review scope. For more 
on variant identification and the utility of assembly and alignment approaches, we sug-
gest the reader the review by Mahmoud et al. [17].

In CMRG, Dipcall was used to call the variants from the assembled genome of the 
sample HG002. CMRG analysis takes advantage of HiFi reads and simultaneously uses 
fully homozygous human cell lines, resulting in reducing the bias introduced by methods 
and algorithms towards resolving only simple regions and ignoring challenging regions. 
Accordingly, both alignment-based variant calling methods and Dipcall were used to 
produce GIAB v.4.2.1.

Regardless of the method used for identifying SNVs or SVs, there are several tools to 
benchmark the results. That is done by taking the SNVs or SVs calls and comparing it to 
the benchmark call set, overcoming minor differences in representation that can happen 
between different variant calling tools. Thus, these tools help in the assessments of pipe-
lines and medical research, ultimately comparing sequencing methods and centers, and 
developing new tools.

There are mainly two SNVs benchmarking tools used today. Hap.py [117] is a collec-
tion of tools provided by Illumina which is based on the htslib programming library to 
compare variants. Another package is RTG vcfeval [118], which performs sophisticated 
comparison of SNVs. The comparison is done at the haplotype level by considering pos-
sible genomic sequences when variants are applied to the reference genome. This is not a 
trivial computational problem, as there are a huge number of combinatorial possibilities 
for such insertions. They came up with the idea of using dynamic programming, result-
ing in a practical software for benchmarking the variant set against the truth set.

There are two different techniques for benchmarking: the alignment and the genome 
assembly approaches. Some of the most well-known tools for the alignment approach 
include tools like SURVIVOR [119] and Truvari [120]. SURVIVOR performs different 
tasks like simulation reads and converting different formats to VCF. It also merges and 
compares SVs within samples and among populations. Finally, Truvari is more advanced, 
working on a population level, and giving more flexibility in benchmarking. It uses dif-
ferent comparison metrics: SV type, reference distance, sequence and size similarity, 
reciprocal overlap, and genotype matching. Furthermore, it supports specifying match-
ing stringency of SV size, SV sequence, and reference distance.
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One well-known method of genome assembly approach for SVs benchmarking is 
TT-Mars [121], which uses a haplotype-resolved assembly to assess structural variants. 
TT-Mars compares call sets to genome assembly and detects how well they represent 
the assembly, instead of comparing them directly to variant calls. Likewise, the way TT-
Mars works makes it less dependent on alignment. Hence, it minimizes the bias from 
alignment gap parameters originated from alignment tools. To emphasize the impor-
tance of the development of benchmarking tools, these are critical to define standard 
performance metrics and make the process labor free. When it comes to complex struc-
tural variants, the challenge is that one SV can be represented in different ways, making 
the comparison difficult given the wide spectrum of their types and sizes.

Discussion
In this review, we highlighted the emergence and development of genomics benchmark 
datasets, while describing the ones currently available in both healthy and patient sam-
ples. These datasets provide key insights on the performance of sequencing technolo-
gies, as well as analytical methods. We also discussed new alternative references for the 
human genome that will impact the utility of the so far provided benchmarks. Further-
more, we briefly reviewed new technologies that might lead to further improvements of 
the currently available benchmark datasets. Altogether, the field of genomic benchmarks 
is very active with multiple groups (FDA and NIST) introducing ideas and new bench-
mark sets for variant calling and improving the field of genomics and genetics further 
[16, 85, 122–124]. This review brings a special focus on the recently released challeng-
ing medically relevant genes (CMRGs) benchmark study, which encompasses 386 genes 
that are challenging due to the complexity of their genomic location. The existence of 
the CMRGs benchmark dataset explicit the fact that we need to improve state-of-the-
art variant comparison methods such as benchmark tools. Benchmark tools give clearer 
evidence whether variants identified by the tool being tested are present or not in the 
benchmark dataset, and on the correctness of the variant representation. These are key 
issues and often not easy to resolve, given the repetitiveness of certain genomic regions 
that lead variant calling tools to have different ways to represent the genomic variations. 
The differences in representation can be as easy to identify as insertions vs. duplications, 
or as difficult as multiple insertions being characterized as one large insertion present at 
once at a tandem repeat [95].

Despite these direct challenges, there is a huge gain from keeping benchmark data-
sets up to date and continuing to challenge the genomics and bioinformatics field. With 
this in mind, there are multiple future opportunities for genomic benchmarks in gen-
eral. The most obvious one is creating a dataset that combines SNVs, indels, and SVs. 
While this was first done at the CMRGs benchmark, we are still currently lacking meth-
ods to simultaneously identify SNVs and SVs, and thus also benchmark tools that can 
do the same. One exception might be Dipcall [11], which can provide SNV and SV calls 
simultaneously. Unfortunately, the vast majority of variant calling methods are focus-
ing on either variant class, and thus our benchmark tools are also specific to each vari-
ant type. In terms of variants, benchmark datasets available almost exclusively focus on 
variants found in germline cells. We reported only one benchmark dataset describing 
variants identified in a somatic cell lineage as a benchmark set. Despite these issues, we 
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do believe that this gap in benchmark datasets will be closing, hopefully soon. The chal-
lenges to do so are multifold, as one not only requires to characterize one sample, but 
two samples, e.g., of different tissues. Other such benchmark datasets will be needed to 
obtain key information into the limitations of current available variant detection pipe-
lines and approaches. Together with somatic variants, the interpretation of low variant 
allele frequency in a single tissue is also an exciting endeavor to pursue for future bench-
mark datasets. Here, the challenge is to obtain deep coverage datasets and carefully dis-
tinguish false signals (PCR or sequencing errors) from true mosaicism. This will be very 
important not just for cancer, but potentially also for other adult diseases (e.g., brain 
related) [125]. Besides these challenges, there are of course also the other dimension of 
characterizing the full human reference genome. Current benchmark datasets are pro-
viding a curated variant call set up only to ~ 90% of the human genome (Table 1). Regions 
such as telomeres, large tandem repeats, and centromeres are often excluded [16, 123]. 
Furthermore, the T2T-CHM13 reference genome provides further unique regions such 
as the Acro centromeric regions and small chromosome arms [81, 84]. Due to the utili-
zation of diverse sequencing technologies, algorithms, and software, GIAB stands out 
as the most comprehensive benchmark dataset among those discussed in this review. 
As a result, when it comes to developing new variant callers or software for benchmark 
assessment purposes, we strongly recommend leveraging GIAB as a reference.

Over this review, we focused only on genome-based variant benchmark datasets, but 
this is of course only the tip of the iceberg. As a different approach, current projects are 
being designed to address the need for benchmarks designed for mRNA expression. This 
has multiple challenges, such as the stability of the sample and the impact on the expres-
sion rate of genes/isoforms. This will require new benchmark tools to compare the 
benchmark set of isoforms to that which will be identifiable by other pipelines. Further 
standards need to be defined in terms of if a missing isoform counts as a false negative 
or not, which truly depends on the depth of sequencing. This is in contrast to genome 
approaches where higher coverage is important but will not play such a crucial role as in 
RNA sequencing [1]. Other benchmark datasets could be thought over, such as methyl-
ated DNA or genomic 3D structure, which present many challenges and thus are beyond 
the scope of this review. Nevertheless, there is a clear need for such datasets to ensure 
accurate assessment of novel bioinformatics tools at all levels, which likely will lead to an 
improved and more impactful variant prediction.

With all these innovations in mind, one point that is often discussed is whether to go 
wide or deep. Meaning, if benchmarks need to be provided across multiple individuals 
per, e.g., ethnicity at some point (i.e., going wide) or focus on a few individuals (i.e. going 
deep). Providing a benchmark data set across many individuals would be most compre-
hensive, as different ethnicities could have different challenges to identify their common 
alleles. Still, the argument can be made that going deep into a few selected samples is 
more helpful as it allows benchmarks on the same sample, but across different tissues 
or essays (DNA, RNA, etc.). Furthermore, a key point is that this would also allow the 
development of samples carrying pathogenic variants, which are potentially key to push-
ing the medical genomics field forward. The selection of the individual or disease is of 
course challenging, and as discussed before, a tumor/normal sample would be probably a 
good start in this direction. Another aspect is of course also the development of genomic 
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benchmarks across key non-human model species such as plants, animals, and fungi. 
These could be key for genomics and clinical research, but also for economic reasons.

It is clear that benchmark datasets are key elements of our innovations across genom-
ics and genetics, with a large impact across the human genome-based research. This 
review provides a snapshot in time on what has been done so far, and we speculate about 
future endeavors that will push the field forward.
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