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Abstract 

Background:  The gut microbiota plays a crucial role in regulating host metabolism 
and producing uremic toxins in patients with end-stage renal disease (ESRD). Our 
objective is to advance toward a holistic understanding of the gut ecosystem and its 
functional capacity in such patients, which is still lacking.

Results:  Herein, we explore the gut microbiome of 378 hemodialytic ESRD patients 
and 290 healthy volunteers from two independent cohorts via deep metagenomic 
sequencing and metagenome-assembled-genome-based characterization of their 
feces. Our findings reveal fundamental alterations in the ESRD microbiome, charac-
terized by a panel of 348 differentially abundant species, including ESRD-elevated 
representatives of Blautia spp., Dorea spp., and Eggerthellaceae, and ESRD-depleted 
Prevotella and Roseburia species. Through functional annotation of the ESRD-associ-
ated species, we uncover various taxon-specific functions linked to the disease, such 
as antimicrobial resistance, aromatic compound degradation, and biosynthesis of small 
bioactive molecules. Additionally, we show that the gut microbial composition can be 
utilized to predict serum uremic toxin concentrations, and based on this, we identify 
the key toxin-contributing species. Furthermore, our investigation extended to 47 
additional non-dialyzed chronic kidney disease (CKD) patients, revealing a significant 
correlation between the abundance of ESRD-associated microbial signatures and CKD 
progression.
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Conclusion:  This study delineates the taxonomic and functional landscapes and bio-
markers of the ESRD microbiome. Understanding the role of gut microbiota in ESRD 
could open new avenues for therapeutic interventions and personalized treatment 
approaches in patients with this condition.

Background
End-stage renal disease (ESRD) is an advanced state of chronic kidney disease (CKD) 
defined by severe and irreversible kidney damage. CKD is a prevalent health issue glob-
ally, with estimated morbidity rates of 9.1% worldwide and approximately 12–15% in 
upper-middle-income countries [1, 2]. Approximately 2% of CKD patients progress to 
ESRD, resulting in a significant decline in quality of life, increased mortality risk, and 
substantial financial burden [3, 4]. Dialysis serves as the primary therapeutic modality 
for ESRD; however, patients with ESRD still experience uremia and uremic syndromes 
due to the accumulation of toxins between dialysis sessions and inadequate clearance of 
certain protein-bound toxins during dialysis [5]. Many of these toxins, such as indoxyl 
sulfate (IS), p-cresyl sulfate (PCS), phenylacetylglutamine (PAG), and trimethylamine 
N-oxide (TMAO), are derived from diverse gut bacteria through the fermentation of 
dietary proteins or cholines [6, 7]. Moreover, the gut microbial community helps main-
tain individual metabolic and immune homeostasis, which may be beneficial for reduc-
ing the risk of complications (e.g., constipation and cardiovascular disease) in ESRD 
patients [8–10]. Notably, recent reports have highlighted the association between gut 
dysbiosis and mortality in hemodialysis patients [11], emphasizing the significant contri-
bution of gut microbiota to the etiology and treatment of ESRD.

Various approaches targeting the gut microbiota are currently being explored for the 
management and treatment of CKD and ESRD. For example, the supplementation of 
dietary fiber has shown promising results in reducing uremic toxin levels and cardio-
vascular risk in CKD patients [12]. Also, preliminary clinical trials in CKD and ESRD 
patients have demonstrated that probiotic, prebiotic, and synbiotic supplementation 
can lower uremic toxins, improve inflammatory mediators, and potentially slow down 
disease progression [13, 14]. Notably, a recent study highlighted the significant impact 
of oral administration of a single probiotic, Lactobacillus casei Zhang, which effectively 
increased the level of short-chain fatty acids (SCFAs) and nicotinamide in the serum 
and kidney and retarded the decline of kidney function in CKD [15]. While these inter-
ventions have resulted in modifications of the gut microbiota or specific gut microbial 
taxa, the precise impact of these alterations on the disease and the underlying mecha-
nisms involved remain unclear. Nevertheless, unraveling the patterns of gut microbiota 
in ESRD patients holds great potential for enhancing our understanding of the disease 
mechanisms and advancing therapeutic approaches.

Several studies have investigated alterations in the gut microbiome of ESRD patients 
using sequencing of the bacterial 16S rRNA gene; however, these studies were limited 
by relatively small sample sizes [16–19]. As summarized by Zhao et al. [20], these stud-
ies consistently indicated an altered gut microbiota in ESRD patients, characterized by a 
decrease in microbial diversity, an expansion of certain pathogenic microorganisms (e.g., 
Fusobacterium spp. and members of Enterobacteriaceae), and a depletion of symbiotic 
taxa (e.g., Prevotella spp. and Faecalibacterium spp.). In our previous study, we revealed 
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the dependence between the gut microbiota and uremic toxin accumulation in the feces 
and serum of ESRD patients and confirmed that the patient’s gut microbiota and sev-
eral ESRD-associated species can promote toxin production in a CKD mouse model 
[21]. However, the microbial signatures at the low taxonomic levels (e.g., at the species 
or strain level) and the unique functional capacity of ESRD-associated species have not 
been fully characterized. Furthermore, the generalizability of these findings has not been 
tested in an independent ESRD patient cohort or in a cohort of CKD patients who do 
not require dialysis.

To overcome these limitations, this study aimed to conduct a comprehensive investi-
gation on a larger scale. We performed metagenomic shotgun sequencing to analyze a 
total of 715 fecal samples, including 378 hemodialytic patients, 47 non-dialyzed CKD 
patients, and 290 healthy volunteers. These samples were obtained from two distinct 
Chinese cohorts: the previously described Beijing cohort [21], which was extended to 
include new ESRD patients and healthy controls (totaling 254 ESRD patients and 179 
controls), and a newly established Shanghai cohort (124 ESRD patients, 47 non-dialyzed 
CKD patients, and 111 controls). We employed both genome-centric and gene-centric 
strategies to characterize the taxonomic and functional variations in the ESRD micro-
biome. Furthermore, we linked species/taxon-specific functions to the ESRD status by 
performing functional annotation of the ESRD-associated species at the genome level. 
To validate the relationship between the gut microbiota and uremic toxins, we deter-
mined the serum concentrations of four specific uremic toxins (i.e., IS, PCS, PAG, and 
TMAO) in the Shanghai cohort using a targeted approach. These data were then com-
bined with the metabolome data from the Beijing cohort to enable cross-cohort valida-
tion of the microbiota-toxin relationship.

Results
Participants and dataset

Two cohorts were studied, from Shanghai and Beijing. The Shanghai cohort included 
124 hemodialysis patients, 47 non-dialyzed CKD patients, and 111 healthy volunteers. 
The Beijing cohort consisted of participants from our previous study [21] (223 hemo-
dialysis patients and 69 healthy volunteers) and an additional 31 hemodialysis patients 
and 110 healthy volunteers. For both cohorts, no significant difference was observed in 
sex, age, body mass index (BMI), or dietary habits between the patients and controls (see 
Additional file 1: Table S1 for the phenotypic information of all participants). The ESRD 
patients in both cohorts underwent hemodialysis 1–3 times per week, with a duration 
ranging from 6 to 264 (median 52) for the Shanghai cohort and from 6 to 312 (median 
36) months for the Beijing cohort. Importantly, the recruitment, sample collection and 
storage were conducted independently for the Shanghai and Beijing cohorts to ensure 
mutual verifiability.

Whole-metagenome shotgun sequencing of 715 fecal samples was carried out to gen-
erate a total of 8.8 trillion bases (Tb) of high-quality data (including 3.3  Tb from our 
previous study [21]), with an average of 12.3 ± 2.0 gigabases (Gb) of data per sample 
(Additional file 1: Table S2-3). Reads assembly yielded 19,391 medium- and high-quality 
metagenome-assembled genomes (MAGs) with completeness of > 70%, contamination 
of < 5%, and quality score of > 60. These MAGs were further grouped into 1303 clusters 
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(“species” hereafter) at the nucleotide similarity threshold of 95% [22]. On average, these 
species had a genome completeness of 93.0% (median, 96.0%) and a contamination rate 
of 0.8% (Additional file 1: Table S4). Notably, 164 of these species were not present in the 
comprehensive Unified Human Gastrointestinal Genome (UHGG) collection [23] and 
were considered novel. We annotated 1303 species using the Genome Taxonomy Data-
base (GTDB) [24], with manual revision, and they represented the major phylogenetic 
taxa of the human gut microbiota (Supplementary Fig.  1; Additional file  1: Table  S4; 
Additional file 2: Fig. S1). A majority (73.1%) of these species were derived from uncul-
tured microbes, similar to the entire UHGG collection. Mapping the metagenomic reads 
against the collection of species revealed clear species boundaries, with a high mapping 
rate on average (81.6% per sample, Additional file 2: Fig. S2), indicating that the assem-
bled species effectively represented the microbiome of our cohort.

The gut microbiome stratifies ESRD patients from healthy controls

The species richness and evenness of the ESRD patients were approximately equal to 
those of the healthy controls in both cohorts (Additional file 2: Fig. S3). However, prin-
cipal coordinates analysis (PCoA) of Bray–Curtis distance revealed a clear distinction 
between patients and controls (Fig. 1a). Further analysis of the top five principal coor-
dinates (PCs) (with a contribution > 3% and p < 0.05 in the Tracy–Widom test) demon-
strated that PC1, PC2, PC3, and PC5 were significantly correlated with ESRD status, 
while PC1, PC4, and PC5 showed differences between the cohorts (Additional file 2: Fig. 
S4). These findings suggested that both the disease status and the cohort origin were 
major factors driving the variations in gut microbial composition in our samples. Con-
sistently, permutational multivariate analysis of variance (PERMANOVA) indicated 
that ESRD status and cohort origin independently accounted for 3.61% (p < 0.001) and 
2.95% (p < 0.001) of the overall microbial variability, respectively. The combined effects 
of individuals’ sex, age, and BMI explained an additional 0.92% of the variation (effect 
size < 0.5% and p > 0.05 for each parameter; Fig. 1b). Interestingly, the underlying kidney 
disease (e.g., glomerulonephritis or diabetic kidney disease) only contributed to 0.68% 
(p = 0.23) of the gut microbial variations among ESRD patients (Fig. 1b).

To assess the discriminatory power of the gut microbiome in ESRD patients and 
healthy controls, we employed the random forest regression model, which exhibited 
high accuracy in identifying ESRD status in both the Shanghai cohort (area under the 
receiver operating characteristic curve [AUC], 0.96) and the Beijing cohort (AUC, 0.98) 
(Fig. 1c; Additional file 1: Table S5). Notably, the models trained on one cohort showed 
robust discriminatory power in classifying patients and controls in the other cohort 
(AUC > 0.91; Additional file  2: Fig. S5). Taken together, our results indicate consistent 
alterations of the gut microbiome of ESRD patients, notwithstanding the significant dif-
ference of the overall microbiome composition of the two cohorts, and suggest associa-
tions of microbiome alterations and kidney disease.

Microbial species related to ESRD

Some 353 differentially abundant species between the ESRD patients and healthy con-
trols were identified using the combined significance level in the two cohorts (com-
bined Wilcoxon rank-sum test q < 0.05; Additional file  2: Fig. S6a-b). Among these, 



Page 5 of 22Zhang et al. Genome Biology          (2023) 24:226 	

224 were more abundant in patients and 129 in controls. Importantly, all of these 
species remained significant upon adjustment for sex, age, and BMI, with a major-
ity (73.5%) having a significant (q < 0.05) and coherent enrichment in both cohorts 
(Additional file 1: Table S6). The enrichment of species was mainly consistent at the 
phylum level, as 41 out of 44 significantly different Bacteroidetes species and 12 out 
of 18 Proteobacteria species enriched in healthy controls. Conversely, a large major-
ity of Firmicutes species (200 out of 271, 73.8%) and 9 out of 10 Actinobacteria spe-
cies were enriched in ESRD patients (Fig. 1d; Additional file 2: Fig. S6c). Of particular 
interest among the health control (HC)-enriched Firmicutes species were Roseburia 
spp. (n = 6) and Faecalibacterium spp. (n = 4), known for their butyrate production 
[25], as well as Lachnospira spp. (n = 5), and all Negativicutes species (n = 10). Among 

Fig. 1  Distinct gut microbiome characteristics are associated with ESRD. a Principal coordinates analysis 
(PCoA) of the Bray–Curtis distances based on gut microbial species. Samples are depicted in the plot at the 
second and third principal coordinates (PC2 and PC3), along with the ratio of variance contributed by these 
two PCs. Ellipsoids represent a 95% confidence interval surrounding each group. b Permutational multivariate 
analysis of variance (PERMANOVA) results showing the effect size of phenotype indexes contributing to 
the variance of the overall gut microbiome. The combined effect size of sex, age, and body mass index 
(BMI) is also shown. Bar plots indicate the explained variation (effect size R2) of each phenotype factor. ***, 
permutated p < 0.001. c Receiver operating characteristic (ROC) analysis of the classification of ESRD status 
using the random forest model. For each cohort, 70% of the samples were randomly selected as the training 
set, and the remaining 30% of the samples were used as the testing set. The performances of models trained 
on one cohort and tested on the other are also shown. The classification performance of the model was 
assessed using the area under the ROC curve (AUC). The AUC values and 95% confidence intervals (CIs) are 
shown. d Overall representation of the 353 ESRD-associated species with a consistent trend observed in both 
the Shanghai and Beijing cohorts. The numbers of ESRD-enriched and HC-enriched species for each genus 
are shown
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the Bacteroidetes enriched in controls, the most common clade was Prevotellaceae, 
represented by 25 species, with all except Prevotella copri remaining uncharacterized 
at a species level. On the other hand, the ESRD-enriched Firmicutes species often 
belonged to closely related clades, including Blautia (n = 15), Dorea (n = 8), Entero-
closter (n = 6), Lawsonibacter (n = 4), and Eisenbergiella (n = 5). Among the ESRD-
enriched Actinobacteria members were four Eggerthellaceae species, including a 
previously described ESRD-related species Eggerthella lenta [21].

Microbial functions related to ESRD

To characterize the functional features of ESRD microbiota, we annotated the micro-
bial functions of each metagenome via the KEGG (The Kyoto Encyclopedia of Genes 
and Genomes) database using a gene-centric approach [26]. A total of 10,254 KEGG 
orthologs (KOs) and 806 modules were identified and used for further analysis. Like 
the taxonomic composition, the overall functional capacity of ESRD patients’ micro-
biota exhibited a considerable shift compared to that of healthy controls (Additional 
file 2: Fig. S7). A total of 1279 KOs and 103 modules differed significantly in abundance 
between the patients and controls when combining the Shanghai and Beijing cohorts 

Fig. 2  Functional profiles differ between ESRD patients and healthy controls. a, b Volcano plots displaying 
the fold change vs. q-values for all KEGG modules in the Shanghai (a) and Beijing (b) cohorts. The X-axis 
shows the ratio (log2 transformed) of module abundance in ESRD patients compared with that in healthy 
controls. The Y-axis shows the q-value (-log10 transformed) of a module, and the two dotted lines indicate 
q-value < 0.05 (upper) and < 0.2 (lower). The ESRD-associated modules with a consistent trend in the two 
cohorts are shown in red (ESRD enriched) and blue (control enriched) circles. c Heatmap showing the 
abundance of several representative functions in ESRD patients and healthy controls. Each row represents 
a KEGG ortholog with the scaled relative abundance among all individuals and each column represents an 
individual, ordered by hierarchical clustering. The results of four ESRD-enriched representative categories of 
enzymes are shown. d Bar plot showing the q-values (log10 transformed) of ESRD-associated modules. Red, 
ESRD-enriched modules; blue, HC-enriched modules
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(Fig. 2a, b; Additional file 2: Fig. S8). A majority (75.8% of KOs and 81.6% of modules) of 
the differential functions were enriched in the gut microbiome of ESRD patients. Mod-
ules that were most highly ESRD-biased involved antimicrobial resistance and bacterial 
toxicity, phosphotransferase systems for monosaccharide (e.g., fructose and mannose) 
uptake, secondary metabolite biosynthesis, and transport systems (Fig. 2c, d; Additional 
file 1: Table S7-8). Conversely, the ESRD-depleted functions included inositol phosphate 
metabolism, ubiquinone and pyridoxal biosynthesis, and others. It is worth mention-
ing that the biodegradation of aromatic compounds by gut bacteria is a major source of 
uremic toxins [27, 28]. In ESRD patients, several modules related to the degradation of 
aromatic amino acids (AAAs) (i.e., M00037 and M00936 for tryptophan and M00042 
for tyrosine) or other aromatics (i.e., M00418 and M00538 for toluene and M00537 
for xylene) were enriched, whereas modules involved in the degradation of benzene 
(M00548) and benzoyl-CoA (M00541) were depleted. Consistently, the enzymes associ-
ated with aromatic degradation were predominantly enriched (25/27 KOs) in the ESRD 
microbiome (Additional file 1: Table S7).

Considering the incomplete representation of antibiotic resistance genes (ARGs) in 
the KEGG database, we annotated and profiled a total of 3009 ARGs using a comprehen-
sive approach (see Methods) to investigate the alteration of antibiotic resistome in ESRD 
(Additional file 1: Table S9). The ESRD patients exhibited an average 39.4% increase in 
the overall relative abundance of ARGs compared with the healthy controls (p < 0.001; 
Additional file 2: Fig. S9a-b). This increase was particularly notable for several antibiotic 
resistance mechanisms, including multi-drug resistance, beta-lactamase, aminoglyco-
side, and quinolone resistance (Additional file 2: Fig. S9c). A similar phenomenon was 
observed in non-dialyzed CKD patients (Additional file  2: Fig. S9b-c). These findings 
suggest that patients may have experienced more frequent exposure to antibiotics in the 
past than the controls [29].

Functional configuration of ESRD‑enriched and HC‑enriched species

In contrast to conventional metagenomic strategies used to study microbial functions in 
the context of a mixed microbial community, our MAG-based approach offers the pri-
mary advantage of having microbial genomes, enabling the assignment of functions to 
species and thus linking the species-specific functions to ESRD. Using this approach, we 
functionally annotated 276 out of 353 ESRD-associated species with completeness > 90% 
(“near-complete” genomes [30]) and computed the functional differences between the 
ESRD- and HC-enriched species. To minimize the impact of phylogeny, which can influ-
ence functional contents (Additional file 2: Fig. S10), we first performed the compari-
son for Firmicutes. The occurrence frequency of 730 KOs differed significantly between 
ESRD- and HC-enriched firmicutes (Fisher’s exact test, q < 0.05; Additional file  1: 
Table S10). These KOs mainly fell into several categories, with enzymes involved in anti-
microbial resistance and degradation of aromatic compounds being more widespread in 
ESRD-enriched species, while those associated with cofactor and vitamin metabolism 
(e.g., porphyrin, thiamine, and folate) and AAA biosynthesis were mostly present in 
HC-enriched species (Fig. 3a). Notably, sulfur and sulfate metabolism (encoded by Lach-
nospira and Roseburia spp.) and lipopolysaccharide (LPS) biosynthesis (encoded by Neg-
ativicutes members) occurred uniquely in HC-enriched species (Additional file  2: Fig. 
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S11a-b). Proteins associated with bacterial motility (flagellar biosynthesis) were predom-
inantly encoded by HC-enriched Lachnospira, Roseburia, and Agathobacter species and 
ESRD-enriched Hungatella species (Additional file 2: Fig. S11c-d). At the KEGG module 

Fig. 3  Overview of the functional configuration of the ESRD-associated species. a and c Heatmap showing 
the occurrence of several types of enzymes in ESRD-associated Firmicutes (a) and non-Firmicutes (c) species. 
Each row represents a KEGG ortholog, while each column represents a species (colored based on their 
family-level taxonomic assignment). Green and white panels indicate the presence and absence of the 
enzymes in each species, respectively. Several representative functions and the corresponding species are 
labeled in the heatmap. b Bar plots showing the occurrence rate of KEGG modules in the ESRD-associated 
Firmicutes species. Forty KEGG modules that differed in integrity between ESRD-enriched and HC-enriched 
Firmicutes species (see Additional file 1: Table S10 for details) are shown. The colored bars show the 
percentage of species that contained complete KEGG modules: red, module present in ESRD-enriched 
species; blue, module present in HC-enriched species. For a–c, text colored in red and blue denotes 
enrichment in ESRD patients and healthy controls, respectively. d Boxplot showing the polysaccharide 
utilization capacity, including animal carbohydrates, plant cell wall carbohydrates, and mucin utilization, 
of Bacteroidetes species. Nodes represent the species and its colors represent the enrichment of the 
species: red, enriched in ESRD patients; blue, enriched in healthy controls; gray, not significant. e Boxplot 
showing the comparison of enzymes involving to polysaccharide utilization in the gut microbiome of ESRD 
patients and healthy controls. f Occurrence rate of enzymes involved in the biosynthesis of SCFAs, bile 
acids, and uremic toxins in the ESRD-enriched and HC-enriched species. Red, ESRD-enriched species; blue, 
HC-enriched species. Fisher’s exact test: *q < 0.05; **q < 0.01; ***q < 0.001. g Schematic diagram depicting the 
interconnection of ESRD-associated taxa and their functions. Colored triangles denote the taxa that were 
mostly enriched in ESRD patients (red) or healthy controls (blue), and colored squares denote the functions 
that were mainly encoded by ESRD-enriched (red) and HC-enriched (blue) species. Connections between the 
taxa and functions suggest that the functions are likely encoded by the corresponding species
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level, 40 modules differed in completeness between ESRD-enriched and HC-enriched 
Firmicutes (Fisher’s exact test, q < 0.05; Additional file 1: Table S11). Consistently with 
the findings from the gene-centric KO profiling, 8 modules of antimicrobial resistance 
were more frequently encoded in ESRD-enriched species, while 6 modules associated 
with the biosynthesis of some amino acids (methionine, threonine, and lysine) and vita-
mins (riboflavin, pyridoxal, and thiamine) were more often encoded in HC-enriched 
species (Fig. 3b). These findings suggest potential connections between these taxon-spe-
cific functions and ESRD.

Beyond Firmicutes, we observed significant functional differences between ESRD-
enriched and HC-enriched species belonging to other phyla. The non-Firmicutes ESRD-
enriched species exhibited a higher prevalence of antibiotic resistance genes, bacterial 
toxicity-related enzymes, and enzymes involved in arginine and histidine metabolism, 
while the HC-enriched species encoded a higher presence of enzymes involved in the 
metabolism of folate, ubiquinone, and LPS (Fig.  3c; Additional file  2: Fig. S12); these 
functional differences may potentially be associated with ESRD.

We then focused on the polysaccharide utilization capacity of the Bacteroidetes spe-
cies since they are primary polysaccharide degraders in the human gut [31]. Genomic 
annotation of carbohydrate-active enzymes (CAZymes) revealed that, consistent with 
previous studies [32, 33], Bacteroidaceae species were more likely to utilize animal gly-
cans, whereas Prevotellaceae and Muribaculaceae members (most of which were HC-
enriched) were more likely to use plant glycans such as xylan, starch, and pectin (Fig. 3d; 
see Additional file 2: Fig. S13 for polysaccharide utilization locus analysis). Expanding 
the analysis to include all CAZyme genes found in fecal metagenomes, in addition to 
those carried by the assembled genomes, revealed that the microbiome of healthy con-
trols had a higher abundance of plant polysaccharide-degrading genes (Fig. 3e). Interest-
ingly, there was no strong correlation between polysaccharide utilization capacity and 
the relative abundances of Prevotellaceae/Muribaculaceae with meat or vegetable con-
sumption (Additional file 2: Fig. S14), suggesting that the correlation between ESRD sta-
tus and polysaccharide utilization is not highly dependent on diet.

Lastly, we focused on the ability of the ESRD-associated species to produce SCFAs, 
secondary bile acids (SBAs), and uremic toxins, as these functions/metabolites had been 
strongly linked to CKD and ESRD [17, 21, 34]. We observed that enzymes involved in 
butyrate synthesis were more prevalent in HC-enriched species, particularly in the typi-
cal butyrate producers like Roseburia, Faecalibacterium, and Coprococcus spp. [25], while 
acetate and propionate synthases were more common in ESRD-enriched species (Fig. 3f; 
Additional file 2: Fig. S15a). The production of SBAs was more widely distributed among 
ESRD-enriched species, including members of Lachnospiraceae (e.g., Dorea and Hun-
gatella spp.) and Actinobacteria (Collinsella intestinalis and E. lenta) (Additional file 2: 
Fig. S15b). Regarding uremic toxins, the key enzymes involved in synthesizing precur-
sors of IS, PAG, and TMAO were significantly more prevalent in ESRD-enriched spe-
cies compared with HC-enriched species (p < 0.05 for all), while the p-Cresol (precursor 
of PCS) synthase was only encoded by ESRD-enriched species, although not significant 
(p = 0.08) (Fig. 3f ). Additionally, we examined the abundance of these toxin-producing 
enzymes in fecal metagenomes and found that almost all enzymes were highly abun-
dant in the microbiome of ESRD patients compared with that of controls (Additional 
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file 2: Fig. 16a). At the species level, certain ESRD-enriched species belonging to Oscillo-
spiraceae (e.g., Oscillibacter and Flavonifractor spp.), Lachnospiraceae (e.g., Blautia spp., 
Faecalimonas nexilis, and Hungatella effluvii), and Eggerthella were among the major 
contributors to toxin synthesis (Additional file 2: Fig. 16b).

Collectively, these results uncovered the taxon-specific functional signals of ESRD-
associated species and indicated potential mechanistic connections (Fig.  3g), which 
could guide future intervention studies.

Gut bacteria affect serum uremic toxin levels

Our previous study [21] has suggested that the gut microbiota may drive the serum con-
centrations of multiple uremic toxins. To test this finding in an independent cohort, we 
quantified the serum concentrations of four major toxins (IS, PCS, PAG, and TMAO) in 
the Shanghai cohort, as described in the “Methods” section. We developed gut micro-
biota-based regression models to predict the serum concentrations of these toxins in 
ESRD patients (see the “Methods” section). These models demonstrated a substantial 
ability to explain the variance in toxin concentrations within each cohort (21.3–47.8% 
for the Shanghai cohort and 27.9–56.4% for the Beijing cohort; Fig. 4a; Additional file 2: 
Fig. S17). Importantly, the models trained on one cohort exhibited an average of 22.7% 
(ranging from 5.4 to 43.1%, q < 0.01 for all) of the concentration variances of three AAA-
derived toxins (i.e., IS, PCS, and PAG) in the other cohort. This indicates that the gut 
microbiota affects the serum concentrations of these toxins to a considerable degree 
across different populations and quantification methods. The exception was TMAO, for 
which only 1.1–2.2% of the concentration variances were explained by models trained 
on the opposite cohort (Fig. 4a), probably due, in part, to batch effects or its high dialytic 
clearance rate [35] or dietary contributions to its levels [36].

Furthermore, after combining the data from ESRD patients in both cohorts, we identi-
fied 67 species that contributed the most to toxin concentrations (Fig.  4b; Additional 
file 1: Table S12). Among these “toxin-contributing species,” 21 were enriched in ESRD 
patients, while 5 were depleted. Fourteen of the 67 species belonged to the Oscillo-
spiraceae family, coherently with the functional analysis. These 67 species also dem-
onstrated moderate performances in predicting the serum concentrations of toxins in 
healthy subjects across both cohorts, explaining 10.7–39.0% of the variance for three 
AAA-derived toxins and 3.1% for TMAO (Fig. 4b; Additional file 2: Fig. S18). In addi-
tion, the Mantel test analysis revealed significant correlations between the composi-
tion of these toxin-contributing species and clinical parameters such as high-sensitivity 
C-reactive protein (hsCRP) and estimated glomerular filtration rate (eGFR) (Fig.  4c), 
suggesting their potential roles in human physiological health.

Gut microbiota in non‑dialyzed CKD patients

To test whether the gut microbial characteristics of ESRD can be observed already 
in CKD patients, we analyzed the fecal metagenomes of 16 patients with CKD stages 
3–4 (CKD3/4) and 31 patients with CKD stage 5 (CKD5N) from the Shanghai cohort. 
PCoA and PERMANOVA analyses revealed that the gut microbiome composition of 
CKD3/4 patients fell between that of the ESRD patients and healthy controls (CKD3/4 
vs. ESRD, effect size = 3.2%, adonis p = 0.013; CKD3/4 vs. HC, effect size = 5.7%, 
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adonis p = 0.002), while the microbiome of CKD5N patients was not statistically dif-
ferent from that of ESRD patients (adonis p = 0.19) (Fig.  5a). A majority of the 353 
ESRD-associated species displayed similar abundance trends in CKD3/4 and CKD5N 
patients compared with healthy controls, among these, 82 species (53 ESRD-enriched 
and 29 HC-enriched species) showed a continuous positive or negative trend in rela-
tion to disease severity (Additional file 1: Table S13; Additional file 2: Fig. S19). Also, 
the total relative abundances of the ESRD-enriched and -depleted species showed 
significant correlations with the severity of CKD (Fig. 5b). These findings support the 
hypothesis that ESRD-associated bacteria might be related to CKD progression and 
the development of ESRD.

Fig. 4  Gut microbiota-based prediction of the serum concentrations of uremic toxins. a Prediction of the 
serum concentrations of four toxins using gut microbiota-based model training with Shanghai individuals 
(upper panels) and Beijing individuals (bottom panels). For each model, 70% of the samples in one cohort 
were randomly selected as the training set, and the models were tested on the remaining 30% of the 
samples from the same cohort (self ) or all samples from the other cohort. The X-axis and Y-axis show the 
predicted concentration and scaled measured concentration for each toxin, respectively. Smooth curves 
are formed using the geom_smooth function with the default parameters in the R ggplot2 package. b The 
67 gut species with the highest contribution to serum toxin levels. Lines connect the species used in the 
prediction models for each toxin, with the line color representing the Spearman correlation coefficient 
between the measured toxin concentration and species abundance. The color of the species denotes their 
enrichment in ESRD patients (red) or healthy controls (blue), and a dotted box labels the species that belong 
to Oscillospiraceae. Colored dots denote the species’ phylum (from left to right: Actinobacteria, Bacteroides, 
Proteobacteria, and Firmicutes). c Correlation between the 67 toxin-contributing species and the clinical 
parameters. The bar lengths indicate Mantel’s r between the species abundance and each parameter, and the 
q-values are calculated based on the Mantel test with 9999 permutations: *q < 0.05; **q < 0.01; ***q < 0.001
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Consistently, a random forest classifier based on the microbial profiles of ESRD 
patients and controls in the Shanghai cohort achieved AUCs of 0.84 and 0.94 in dis-
criminating CKD3/4 and with CKD5N patients, respectively, from the healthy con-
trols (Fig. 5c). The classifier trained on the Beijing cohort achieved similar performance 
(Additional file  2: Fig. S20). These findings illustrate the diagnostic potential of ESRD 
microbial signatures in CKD patients.

Discussion
Here, we studied the gut microbiome composition of two Chinese cohorts, consisting 
of a total of 378 ESRD patients and 290 healthy controls, using shotgun metagenomics 
and identified 353 species differentially abundant between patients and controls. Our 
findings confirmed the majority of previous observations (as summarized by Zhang et al. 
[20]) at the genus level, such as the enrichment of Streptococcus, Fusobacterium, and 
Desulfovibrionaceae, as well as the depletion of Prevotella, Faecalibacterium, and Cop-
rococcus in ESRD patients. Notably, our study extended these observations to the MAG-
based species level, providing more detailed insights. For instance, within the Prevotella 
genus, which encompasses over 30 species in the human gut [37], we identified 21 spe-
cies that showed significant depletion in ESRD patients. Among them were two clades 
of P. copri (P. copri is a complex with 4 species-level clades [38]), P. stercorea, P. lascolaii, 
and 17 uncultivated species; further functional analyses are needed to elucidate their 
possible role in ESRD. Beyond previously observed ESRD-associated microbiome altera-
tions, we also report numerous novel alterations, leveraging the large sample size and 
cross-regional verification. These newly identified taxa include ESRD-enriched members 
of Oscillospiraceae (including the flavonoid degrader Flavonifractor [39]) and Dorea 

Fig. 5  The gut microbial signatures of CKD patients are similar to those of ESRD patients. a Principal 
coordinates analysis (PCoA) of Bray–Curtis distances of gut microbial profiles of the Shanghai individuals. 
Samples are plotted based on the first and second principal coordinates (PC1 and PC2), with the ratio of 
variance contributed by these two PCs displayed. Ellipsoids represent a 95% confidence interval surrounding 
each group. b Total relative abundances of ESRD-enriched and HC-enriched species in the gut microbiota 
of all groups. Boxes represent the interquartile range between the first and third quartiles and the median 
(internal line). Whiskers denote the lowest and highest values within 1.5 times the range of the first and 
third quartiles, respectively; dots represent outlier samples beyond the whiskers. Student’s t-test: *q < 0.05; 
**q < 0.01; ***q < 0.001. c Random forest models for distinguishing CKD3/4 and CKD5N patients from healthy 
controls based on the gut species profile of ESRD patients. This analysis was performed on the Shanghai 
cohort, where 70% of control (randomly selected) and all ESRD samples were used as the training set, and the 
remaining 30% of control and all CKD3/4 and CKD5N samples were used as the testing set. The classification 
performance of the model was assessed by the AUC. The AUC values and 95% confidence intervals (CIs) are 
shown. AUC, the area under the ROC curve
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(potential producer of SBAs and toxins), as well as ESRD-depleted members of Murib-
aculaceae species (potential plant polysaccharide degraders) and Lachnospira (potential 
SCFA producers). Besides, we found the consistency of these ESRD-associated signa-
tures in patients with CKD, indicating that these signatures may influence the progres-
sion of CKD.

In addition, we have elucidated the functional profiles of 353 ESRD-associated species 
using a genome-centric approach, which provides a significant advancement compared 
to previous studies that typically employed the gene-centric approach [26] or clade-spe-
cific markers. The availability of functional profiles allowed us to connect numerous spe-
cies/taxon-specific functions to ESRD, as summarized in Fig. 3g, thus laying grounds for 
a better understanding of bacteria-host crosstalk mechanisms in disease. For instance, 
we found that the proteins responsible for flagellar biosynthesis were more likely to be 
encoded by HC-enriched members of Lachnospira, Roseburia, and Agathobacter, as well 
as ESRD-enriched Hungatella spp. These species produce flagellin, which has previously 
been demonstrated to possess immunomodulatory properties associated with multi-
ple inflammatory diseases [40, 41]. In particular, Roseburia-derived flagellin has been 
shown to act as a negative regulator of gut inflammation [42] and exhibits protection 
effects on barrier functions [43]. These findings suggest that the flagellar/flagellin bio-
synthesis capacity may hold potential significance in the context of ESRD, warranting 
further investigation in this research direction. Another example pertains to the mem-
bers of Prevotellaceae (comprising 25 HC-enriched species) and Muribaculaceae (6 
HC-enriched species). Functional analysis indicated that these species contribute to a 
higher capacity for plant polysaccharide utilization within the gut microbiome of healthy 
controls compared to ESRD patients. The microbial conversion of dietary plant poly-
saccharides (e.g., glycans, fiber) into SCFAs serves as an important energy and signal-
ing process that impacts the maintenance and functionality of the gut microbiota [44] 
and exhibits beneficial effects on kidney diseases [45, 46]. Consequently, our findings 
support the potential benefit of dietary fiber supplementation or other prebiotic inter-
ventions in ESRD patients to optimize their gut microbiota. Furthermore, these findings 
suggest that the gut Prevotellaceae and Muribaculaceae members could be potential tar-
gets of such interventions.

Overall, comparisons of the functional profiles of the ESRD-enriched and HC-enriched 
species led to two noteworthy findings, overabundance of enzymes/modules involved in 
antimicrobial resistance, aromatic compound degradation, and SBA and uremic toxin 
production in ESRD-enriched species and enrichment of functions involving bacterial 
motility (anti-inflammatory flagellin synthesis), sulfur metabolism, plant polysaccharide 
degradation, and biosynthesis of small bioactive molecules (e.g., certain amino acids, 
vitamins, and SCFAs) in HC-enriched species. These findings suggest a dysbiotic micro-
biome and inflammation-associated characteristics in ESRD. While the precise identifi-
cation of the most influential species or functions in ESRD remains elusive, the results of 
our study provide guidance for subsequent cultivation of the identified species and their 
use in model animal studies, which will likely enhance our understanding and interpre-
tation of ESRD microbiome as well as CKD and related diseases.

In hemodialytic ESRD patients, the concentrations of uremic toxins in the bloodstream 
undergo dynamic changes influenced by factors such as diet, dialysis cycle, health status, 
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and residual kidney function [47]. The gut microbiota appears to be an important origina-
tor of such toxins, thereby contributing to their serum toxin levels. In our previous study, 
we demonstrated that gut bacteria accounted for 12–44% of the variability in uremic toxin 
serum concentrations in ESRD patients from the Beijing cohort [21]. Here, we extend this 
finding to the Shanghai cohort and observe even higher percentages, with values ranging 
from 21.3 to 47.8% and 27.9 to 56.4% in the patients from the Shanghai and Beijing cohorts, 
respectively. The predictability of serum concentrations of three AAA-derived toxins by gut 
microbiota was validated across patient cohorts and, to some extent, even in the healthy 
controls. We propose that such gut microbiota-based models could potentially support 
clinical trials aimed at evaluating microbiome monitoring as a predictor of treatment out-
comes for dialysis patients. Moreover, these models might have applications in individuals 
at high risk of kidney disease or CKD, serving as noninvasive indicators for assessing renal 
function. Furthermore, we present 67 toxin-contributing species and demonstrate that they 
can be used to predict toxin concentrations across cohorts. These included 14 members 
of Oscillospiraceae, of which 4 were Oscillibacter spp. and 1 was Flavonifractor plautii, in 
agreement with a recent study showing that the Oscillibacter was correlated significantly 
with serum uremic metabolites and kidney function in CKD patients [48]. Identification of 
these species provides a direction for further exploration of new therapeutic targets aimed 
at reducing uremic toxins in ESRD patients.

Metagenomic analysis of the gut microbiota of 47 additional CKD patients revealed the 
presence of ESRD signatures even in the CKD stage and a correlation between the abun-
dance of ESRD-associated species and the progression of CKD. The effectiveness of ESRD 
microbial signatures in distinguishing CKD patients from healthy controls was also estab-
lished. Previously, the alteration of gut microbiota in patients with CKD and the depend-
ence of gut microbiota and CKD severity remained unclear due to fewer studies and their 
controversial results [20, 49, 50]. The microbial signatures we report provide new insights 
into the microbiome architecture of CKD and possibly other related kidney disorders.

Conclusions
In conclusion, we accurately identify the gut microbiome ESRD-associated species-level 
taxonomic signatures and establish the taxon-specific functional connections to the dis-
ease. Importantly, these signatures are already present in CKD patients, and their abun-
dance increases with disease progression, indicating their potential as biomarkers for CKD.  
We also demonstrate the effectiveness of gut species abundances in predicting serum ure-
mic toxin concentrations across different cohorts. Our study thus depicts the gut micro-
biome landscape for ESRD and establishes numerous species/function-disease linkages. 
Although many of the hypotheses raised by this study have not been proven or disproven, 
we suggest that our results and resources will promote future mechanistic and therapeutic 
works in kidney diseases.

Methods
Cohorts and fecal specimen collection

Shanghai cohort

The Ethics Committee of Zhongshan Hospital, Fudan University, approved this study 
(no. B2016-112 and B2020-257), and each participant signed an informed consent 
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agreement. Two hundred eighty-two adults (18–70  years old), including 124 ESRD 
patients, 47 CKD patients (12 of CKD stage 3, 4 of CKD stage 4, and 31 CKD5N), 
and 111 healthy controls, were recruited from Zhongshan Hospital, Fudan University 
(see Additional file  2: Fig. S21 for the flow diagram of recruiting). The ESRD patients 
were diagnosed with kidney failure under the criteria [51] of having eGFR < 15  mL/
min/1.73m2 (calculated based on the CKD-EPI equation) or were in ongoing renal 
replacement therapy. All ESRD patients were receiving maintenance hemodialy-
sis (2–3 times per week) for at least 6 months (ranging from 6 to 264 months, median 
52 months). The CKD patients were diagnosed under the criteria: stage 3, eGFR < 60 mL/
min/1.73m2; stage 4, eGFR < 30 mL/min/1.73m2; and stage 5, eGFR < 15 mL/min/1.73m2. 
All participants in the healthy group (screened from the inpatient physical examination 
population of Zhongshan Hospital) exhibited normal blood pressure, normal labora-
tory parameters from routine tests (blood, urine, stool, liver function, renal function, 
electrolytes, erythrocyte sedimentation rate, fasting blood glucose, and lipids), and nor-
mal results from chest radiography, electrocardiogram, and liver and kidney ultrasound. 
Exclusion criteria for all three groups were as follows: presence of chronic infection or 
an infection within 3  months; use of antibiotics, probiotics, prebiotics, or synbiotics 
within 3 months; obesity (BMI ≥ 28 kg/m2) or significantly underweight (BMI < 18.5 kg/
m2); co-occurrence of significant atherosclerosis, severe liver disease, a history of gastro-
intestinal surgery, inflammatory bowel disease, irritable bowel syndrome, or malignant 
tumor; and pregnancy or lactating status.

Beijing cohort

The cohort characteristics, sampling, and other experimental methods were described in 
the previous study [21].

The fecal specimens were collected from participants, temporarily stored on dry ice, 
transported to the laboratory within 24  h, and stored at − 80  °C for further analysis. 
The peripheral blood specimens were collected at the hospital within 24 h of defecation 
(prior to dialysis initiation for patients). The blood was centrifuged at 3000 g for 10 min, 
and the serum was collected and stored at − 80 °C.

Measurements and targeted quantification of uremic toxins

The demographic and clinical data were collected from the medical records of the hospi-
tal. Biochemical evaluations were measured using standard methods in the clinical labo-
ratory. Biochemical evaluations were conducted using standard methods in the clinical 
laboratory. The serum concentrations of four uremic toxins (IS, PCS, TMAO, and PAG) 
were quantified using a liquid chromatography/mass spectrometry/mass spectrometry 
(LC–MS/MS) technology, following previously reported methods: IS [52], PCS [53], 
TMAO [54], and PAG [55].

Fecal DNA extraction and whole‑metagenome shotgun sequencing

For fecal samples of the Shanghai cohort and the newly-sequenced Beijing samples, 
total bacterial DNA was extracted from approximately 200 mg of fecal samples using the 
HiPure Stool DNA Kit (Magen, Guangzhou, China) and operations followed the specifi-
cation. Briefly, STL buffer (1 ml) was added to 50 mg of sample in a 2-ml screw cap tubes 



Page 16 of 22Zhang et al. Genome Biology          (2023) 24:226 

prior to incubation at 65 °C for 10 min. After samples were put under vortex movement 
(15 s) and centrifugation (13,000 × g, 10 min), 600 μl of supernatants was transferred to 
fresh 2.0 ml tubes. Samples were then added 150 μl of PS buffer and 150 μl of absorber 
solution. Following a second centrifugation (13,000 × g, 5 min), the supernatants were 
placed in fresh 2.0 ml tubes where 700 μl of GDP buffer was added. Lastly, HiPure DNA 
Mini Column (Magen, Guangzhou, China) was used to absorb products and washed 
with sterile water. Libraries were prepared by using the NEB Next® Ultra™ DNA Library 
Prep Kit for Illumina (NEB, USA). Briefly, the fresh genomics DNA samples were 
mechanically fragmented by sonication to a size of approximately 350 bp. The DNA frag-
ments were then subjected to end polishing, A-tailing, and ligation with the full-length 
adapter, followed by PCR amplification. The PCR products were purified by AMPure 
XP system (Beckman Coulter, Beverly, USA). Subsequently, the DNA libraries were 
metagenomic shotgun sequenced based on the Illumina NovaSeq platform, which gen-
erated 2 × 150 bp paired-end reads for further analysis. Initial base calling of metagen-
omic data was performed based on the system default parameters under the sequencing 
platform. The raw sequencing reads were processed for quality controls using fastp [56]. 
Reads with low quality (> 45 bases with quality score < 20, or > 5 ‘N’ bases), low complex-
ity, and or adapter sequences were removed. The remaining reads were trimmed at the 
tails for low quality (< Q20) or ‘N’ bases. Human genomic reads were eliminated by map-
ping against the reference human genome (GRCh38) using Bowtie2 [57].

Metagenomic‑assembled genomes

High-quality clean reads were utilized for de novo assembly using MEGAHIT [58] 
with a broad range of k-mer sizes (–k-list 21,41,61,81,101,121,141). Assembled contigs 
(minimum length threshold 2000  bp) were binned using MetaBAT2 [59] with default 
parameters. Only raw bins with a total size > 200 kbp were retained for further analyses. 
The sequencing depth of bins was calculated by mapping the high-quality reads back 
to the bins with Bowtie2 [57]. Taxonomic classification of the bins was realized based 
on the GTDB-Tk toolkit [60], which assigns the sequences of each bin to the Genome 
Taxonomy Database [61]. The taxonomic name of the bins was manually adjusted to 
accord with traditional nomenclatures. To enhance the genomic completeness of bins, 
raw bins were merged within each sample if they had approximately equal sequencing 
depth (± 10%) and G + C content (± 2%) and shared identical taxonomic assignment at 
the species level.

The quality of MAGs was evaluated using CheckM [62] with the lineage_wf workflow. 
The definition of high- and medium-quality MAGs was based on the minimum informa-
tion about metagenome-assembled genome (MIMAG) standards [30] (high: > 90% com-
pleteness and < 5% contamination, presence of 5S, 16S and 23S rRNA genes, and at least 
18 tRNAs; medium: ≥ 70% completeness and < 10% contamination). And the quality 
score was defined as “QS = completeness – 5 × contamination,” following Parks et al. [63] 
All high- and medium-quality MAGs with quality score > 60 were clustered at the nucle-
otide level by dRep [64], for which the MAGs sharing > 95% nucleotide identity were 
considered redundant. Within each cluster, the MAG with the highest QS was selected 
as the representative MAG, referred to as a “species.” Finally, the high-quality sequenc-
ing reads of each sample were mapped to the nonredundant MAG catalog (consisting of 
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1303 MAGs) using Bowtie2 [57] to generate the relative abundance of these MAGs. For 
the taxonomic profiles at the phylum, class, order, family, and genera levels, we summed 
the relative abundance of MAGs from the same taxon to yield the abundance of that 
taxon.

The phylogenetic tree of MAGs was built using PhyloPhlAn [65] and visualized in 
iTOL [66].

Gene‑centric functional analysis of metagenomes

We conducted an overall functional analysis of the fecal metagenomes using a gene-cen-
tric strategy developed in our previous studies [26, 67]. A microbial gene catalog was 
constructed based on the metagenomic assemblies from the samples of all individuals. 
Briefly, ab  initio microbial genes were identified from assembled contigs (minimum 
length threshold 500 bp) using Prodigal [68] at the metagenome mode. The predicted 
genes were clustered by CD-HIT [69] at the nucleotide level similarity > 95% and 
sequence overlap > 90%, resulting in a nonredundant gene catalog comprising 11,971,559 
genes. The relative abundance of genes in each sample was determined by mapping the 
sequencing reads into the gene catalog. The KEGG database was used for the functional 
annotation of genes using Blast KOALA [70]. Each protein was assigned a KEGG ortho-
logue (KO) on the basis of the best-hit gene in the database, with an e-value < 1e − 10 and 
covering > 50% of the protein length. KOs were assigned into pathways or modules based 
on the KEGG website (https://​www.​kegg.​jp). The abundance of a functional category 
(KO, pathway, or module) was calculated from the summation of the relative abundance 
of its corresponding genes.

Antibiotic resistance genes were identified using ABRicate (https://​github.​com/​
tseem​ann/​abric​ate) and Mustard [71]. ABRicate searched the databases, including the 
NCBI Bacterial Antimicrobial Resistance Reference Gene Database, CARD [72], ARG-
ANNOT [73], and ResFinder [74], for predicting ARGs. Amino acid sequences of the 
gene catalog were aligned against the databases using DIAMOND [75] (e-value < 1e − 10) 
and assigned to ARGs by the highest-scoring annotated hit with > 80% similarity that 
covered > 80% of the length of the query protein.

Functional annotation and analyses of MAGs

Prediction of protein-coding genes, rRNAs, and tRNAs of MAGs was carried out using 
Prodigal [68] (single genome mode), RNAmmer [76], and tRNAscan-SE [77], respec-
tively. KEGG and ARG annotations of the protein-coding genes were realized follow-
ing the aforementioned method. Annotation of CAZymes was performed by aligning the 
protein sequence of each MAG against the CAZy database using DIAMOND [75] with 
an e-value < 1e − 10 and covering > 50% of the protein length. Polysaccharide utilization 
capacity analysis of MAGs was performed using PULpy [78], and the candidate sub-
strates of polysaccharide utilization loci were determined following Fechner-Peach et al. 
[33] Analysis of biosynthesis capacity of SCFAs, SBAs, and uremic toxins of MAGs was 
realized following our previously developed method [21]. Briefly, we used the presence 
of key synthetases to denote the biosynthesis capacity of such molecules for each MAG: 
acetate synthase (acetyl-CoA decarbonylase/synthase), propionate synthase I (lactoyl-
CoA dehydratase), propionate synthase II (propionaldehyde dehydrogenase), butyrate 

https://www.kegg.jp
https://github.com/tseemann/abricate
https://github.com/tseemann/abricate
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synthase I (butyryl-CoA:acetate CoA-transferase), butyrate synthase II (butyrate kinase), 
bile salt hydrolase, 7α/β-dehydroxylation enzymes, hydroxysteroid dehydrogenase, 
tryptophanase, tyrosine phenol-lyase, 4-hydroxyphenylacetate decarboxylase (p-Cresol 
synthase), phenylacetaldehyde dehydrogenase (phenylacetate synthase), phenyllactate 
dehydratase (fldBC), and choline trimethylamine-lyase.

Gut microbiota‑based regression models

The gut microbiota-based regression model was utilized for estimating the predictability 
of the serum concentrations of uremic toxins based on the relative abundance profiles 
of the gut species. A detailed description of the methodology for this regression model 
has been detailed in our previous study [21]. Briefly, for each uremic toxin (i.e., IS, PAG, 
PCS, and TMAO), we initially trained a random forest model based on the relative abun-
dances of all gut species and used a leave-one-out cross-validation to predict the serum 
concentration of this toxin based on the model. The coefficient of determination (R2) 
between the predicted values and the actual values represented the explainability of the 
gut species to this toxin. Then, to achieve higher explainability, we ranked all the spe-
cies based on their importance (measured by the increase mean square error, IncMSE) 
and sequentially selected a certain number of species for training a new model and eval-
uating its performance. This iterative process allowed us to obtain the model with the 
highest performance (estimated by R2) and a corresponding set of training species. The 
highest performance reflected the extent to which the gut microbiota could explain the 
variability of the specific toxin.

Statistical analyses

Statistical analyses were conducted using the R 4.0.1 platform. For comparison analy-
ses, the P-values were calculated using the Wilcoxon rank-sum test, Kruskal–Wallis 
rank-sum test, or Fisher’s exact test, depending on the specific scenario. The combined 
P-value of two independent cohorts was calculated based on Fisher’s method [79]. The 
q value was used to evaluate the false discovery rate (FDR) for the correction of multi-
ple comparisons and was calculated based on the R fdrtool package [80]. The following 
criteria were employed to identify ESRD-associated taxonomic and functional signa-
tures from two independent cohorts: (1) q < 0.2 and fold change > 1.2 in each cohort with 
coherent enrichment in patients or controls and (2) combined q < 0.05.

Principal coordinates analysis (PCoA) and distance-based redundancy analysis 
(dbRDA) were performed with the R vegan package, utilizing Bray–Curtis dissimilarly 
as the metric, and the results were visualized via the R ade4 package. Permutational 
multivariate analysis of variance (PERMANOVA, adonis analysis) was realized with the 
R vegan package, and the adonis P-value was generated based on 1000 permutations. 
Mantel test was performed using the R ade4 package.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​023-​03056-y.

Additional file 1: Table S1. Summary on statistics of the host properties and clinical parameters from the Shanghai 
and Beijing cohorts. Table S2. Summary of deep whole-metagenomic shotgun sequencing data production of 
this study. Table S3. Detailed information of data production, assembly, and MAG reconstruction of 715 samples. 

https://doi.org/10.1186/s13059-023-03056-y


Page 19 of 22Zhang et al. Genome Biology          (2023) 24:226 	

Table S4. Detailed information of 1303 non-redundant microbial species reconstructed from the fecal metagen-
omes of this study. Table S5. Detailed information of the 100 most discriminant species in the random forest regres-
sion models of the Shanghai and Beijing cohorts. Table S6. Detailed information of 353 ESRD-associated species. 
Table S7. Detailed information of 1279 ESRD-associated KOs. Table S8. Detailed information of 103 ESRD-associated 
KEGG functional modules. Table S9. Detailed information of 3,009 ARGs identified in this study. Table S10. Detailed 
information of 730 KOs that significantly differed in occurrence frequency between ESRD-enriched and HC-enriched 
Firmicutes species. Table S11. Detailed information of 40 modules that significantly differed in integrity between 
ESRD-enriched and HC-enriched Firmicutes species. Table S12. Detailed information of 67 gut species with the 
highest contribution of uremic toxin levels in serum. Table S13. Abundances and statistical test of 353 ESRD-associ-
ated species among the CKD patients vs. healthy controls.

Additional file 2: Figure S1. Genome-wide phylogeny of 1,303 gut microbial species. Figure S2. Species bound-
ary and reads mappability of the 1,303 gut species in this study. Figure S3. Comparison of microbial diversity 
between ESRD patients and healthy controls. Figure S4. Distribution of samples in the five primary PCs. Figure S5. 
Random forest models for discriminating ESRD patients and healthy controls based on gut species profile. Figure 
S6. Identification of ESRD-associated species from two independent cohorts. Figure S7. Comparison of functional 
profiles between ESRD patients and healthy controls. Figure S8. Identification of ESRD-associated functional 
signatures from two independent cohorts. Figure S9. Comparison of antibiotic resistance genes between ESRD 
patients and healthy controls. Figure S10. Effect of the bacterial phylogeny on the functional composition. Figure 
S11. Occurrence of several types of enzymes in Firmicutes species. Figure S12. Modules differing in completeness 
between ESRD-enriched and HC-enriched non-Firmicutes species. Figure S13. Analysis of polysaccharide utilization 
for ESRD-associated Bacteroidetes species. Figure S14. Relationship between individuals’ dietary pattern and their 
metagenomic polysaccharide utilization and Prevotellaceae/Muribaculaceae level. Figure S15. Presence of several 
important enzymes in the ESRD-associated species. Figure S16. Distribution of the key synthetases involved in the 
biosynthesis of uremic toxins in fecal metagenomes. Figure S17. Predicting the concentrations of toxins in ESRD 
patients, based on the gut microbial species. Figure S18. Predicting the concentrations of toxins in healthy subjects 
based on the gut microbial species. Figure S19. Heatmap presented below illustrates the relative abundance varia-
tions of ESRD-associated species in healthy controls, as well as patients with CKD stage 3-4, CKD5N, and ESRD. Figure 
S20. Random forest models for discriminating CKD patients from the healthy controls based on gut species profile of 
ESRD patients. Figure S21. Flow diagram of recruitment of individuals in the Shanghai cohort.

Additional file 3. Review history.

Review history
The review history is available as Additional file 3.

Peer review information
Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration with 
the rest of the editorial team.

Authors’ contributions
Xiaoqiang Ding, Jianzhou Zou, Fazheng Ren, and Liang Zhao devised the study. Stanislav Dusko Ehrlich and Liang Zhao 
contributed to the data interpretation and revised the manuscript. Pan Zhang, Xifan Wang, and Xuesen Cao designed 
the study protocol and supervised all parts of the project. Pan Zhang, Shenghui Li, and Xifan Wang wrote the manu-
script. Shenghui Li, Ruochun Guo, Yue Zhang, and Qingbo Lv performed the data analyses for metagenomics. Yi Fang, 
Yiqin Shi, Fangfang Xiang, Bo Shen, Ran Wang, and Fazheng Ren composed the clinical protocol. Yaqiong Wang, Jinbo Yu, 
Yeqing Xie, Xiaohong Chen, Jiawei Yu, Zhen Zhang, Bing Fang, Wenlv Lv, Yuxin Nie, Jieru Cai, Xialian Xu, Jiachang Hu, Qi 
Zhang, Ting Gao, Jing Zhan Xiaotian Jiang, Xiao Xan, Ning Xue, Yimei Wang, Yimei Ren, Li Wang, Han Zhang, Yichun Ning, 
Lin Zhang, and Shi Jin performed the clinical protocol. Pan Zhang, Yixuan Li, Xifan Wang, and Ting Gao performed the 
metagenomics related experiments. Liwen Zhang, Yufei Lu, Jingjing He, Ran Wang, and Jing Chen performed metabolic 
experiments and data analyses.

Funding
This study was supported by the following: the National Key Research and Development Program (No.2016YFC1305500), 
the National Natural Scientific Foundation of China (No.91849123), Shanghai Key Laboratory of Kidney and Blood 
Purification (No.14DZ2260200), Shanghai Key Laboratory of Kidney and Blood Purification (No.20DZ2271600), Shanghai 
Clinical Medical Center for Kidney Disease (No.2017ZZ01015), the Clinical Research Project of Zhongshan Hospital 
(No.2020ZSLC09), and the 111 project from the Education Ministry of China (No. B18053).

Availability of data and materials
The statistical scripts are available at https://​github.​com/​lish2/​esrd_​micro​biome [81]. The raw metagenomic sequenc-
ing dataset acquired in this study have been deposited to the European Nucleotide Archive under the accession code 
PRJEB65297 (https://​www.​ebi.​ac.​uk/​ena/​brows​er/​view/​PRJEB​65297) [82]. The MAG sequences acquired in this study are 
available at https://​github.​com/​yexia​ningy​ue/​gut-​micro​biome-​of-​ESRD [83]. The authors declare that all other data and 
materials supporting the findings of the study are available in the paper and supplementary materials.

https://github.com/lish2/esrd_microbiome
https://www.ebi.ac.uk/ena/browser/view/PRJEB65297
https://github.com/yexianingyue/gut-microbiome-of-ESRD


Page 20 of 22Zhang et al. Genome Biology          (2023) 24:226 

Declarations

Ethics approval and consent to participate
The Ethics Committee of Zhongshan Hospital, Fudan University, approved this study (no. B2016-112 and B2020-257), and 
each participant signed an informed consent agreement. The Ethics Committee and authors confirmed that experimen-
tal methods comply with the Helsinki Declaration.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1 Department of Nephrology, Zhongshan Hospital, Fudan University; Hemodialysis Quality Control Center of Shanghai; 
Shanghai Key Laboratory of Kidney and Blood Purification; Shanghai Institute for Kidney and Dialysis; Shanghai Clinical 
Medical Center for Kidney Disease, Shanghai 200032, China. 2 Key Laboratory of Functional Dairy, Department of Nutri-
tion and Health, China Agricultural University, Beijing 100190, China. 3 Puensum Genetech Institute, Wuhan 430076, 
China. 4 Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural 
University, Beijing 100190, China. 5 Department of Clinical and Movement Neurosciences, UCL Queen Square Institute 
of Neurology, Queen Square, London WC1N 3RX, UK. 

Received: 28 September 2022   Accepted: 8 September 2023

References
	1.	 Zhang L, Wang F, Wang L, Wang W, Liu B, Liu J, Chen M, He Q, Liao Y, Yu X, et al. Prevalence of chronic kidney disease 

in China: a cross-sectional survey. Lancet. 2012;379:815–22.
	2.	 Collaboration GBDCKD. Global, regional, and national burden of chronic kidney disease, 1990–2017: a systematic 

analysis for the Global Burden of Disease Study 2017. Lancet. 2020;395:709–33.
	3.	 Evans RW, Manninen DL, Garrison LP Jr, Hart LG, Blagg CR, Gutman RA, Hull AR, Lowrie EG. The quality of life of 

patients with end-stage renal disease. N Engl J Med. 1985;312:553–9.
	4.	 Robinson BM, Zhang J, Morgenstern H, Bradbury BD, Ng LJ, McCullough KP, Gillespie BW, Hakim R, Rayner H, Fort J, 

et al. Worldwide, mortality risk is high soon after initiation of hemodialysis. Kidney Int. 2014;85:158–65.
	5.	 Sirich TL, Fong K, Larive B, Beck GJ, Chertow GM, Levin NW, Kliger AS, Plummer NS, Meyer TW, Frequent Hemodialy-

sis Network Trial G. Limited reduction in uremic solute concentrations with increased dialysis frequency and time in 
the frequent hemodialysis network daily trial. Kidney Int. 2017;91:1186–92.

	6.	 Mair RD, Sirich TL, Plummer NS, Meyer TW. Characteristics of colon-derived uremic solutes. Clin J Am Soc Nephrol. 
2018;13:1398–404.

	7.	 Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X, Wu Y, Hazen SL. Intestinal microbial metabolism of phosphati-
dylcholine and cardiovascular risk. N Engl J Med. 2013;368:1575–84.

	8.	 Yang T, Richards EM, Pepine CJ, Raizada MK. The gut microbiota and the brain-gut-kidney axis in hypertension and 
chronic kidney disease. Nat Rev Nephrol. 2018;14:442–56.

	9.	 Szeto CC, McIntyre CW, Li PK. Circulating bacterial fragments as cardiovascular risk factors in CKD. J Am Soc Nephrol. 
2018;29:1601–8.

	10.	 Sumida K, Yamagata K, Kovesdy CP. Constipation in CKD. Kidney Int Rep. 2020;5:121–34.
	11.	 Lin TY, Wu PH, Lin YT, Hung SC. Gut dysbiosis and mortality in hemodialysis patients. NPJ Biofilms Microbiomes. 

2021;7:20.
	12.	 Chiavaroli L, Mirrahimi A, Sievenpiper JL, Jenkins DJ, Darling PB. Dietary fiber effects in chronic kidney disease: a 

systematic review and meta-analysis of controlled feeding trials. Eur J Clin Nutr. 2015;69:761–8.
	13.	 Koppe L, Mafra D, Fouque D. Probiotics and chronic kidney disease. Kidney Int. 2015;88:958–66.
	14.	 Zheng HJ, Guo J, Wang Q, Wang L, Wang Y, Zhang F, Huang WJ, Zhang W, Liu WJ, Wang Y. Probiotics, prebiotics, and 

synbiotics for the improvement of metabolic profiles in patients with chronic kidney disease: a systematic review 
and meta-analysis of randomized controlled trials. Crit Rev Food Sci Nutr. 2021;61:577–98.

	15.	 Zhu H, Cao C, Wu Z, Zhang H, Sun Z, Wang M, Xu H, Zhao Z, Wang Y, Pei G, et al. The probiotic L. casei Zhang slows 
the progression of acute and chronic kidney disease. Cell Metab. 2021;33:2091–3.

	16.	 Vaziri ND, Wong J, Pahl M, Piceno YM, Yuan J, DeSantis TZ, Ni Z, Nguyen TH, Andersen GL. Chronic kidney disease 
alters intestinal microbial flora. Kidney Int. 2013;83:308–15.

	17.	 Jiang S, Xie S, Lv D, Wang P, He H, Zhang T, Zhou Y, Lin Q, Zhou H, Jiang J, et al. Alteration of the gut microbiota in 
Chinese population with chronic kidney disease. Sci Rep. 2017;7:2870.

	18.	 Stadlbauer V, Horvath A, Ribitsch W, Schmerbock B, Schilcher G, Lemesch S, Stiegler P, Rosenkranz AR, Fickert P, 
Leber B. Structural and functional differences in gut microbiome composition in patients undergoing haemodialysis 
or peritoneal dialysis. Sci Rep. 2017;7:15601.

	19.	 Luo D, Zhao W, Lin Z, Wu J, Lin H, Li Y, Song J, Zhang J, Peng H. The effects of hemodialysis and peritoneal dialysis on 
the gut microbiota of end-stage renal disease patients, and the relationship between gut microbiota and patient 
prognoses. Front Cell Infect Microbiol. 2021;11:579386.

	20.	 Zhao J, Ning X, Liu B, Dong R, Bai M, Sun S. Specific alterations in gut microbiota in patients with chronic kidney 
disease: an updated systematic review. Ren Fail. 2021;43:102–12.



Page 21 of 22Zhang et al. Genome Biology          (2023) 24:226 	

	21.	 Wang X, Yang S, Li S, Zhao L, Hao Y, Qin J, Zhang L, Zhang C, Bian W, Zuo L, et al. Aberrant gut microbiota alters host 
metabolome and impacts renal failure in humans and rodents. Gut. 2020;69:2131–42.

	22.	 Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic 
genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.

	23.	 Almeida A, Nayfach S, Boland M, et al. A unified catalog of 204,938 reference genomes from the human gut microbi-
ome. Nat Biotechnol. 2021;39:105–14.

	24.	 Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, Hugenholtz P. A standardized bacterial 
taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018;36:996–1004.

	25.	 Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids 
as key bacterial metabolites. Cell. 2016;165:1332–45.

	26.	 Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al. A metagenome-wide association study 
of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.

	27.	 Vanholder R, De Smet R, Glorieux G, Argiles A, Baurmeister U, Brunet P, Clark W, Cohen G, De Deyn PP, Dep-
pisch R, et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int. 
2003;63:1934–43.

	28	 Gryp T, Huys GRB, Joossens M, Van Biesen W, Glorieux G, Vaneechoutte M. Isolation and quantification of uremic 
toxin precursor-generating gut bacteria in chronic kidney disease patients. Int J Mol Sci. 2020;21:1986.

	29.	 Nguyen DB, Arduino MJ, Patel PR. Hemodialysis-associated infections. Chronic Kidney Dis Dial Transplant. 
2019;389–410.

	30.	 Bowers RM, Kyrpides NC, Stepanauskas R, Harmon-Smith M, Doud D, Reddy TBK, Schulz F, Jarett J, Rivers AR, Eloe-
Fadrosh EA, et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled 
genome (MIMAG) of bacteria and archaea. Nat Biotechnol. 2017;35:725–31.

	31.	 Lapebie P, Lombard V, Drula E, Terrapon N, Henrissat B. Bacteroidetes use thousands of enzyme combinations to 
break down glycans. Nat Commun. 2019;10:2043.

	32.	 David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, 
et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

	33.	 Fehlner-Peach H, Magnabosco C, Raghavan V, Scher JU, Tett A, Cox LM, Gottsegen C, Watters A, Wiltshire-Gordon 
JD, Segata N, et al. Distinct polysaccharide utilization profiles of human intestinal Prevotella copri isolates. Cell Host 
Microbe. 2019;26:680–90 e685.

	34.	 Li L, Ma L, Fu P. Gut microbiota-derived short-chain fatty acids and kidney diseases. Drug Des Devel Ther. 
2017;11:3531–42.

	35.	 Hai X, Landeras V, Dobre MA, DeOreo P, Meyer TW, Hostetter TH. Mechanism of prominent trimethylamine oxide 
(TMAO) accumulation in hemodialysis patients. PLoS One. 2015;10:e0143731.

	36	 Coutinho-Wolino KS, de F Cardozo LF, de Oliveira Leal V, Mafra D, Stockler-Pinto MB. Can diet modulate trimethyl-
amine N-oxide (TMAO) production? What do we know so far? Eur J Nutr. 2021;60:3567–84.

	37	 Tett A, Pasolli E, Masetti G, Ercolini D, Segata N. Prevotella diversity, niches and interactions with the human host. Nat 
Rev Microbiol. 2021;19:585–99.

	38.	 Tett A, Huang KD, Asnicar F, Fehlner-Peach H, Pasolli E, Karcher N, Armanini F, Manghi P, Bonham K, Zolfo M, et al. The 
Prevotella copri complex comprises four distinct clades underrepresented in westernized populations. Cell Host 
Microbe. 2019;26:666–79 e667.

	39.	 Gupta A, Dhakan DB, Maji A, Saxena R, P KV, Mahajan S, Pulikkan J, Kurian J, Gomez AM, Scaria J, et al. Association of 
Flavonifractor plautii, a flavonoid-degrading bacterium, with the gut microbiome of colorectal cancer patients in 
India. mSystems. 2019;4:10–128.

	40.	 Duck LW, Walter MR, Novak J, Kelly D, Tomasi M, Cong Y, Elson CO. Isolation of flagellated bacteria implicated in 
Crohn’s disease. Inflamm Bowel Dis. 2007;13:1191–201.

	41.	 Tran HQ, Ley RE, Gewirtz AT, Chassaing B. Flagellin-elicited adaptive immunity suppresses flagellated microbiota and 
vaccinates against chronic inflammatory diseases. Nat Commun. 2019;10:5650.

	42.	 Quan Y, Song K, Zhang Y, Zhu C, Shen Z, Wu S, Luo W, Tan B, Yang Z, Wang X. Roseburia intestinalis-derived flagellin 
is a negative regulator of intestinal inflammation. Biochem Biophys Res Commun. 2018;501:791–9.

	43	 Seo B, Jeon K, Moon S, Lee K, Kim WK, Jeong H, Cha KH, Lim MY, Kang W, Kweon MN, et al. Roseburia spp. abun-
dance associates with alcohol consumption in humans and its administration ameliorates alcoholic fatty liver in 
mice. Cell Host Microbe. 2020;27:25–40 e26.

	44.	 Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human 
metabolism. Gut Microbes. 2016;7:189–200.

	45.	 Felizardo RJ, de Almeida DC, Pereira RL, Watanabe IK, Doimo NT, Ribeiro WR, Cenedeze MA, Hiyane MI, Amano MT, 
Braga TT. Gut microbial metabolite butyrate protects against proteinuric kidney disease through epigenetic-and 
GPR109a-mediated mechanisms. FASEB J. 2019;33:11894–908.

	46.	 Li H-B, Xu M-L, Xu X-D, Tang Y-Y, Jiang H-L, Li L, Xia W-J, Cui N, Bai J, Dai Z-M. Faecalibacterium prausnitzii attenuates 
CKD via butyrate-renal GPR43 axis. Circ Res. 2022;131:e120–34.

	47.	 Eloot S, Van Biesen W, Roels S, Delrue W, Schepers E, Dhondt A, Vanholder R, Glorieux G. Spontaneous variability of 
pre-dialysis concentrations of uremic toxins over time in stable hemodialysis patients. PLoS One. 2017;12:e0186010.

	48.	 Kim J, Kim H, Park J, Cho H, Kwak M, Kim B, Yang S, Lee J, Kim D, Joo K. SAT-184 The potential function of gut bacteria, 
Oscillibacter, on the uremia of chronic kidney disease patients. Kidney Int Rep. 2020;5:S78.

	49.	 Ren Z, Fan Y, Li A, Shen Q, Wu J, Ren L, Lu H, Ding S, Ren H, Liu C, et al. Alterations of the human gut microbiome in 
chronic kidney disease. Adv Sci (Weinh). 2020;7:2001936.

	50.	 Wu IW, Gao SS, Chou HC, Yang HY, Chang LC, Kuo YL, Dinh MCV, Chung WH, Yang CW, Lai HC, et al. Integrative 
metagenomic and metabolomic analyses reveal severity-specific signatures of gut microbiota in chronic kidney 
disease. Theranostics. 2020;10:5398–411.

	51.	 Andrassy KM. Comments on ‘KDIGO 2012 clinical practice guideline for the evaluation and management of chronic 
kidney disease.’ Kidney Int. 2013;84:622–3.



Page 22 of 22Zhang et al. Genome Biology          (2023) 24:226 

	52.	 Cao XS, Chen J, Zou JZ, Zhong YH, Teng J, Ji J, Chen ZW, Liu ZH, Shen B, Nie YX, et al. Association of indoxyl sulfate 
with heart failure among patients on hemodialysis. Clin J Am Soc Nephrol. 2015;10:111–9.

	53.	 Cuoghi A, Caiazzo M, Bellei E, Monari E, Bergamini S, Palladino G, Ozben T, Tomasi A. Quantification of p-cresol 
sulphate in human plasma by selected reaction monitoring. Anal Bioanal Chem. 2012;404:2097–104.

	54.	 Zhang P, Zou JZ, Chen J, Tan X, Xiang FF, Shen B, Hu JC, Wang JL, Wang YQ, Yu JB, et al. Association of trimethylamine 
N-Oxide with cardiovascular and all-cause mortality in hemodialysis patients. Ren Fail. 2020;42:1004–14.

	55.	 Poesen R, Claes K, Evenepoel P, de Loor H, Augustijns P, Kuypers D, Meijers B. Microbiota-derived phenylacetyl-
glutamine associates with overall mortality and cardiovascular disease in patients with CKD. J Am Soc Nephrol. 
2016;27:3479–87.

	56.	 Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–90.
	57.	 Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9.
	58.	 Li D, Liu CM, Luo R, Sadakane K, Lam TW. MEGAHIT: an ultra-fast single-node solution for large and complex 

metagenomics assembly via succinct de Bruijn graph. Bioinformatics. 2015;31:1674–6.
	59.	 Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. MetaBAT 2: an adaptive binning algorithm for robust and 

efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.
	60	 Chaumeil PA, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the genome taxonomy 

database. Bioinformatics. 2019;36:1925–7.
	61.	 Parks DH, Chuvochina M, Chaumeil PA, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy 

for bacteria and archaea. Nat Biotechnol. 2020;38:1079–86.
	62.	 Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes 

recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.
	63.	 Parks DH, Rinke C, Chuvochina M, Chaumeil PA, Woodcroft BJ, Evans PN, Hugenholtz P, Tyson GW. Recovery of nearly 

8,000 metagenome-assembled genomes substantially expands the tree of life. Nat Microbiol. 2017;2:1533–42.
	64.	 Olm MR, Brown CT, Brooks B, Banfield JF. dRep: a tool for fast and accurate genomic comparisons that enables 

improved genome recovery from metagenomes through de-replication. ISME J. 2017;11:2864–8.
	65.	 Asnicar F, Thomas AM, Beghini F, Mengoni C, Manara S, Manghi P, Zhu Q, Bolzan M, Cumbo F, May U, et al. Precise 

phylogenetic analysis of microbial isolates and genomes from metagenomes using PhyloPhlAn 3.0. Nat Commun. 
2020;11:2500.

	66.	 Letunic I, Bork P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 
2019;47:W256–9.

	67.	 Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S, Zhong H, Liu Z, Gao Y, Zhao H, et al. The gut microbiome in atheroscle-
rotic cardiovascular disease. Nat Commun. 2017;8:845.

	68.	 Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and transla-
tion initiation site identification. BMC Bioinformatics. 2010;11:119.

	69.	 Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. 
Bioinformatics. 2006;22:1658–9.

	70.	 Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of 
genome and metagenome sequences. J Mol Biol. 2016;428:726–31.

	71.	 Ruppe E, Ghozlane A, Tap J, Pons N, Alvarez AS, Maziers N, Cuesta T, Hernando-Amado S, Clares I, Martinez JL, et al. 
Prediction of the intestinal resistome by a three-dimensional structure-based method. Nat Microbiol. 2019;4:112–23.

	72.	 Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, et al. CARD 
2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids 
Res. 2017;45:D566–73.

	73.	 Gupta SK, Padmanabhan BR, Diene SM, Lopez-Rojas R, Kempf M, Landraud L, Rolain JM. ARG-ANNOT, a new 
bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother. 
2014;58:212–20.

	74.	 Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. Identification of 
acquired antimicrobial resistance genes. J Antimicrob Chemother. 2012;67:2640–4.

	75.	 Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.
	76.	 Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of 

ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–8.
	77.	 Chan PP, Lowe TM. tRNAscan-SE: searching for tRNA genes in genomic sequences. Methods Mol Biol. 

2019;1962:1–14.
	78.	 Stewart RD, Auffret MD, Roehe R, Watson M. Open prediction of polysaccharide utilisation loci (PUL) in 5414 public 

Bacteroidetes genomes using PULpy. bioRxiv. 2018:421024.
	79.	 Fisher RA. Statistical methods for research workers. Breakthroughs in statistics: Methodology and distribution. New 

York: Springer New York; 1970: p. 66–70.
	80.	 Strimmer K. fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformat-

ics. 2008;24:1461–2.
	81.	 Li S. Codes for “Metagenome-wide analysis uncovers gut microbial signatures and implicates taxon-specific func-

tions in end-stage renal disease”. GitHub. 2023. https://​github.​com/​lish2/​esrd_​micro​biome.
	82.	 Pan Zhang, Wang X, Li S, Cao X, Zou J, Fang Y, Shi Y, Xiang F, Shen B, Li Y, et al. Metagenome-wide analyses uncover 

gut bacterial signatures and implicate taxon-specific functions in end-stage renal disease. European Nucleotide 
Archive. 2023. https://​www.​ebi.​ac.​uk/​ena/​brows​er/​view/​PRJEB​65297.

	83.	 Zhang Y. 1303 MAGs of PRJEB65297. GitHub. 2023. https://​github.​com/​yexia​ningy​ue/​gut-​micro​biome-​of-​ESRD.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/lish2/esrd_microbiome
https://www.ebi.ac.uk/ena/browser/view/PRJEB65297
https://github.com/yexianingyue/gut-microbiome-of-ESRD

	Metagenome-wide analysis uncovers gut microbial signatures and implicates taxon-specific functions in end-stage renal disease
	Abstract 
	Background: 
	Results: 
	Conclusion: 

	Background
	Results
	Participants and dataset
	The gut microbiome stratifies ESRD patients from healthy controls
	Microbial species related to ESRD
	Microbial functions related to ESRD
	Functional configuration of ESRD-enriched and HC-enriched species
	Gut bacteria affect serum uremic toxin levels
	Gut microbiota in non-dialyzed CKD patients

	Discussion
	Conclusions
	Methods
	Cohorts and fecal specimen collection
	Shanghai cohort
	Beijing cohort

	Measurements and targeted quantification of uremic toxins
	Fecal DNA extraction and whole-metagenome shotgun sequencing
	Metagenomic-assembled genomes
	Gene-centric functional analysis of metagenomes
	Functional annotation and analyses of MAGs
	Gut microbiota-based regression models
	Statistical analyses

	Anchor 28
	References


