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Background
A barcode is a very short nucleotide sequence attached at the 3′- or 5′- end of a DNA 
sequence to state where the sequence comes. By incorporating a unique barcode into the 
library of DNA molecules, multiple DNA libraries are able to be sequenced simultane-
ously [1]. Usually, short nucleotide sequence corresponds to a barcode or special coded 
segment within a long read whose length is short than 100 nucleotides. Clustering or 
classifying the reads into bins based on these short nucleic acid fragments is the first 
step in high-throughput sequencing techniques like multiple sample sequencing and 
single cell protocols [2, 3]. Specifically, the barcoding technique has recently been intro-
duced to Oxford Nanopore devices to sequence multiple barcoded DNA samples on a 
single flow cell [4, 5].

Oxford Nanopore sequencing is a rapidly developing technology that enables ultra-
long sequencing in real time at low-cost. The key innovation of nanopore sequencing is 
the direct measurement of the electrical current signal (denoted as the raw signal) when 
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a single-strand DNA passes through the nanopore. These raw signals are transferred to 
nucleic acid bases by base-calling for further analysis [6–8]. The translation from raw 
current signals to reads may introduce significant base-calling errors. Specifically, con-
sidering a 40-nt barcode and a base-calling system with 10% error, the possibility that a 
sequenced barcode is completely correct is 0.940 ≈ 0.014 , which can badly hamper the 
downstream analyses [9]. Especially, because of the high base-calling error, the Unique 
Molecular Identifiers (UMI) technique, which is shorter nucleotide sequence added to 
sequencing libraries to identify PCR duplicates, is rarely used in Nanopore sequencing 
[10, 11].

A number of methods have been devised to group biological sequences that are 
related. In early 2001, a tool named CD-HIT [12] is proposed for the clustering of a 
large number of sequences, based on pairwise alignment and greedy strategy. Later, 
improved methods [13, 14] of CD-HIT are also devised to cope with the next-generation 
sequencing data. Inspired by CD-HIT, DNACLUST [15] is proposed for taxonomic pro-
filing. Recently, the mean shift algorithm has also been introduced by MeShClust [16] 
to reduce the side effect of parameter dependency in the greedy strategy. On the other 
hand, alignment-free similarity measures [17–20] have been utilized in sequence clus-
tering [21, 22], by mapping DNA sequences into feature vectors. Furthermore, clustering 
tools have also been devised for specified purpose, e.g., the Starcode [23] and Bartender 
[24]. However, all of these methods could only utilize the information of base-called 
reads in Nanopore sequencing.

On the contrary, the raw current signal contains much more information compared 
with the base-called reads. In practice, the frequency of the electrical current measure-
ments is 7 ∼ 9 times higher than the passing speed of the DNA sequence, which makes 
the raw current signal to contain ∼ 8 × redundant information than the base-called read. 
Except for signal-level polishing [25], efforts have been made to utilize raw signal for 
targeted sequencing [8, 26, 27], variant identification [28, 29], and methylation detection 
[30–32]. Recently, the raw current signal has also been utilized in ONT barcode demul-
tiplexing and achieved good results, by training a deep neural network as barcode’s raw 
signal classifier [33, 34]. Here, the demultiplexing is carried out as a supervised machine 
learning task with the classifier trained under a large human-labeled dataset. However, 
a problem with the supervised-learning-based classification is that the performance of 
these methods heavily depends on the training dataset.

In this paper, we first demonstrate that, for Nanopore sequencing, signal-similar-
ity (dynamic time warping distance)-based clustering performs much better than the 
base-space clustering in various criteria (Additional file  1: S1), though the compu-
tation of pair-wise signal similarity is computationally expensive (Additional file  1: 
S2). Consequently, we propose HycDemux, which integrates a GPU-parallelized 
hybrid clustering algorithm and a voting module for the accurate clustering of short 
sequence fragments and demultiplexing of barcoded samples in nanopore sequenc-
ing. Our approach utilizes both the base-called nucleic base information and the 
raw current signal, in which the nucleotides are used to generate initial clustering 
and representation sequences, while the raw signals are used for cluster merging and 
refinement (Fig. 1 (A, B, and C) gives an example). A checking mechanism is built to 
make sure that the good sequences are reserved and correctly grouped. We compared 
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our hybrid clustering algorithm with traditional DNA clustering tools and found that 
our algorithm provides more complete clustering results ( > 95.5 %) while ensuring 
high homogeneity ( > 99.7%). The completeness of our method is about 30% higher 
than traditional clustering tools, providing a strong guarantee for subsequent demul-
tiplexing. The results of high completeness and high homogeneity imply that our 
hybrid clustering algorithm can find out the barcodes that can be successfully gener-
ated in the dataset, which has potential significance for the design of barcodes. To 
transform clustering results into the final demultiplexed results, we designed a mod-
ule based on a voting mechanism (Fig.  1D). Comprehensive experiments show that 
combining our hybrid clustering algorithm with this module leads to more accurate 
and robust demultiplexing results. When applied to multi-sample sequencing data 
generated by Nanopore’s official barcode suites, our method performs comparably 
to the state-of-the-art method. In particular, we evaluated our algorithm on datasets 
with different sequencing error rates, regarding different nanopore sequencing kits 
[35–38]. For complex sequencing data (number of barcodes = 350, sequencing error 
10% ∼ 15%), we achieve a demultiplexing accuracy of above 90% for each barcode, 
which is about 30% higher than state-of-the-art method and 15% higher than state-
of-the-art method on the low error rate datasets. It is important to note that the field 
of sequencing technology is continually advancing, leading to enhanced sequenc-
ing accuracy. This improvement suggests that our algorithms will yield even better 
results in future studies. In addition, our algorithm incorporates a GPU-based parallel 

Fig. 1 An example of clustering 30 sequences using our hybrid clustering algorithm (A, B, and C) and the 
subsequent demultiplexing mechanism based on the clustering results (D). A We perform initial clustering 
on 30 sequences, resulting in 6 clusters. If a cluster contains a number of sequences greater than the 
GoodIndex, it is considered a good cluster. In this case, clusters C1 , C2 , and C3 are considered good clusters. B 
We attempt to merge the good clusters by selecting k signals from each cluster. If the distance values in the 
corresponding k × k dynamic time warping (DTW) distance matrix are all smaller than a given threshold, we 
merge two clusters. In this case, C1 and C2 are merged into a single cluster. C We attempt to add sequences 
that are not in good clusters to the existing good clusters after the cluster merging is completed. We select a 
representative sequence from each good cluster and calculate the DTW distance between the representative 
sequence and the sequences not in the good cluster. If the distance value is less than a given threshold, we 
add the sequence to the corresponding good cluster. D We demultiplex the cluster by selecting k signals 
within the cluster and converting all known barcode sequences into standard nanopore signals based on the 
official 6-mer table of Oxford Nanopore Sequencing Company. We then calculate the DTW distance matrix 
between these k signals and the standard nanopore signals, and find the row label corresponding to the 
minimum value of each column to obtain a one-dimensional row label matrix. Finally, we compute the mode 
of the row-labeled matrix and use it as the final demultiplexed result
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mechanism, which allows for the demultiplexing of 3.5 GB (gigabytes) of data (nanop-
ore signals + base-called DNA sequences) in approximately 1 min.

Results
We have developed a comprehensive pipeline to extract pseudo-barcode regions from 
raw sequencing data. All of the extracted data is then utilized for subsequent cluster-
ing and demultiplexing. In regard to the extracted pseudo-barcode regions, HycDemux 
integrates an unsupervised hybrid approach to achieve accurate and efficient clustering, 
in which the nucleotides-based greedy algorithm is utilized to obtain initial clusters (Ini-
tial clustering), and the raw signal information is measured to guide the continuously 
optimization and refinement of clustering results (cluster merging and cluster refine-
ment). GPU acceleration based on CUDA technique is utilized in our hybrid clustering 
(GPU-accelerated DTW). On the other hand, HycDemux integrates a module that uses 
a voting mechanism to determine the final demultiplexing result. This module selects n 
representatives (5 by default) for each cluster and calculates the DTW distance matrix 
between these representatives and the standard barcode signal. By identifying the row 
index of the minimum value in each column of the distance matrix, the module deter-
mines which barcode the sequence belongs to. As a result, n demultiplexing results 
are obtained, and the barcode with the highest frequency in the result determines the 
demultiplexing outcome of this cluster. The detailed implementation is explicated in 
the “Materials and methods” section.

We derive the results of demultiplexing by the results of hybrid clustering, implying 
that the results of clustering directly affect the results of demultiplexing. In this section, 
we first evaluate the performance of HycDemux’s hybrid clustering algorithm, and the 
experimental results show that it can generate high-quality clusters, which provides a 
strong guarantee for subsequent demultiplexing. Afterwards, we show that a voting-
based demultiplexing module can derive demultiplexed results with high accuracy from 
clustered results.

Evaluation of hybrid clustering algorithm

We demultiplex sequences based on the results of hybrid clustering algorithm, which 
poses a performance challenge for clustering. Here, we mainly evaluate the performance 
of clustering from two aspects: one is homogeneity, and the other is completeness. High 
homogeneity means that the sequences in each cluster obtained by clustering have the 
same barcode. However, there is an extreme case where each cluster contains only one 
sequence and the homogeneity is 100%. Therefore, the clustering results also need to 
be evaluated through completeness. High completeness means that there is a relatively 
small difference between the number of clusters obtained in the end and the actual num-
ber of barcodes.

Starting from the clustering results, the demultiplexing results are deduced. The 
main advantage is that under the clustering results with high homogeneity, the demul-
tiplexing result of a sequence are determined by some sequences in the cluster where 
it is located. This makes the result of demultiplexing more robust. On the other hand, 
we point out that clustering does not affect the efficiency of demultiplexing. Given n 
sequences, assuming that these n sequences carry m different barcodes, in theory, the 
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final demultiplexing result can be obtained by completing n×m alignments. Clustering 
n sequences, assuming that n1 clusters are finally obtained, and then pick k representa-
tive elements in each cluster, and the k representative elements determine the result of 
demultiplexing, which requires n1 × k ×m alignments, when the clustering result has 
high completeness, n1 × k will be much smaller than n, which means that the efficiency 
of demultiplexing will be greatly improved. At the same time, clustering results with 
high homogeneity will lead to highly accurate demultiplexing results.

We conducted experiments to demonstrate the hybrid clustering algorithm’s ability 
to produce high homogeneity and completeness results. The experimental process and 
analysis are presented in detail below.

Simulated datasets

A set of synthetic datasets with different configurations are generated. Here, we first 
generate a set of random barcodes and then produce a number of these barcodes’ cop-
ies as well as their raw signals by DeepSimulator. The configuration of synthetic dataset 
includes the following three points:

• The length of barcode (nucleotide sequence length)
• The number of clusters within a dataset
• The number of sequences for the whole dataset

Finally, we construct 12 simulated datasets. The details of these datasets are provided in 
Additional file 1: S3.

Real‑world datasets

The real-world dataset came from eight R9.4 flow cells and six R9.5 flow cells, all 
sequenced with the EXP-NBD103 barcoding kit. We conducted a random selection of 
130,000 sequences from the dataset provided by [33] and proceeded to calculate the edit 
distance between the barcode area in each sequence and the standard barcode area. If 
the edit distance exceeded 10, we labeled the sequence as “fuzzy,” indicating uncertainty 
regarding the presence of barcodes in these particular sequences. Ultimately, we con-
structed barcode labels for 120,947 sequences, forming a dataset known as the amplicon 
library. In amplicon library, we use Edlib [39] to locate the fixed region of the barcode 
and segment the barcode read and use Semi-Global Dynamic Time Warping [40] to 
extract the corresponding raw signal of these barcodes.

All the aforementioned datasets primarily consist of two main components. The first 
component comprises sequence fragments that represent the barcodes, while the second 
component consists of the nanopore signals that correspond to the barcode sequences.

Run scripts

DNACLSUT fails to cope with dataset large than 10,000 sequences. Therefore, here we 
mainly compare our hybrid clustering with CD-HIT, UCLUST, MeShClust. The com-
mand line options for these three clustering tools are listed as follows: 

1. CD-HIT: ./cd-hit-est -i infile.fasta -o outfile.fasta -c indentity



Page 6 of 29Han et al. Genome Biology          (2023) 24:222 

2. MeShClust: ./meshclust infile.fasta –id identity -output outfile.fasta
3. UCLSUT: ./usearch -cluster_fast infile.fasta -id identity -clusters output

All the experiments were run on an Ubuntu 18.04 system with Intel(R) Core(TM) 
i9-10980XE (18 cores), 128 Gb memory, and an NVIDIA RTX3080 card.

Evaluation on synthetic datasets

Six synthetic datasets with different barcode lengths, numbers of clusters, and data 
sizes are selected to demonstrate the performance of HycDemux. Table  1 describes 
the details of the six selected datasets.

Table  2 summarizes the experimental results of different clustering methods on 
these synthetic datasets, where the indexes AMI, FMI, ACC, HOMO, COMP, and 
runtime are adapted for the performance evaluation. Detailed information on all eval-
uation metrics can be found in the Additional file 1: S1.

Judging from the experimental results, it can be found that CD-HIT and UCLUST 
are able to guarantee high homogeneity (HOMO index = 100% ) under various sit-
uations. The high homogeneity is reasonable because CD-HIT and UCLUST are 
designed to maintain the consistency of the elements within a cluster. UCLUST is 
the fastest and CD-HIT is the second fastest in clustering speed, because of the util-
ity of non-alignment technique. When the sequence length is very short, MeShClust 
behaves the poorest within the four clustering methods, as shown in Table 2.

Drown from the six synthetic datasets, we can make the following key conclusions:

• CD-HIT and UCLUST are the fastest and able to guarantee high homogeneity 
(HOMO more than 98%) of the results.

• For barcodes with short sequence length ( S1 and S4 ), the clustering performance of 
MeShClust is very poor. With the increase of barcode length, the clustering perfor-
mance of MeShClust is significantly improved.

• The clustering results of S1 to S3 and S4 to S6 demonstrate that the performance of 
clustering tools depends on the length of barcode sequence, and longer sequence 
results in better clustering result.

• HycDemux outperforms other tools significantly in terms of clustering perfor-
mance, provided that speed is ensured. HycDemux achieves a completeness of 
over 95%, which is more than 30% higher than other tools, while ensuring high 

Table 1 Summaries of the details about the selected synthetic datasets

Dataset Barcode length Number of clusters Data size

S1 45nt 20 50000

S2 70nt 20 50000

S3 95nt 20 50000

S4 45nt 50 50000

S5 70nt 50 50000

S6 95nt 50 50000
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Table 2 Performance comparison of the different clustering methods on the datasetS1 ∼ S6 . Here, 
Identity is the parameter of clustering tools, AMI is the abbreviation of adjusted mutual information, 
FMI is the abbreviation of Fowlkes-Mallows Index, ACC is the abbreviation of accuracy, HOMO is the 
abbreviation of homogeneity, and COMP is the abbreviation of completeness

Dataset Tool Identity (%) AMI (%) FMI (%) ACC (%) HOMO (%) COMP (%) Time (min:sec)

S1 MeShClust 80.0 58.17 34.51 42.16 64.46 54.57 1:07.81

85.0 58.31 36.65 44.31 67.53 53.91 1:28.03

90.0 62.69 40.18 36.35 86.60 51.69 0:58.17

95.0 56.66 33.69 24.86 94.59 45.62 1:00.59

CD-HIT 80.0 77.63 66.28 57.32 100.00 64.61 0:01.03

85.0 70.51 59.47 49.78 100.00 57.06 0:01.60

90.0 58.73 45.50 36.92 100.00 47.41 0:02.67

95.0 41.30 26.92 18.71 100.00 37.89 0:04.00

UCLUST 80.0 61.74 47.37 37.97 100.00 49.06 0:00.59

85.0 54.53 38.50 28.34 100.00 44.09 0:00.80

90.0 44.19 27.02 17.64 100.00 38.64 0:01.09

95.0 32.67 18.10 11.48 100.00 34.33 0:01.44

HycDemux - 97.73 97.40 96.75 99.99 95.59 0:10.95

S2 MeShClust 80.0 67.10 50.96 57.66 70.45 64.98 0:55.28

85.0 67.63 52.12 52.67 83.91 58.61 1:12.78

90.0 61.96 50.08 41.15 92.98 50.83 1:00.49

95.0 59.67 49.57 44.31 96.26 49.03 1:56.98

CD-HIT 80.0 81.89 71.30 65.57 100.00 70.02 0:01.40

85.0 73.60 60.10 52.22 100.00 60.09 0:02.36

90.0 60.24 42.76 33.59 100.00 48.08 0:04.63

95.0 40.52 24.03 16.17 100.00 37.37 0:07.25

UCLUST 80.0 63.74 45.82 35.77 100.00 50.27 0:00.96

85.0 53.73 32.44 22.27 100.00 43.06 0:01.35

90.0 40.88 20.52 13.63 100.00 36.89 0:01.91

95.0 26.29 12.46 7.34 100.00 32.38 0:02.44

HycDemux - 99.89 99.91 99.91 100.00 95.59 0:13.12

S3 MeShClust 80.0 85.06 83.40 86.24 93.44 79.06 1:33.12

85.0 79.99 81.27 79.19 96.50 70.48 1:58.35

90.0 66.37 65.43 61.96 94.12 56.85 2:01.84

95.0 57.65 58.07 45.25 99.47 48.83 1:07.26

CD-HIT 80.0 88.70 83.32 78.95 100.00 79.99 0:01.65

85.0 81.22 74.83 67.45 100.00 69.48 0:03.20

90.0 67.86 60.14 52.22 100.00 55.24 0:06.92

95.0 44.53 30.26 21.45 100.00 39.50 0:04.00

UCLUST 80.0 68.75 54.50 44.48 100.00 55.08 0:01.29

85.0 58.44 44.18 32.51 100.00 46.91 0:01.79

90.0 44.36 26.50 18.00 100.00 38.76 0:02.46

95.0 26.93 14.09 8.60 100.00 32.67 0:01.44

HycDemux - 97.78 96.90 95.39 100.00 95.67 0:19.34
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homogeneity (> 99.7%). This ensures accuracy in subsequent demultiplexing and 
improves overall efficiency.

• The speed of HycDemux is affected by the number of clusters residing in the data-
set, as the result comparison of S1 and S4 , S2 and S5 , and S3 and S6 . This is caused 

Table 2 (continued)

Dataset Tool Identity (%) AMI (%) FMI (%) ACC (%) HOMO (%) COMP (%) Time (min:sec)

S4 MeShClust 80.0 54.00 24.31 32.06 65.57 50.39 0:47.93

85.0 49.58 17.13 27.23 59.03 47.54 0:57.78

90.0 55.31 28.55 23.48 87.42 49.55 1:01.96

95.0 50.60 26.03 19.31 92.11 47.40 1:04.56

CD-HIT 80.0 78.29 59.75 50.20 99.99 67.34 0:01.28

85.0 69.95 50.26 40.07 100.00 59.80 0:01.89

90.0 56.29 36.47 26.12 100.00 51.10 0:03.31

95.0 35.86 20.55 12.87 100.00 43.17 0:04.77

UCLUST 80.0 61.21 39.56 29.19 100.00 53.59 0:00.79

85.0 53.42 32.61 22.30 100.00 49.51 0:01.03

90.0 40.48 21.84 13.65 100.00 44.40 0:01.46

95.0 27.05 14.30 8.36 100.00 40.78 0:01.85

HycDemux - 98.42 97.03 96.28 99.73 97.18 0:19.96

S5 MeShClust 80.0 68.39 47.68 52.91 82.86 62.65 1:03.37

85.0 62.40 36.39 46.49 82.04 57.61 1:43.73

90.0 54.90 24.28 33.06 73.30 52.13 1:55.66

95.0 53.89 24.53 31.02 82.26 51.23 1:06.23

CD-HIT 80.0 85.39 71.10 64.08 100.00 75.94 0:01.66

85.0 77.87 60.19 51.56 100.00 67.23 0:02.76

90.0 65.62 48.89 39.54 100.00 57.13 0:04.93

95.0 45.10 28.76 20.16 100.00 46.40 0:07.29

UCLUST 80.0 70.56 55.00 43.23 100.00 60.60 0:01.13

85.0 60.71 44.25 32.51 100.00 53.79 0:01.56

90.0 46.99 30.48 20.19 100.00 47.03 0:02.12

95.0 30.91 18.12 10.80 100.00 41.81 0:02.50

HycDemux - 98.77 97.43 95.90 99.99 97.61 0:29.50

S6 MeShClust 80.0 87.66 79.22 83.36 93.81 83.40 0:49.57

85.0 83.44 76.77 77.05 95.24 76.69 1:01.72

90.0 76.70 71.47 68.35 96.18 68.72 1:03.75

95.0 70.43 64.56 56.08 98.07 62.35 1:05.74

CD-HIT 80.0 92.46 86.29 82.23 100.00 86.44 0:01.58

85.0 86.30 77.45 72.41 100.00 77.51 0:02.80

90.0 74.23 61.01 52.30 100.00 64.25 0:05.54

95.0 52.12 32.98 24.42 100.00 49.34 0:09.23

UCLUST 80.0 78.99 67.27 57.71 100.00 68.73 0:01.27

85.0 69.14 54.09 44.34 100.00 59.75 0:01.73

90.0 53.36 34.91 25.64 100.00 49.81 0:02.39

95.0 31.74 15.71 9.68 100.00 41.86 0:03.07

HycDemux - 99.40 99.11 98.93 100.00 98.82 0:33.77
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by the fact that the number of clusters determines the number of DTW distance 
that should be calculated in the cluster merging phase.

In general, due to the base-calling error, the traditional clustering tools such as CD-HIT, 
UCLUST, and MeShClust could not get good clustering results in the analysis of short 
nanopore reads. In particular, the clustering completeness of these tools is poor. For a 
dataset containing 50,000 sequences and 20 clusters, these tools may produce results 
with more than 1000 clusters. However, HycDemux significantly improves completeness 
while ensuring clustering speed, resulting in fewer than 100 clusters. The initial clus-
tering of our method guarantees the extremely high homogeneity within the clusters, 
and the cluster merging and refinement guarantee the high accuracy and completeness 
of the clustering, which greatly reduces the influence of base-calling error. The results 
show that our method produces very good clustering results, and the results produced 
by traditional clustering tools cannot compete with us. This greatly benefits subsequent 
demultiplexing processes. More benchmarking results are provided in Additional file 1: 
Table S10 ∼ Table S15.

Performance analysis of different stages

As introduced in previous sections, the hybrid clustering algorithm is composed by 
three stages, i.e., initial clustering, cluster merge, and cluster refinement. In this section, 
we analyze the detailed contributions of different stages in hybrid clustering and their 
time cost.

First, we analyze the change of cluster accuracy of these different stages. As shown in 
Fig. 2A, after the initial clustering, the clustering result is not so good. With the comple-
tion of the merging phase, the clustering performance has been greatly improved. After 
the refinement phase, the clustering result is further improved. The change of index val-
ues in Fig.  2A clearly show the effectiveness of the three-stage solution in our hybrid 
clustering algorithm. Especially, the signal based cluster merging and refinement con-
tributes a lot to the accuracy improvement in clustering result.

Then, we analyze the time cost of these different stages. Figure  2B shows the runt-
ime of the three stages for the clustering of S3 in pie chart. As shown in Fig.  2B, the 

Fig. 2 A The clustering result of hybrid clustering at different stages on dataset S3 . The results after initial 
clustering, cluster merging and cluster refinement is labeled by red, purple and green, respectively. B Pie 
chart of different stages’ runtime percentage of the algorithm on S3
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hybrid clustering algorithm spends the most time in the cluster merging stage. This is 
reasonable, since a large number of DTW distance comparisons are computed in cluster 
merging.

Speedup of GPU‑accelerated DTW

As described in the previous section, numerous DTW distance are calculated in our 
algorithm, but we still achieve relatively small time cost. Here, we would like to show the 
benefits of GPU acceleration in DTW distance calculation.

In order to show the overall acceleration effect, we generate a large amount of time 
series as test data, whose details are shown in Table 3. We compare the CUDA imple-
mentation of DTW with CPU single-threaded method and CPU multi-threaded method. 
The DTW method realized by CUDA is equivalent to the original DTW in the math-
ematical model, which can guarantee its correctness. The CPU single-threaded method 
is a naive DTW algorithm. In the CPU multi-threaded approach, each CPU thread is 
responsible for calculating the DTW distance of a pair of time series, while the single 
CPU thread still uses the traditional method for calculation. Figure 3A clearly shows the 
time spent by different approaches in logarithmic scale. As shown in Fig. 3A, the CUDA 

Table 3 Three different kinds of time series used for the comparison of different DTW’s 
implementation, where all the time series are with a length of 1300. “Random” means time series 
of random walk. “Simulator” means current signals generated by DeepSimulator. “Amplicon 
library” means the real data downloaded from [33]. Here, we divide the data into two groups, and 
the time series within each group will compare with each other. For example, in the first random 
dataset,200× 1000means that the first group has 200 time series, the second group has 1000 time 
series, and the number of DTW comparison is200× 1000 = 200000

Source Size DTW numbers

Random 200×1000 200000

Random 1000×1000 1000000

Simulator 200×10000 2000000

Random 200×30000 6000000

Random 1000×10000 10000000

Amplicon library 100×120947 12094700

Fig. 3 A The time comparison between different acceleration strategy with different data size. B Acceleration 
ratio for random sequences with different lengths, where the acceleration ratio = (runtime of single-thread 
DTW)/(runtime of single-thread CUDA)
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accelerated DTW is at least three orders of magnitude faster than the traditional single-
threaded DTW, and two orders of magnitude faster than the 30-threaded DTW.

In addition, we evaluate the DTW acceleration ratio of different lengths by simulated 
nanopore signals generated from DeepSimulator, where the length of the current signal 
is approximately 8 times of that of the corresponding DNA template. Figure 3B shows 
the change of acceleration ratio with different sequence lengths, where the acceleration 
ratio for single DTW calculation ranges from 14× to 22× , increasing with the lengthen-
ing of sequences. Furthermore, as introduced in previous section, a block-wise accel-
eration strategy is proposed to fully utilize the advantage of GPU blocks, which enables 
the launch of million threads of DTW calculation simultaneously. In Supplementary 
Table S1, we have shown that it takes about 1100 min to calculate the DTW distance 
matrix of 2000× 2000 . As a comparison, by applying the CUDA acceleration strategy, 
the time cost of the DTW distance matrix calculation can be reduced to 4 s.

Runtime analysis of the hybrid clustering algorithm

As discussed in previous section, the hybrid clustering algorithm consists of three stages 
and the calculation of DTW distance is GPU-accelerated. Here, we would like to further 
analyze the overall time complexity of the hybrid clustering algorithm.

We simulated a number of datasets by DeepSimulator to test the time cost of our algo-
rithm under different sequence lengths, dataset sizes, and numbers of clusters, whose 
results are summarized in Fig. 4. Figure 4A shows that the runtime of our algorithm is 
not simply correlated with the sequence length. When the sequence length is 75 nt, the 
total time cost of our algorithm is smaller than the one with 75 nt sequence. In addi-
tion, the time costs for datasets with 75 nt, 85 nt, and 95 nt sequence length are almost 
the same. In fact, the accuracy of initial clustering could benefit from longer sequence, 
which shortens the runtime of further cluster merging and refinement. Figure 4B and C 
shows that the runtime of our algorithm linearly increases with the increment of dataset 
size and number of clusters, which ensures an acceptable time cost even when the size 
of dataset is relatively large. In practice, our method can complete barcode clustering 
efficiently.

Evaluation on real‑world dataset

The real-world dataset is downloaded from [33], composed of 12 classes of nanopore 
barcodes, with ∼ 40 base pairs for each barcode. For the real-world barcode sequences, 

Fig. 4 The runtime of hybrid clustering on A a dataset with 10,000 sequences and 20 clusters when the 
length of the sequences changes, B a dataset with about 45 nt long sequences and 20 clusters when the size 
changes, and C a dataset with long sequences when the number of clusters changes
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the first 8 positions of nucleobase and the last 8 positions of nucleobase are same to 
each other. Thus, the base-calling error may translate two identical nanopore barcode 
into different nucleobase reads, which greatly hampers the correctness of clustering and 
classification.

Table  4 summarizes the experimental results of different clustering methods on the 
real-world dataset. As shown in Table  4, the performance of MeShClust on the real-
world dataset is very poor at all identities, failing to guarantee even the homogeneity of 
clustering. At each identity, the performance of the CD-HIT is slightly better than that 
of UCLUST, while UCLUST can always guarantee higher HOMO. The performance of 
HycDemux on the real-world dataset is much better than that of the other classic clus-
tering tools, with 99.47% homogeneity and 83.22% completeness. In terms of cluster-
ing efficiency, UCLUST and CDHIT still maintain a clear advantage, while the hybrid 
clustering algorithm can also complete the clustering of about one hundred thousand 
sequences within very short time. By fully utilizing the raw signal information, HycDe-
mux can cope with the challenge of base-calling error well, outperforming the classic 
‘base-space’ clustering tools. Especially, our algorithm has finished the clustering within 
15 s which is also very efficient.

Evaluation of the demultiplexing in HycDemux

Previous studies have demonstrated that hybrid clustering algorithm can deliver cluster-
ing results with high homogeneity and completeness. In this context, we will elaborate 
on how our hybrid clustering algorithm, coupled with a voting mechanism-based demul-
tiplexing module, can attain demultiplexing results with high accuracy. We compare our 
method with the state-of-the-art demultiplexing tool, Guppy, and provide experiment 
details below.

Simulated multi‑sample sequencing data

We obtained whole genome sequences for 17 Enterotoxigenic Escherichia coli 
strains  [41], 45 historical Shigella strains  [42], and 67 Shiga toxin-producing Escheri-
chia coli strains  [43] to construct multi-sample sequencing datasets. We constructed 

Table 4 Performance comparison of the different clustering methods on the real-world dataset

Tool Identity (%) AMI (%) FMI (%) ACC (%) HOMO (%) COMP (%) Time (min:sec)

MeShClust 80.0 0.20 30.37 15.93 0.32 19.02 0:51.35

CD-HIT 80.0 77.86 71.68 64.68 96.31 65.57 0:02.36

UCLUST 80.0 56.86 35.70 20.96 99.96 41.24 0:02.2

MeShClust 85.0 4.63 29.53 17.13 3.14 25.76 1:31.95

CD-HIT 85.0 70.21 56.74 50.29 99.77 54.71 0:03.14

UCLUST 85.0 50.08 27.07 16.35 99.97 36.12 0:01.73

MeShClust 90.0 27.06 23.52 23.02 24.44 34.50 3:02.26

CD-HIT 90.0 56.88 34.81 27.64 99.96 41.60 0:07.89

UCLUST 90.0 40.92 18.21 12.35 99.98 30.93 0:02.79

MeShClust 95.0 26.54 21.75 18.98 29.42 30.36 7:31.98

CD-HIT 95.0 39.71 18.30 13.56 99.98 30.72 0:21.57

UCLUST 95.0 31.10 13.39 9.63 99.99 27.32 0:04.32

HycDemux —- 90.60 91.55 88.19 99.47 83.22 0:13.45
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multiple multi-sample sequencing libraries by randomly interrupting genome sequences 
based on the sequencing length distribution of Oxford Nanopore Sequencing Technol-
ogy (ONT). Figure 5A illustrates the resulting DNA sequence after library construction. 
We used a total of 11 multi-sample sequencing datasets (Table 5) to evaluate our algo-
rithm; all datasets were mixed with an additional 1000 sequences that either lacked or 
had incomplete barcode regions (with a missing ratio greater than 0.6). These sequences 
were classified as negative samples and their correct barcode label should be “unclassi-
fied.” In contrast, sequences containing the complete barcode region were categorized as 
positive samples. In addition, D1∼ D7 carried higher sequencing errors (10∼15%), and 
DB4∼DB7 carried lower sequencing errors (2∼ 5%).

In these datasets, D1∼ D3 integrate the official nanopore barcode. In order to evalu-
ate the robustness of the demultiplexing method and the performance of demultiplexing 
a large number of non-ONT barcodes [44, 45], we increased the number of barcodes 
and generated simulated multi-sample sequencing data (D4∼ D7 and DB4∼DB7), these 
barcodes were randomly generated, and a certain edit distance was guaranteed (edit dis-
tance = 14.5 ± 1.8). The barcode consist of three primary components: upstream flank-
ing region, variable region, and downstream flanking region (Fig. 5A). While the barcode 
lengths vary among these datasets, the variable regions remain consistent at 24 nt in 
length.

For the EXP-NBD104 kit (D1), both upstream flanking region and downstream flank-
ing region are 8 nt long, resulting in a total barcode length of 40 nt. In the case of the 

Fig. 5 Data preparation for evaluating demultiplexing and the pipeline of HycDemux. A DNA sequence 
after multi-sample sequencing library construction. B Extract “barcode” sequences (nanopore signals) within 
sequences (nanopore signals) using a fast heuristic scheme (see the "Materials and methods" section). C 
Complete pipeline of HycDemux for demultiplexing consists of several steps. First, the data preparation 
pipeline completes the necessary preprocessing of the data. Next, the hybrid clustering algorithm (Fig. 1A, B, 
C) performs the data clustering process. Finally, the demultiplexing module (Fig. 1D) completes the final step 
of demultiplexing

Table 5 All datasets used to evaluate demultiplexing performance. “GB” is an abbreviation for 
gigabytes

Dataset No.of reads Barcoding kit Size

D1 13, 000 Nanopore, EXP-NBD104, 12 barcodes 3.54 GB

D2 25, 000 Nanopore, SQK-16S024, 24 barcodes 6.73 GB

D3 97, 000 Nanopore, EXP-PBC096, 96 barcodes 26.76 GB

D4/DB4 200, 956 Random, 200 barcodes 52.63 GB

D5/DB5 250, 946 Random, 250 barcodes 65.73 GB

D6/DB6 300, 937 Random, 300 barcodes 78.83 GB

D7/DB7 350, 920 Random, 350 barcodes 91.92 GB
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SQK-16S024 kit (D2), upstream flanking region spans 15 nt, downstream flanking region 
covers 20 nt, and the barcode itself is 59 nt in length. Finally, the EXP-PBC096 kit (D3) 
features a upstream flanking region of 7 nt, a downstream flanking region of 29 nt, 
and an overall barcode length of 60 nt. For barcodes in D4∼ D7 and DB4∼DB7, both 
upstream flanking region and downstream flanking region are 8nt long, resulting in a 
total barcode length of 40 nt.

Extract data for demultiplexing

We obtained the barcode sequences (signals) from the multi-sample sequencing data-
set (Fig.  5B). However, as errors may occur during the extraction process, we refer to 
the barcode sequence (signal) as a pseudo-barcode sequence (signal). These extracted 
pseudo-barcode sequences (signals) are utilized in the hybrid clustering and demulti-
plexing that follow (Fig. 5C).

Evaluation index

Our analysis encompasses the demultiplexing accuracy of each individual barcode, 
employing two evaluation metrics: average accuracy and minimum accuracy. Now, we 
explain the concepts of average accuracy and minimum accuracy using an example. 
Consider a scenario with 10 sequences labeled as read1, read2, ..., read10 . The correct 
barcode labels for these sequences are 1, 1, 1, 1, 1, 2, 2, 2, 2, 2. Here, the label “1” (or 
“2”) indicates that the sequence carries the 1st (or 2nd) barcode. We want to assess the 
accuracy rates for these two barcodes. Assuming that the barcode labels obtained by the 
demultiplexing algorithm for the 10 sequences are 1, 2, 1, 1, 2, 1, 1, 2, 1, 2, we can cal-
culate the accuracy rates. The accuracy rate for the first barcode is 3/5, indicating that 3 
out of 5 sequences labeled as barcode 1 are correct. Similarly, the accuracy rate for the 
second barcode is 2/5, as 2 out of 5 sequences labeled as barcode 2 are correct. In this 
case, average accuracy is calculated as (3/5 + 2/5)/2 = 0.5, and minimum accuracy is 
min(3/5, 2/5) = 0.4 . It is important to note that when dealing with a large number of 
barcodes, it is possible to have a demultiplexing result with a high average accuracy but 
a low minimum accuracy. This means that the algorithm performs well on the majority 
of barcodes but may be ineffective for certain barcodes. Therefore, solely relying on the 
average accuracy might not provide a comprehensive evaluation of the demultiplexing 
effectiveness. Supplementary Fig. S1 further demonstrates the importance of minimum 
accuracy. By including the minimum accuracy, we can better assess the performance of 
the demultiplexing algorithm.

In addition, we utilize the recall rate as a measure of the model’s performance in cor-
rectly identifying positive samples. The formula for calculating the recall rate is: Recall 
= TP / (TP + FN). Here, TP represents true positive examples (the number of samples 
correctly predicted as positive by the model), and FN represents false negative examples 
(the number of samples that are actually positive but are incorrectly predicted as nega-
tive by the model).

Performance on all datasets

We conducted extensive experiments on all datasets to showcase the effectiveness 
of HycDemux, and the main experimental results are presented in Tables 6 and 7. As 
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shown in Table 6, both HycDemux and Guppy achieve nearly perfect accuracy on data-
sets D1 ∼ D3, which have a limited number of carefully designed ONT barcodes (not 
exceeding 96). As the number of barcodes increases in D4∼D7, Guppy’s average accu-
racy remains around 0.95 but its minimum accuracy drops below 0.7, indicating that 
Guppy fails to demultiplex sequences associated with certain barcodes. In contrast, 
HycDemux maintains a stable performance with a minimum accuracy above 0.9. In 
terms of recall, HycDemux outperforms Guppy by approximately 3%. Additionally, we 
observed that HycDemux exhibits fewer instances of “unclassified” labels compared to 
Guppy, and it aligns more closely with the ground truth value of 1000. This indicates that 
our demultiplexing algorithm excels at accurately assigning the correct barcode label to 
each sequence.

The randomly selected barcodes in D4∼ D7 may contain basecalling errors, which 
could impede Guppy’s demultiplexing accuracy based on DNA sequences. Additionally, 
as the number of barcodes increases, distinguishing between some barcodes becomes 
increasingly challenging, thereby making demultiplexing more difficult. HycDemux uti-
lizes both DNA sequence and nanopore signal information to achieve highly homoge-
neous clustering results and avoid basecalling errors. The voting mechanism is used to 
obtain demultiplexing results, which prevents abnormal sequences from affecting the 
accuracy of demultiplexing.

As shown in Table 7, with the improvement of sequencing error rate, both HycDemux 
and Guppy showed improved demultiplexing accuracy, which is expected as sequencing 
error rates are generally inversely related to algorithm’s accuracy. In terms of average 
accuracy and recall, HycDemux demonstrated an advantage of approximately 2% over 
Guppy. In addition, it is worth noting that even with these improvements, the minimum 
accuracy of Guppy remains below 0.8, and HycDemux outperforms Guppy by ∼15%. 
This shows that under the current state-of-the-art sequencing accuracy, Guppy still can-
not successfully demultiplex some samples, while HycDemux guarantees a demultiplex-
ing accuracy above 0.9.

Compared to Guppy, HycDemux is slightly less efficient in terms of speed but the 
running time remains at the same order of magnitude, due to the fact that HycDe-
mux involves a lot of DTW distance calculations. However, it is important to note that 
HycDemux still achieves a high level of demultiplexing efficiency. In our test environ-
ment, the extraction efficiency of barcode data is around ∼255 reads/s. Based on this 
estimate, the time required to complete the demultiplexing of D1 is 17 + 47 = 64 s, 
which means that our method can complete the demultiplexing of 3.5 G data in ∼ 1 min.

Discussion
We perform demultiplexing based on the clustering results, which offers a significant 
advantage. Clustering, particularly in clusters with high homogeneity, determines the 
demultiplexing outcome of a sequence based on other sequences within the same clus-
ter. This characteristic enhances the robustness of the demultiplexing process, as it 
ensures that sequences within a cluster contribute to the determination of the demul-
tiplexed result. Nanopore sequencing produces two types of data, i.e., the raw current 
signals and base-called reads. For barcode sequence clustering, the first consideration 
is what kind of data should be used for clustering. We found that the direct use of raw 
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signal information combined with the DTW algorithm can produce good clustering per-
formance, but the time cost is high (Additional file 1: S2). Using the read information 
combined with existing clustering tools is fast but cannot produce good clustering com-
pleteness. The hybrid clustering algorithm makes use of these two types of data for clus-
tering. In the initial clustering stage, the read information is used to generate the initial 
clustering results, and in the cluster merging and refinement stages, the raw signal infor-
mation is used to continuously refine the initial clustering results. From the experimen-
tal results of simulated datasets and real datasets, the clustering accuracy of the hybrid 
clustering algorithm is obviously better than that of various classic clustering tools. 
Additionally, we have integrated a GPU-based module into our algorithm, specifically 
designed for computing the DTW distance matrix between time series. This module 
proves highly efficiency of GPU powered clustering, when dealing with time series data-
sets. The utilization of GPU for distance computation and clustering has been crucial, 
as evidenced by our experiments. By harnessing the power of GPUs, we have effectively 
applied certain algorithms that are slow but accurate, such as DTW distance computa-
tion with a complexity of n2 , to big data analysis. This has ensured both the accuracy 
and efficiency of the analysis process, and has the potential to inspire future work in this 
area.

Through extensive experiments, we made an interesting observation regarding clus-
tering tools and their clustering accuracy. While some clustering tools may not achieve 
high clustering accuracy, we found that certain tools utilizing greedy strategies, such 
as CDHIT, can ensure near-perfect homogeneity. This discovery has led to the emer-
gence of a new clustering concept: employing a greedy strategy to rapidly obtain highly 
homogeneous clusters and subsequently merging these clusters in a careful manner to 
continually improve clustering accuracy. By employing a suitable merging strategy for 
these initial clusters, we can achieve clustering results with significantly higher accu-
racy. Additionally, the complexity of clustering is substantially reduced when starting 
from these initial clusters, as compared to the original sequence set. This strategy can 
be seamlessly applied to DNA sequence clustering problems once an appropriate cluster 
merging scheme is established.

Our demultiplexing module is designed based on the hybrid clustering algorithm, 
which yields highly homogeneous and integrated clustering results. By employing a vot-
ing mechanism for demultiplexing each cluster, HycDemux achieves more accurate and 
stable demultiplexing results.

There is still room for improvement in HycDemux. Currently, we employ a heuristic 
scheme to extract the pseudo-barcode sequence (signal) by relying on the relationship 
between the length of the nanopore signal and the length of the DNA sequence. While 
experimental results have shown its effectiveness, there are cases where we cannot guar-
antee that the extracted pseudo-barcode signal contains sufficient useful information. To 
address this concern and prevent it from affecting the final demultiplexing results, we 
have adopted a simple designed DTW distance threshold (as described in the "Extract 
barcode information from raw data" section). In future research, we will focus on 
enhancing our algorithm in this aspect.

In recent years, significant advancements have been made in ONT Direct RNA 
sequencing. This approach eliminates the need for reverse transcription of RNA into 
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cDNA, thereby mitigating potential issues associated with introducing errors or los-
ing information during transcription. However, it is important to note that individual 
sequencing of RNA molecules often yields data with a relatively high error rate [46, 47]. 
On the other hand, the combination of RNA molecules and barcodes also enables multi-
sample sequencing [34]. Through experiments, we can see that our demultiplexing algo-
rithm can successfully complete the demultiplexing of multiple samples on datasets with 
a high error rate, which implies that our algorithm can be applied to the demultiplexing 
of RNA samples. This is also the focus of our future work.

Furthermore, barcoding is not only applicable to the multi-sample sequencing but 
also finds significant utility in the realm of single-cell RNA sequencing. By employing 
the 10X method in conjunction with ONT sequencing, RNA isoforms can be quantified 
at the individual cell level. The combination of ONT sequencing and the 10X method 
generates vast amounts of data, encompassing thousands of barcodes. These barcodes 
originate from a “white list” consisting of millions of barcodes. In downstream analy-
sis, accurately identifying the barcodes within the sequences is the crucial initial step, 
as sequences with the same barcode are presumed to originate from the same cell. In 
response to this specific challenge, we aim to develop a more adaptive algorithm build-
ing upon our current work.

Conclusion
This paper presents an approach named HycDemux for barcoded sample demultiplexing 
in nanopore sequencing.

HycDemux initially obtains highly homogeneous clusters using the hybrid cluster-
ing algorithm and then employs a voting mechanism module to perform demultiplex-
ing. HycDemux delivers stable performance, particularly when there is a large number 
of samples. It ensures a demultiplexing accuracy of > 0.9 per sample, which is approxi-
mately 0.3 higher than the accuracy of the state-of-the-art method on the high error rate 
datasets and 0.15 higher than the state-of-the-art method on the low error rate datasets. 
On the other hand, experiments on datasets with high error rates imply that HycDemux 
can be applied to direct RNA sequencing problems, especially RNA demultiplexing of 
multiple samples. Specifically, the introducing of GPU-acceleration significantly reduce 
the execution time of signal similarity comparison, which makes the processing of a 
huge number of data possible. In addition, the experimental evaluation of GPU-based 
DTW calculation demonstrates the efficient utilization of GPUs in clustering analysis. 
This approach ensures both efficiency and accuracy in the measurement process, offer-
ing valuable insights and reference for related research endeavors.

Materials and methods
Overview

We have designed a heuristic scheme to extract pseudo-barcode sequences (signals) 
in raw data for subsequent clustering and demultiplexing. For these pseudo-barcode 
sequences (signals), we developed an unsupervised hybrid approach, in which the nucle-
obase-based greedy algorithm is utilized to obtain initial clusters, and the raw signal 
information is measured to guide the continuously optimization and refinement of clus-
tering results. Figure 6 shows the detailed workflow of hybrid clustering.
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Given the nanopore sequences, we first utilize the nucleotide information for initial 
clustering to generate clusters with high homogeneity (identity � 95%), whose process is 
based on a greedy clustering strategy and very quick. Then, we select some sequences in 
the clusters for threshold determination for subsequent cluster merging and refinement. 
Finally, we make the cluster merging and refinement by calculating the DTW distance 
between the raw signals and each cluster’s representative signals, with GPU-acceler-
ated DTW to ensure efficiency. To address the demultiplexing problem, we designed a 
module based on the voting mechanism to parse the demultiplexing results from the 
clustering results. The usage of our method is presented in Additional file 1: S5. In the 
following, we give out the details of each step in the hybrid clustering and demultiplex-
ing, where the detailed pseudocode for each step is given in Additional file 1: S3.

Extract barcode information from raw data

Raw data comprises both the native nanopore signals and their corresponding DNA 
sequences. To successfully demultiplex the raw data, it is crucial to extract the barcode 
information accurately. To accomplish this, we have devised a heuristic scheme based on 
the distinctive characteristics of DNA libraries (refer to Fig. 5A).

In our approach, we begin by analyzing the native nanopore signal. We employ the 
semi-global dynamic time warping algorithm to identify the position of the adapter sig-
nal within the signal. The tail position of the adapter signal serves as the starting point 
for the barcode signal. By leveraging this information, we are able to locate the barcode 
signal within the nanopore signal accurately. The determination of the barcode signal’s 
position takes into account the length of the barcode sequence and the sampling rate of 
the nanopore signal.

Similarly, for the DNA sequence, we utilize the Edlib to identify the position of the 
adapter sequence within the sequence. Subsequently, we determine the position of the 
barcode sequence based on its length. Assuming that the standard adapter sequence 

Fig. 6 The workflow of hybrid clustering integrated in HycDemux. First, a greedy clustering algorithm is used 
to obtain initial clustering based on the nucleotide information. Then, we try to merge the initial clusters with 
good homogeneity by the information of raw signals, in which the threshold of signal-to-signal DTW distance 
is determined with a partial sampling method. For each merged cluster, a corresponding representative 
signal is produced. Finally, based on these representative signals, a signal-similarity based classification 
strategy is designed to assign the unclassified sequences to the already known clusters, to further refine the 
clustering result
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has a length of n, if the edit distance between the standard adapter sequence and the 
DNA sequence exceeds 0.45 times n (using local alignment), the barcode label of the 
sequence is deemed ambiguous and marked as “unclassified”.

All the sequences (signals) that we extract, both from the nanopore signals and 
DNA sequences, are referred to as pseudo-barcoded sequences (signals). These 
pseudo-barcoded sequences (signals) are utilized for subsequent clustering and 
demultiplexing stages.

Initial clustering

We utilize a nucleobase-based greedy algorithm to generate homogeneous initial 
clustering, in which the process is similar to the ones in CD-HIT. Figure 7 describes 
the detailed workflow. Firstly, the sequences are sorted in descending order of the 
sequence length. The longest sequence is assumed to be the representative sequence 
of a cluster. A short word filter [13] is applied to reduce the comparison in pairwise 
alignment. Here, each selected sequence is compared with the existing representa-
tive sequences. If the similarity between the selected sequence and a representative 
sequence is higher than the threshold, the selected sequence will be merged into the 
cluster of the representative sequence. Otherwise, the selected sequence becomes a 
new representative sequence. Repeating this process until all the sequences are vis-
ited, resulting in a number of clusters and a set of ultra-short sequences that do not 
belong to any cluster. Finally, A verification mechanism is used to check the homo-
geneity of the clusters and retrieve the ultra-short sequences which are misclassified.

With a high enough threshold (e.g., identity � 95%), the initial clustering is able to 
quickly generate clusters with high homogeneity, where these initial clusters can be 
considered as completely correct, to significantly reduce the pair comparison in fur-
ther signal-similarity based clustering.

Fig. 7 The workflow of initial clustering
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Threshold determination

After obtaining the initial clustering result, we need to further refine it according 
to the raw signal information. The refinement of the initial clusters depends on the 
merging threshold, which is critical to the final demultiplexing accuracy. Because of 
the initial clusters’ high homogeneity, the merge threshold is possible to be deter-
mined from the initial clustering result.

Once the initial clustering is complete, we obtain the representative units of good 
clusters and their corresponding nanopore signals. All clusters are sorted in descend-
ing order based on their size, and the clusters ranked top-(0.01× |clusters| ) are called 
good clusters. |clusters| refers to the number of clusters, the size of a cluster with 
rank exactly 0.01× |clusters| is defined as GoodIndex. We calculate pairwise DTW dis-
tances of all nanopore signals and set the threshold as the average of the maximum 
and minimum distances divided by a constant value k (default is 4).

Cluster merging and refinement

Cluster merging

For a certain multiplex sequencing configuration, it is possible to estimate the mini-
mal set size of a cluster. Here, we define an initial cluster with set size larger than 
GoodIndex as a good cluster and denote GoodClusterSet = {C1,C2, ...,CM} as the set of 
good clusters of the initial clustering result, where M is the number of good clusters 
and {Ci} is sorted in the descending order according to their cardinality.

For each Ci , we randomly select K raw signal sequences within Ci , and record these 
signals as {sigik }k=1,2,...,K  , where K must satisfy

Every time we choose the top unvisited cluster Ci , i.e., the largest unvisited cluster 
in GoodClusterSet, as a query to compare with the other clusters ( i = 1 in the first 
time). We compare {sigik } with the sampled K raw signals {sigmk

} from the rest clusters 
( 1 < m < M ) by the DTW distance. If for ∀p, q, DTW (sigip , sigmq ) < threshold , Cm is 
merged into Ci , and GoodClusterSet = GoodClusterSet\Cm . Every time, the selected 
cluster Ci is compared with the remaining clusters {Cm} and is merged with all the 
clusters Cm that satisfy the DTW distance constraint. We iteratively select the top 
unvisited cluster and make the cluster merging until all the clusters’ relationship has 
been checked.

Refinement 1

It should be noted that the GoodClusterSet has been changed during clus-
ter merging. After the final merging, a set of refined clusters can be obtained, i.e., 
GoodClusterSet ′ = C ′

1
,C ′

2
, ...,C ′

T ,T ≤ M . The corresponding representative sequence  
set can be denoted as

K < min{|Ci|}i=1,2,...,M .

ConSeqSet = {cseq1, cseq2, ..., cseqT }.
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Given the representative sequence, its corresponding nanopore signal can also be 
obtained. Thus, with the representative sequences, a set of representative signal can 
be generated, which is denoted as

The representative signal is utilized as standard reference to optimize the initial 
clustering results. For the sequences that are not in Ci, i = 1, 2, ...,M , we get the cor-
responding raw signals of these sequences and calculate the DTW distance between 
these sequences and the representative signals in ConSigSet. For a given sequence, if the 
distance between this sequence’s raw signal and a representative signal is less than the 
threshold, the sequence is merged to the representative signal’s corresponding cluster.

Refinement 2

After the above steps, there are still some sequences that have not been classified. We 
get the raw signals of these sequences and make the following process: first, randomly 
select a sequence to generate a new cluster Cnew , where the selected sequence is the rep-
resentative sequence of Cnew , denoted by seqnew . Calculate the DTW distance between 
the raw signal of seqnew and the raw signal of the remaining sequences. If the distance is 
less than threshold, add the corresponding sequence to Cnew . Repeat the process until all 
the sequences are visited.

Figure 1 illustrates an example for the merging and refinement process of 30 sequences 
from two cells. The clustering accuracy is continuously improved with the utilization of 
all the information residing in the nucleobase sequences and raw signals.

Demultiplexing module based on voting mechanism

We performed demultiplexing on each cluster obtained from the hybrid clustering algo-
rithm (as shown in Fig. 1D). To achieve this, we followed a specific procedure.

Given a cluster set, we initially selected the first k elements (with a default value of 5) 
corresponding to k pseudo-barcoded signals. For these selected signals, we computed 
the DTW distance matrix between them and all the standard barcode signals.

Next, we determined the row index of the minimum value in each column of the DTW 
distance matrix, resulting in a k-dimensional vector. This vector captures the closest 
match for each pseudo-barcoded signal among the standard barcode signals.

Finally, we calculated the mode of the k-dimensional vector, which represents the most 
frequent value in the vector. This mode value serves as the final demultiplexing result for 
the cluster. In other words, it represents the demultiplexing outcome for each sequence 
within the cluster.

Specifically, we identify sequences with ambiguous barcode labels using a straightfor-
ward and predetermined DTW distance threshold. The first cluster obtained from the 
clustering results is often of high quality, serving as a basis for generating a DTW dis-
tance threshold. Here is the refined description of the process. Firstly, 100 sequences 
are randomly selected from the cluster. Secondly, the DTW distance matrix is calculated 
for their corresponding pseudo-barcode signals. Next, the average value of the matrix 
elements is computed and referred to as “mean.” Finally, a threshold is set to c times the 
mean, with a default value of c as 1.65. In the case of a cluster set containing only one 

ConSigSet =
{

csig1, csig2, ..., csigT
}

.
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sequence, the following criterion is applied: If the minimum DTW distance between the 
standard barcode signal and the pseudo-barcode signal corresponding to this sequence 
exceeds the threshold, the barcode label of the sequence is considered ambiguous and 
marked as “unclassified.”

GPU‑accelerated DTW

The most computational expensive part of HycDemux is the calculation of the tens of 
millions to hundreds of millions of DTW distances. Generally, the computational com-
plexity of a DTW algorithm should be O(mn) if the algorithm is sequentially imple-
mented, where m and n are the lengths of the compared sequences. However, with the 
development of graphics processing unit (GPU) for general purpose processing, CUDA 
(or Compute Unified Device Architecture) has been widely used to accelerate computa-
tional biology tasks [48–50]. Here, we propose a CUDA-based GPU-accelerated DTW 
to solve the speed problem, by combining a coarse-grained block-wise acceleration strat-
egy and a fine-grained multi-thread acceleration strategy. Figure 8 describes the outline 
of our acceleration strategy.

Dependency analysis

Obviously, the DTW distance between different signals is totally independent. Thus, a 
coarse-grained block-wise parallel strategy is devised to calculate these DTW distances 
simultaneously within each CUDA block, as shown in Fig. 8A. The computation of DTW 
weight matrix could also be accelerated by CUDA. However, data dependence exists in 
the calculation of a DTW matrix, i.e., the calculation of position (i, j) in the DTW matrix 
needs the values in position (i − 1, j) , (i − 1, j − 1) , and (i, j − 1) . Here, considering the 
elements on a slash lane of a DTW matrix, these elements are independent with each 
other (Fig. 9). Thus, we change the calculation of DTW matrix from sequence order into 
slash-lane order and propose a fine-grained multi-thread parallel strategy to ensure the 
speed and accuracy, as shown in Fig. 8B.

Block‑wise acceleration

Within a general GPU card with NVIDIA Turing architecture, up to a few million blocks 
are allowed to execute asynchronously and concurrently. As shown in Fig.  8A, each 

Fig. 8 GPU-supported parallelization strategy. A Different signal pairs’ DTW distances are computed 
simultaneously within a CUDA block. B Each DTW matrix is calculated with multi-threads, where a register 
variable is used to control the wait relationships of all threads. C A thread can simultaneously compute 
multiple rows, where the values needed for the yellow cell (to be computed) are already stored in the shared 
memory (green cell)
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CUDA block is responsible for calculating one DTW distance. That is, millions of blocks 
could be initialized to calculate these DTW distances simultaneously, which makes the 
calculation extremely fast. In contrast, a multi-CPU server may only contain a few dozen 
cores, allowing the simultaneous calculation of only a few dozen DTW distances.

Multi‑thread acceleration

Each DTW matrix is calculated by multiple threads lane by lane. Synchronize strat-
egy is applied to ensure that the values needed by the current position have been cal-
culated correctly. To control which columns should be calculated at a given time, we 
use a register variable T to serve as a timer. ∀i ∈ {0, 1, 2, ..., n− 1} , the ith thread cal-
culates the ith row (counting from 0), then the thread with thread number t needs to 
process the (T − t) th element of the row at time T. And the threads with thread number 
c = T − t < 0 should wait in place until T − c > 0 . Figure  8B shows an example with 
T = 25.

On‑chip storage

Since a CUDA block contains 1024 threads at most but the longest signal length is up to 
∼1500 (a barcode’s length is up to 145, while the corresponding signal is 8 ∼ 10 times of 
the barcode sequence), we extended the algorithm to let a thread computes two DTW 
matrix rows at a time, which makes a block able to process 2048-length signal. Consid-
ering barcode sequences are not too long (such as 40 nt), the GPU card of the current 
Turing architecture can fully store data and perform calculations in on-chip memory 
(shared memory), which avoids the copy cost from the global memory and further accel-
erates the calculation. As shown in Fig. 8C, green cells represent the elements stored in 
shared memory, and the yellow cells are the elements being calculating. Actually, maxi-
mum amount of shared memory per block is 163 KB on NVIDIA Turing architecture, 
which provides the ability that one thread processes 9 DTW rows whose elements stored 
in single-precision float format.

Fig. 9 Data dependence within the calculation of a DTW matrix. The white dash arrow shows the 
dependence of element values if a certain element is to be calculated. Nevertheless, all the yellow elements 
have no dependence with each other, which enables their parallel calculation
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