Author Correction: Single-cell resolution analysis reveals the preparation for reprogramming the fate of stem cell niche in cotton lateral meristem

Xiangqian Zhu1†, Zhongping Xu1†, Guanying Wang1, Yulong Cong1, Lu Yu1, Ruoyu Jia1, Yuan Qin1, Guangyu Zhang1, Bo Li2, Daojun Yuan1, Lili Tu1, Xiyan Yang1, Keith Lindsey3, Xianlong Zhang1* and Shuangxia Jin1*

Correction: Genome Biol 24, 194 (2023)
https://doi.org/10.1186/s13059-023-03032-6

Following publication of the original article [1], the authors reported an error in Fig. 9, namely a missing significant difference symbol for JCR1 and a redundant significant difference symbol for JOE1. The updated Fig. 9 is available in this Correction.

Additionally, the following text describing the experimental results shown in Fig. 9 has been amended as follows:

Previous text: Although all explants (CRISPR and overexpression) produced callus after 20 days of induction (Fig. 9c and Additional file 1: Figure. S11a), the callus proliferation rate (CPR) after 20 days of induction showed that the CPR of JCR1 was 58% and for JOE1, 130%, both significantly different to control (88%) in Jin668 (t-test, P<0.05), suggesting that these LAX genes may play import roles in callus proliferation in Jin668. Notably, there was no significant difference between TCR1 and TP7N (71% Vs 77%; Fig. 9c).

Updated text: Although all explants (CRISPR and overexpression) produced callus after 20 days of induction (Fig. 9c and Additional file 1: Fig. S11a), the callus proliferation rate (CPR) after 20 days of induction showed that the CPR of JCR1 was 58% and for JOE1, 130%. JCR1 showed significantly different to control (88%) in Jin668 (t-test, P<0.05), suggesting that these LAX genes may play important roles in callus proliferation in Jin668. Notably, there was no significant difference between TCR1 and TP7N (71% Vs 77%; Fig. 9c).

The original article has been updated.

†Xiangqian Zhu and Zhongping Xu contributed equally to this work.
*Correspondence: xbhang@mail.hzau.edu.cn; jxs@mail.hzau.edu.cn
1 Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, Hubei, China
2 Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Wulumuqi 830000, Xinjiang, China
3 Department of Biosciences, Durham University, Durham DH1 3LE, UK
Fig. 9 Phenotype of GhLAX1, GhLAX2, GhLOX3 knock out and overexpression callus with hypocotyls as explants. a Schematic view of gRNA1, gRNA2 target sites in the GhLAX1, and GhLOX3 and overexpression cassette of GhLAX2. b Paraffin sections of hypocotyls infected with Agrobacterium after induction on callus induction medium for 0, 24, and 72 h. The red box represents the proliferation site. c The phenotypes of different transgenic explants and control (P7N) at 20 days post-induction and the callus proliferation rate (CPR) of explants and control at 20 days post-induction. d The phenotype of callus on the GhLAX1 knock out and GhLAX2 overexpression explants at about 70 days post-induction. Scale bar, 100 μm. e Days of embryonic callus occurrence of different transgenic explants. f Morphology of somatic cell embryos of JOE1. Scale bar, 100 μm.
Reference