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Abstract 

Background: Single-cell sequencing provides detailed insights into biological pro-
cesses including cell differentiation and identity. While providing deep cell-specific 
information, the method suffers from technical constraints, most notably a limited 
number of expressed genes per cell, which leads to suboptimal clustering and cell type 
identification.

Results: Here, we present DISCERN, a novel deep generative network that pre-
cisely reconstructs missing single-cell gene expression using a reference dataset. 
DISCERN outperforms competing algorithms in expression inference resulting 
in greatly improved cell clustering, cell type and activity detection, and insights 
into the cellular regulation of disease. We show that DISCERN is robust against differ-
ences between batches and is able to keep biological differences between batches, 
which is a common problem for imputation and batch correction algorithms. We 
use DISCERN to detect two unseen COVID-19-associated T cell types, cytotoxic  CD4+ 
and  CD8+ Tc2 T helper cells, with a potential role in adverse disease outcome. We 
utilize T cell fraction information of patient blood to classify mild or severe COVID-19 
with an AUROC of 80% that can serve as a biomarker of disease stage. DISCERN can be 
easily integrated into existing single-cell sequencing workflow.

Conclusions: Thus, DISCERN is a flexible tool for reconstructing missing single-cell 
gene expression using a reference dataset and can easily be applied to a variety of data 
sets yielding novel insights, e.g., into disease mechanisms.
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Introduction
Single-cell RNA sequencing (scRNA-seq) technologies allow the dissection of gene 
expression at single-cell resolution, which improves the detection of known and 
novel cell types and the understanding of cell-specific molecular processes [1, 2]. The 
extension of the basic scRNA-seq technology with epitope sequencing of cell-surface 
protein levels (CITE-seq) allows for the simultaneous surveillance of the gene and 
protein surface expression of a cell [3]. Another recent technological innovation was 
TCR-seq, which enables the simultaneous sequencing of essential immune cell fea-
tures and the variable segments of T cell antigen receptors (TCRs) that confer antigen 
specificity [4, 5].

While several commercial platforms have enabled researchers to use single-cell 
sequencing methods with relative ease and at reasonable cost, the analysis of the 
high-dimensional scRNA-seq data still remains challenging [6, 7]. The main technical 
downside of single-cell sequencing that impedes downstream analysis is the sparsity 
of gene expression information and high technical noise. Depending on the platform 
used, single-cell sequencing detects around three thousand genes per cell, giving almost 
an order of magnitude less genes detected than bulk RNA-sequencing [8]. The term 
“dropout” refers to genes that are expressed by a cell but cannot be observed in the 
corresponding scRNA-seq data, a technical artifact that afflicts predominantly lowly to 
medium expressed genes, as their transcript number is insufficient to reliably capture 
and amplify them. This missing expression information limits the resolution of down-
stream analyses, such as cell clustering, differential expression, marker gene, and cell 
type identification [9].

To improve the lack and stochasticity of gene expression information in single-cell 
experiments, several in silico gene imputation methods have been designed based on 
different principles. Gene imputation infers gene expression in a given cell type or state, 
based on the information from other biologically similar cells of the same dataset. Sev-
eral methods utilizing this principle have been developed [10], amongst them DCA, 
MAGIC, scImpute, DeepImpute, and CarDEC [11–15]. DCA is an autoencoder-based 
method for denoising and imputation of scRNA-seq data using a zero-inflated negative 
binomial model of the gene expression. MAGIC uses a nearest neighbor diffusion graph 
to impute gene expression and scImpute estimates gene expression and drop-out proba-
bilities using linear regression. DeepImpute is an ensemble method, splitting the expres-
sion data into multiple pieces and trying to learn imputation of highly correlated genes 
using deep learning. CarDEC uses a two step procedure of imputation and batch correc-
tion using a neural network. All of these algorithms use information from similar cells 
with measured expression of the same dataset for imputation. Another class of imputa-
tion algorithms use bulk RNA-seq data to constrain scRNA-seq expression imputation. 
Bfimpute [16] uses Bayesian factorization, SCRABBLE [17] matrix regularization, and 
SIMPLEs [18], a prior distribution on the bulk data to impute scRNA-seq expression. 
Unfortunately, SCRABBLE and Bfimpute do not scale beyond small single-cell datasets 
and few genes (3000 cells and genes in our hands), and SIMPLEs requires matching sin-
gle-cell and bulk RNA-seq samples, severely constraining their usability.

Similarly, methods (e.g., multigrate [19]) were developed, which use scRNA-seq 
in combination with complementary, matching data (e.g., CITE-seq, ATAC-seq) to 
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improve imputation. While complementary CITE-seq information is available for many 
scRNA-seq datasets, other information such as ATAC-seq data of the same sample is 
usually missing.

While current imputation methods provide improved gene expression information, 
they still rely on the comparison of similar cells with largely absent gene expression 
information, for example by using clustering approaches. Genes that are not expressed 
in neighboring cells cannot be imputed, limiting the value of classical imputation. In an 
ideal case, it would be possible to obtain information of the expected true gene expres-
sion per cell, or at least expression information with less technical noise, to reconstruct 
the true expression at single-cell level. Additionally, recent studies question the number 
of technical dropouts in UMI-based sequencing technologies [20, 21] and thus challenge 
classical imputation based methods. However, there are still batch specific changes, e.g., 
capture rate of specific genes and differences in sample processing, which affect the sin-
gle-cell data, beyond dropout. These changes can be wanted (enforced by the experi-
mental setup) or unwanted (stochastic changes in the experimental setup, material).

Recent work has shown the effectiveness of deep generative models (e.g., autoencod-
ers and generative adversarial networks) to infer realistic scRNA-seq data and augment 
scarce cell populations using generative adversarial networks [22] or the prediction of 
perturbation response using autoencoders [23]. We hypothesized that a deep gen-
erative model could allow for the reconstruction of missing single-cell gene expression 
information (low quality―lq) by using related data with more genes expressed (high 
quality―hq) as a reference, a reference-based approach to gene expression inference 
(Fig.  1A). In other words, lq data with many missing gene expression values and bad 
clustering could be transformed into data with few missing genes and improved clus-
tering if the “style” of a related hq dataset could be transferred to it. In the best case, 
it would be possible to infer gene expression information for single-cell data (lq) by 
using purified bulk RNA-seq data (hq), obtaining over ten thousand genes expressed per 
cell. We envision that this approach, when properly calibrated, gains deep mechanistic 
insights into data beyond what is currently measurable. It is important to note that the 
concept of using hq data to reconstruct gene expression in lq data is different from clas-
sical imputation algorithms that infer gene expression based on nearby cells from the 
same dataset, as outlined above.

Fig. 1 Integration and expression reconstruction of single-cell sequencing data. A DISCERN transfers 
the style of a high-quality (hq) dataset to a related low-quality (lq) dataset, enabling gene expression 
reconstruction that results in improved clustering, cell type identification, marker gene detection, and 
mechanistic insights into cell function. The hq and lq datasets have to be related but not identical, containing 
for example several overlapping cell types but also exclusive cell types of cell activity states for one or 
the other dataset. B t-SNE visualization of the pancreas dataset before reconstruction (original) and after 
transferring the style of the smartseq2 dataset using DISCERN (p-smartseq2). The upper row shows the 
dataset of origin before and after reconstruction colored by batch and the lower row colored by cell type 
annotation (details of 13 cell types in supplements). C and D Average gene expression (over all the cells 
of a given type) of the pancreas indrop and smartseq2 datasets before (first column and panel) and after 
smartseq2 to indrop (second column and panel) and after indrop to smartseq2 reconstruction (third column 
and panel). C Gene correlation by cell type shown in colored heatmap. D Each colored point represents a 
single gene colored by the cell type. The mean Pearson correlation with one standard deviation over all cell 
types is shown in the figure title

(See figure on next page.)
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Based on the above considerations, we developed DISCERN, a novel deep generative 
neural network for directed single-cell expression reconstruction. DISCERN allows for 
the realistic reconstruction of gene expression information by transferring the style of 
hq data onto lq data, in latent and gene space. Our experiments on real and simulated 
data show that DISCERN outperforms several existing algorithms in gene expression 
inference across a wide array of single-cell datasets and technologies, improving cell 

Fig. 1 (See legend on previous page.)
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clustering, cell type and activity detection, and pathway and gene regulation identifica-
tion. To obtain deep insights into the cellular changes underlying COVID-19, we recon-
structed single-cell expression data of patient blood and lung immune data. While in 
our initial analysis [24] of blood data we detected few immune cell types, expression 
reconstruction with DISCERN resulted in the detection of 28 cell types and states in 
blood, including two unseen disease-associated T cell types, cytotoxic  CD4+ and  CD8+ 
Tc2 T helper cells. Reconstructing a second COVID-19 blood dataset with disease sever-
ity information, we were able to classify mild and severe COVID-19 with an AUROC 
of 80%, obtaining a potential biomarker of disease stage. DISCERN can be easily inte-
grated into existing workflows, as an additional step after count mapping. Given that 
DISCERN is not limited by a predefined distribution of data, we believe that it can be 
readily adapted to enhance various other biomedical data types, especially other omics 
data such as proteomics and spatial transcriptomics.

Results
The DISCERN algorithm for directed expression reconstruction

We aim to realistically reconstruct gene expression in scRNA-seq data by using a 
related hq dataset. Ideally, this expression reconstruction algorithm should meet several 
requirements [7]. First, it needs to be precise and model gene expression values realisti-
cally. It shouldn’t remove information of cellular identity to form “average cells” or col-
lapse different cell types or states into one. Second, the network should be robust to the 
presence of different cell types in hq and lq data or an imbalance in their relative ratios. 
It should not, for instance, “hallucinate” hq-specific cells into the lq data. Lastly, the net-
work should be directional, as the user should be able to choose the target (reference) 
dataset.

With these prerequisites in mind, we designed a deep neural network for directed sin-
gle-cell expression reconstruction (DISCERN) (Additional file 1: Fig. S1B) that is based 
on a modified Wasserstein Autoencoder [25]. A unique feature of DISCERN is that it 
transfers the “style” of hq onto lq data to reconstruct missing gene expression, which 
sets it apart from other batch correction methods such as [26], which operate in a lower 
dimensional representation of the data (e.g., PCA, CCA). To allow DISCERN to accu-
rately reconstruct single-cell RNA-seq expression based on reference data, the structure 
of the network had to be adapted in several ways. First, we implemented Conditional 
Layer Normalization (CLN) [22, 27, 28] to allow for directed expression reconstruction 
of lq data based on reference hq data (Additional file 1: Figs. S1B and S2). Second, we 
added two decoder heads to the network to enable it to model dataset-specific dropout 
rates and gene expression separately. Lastly, we extended DISCERN’s loss function with 
a binary cross-entropy term for learning the probability of dropouts to increase general 
inference fidelity. Further algorithmic details of DISCERN can be found in the methods 
and Additional file 1: Fig. S1.

We first demonstrate DISCERN’s capabilities to faithfully reconstruct gene expres-
sion using five pancreas single-cell expression datasets from 5 different studies [29–33], 
with varying quality (Additional file 2: Tables S1 and S2). The pancreas data is widely 
used for benchmarking and it is ideal to evaluate expression reconstruction for many 
cell types and sequencing technologies. We consider a dataset as hq when the average 
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number of genes detected per cell (GDC) (e.g., smartseq2, GDC 6214) is much higher 
than in a comparable lq dataset (Additional file 2: S2). Conversely, a dataset is lq when 
the average cell has lower counts and fewer genes expressed than a comparable hq data-
set (e.g., indrop, GDC 1887). Throughout this text, we will name sequencing technol-
ogies with capital (e.g., Smart-Seq2, InDrop) and datasets with lower case first letters 
(smartseq2, indrop). We trained DISCERN on these five pancreatic single-cell datasets 
and assessed the integration of data in gene space and the expression reconstruction per 
cell type. While uncorrected data cluster by batch and not by cell type, DISCERN-inte-
grated data show good batch mixing and clustering of cells by cell type across all five 
datasets (Fig. 1B and Additional file 1: Fig. S2). To get a clearer picture of DISCERN’s 
expression reconstruction capabilities, we next calculated correlation coefficients of 
measured expression between the lowest quality inDrop and highest quality Smart-Seq2 
data, before and after expression reconstruction using DISCERN. The mean expression 
reconstruction of indrop-lq to smartseq2-hq and smartseq2-hq to indrop-lq data is very 
accurate, showing a Pearson correlation of r = 0.95 , while mean expression correlation 
between uncorrected indrop-lq and smartseq2-hq data is only r = 0.77 due to strong 
batch effects (Fig. 1C and D, Additional file 1: Figs. S3 and S4). The improved quality of 
indrop-lq data reconstructed to smartseq2-hq level is validated by the strong increase of 
genes expressed per cell, ranging from ≈2000 genes per cell in the uncorrected indrop-lq 
data to ≈6000 genes in the indrop-lq data after reconstruction (Additional file 1: Fig. S5).

To further analyze the impact of the reference batch, we performed cell type 
marker gene detection and subsequent enrichment using cell type-specific gene sets 
(PanglaoDB [34]). We could see an increase in the expected cell type enrichment scores 
for nearly all reconstructions and cell types compared to uncorrected data (Addi-
tional file 1: Fig. S6). Furthermore, the median enrichment score is correlated to the total 
number of counts in the reference batch with the smartseq2 batch achieving the highest 
enrichment scores and indrop reference achieving the lowest enrichment scores (Addi-
tional file 1: Fig. S7). Thus we focused mainly on these two batches in the following anal-
ysis and benchmarks.

We next investigated the effect of reconstruction of three cell type-specific genes, 
before and after correction across the five pancreas datasets (Additional  file  1:  Figs. 
S8 and S9). Insulin expression in the pancreas should be largely restricted to beta 
cells [35], which can be observed in the uncorrected smartseq2-hq and celseq2 data-
sets, while the indrop-lq batch shows a diffuse pattern of insulin expression across cell 
types (Additional file 1: Fig. S8A left panel). This diffuse insulin expression is corrected 
by reconstructing the smartseq2-hq expression pattern from the indrop-lq data (Addi-
tional file 1: Fig. S8A middle panel). In general, the expected specificity of insulin expres-
sion in beta cells can be recovered for all datasets when using DISCERN’s reconstruction 
using the smartseq2-hq reference. Conversely, the reconstruction from hq to the indrop-
lq reference results in diffuse insulin expression across all reconstructed datasets (Addi-
tional file 1: Fig. S8A right panel). We obtained similar results for the pancreatic acinar 
cell-specific gene REG1A and the delta cell-specific gene SST, both of which show dif-
fuse expression across cell types in the uncorrected inDrop data and cell-specific expres-
sion after reconstruction using smartseq2-hq reference (Additional file 1: Fig. S8B and 
C). Interestingly, DISCERN can not only recover biological expression information, 
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but it is also able to apply sequencing method-specific effects after reconstruction. The 
smartseq2-hq dataset, for instance, displays nearly no ribosomal protein coding gene 
expression after sequencing as previously reported by [8], while data sequenced using 
InDrop, Cel-Seq, or Cel-Seq2 shows prominent ribosomal protein coding gene expres-
sion (Additional  file  1:  Fig. S8D, left panel). When reconstructing smartseq2-hq data 
with indrop-lq data as reference, ribosomal protein coding gene expression is re-instan-
tiated (Additional file 1: Fig. S8D, right panel).

We further corroborated DISCERN’s capability to integrate and reconstruct gene 
expression in the more complex difftec dataset (Additional  file  2:  Tables S1 and S2), 
consisting of 14 single-cell peripheral blood mononuclear cell (PBMC) datasets across 
a wide range of technologies. Similar to pancreas, the difftec dataset is widely used for 
benchmarking and it is ideal to evaluate expression reconstruction for even more cell 
types and sequencing technologies. The different single-cell technologies show large 
variation in quality, with an GDC ranging from 422 in Seq-Well to 2795 in Smart-seq2. 
We trained DISCERN on these 14 PBMC single-cell datasets and observed very good 
integration in gene space (Additional file 1: Fig. S10). We then reconstructed chromium-
v2-lq (GDC 795) using a chromium-v3-hq reference (GDC 1514) and observed high 
mean gene expression correlation between the reconstructed and reference datasets 
(Additional file 1: Figs. S11 and S12). These results across 19 single-cell datasets provide 
first evidence for the high-quality data integration and expression reconstruction that 
can be obtained with DISCERN.

Specific and robust gene expression inference

We next investigated the precision and robustness of DISCERN’s expression reconstruc-
tion in more detail and compared DISCERN’s performance to several state-of-the-art 
algorithms for expression imputation and data integration.

We explored the robustness of DISCERN to the choice of its hyperparameter by 
testing various non-default combinations of the four hyperparameters influencing the 
model training. In all combinations, DISCERN was able to achieve a Pearson correla-
tion of > 0.94 and a correlation of 0.95 with the default parameter when reconstruct-
ing the indrop-lq batch to the smartseq-hq batch of the pancreas dataset (Fig. S13). 
This provides strong evidence that DISCERN’s performance is robust to the choice of 
hyperparameters.

Since expression reconstruction can be seen as a generalization of expression imputa-
tion, we compared DISCERN to DCA, MAGIC, and scImpute, CarDEC, and DeepIm-
pute, five state-of-the-art imputation algorithms [11–15]. Expression reconstruction can 
also be viewed as a batch correction task in gene space, which is why we additionally 
compared DISCERN to scGEN, Seurat, trVAE, and scVI [23, 26, 36, 37]. It is important 
to note, however, that these batch correction methods were not designed for the expres-
sion reconstruction task and use a lower dimensional representation to align different 
batches. Seurat uses canonical correlation analysis and scGEN uses the bottleneck layer 
representation of an autoencoder to calculate and apply linear transformations. trVAE 
and scVI explicitly encode the conditional information in the autoencoder architecture.

We compared the ability of these models to adjust expression information on 
the pancreas dataset by reconstructing the indrop-lq expression based on the 
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smartseq2-hq expression. Generally deep learning methods, which allow for recon-
struction (scGEN, scVI, trVAE, DISCERN), show the best performance, with DIS-
CERN showing the lowest deviation between cell types (Additional  file  1:  Fig. S14). 
We also investigated the gene expression standard deviation on the same data, show-
ing that DISCERN reconstructs the variation in the indrop-lq best, with scVI showing 
only slightly worse performance (Additional file 1: Fig. S15). A factor which has a high 
impact on the variation is the number of dropouts found in each gene. While most 
imputation methods try to remove them, we think they contain useful information 
as well [38]. DISCERN is able to capture the batch-specific dropout rate much bet-
ter compared to other batch correction or imputation methods (Additional file 1: Fig. 
S16). Interestingly, deep learning methods, scVI, scGEN, DeepImpute, and DCA, for 
example, achieve a similar correlation of the dropout rate than classical methods, 
for example Seurat and MAGIC, even if deep learning methods seem to be better in 
reconstruction of mean expression (Additional file 1: Fig. S14). It is important to high-
light that the proper estimation of expression variation and the dropout rate is pivotal 
for the reliable computation of differentially expressed genes. Since DISCERN displays 
the best variance estimation, it also achieves the best median correlation of the differ-
entially expressed genes (Additional file 1: Fig. S17).

To investigate the precision of gene expression reconstruction, we created an artificial 
dataset by dividing the smartseq2-hq pancreas data into two batches, smartseq-lq and 
smartseq2-hq. In the smartseq-lq batch, the top one KEGG pathways per cell type were 
removed by setting the expression of genes contained in these pathways to zero, while 
the smartseq2-hq remained unaltered. Therefore, a reconstruction of smartseq-lq data 
using smartseq2-hq reference (reconstructed-hq) should ideally recover the smartseq-lq 
expression to its original state, prior to the removal of the genes. We rationalized that 
these genes are important for cell identity and thus should be stably expressed in all cells 
of this cell type, disregarding the batch.

Thus, considering these genes to be expressed in a cell type-specific manner, DIS-
CERN is able to reconstruct the mean expression for all cell types, achieving a corre-
lation r = 0.99 (Fig.  2A). DCA ( r = 0.66 ), MAGIC ( r = 0.34 ), scImpute ( r = 0.80 ), 
DeepImpute r = 0.89 , and Seurat ( r = 0.76 ) have significantly lower correlation between 
the smartseq2-hq and reconstructed-hq gene expression (Fig.  2A). scGen ( r = 0.98 ), 
scVI ( r = 0.99 ), and trVAE ( r = 0.99 ) show similar performance compared to DIS-
CERN. Moreover, scGEN and trVAE however perform worse in reconstruction of highly 
expressed genes, while scVI slightly overestimates the expression in general (Fig.  2A). 
We obtained similar results on the difftec dataset, with DISCERN ( r = 0.98 ) outper-
forming DCA ( r = 0.47 ), MAGIC ( r = 0.21 ), scImpute ( r = 0.04 ), Seurat ( r = 0.92 ), 
scVI ( r = 0.96 ), trVAE ( r = 0.95 ), DeepImpute ( r = 0.58 ), and scGEN ( r = 0.94 ) (Addi-
tional file 1: Fig. S18). To further investigate gene expression reconstruction specificity, 
we compared the correlation of reconstructed-hq to smartseq2-hq data after performing 
differential gene expression (DEG) for each cell type against all other cell types (Fig. 2B, 
upper panel). DISCERN is able to recover the correct DEG t-statistics with a median 
correlation of 0.92, improving over state-of-the-art tools by more than 6 percentage 
points. In the corresponding experiment using the difftec dataset, DISCERN achieves a 
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Fig. 2 Expression reconstruction benchmark of DISCERN and five state-of-the-art batch correction and 
imputation algorithms. A Comparison of the performance using smartseq2 data. The smartseq2 data 
was split into a smartseq2-lq and a smartseq2-hq batch. The smartseq2-lq batch was modified such that 
the expression of all genes of a cell type determining pathway (top ranked by GSEA) was set to zero. The 
expression of the in silico altered pathway genes was then compared between reconstructed-hq data and 
the unaltered smartseq2-hq data. B DEG (t-statistics) and pathway enrichment (normalized enrichment 
scores) correlation of the reconstructed-hq to the expected values before removal restricted to genes which 
were removed in the smartseq2-lq batch. The smartseq2-lq data was the same as in A. C Mean expression 
correlation of reconstructed-hq with the expected expression in smartseq-hq data for different ratios of lq 
to hq data. The standard deviation indicates the deviation in correlation of the cell types. The datasets were 
created as described in A. D Alpha cells were removed from the smartseq-hq batch and left in the low quality 
batches. The number of overlapping cell types between the hq and lq data was then altered by removing 
cell types, which overlap between lq and hq data, from the lq data before preprocessing and expression 
reconstruction. The ratio of the intersection size is shown on the x-axis. The y-axis shows the correlation of the 
t-statistics of alpha cells from lq-batches vs other cells from the smartseq2 batch with ground truth from the 
uncorrected smartseq2 batch. We used Spearman rank correlation for the comparison, since no gene subset 
was used. E t-SNE visualization of the cell type removal experiment (as in D), such that there is no overlap 
between lq and hq. F Spearman correlation of the t-statistics of alpha cells as in D. The dataset was the same 
as in E. The dotted line indicates the correlation achieved without reconstruction
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median correlation of 0.86, which is a 21 percentage point improvement over competing 
methods (Additional file 1: Fig. S19).

Since the genes were initially selected using KEGG gene set enrichment analysis, the 
reconstruction of the corresponding pathways was investigated by performing KEGG 
gene set enrichment analysis on the DEG results. DISCERN is able to recover the path-
way expression enrichment scores with a median correlation of 0.88, exceeding the per-
formance of scVI by more than three percentage points on median (Fig. 2B, lower panel). 
In the corresponding experiment using the difftec dataset, DISCERN achieves a median 
correlation of 0.77, outperforming Seurat and scGen by more than 16 percentage points 
(Additional file 1: Fig. S20).

While DISCERN outperforms competing algorithms in expression and pathway recon-
struction correlation, it achieves the fourth-best correlation for the DEG fold-change 
(FC) of reconstructed-hq to smartseq2-hq data for the pancreas (Additional file 1: Fig. 
S21) and reconstructed-hq to chromium-v3-hq difftec datasets (Additional  file  1:  Fig. 
S22). In both cases Seurat, scVI and CarDEC achieve better correlation, which is due 
to the fact that DISCERN slightly underestimates FC in favor of superior DEG variance 
estimation.

Next, we show DISCERN’s expression reconstruction robustness with respect to vary-
ing sizes of lq to hq data. It is conceivable to assume that a large amount of hq data 
would benefit the expression reconstruction of the lq data, which makes it important to 
understand at what ratio good results can be expected. Interestingly, DISCERN seems 
to be very robust across a wide range of smartseq2-lq to smartseq2-hq ratios, with cor-
relations of 0.98 (ratio of lq/hq 0.14) to 0.93 (ratio of lq/hq 18.4), while the second-best 
performing algorithm scGen showed a 11 percentage point decrease in performance 
(0.82 for ratio of lq/hq 18.4) (Fig. 2C, Additional file 1: Fig. S23). We observed similar 
results for the correlation of t-statistics, showing a slight dependence of DISCERN’s per-
formance on the lq/hq ratio (Additional file 1: Fig. S24). In general, all methods show 
better performance with a small ratio of lq/hq data, while DISCERN and scVI shows 
least dependence and outperform other algorithms in the correlation of expression and 
t-statistics, especially in the case of high lq/hq ratio.

Another aspect of expression reconstruction robustness is the dependence of the algo-
rithm on the cell type or cell state similarity of the lq and hq datasets. In the optimal 
case, DISCERN would not require that the lq and hq datasets have overlapping cell types 
to perform an accurate expression reconstruction, which is theoretically possible if the 
network learns the general gene-regulatory expression logic of the hq data (see discus-
sion). To understand the dependence on dataset similarity, we removed a complete cell 
type, pancreas alpha cells, from the smartseq2-hq data and left the alpha cells in the 
smartseq2-lq data. We then additionally varied the number of common cells in the lq 
and hq data, starting with no overlapping cells (only alpha cells in the lq and all cells 
except alpha in the hq data) and ending with almost complete overlap (all cells overlap 
between the smartseq2-hq and -lq data, except for the alpha cells only present in lq data) 
(Fig.  2D). When evaluating DEG correlation, DISCERN was the only method consist-
ently achieving better performance than uncorrected data, outperforming scVI by 2 to 
17 percentage points (Fig.  2D). Similarly, DISCERN was consistently achieving better 
performance than uncorrected data in the FC correlation task (Additional file 1: S25).
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We next took a closer look at the integration and expression reconstruction perfor-
mance when no cell types overlap between the lq (alpha cells only) and hq (all other cells) 
data. Notably, Seurat seems to over-integrate cell types, mixing smartseq2-hq beta and 
gamma cells with reconstructed-hq alpha cells from other batches (Additional file 1: Fig. 
S26), while all other methods keep the smartseq2-hq and reconstructed-hq exclusive 
cell types separate (Fig. 2E and Additional file 1: Fig. S26). This over-integration seems 
to be causal for Seurat’s poor DEG correlation performance ( r = 0.19 ), while DISCERN 
( r = 0.55 ) is the only method achieving better performance than uncorrected cells 
( r = 0.52 ) (Fig. 2F). Thus, DISCERN is able to keep existing expression correlations and 
improves the detection of cell type specific genes by reconstruction using an hq batch as 
reference.

Since DISCERN outperforms existing methods in the reconstruction with no cell 
type overlap (Fig. 2F and Additional file 1: Fig. S26), we investigated the performance 
of DISCERN when there is no cell type overlap due to organ differences. When recon-
structing the combined pancreas and pbmc_8k data set, DISCERN is able to keep the 
non-overlapping cell types separated and is thus not integrating pancreas and PBMC 
data together (Additional  file  1:  Fig. S27). However, the five pancreas batches are still 
integrated (Additional  file  1:  Fig. S27). To further investigate if the cell type-specific 
expression is kept intact, cell type-specific gene set enrichment was performed. Most of 
the expected enrichment scores are unchanged or slightly increased after reconstruction 
and only a few cell types show a decrease in the enrichment scores (Additional file 1: Fig. 
S28). Thus, DISCERN is very robust to batch-specific differences. However, we don’t 
recommend using DISCERN for data sets with very strong differences between batches, 
as cell type differences could get lost.

In conclusion, DISCERN is both a precise and robust method for expression recon-
struction that outperforms existing methods by a significant margin.

Improving cell cluster, type, and cell state identification

The comparison to competing methods provided evidence for DISCERN’s superior 
expression reconstruction. Now, we will delineate how DISCERN’s expression recon-
struction improves downstream cell clustering, cell type and activity state identification, 
marker gene determination, and gene regulatory network analysis.

Batch correction algorithms are usually evaluated by comparing their ability to inte-
grate cells coming from the same cell type but different batches, using the silhouette 
score, the adjusted rand index (ARI), and adjusted mutual information (AMI). DISCERN 
often outperforms all competing methods across all metrics, achieving state-of-the-art 
performance in batch mixing and cell type clustering (Additional file 1: Figs. S29 to S31).

We rationalized that bulk RNA sequencing (RNA-seq) data of purified cell types 
(e.g., FACS sorted immune cells) is a suitable hq proxy for the expected gene expres-
sion per cell. RNA-seq data of purified cells is readily available from public reposi-
tories, making it possible to obtain thousands of purified immune cell RNA-seq 
samples (see methods). We therefore set out to increase cluster, cell type, gene reg-
ulatory network, and trajectory identification of scRNA-seq data by reconstructing 
gene expression using a related RNA-seq reference (Additional  file  1:  Fig. S32). For 
the scRNA-seq data we chose a cord blood mononuclear citeseq dataset (cite-lq) that 
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was labeled with 15 antibodies to allow for surface protein-based cell type discovery 
[39]. The CITE-seq information allowed us to confirm expression reconstruction by 
DISCERN in cases where gene expression is absent but protein expression and cell 
identity are validated via antibody labeling. For the RNA-seq data, we selected 9852 
purified immune samples (bulk-hq) and proceeded to reconstruct cite-lq (GDC 798) 
using a bulk-hq (GDC 13104) reference [40] to obtain reconstructed-hq data with 
DISCERN. We first investigated the correspondence of gene expression prior (cite-
lq) and post reconstruction (bulk-hq) with antibody-based surface protein labeling 
(Fig.  3A, Additional  file  1:  Fig. S33). For several proteins, the corresponding cite-lq 
gene expression was absent and cell type-specifically re-instantiated in the recon-
structed-hq expression data with DISCERN (Fig.  3A, Additional  file  1:  Fig. S33). In 
cases where cell type-specific gene and protein expression matched cite-lq data, the 
expression in reconstructed-hq data was left unaltered (Additional  file  1:  Fig. S33). 
In general, we observed increased agreement between cell type-specific surface 
protein and gene expression after reconstruction, showing that DISCERN does not 
invent or “hallucinate” cell types but reconstructs the expected expression specific to 
each cell type. We further corroborated these results by selecting eight known cell 
type-specific cytosolic proteins and investigated their expression before and after 
expression reconstruction (Additional  file  1:  Fig. S34). Several chemokine receptors 
showed the correct cell type-specific expression only after expression reconstruction 
(Additional file 1: Fig. S34) [41]. It is notoriously hard to obtain cell subtype-specific 
information from blood mononuclear scRNA-seq data, especially for  CD4+ T helper 
cells due to their limited activation status in healthy individuals. This does not mean 
that polarized  CD4+ T helper cells do not exist in healthy blood, as they are com-
monly detected after stimulation using FACS (Additional file 2: Table S4) [42]. This 
lack of resolution in scRNA-seq impedes clustering, marker gene detection, and the 
identification of cell sub-types, a drawback that could be overcome using DISCERN’s 
expression reconstruction. We, therefore, compared  CD4+ T cell (gene expression 
of CD4 > 1 and CD3E > 2.5 ) clustering and subtype identification using cite-lq and 
reconstructed-hq data. While clustering with the Leiden algorithm [43] using highly 
variable genes of cite-lq data resulted in an unstructured distribution of  CD4+ T cell 

Fig. 3 Expression reconstruction improves downstream analyses including cell identification, gene 
regulation, and trajectory inference. The cite-lq dataset was reconstructed using bulk-hq data and compared 
to ground truth CITE-seq (surface protein) information. The CITE-seq information was not used during 
training of DISCERN. A t-SNE visualization of CD2 (first row) and CD8A (second row) gene (first two columns) 
and protein (last column) expression. The first column depicts gene expression for uncorrected cite-lq, the 
second for reconstructed-hq, and the third protein surface expression ground truth information. Cell types 
commonly known to express these genes are highlighted with colored circles in the last column. B t-SNE 
visualization of  CD4+ T cells in the cite-lq dataset. Cell types were assigned using louvain clustering on the 
reconstructed-hq data (see C) and show no clear clustering. C t-SNE and trajectory information of  CD4+ T cell 
subtypes found by Slingshot analysis on reconstructed-hq data. While uncorrected data shows no clear cell 
type clustering (see B), reconstructed data shows a clear grouping of cell types. Trajectories were calculated 
using CD4_naive as starting point and TH2, TH17, TH1, Active_TREG, CD4_CM as endpoints. Lineage1 
indicates TH1, Lineage2 TH17, Lineage3 Active_TREG, Lineage4 TH2, and Lineage5 Effector cell differentiation. 
D: Detection of regulons that are specific for  CD4+ T cell subtypes using pySCENIC. The first column shows 
regulons found in the uncorrected cite-lq and the second column in reconstructed-hq data

(See figure on next page.)
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subtypes (Fig.  3B), clustering of reconstructed-hq data yields detailed insights into 
T helper cell subtypes of blood mononuclear data (Fig.  3C). After reconstruction, 
we were able to characterize TH17, TH2, TH1, HLA-DR expressing TREG (Active_
TREG), naive  CD4+ T cells (CD4_naive), effector-memory  CD4+ T cells (CD4_EM), 
central-memory  CD4+ T cells (CD4_CM), and effector cells expressing IFN-regulated 
genes (IFN_regulated) (Fig.  3C). We selected published cell-determining marker 
genes and observed that many of them were dropped out in the uncorrected data 

Fig. 3 (See legend on previous page.)
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but were present after reconstruction (Additional  file  1:  Fig. S35). The absence of 
marker genes in uncorrected data results in poor clustering and cell type identifica-
tion, while single positive cells are detectable in the respective neighborhood identi-
fied by reconstructed counts (Additional  file  1:  Fig. S35). Importantly, we observed 
that in all cases the DISCERN-estimated proportions of T helper subsets fall within 
the range of expected proportions as assessed by previous FACS studies (Addi-
tional file 2: Table S4, Additional file 1: Fig. S36). These findings are important, as they 
prove once more that DISCERN discovers the correct cell subtypes and cell propor-
tions, in this case substantially outperforming the available CITE-seq information in 
cell subtype resolution.

To further verify the cell type annotations, we extracted the top cluster-determin-
ing genes from the reconstructed-hq data. These genes showed high concordance 
with marker genes known from the literature (Additional file 1: Fig. S37). In addition, 
reconstructed CD4_naive, CD4_EM, and CD4_CM show low expression of the genes 
important for the T helper subtypes TH1, TH2, TH17, Active_TREG, and IFN_regu-
lated. We further corroborated our cell type annotation of reconstructed-hq data by 
observing the expected expression of several established T cell subtype markers (Addi-
tional  file  1:  Fig. S38). We compared these newly found clusters to representations 
found with Seurat, multigrate, and in uncorrected cite-lq data. The uncorrected cite-lq 
data manifests cluster separation for some cell types, most notably IFN_regulated and 
Active_TREG cells (Additional file 1: Fig. S39A). Seurat reconstruction and multigrate 
imputation with CITE-seq information results in the mixing of cell types and clusters 
(Additional file 1: Fig. S39B and C). A further comparison to Bfimpute and SCRABBLE 
was impossible due to the dataset size, as outlined in the introduction.

Similar to improved clustering and cell subtype detection, DISCERN reconstructed-
hq data resulted in improved gene regulatory network inference with SCENIC [44]. 
SCENIC infers transcription factor-regulated gene expression modules of single-cell 
data. While cite-lq data resulted in a scattered distribution of transcription factor net-
works across several T helper cell subtypes, SCENIC with reconstructed-hq data 
showed transcription factor regulation in the correct subtypes (Fig. 3D). After expres-
sion reconstruction the IKZF2 regulon is detected in activated TREG cells [45] and the 
MAF regulon is found in differentiated  CD4+ T cells but not in naive  CD4+ T cells [46]. 
A weak signal of the MAF regulon is already detectable in the cite-lq data, yet strongly 
increased in reconstructed-lq, while maintaining differentiated T helper cell specificity 
(Fig. 3D). Furthermore, after reconstruction with DISCERN we could identify the TH17 
associated master transcriptional regulators RORC(+) and RORA(+) [47], which were 
scattered over all TH17 cells before reconstruction (Additional file 1: Fig. S40). Seurat is 
able to partially reconstruct the expression of the RORC(+) regulon but fails to detect 
the more specific RORA(+) expression (Additional file 1: Fig. S40).

Finally, we wanted to investigate if DISCERN could also enhance the detection of con-
tinuous cell states in the citeseq data. The differentiation of effector and other T helper 
cell subtypes involves several sub-states, which cannot be captured using bulk RNAseq. 
Thus, bulk RNAseq can only provide a limited reference for these cell types. We used 
trajectory analysis by Slingshot [48] to identify continuous differentiation pathways 
in the DISCERN reconstructed citeseq data and found five lineages that either pass 
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through or terminate in the effector cell cluster in reconstructed-hq data (Fig. 3C). Two 
trajectories were of special interest to us: Lineage1 from CD4_naive to TH1 cells (Addi-
tional file 1: Fig. S41) and Lineage2 from CD4_naive to TH17 cells (Additional file 1: Fig. 
S42). While the expression change along the trajectory in uncorrected data (Addi-
tional file 1: Fig. S41A, Additional file 1: Fig. S42A) is hardly visible, cell type-specific 
clusters can be easily observed after DISCERN reconstruction (for lineage details see 
Additional file 1: Fig. S41B, Additional file 1: Fig. S42B). The detailed insights into cell 
differentiation that we obtained with reconstructed data are in stark contrast to the 
Slingshot results obtained with cite-lq data. While terminal effector molecules can be 
detected with cite-lq data and seurat-hq data, intermediate stages remain hidden, which 
prohibits the detection of trajectories and results in a shuffling of marker gene expres-
sion (Additional  file  1:  Figs. S41 and S42). Taken together these results highlight how 
expression reconstruction using DISCERN improves downstream analyses and yields 
deeper biological insights into cell type and state identification, gene regulation, and 
developmental trajectories of cells.

Discovering COVID‑19 disease‑relevant cells in lung and blood

The previous sections have demonstrated DISCERN’s utility to reconstruct single-cell 
expression data based on an hq reference, vastly improving the detection of cell (sub-) 
types and their signaling. Given these advantages, we wondered if DISCERN’s expres-
sion reconstruction could deepen our understanding of cell type-composition and sign-
aling changes of immune cells in COVID-19 disease (Additional file 1: Fig. S43), using 
two published datasets [24, 49]. To obtain best reconstruction results, we again resorted 
to using bulk-hq immune reference data (Additional file 2: Table S1) [40], as outlined in 
the previous section.

First, we used a COVID-19 blood dataset (covid-blood-lq) with limited cell 
type resolution, which was originally analyzed by our group using Seurat (Addi-
tional file 2: Table S1) [24]. While  CD4+,  CD8+, and NK cells formed separate clusters, 
we were unable to visibly distinguish subpopulations of these cells in covid-blood-lq data 
[24]. Reconstruction of gene expression using bulk-hq data led to the identification of 
24 subtypes of  CD4+ and  CD8+ T cells in covid-blood-hq data (Additional file 1: Fig. 
S44). Several cell clusters identified in covid-blood-hq data showed the correct cell type-
specific marker gene expression in covid-blood-lq data, albeit in fewer cells, reduced in 
magnitude, and in some cases less specific (Additional file 1: Figs. S45 and S46). Recon-
struction also led to the identification of  CD4+ TH17 helper cells that express RORC 
Fig.  4A and B, Additional  file  1:  Fig. S47). Based on the molecular footprint of these 
TH17 cells, they were further subdivided into TH17_cluster1 that exhibits a memory 
T cell phenotype with elevated IL7R expression and TH17_cluster2 that exhibits an 
activated T cell phenotype with elevated MHC-II, CCR4 and RBPJ expression (Fig. 4B, 
Additional file 1: Fig. S47). The expression of RBPJ is of particular interest, as it is linked 
to TH17 cell pathogenicity, suggesting a role of pathogenic TH17 cells in COVID-19 
[50]. It is common practice to stimulate memory T cells in vitro to trigger IL-17A pro-
duction and a shift towards a TH17 phenotype was previously described in COVID-19 
[51]. With DISCERN we are able to distinguish these cells in COVID-19 patient blood 
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without stimulation, identifying cytokine producing memory cells with a TH17-like 
phenotype (Additional file 1: Fig. S47).

To further validate the existence of activated TH17 cells in COVID-19 patient blood, 
we next analyzed the corresponding lung data (covid-lung) of the patients for shared T 
cell receptor clones (Additional file 1: Fig. S48). The underlying assumption is that cells 
with the same T cell receptor in lung and blood originate from the same progenitor and 
therefore have a high probability of belonging to the same cell type. For this compari-
son we used the cell type annotation and representation of our original analysis of the 
covid-lung data, in which memory T and TH17 cells were readily observed without 
reconstruction [24]. TH17_cluster1 cells showed strong clonal overlap with covid-lung 
 CD4+ memory T cells (Additional file 1: Fig. S48) and expressed comparable levels of 
RORC to covid-lung effector memory TH17 cells (Additional  file  1:  Fig. S49), indicat-
ing that these  CD4+ central memory T cells could be TH17 (-like) cells. TH17_cluster2 
in blood exhibited strong clonal overlap with effector memory and resident memory 
TH17 cells in covid-lung data (Additional file 1: Fig. S48) that express RORC and IL-17A 
(Additional file 1: Fig. S49). Using the clonotype information of resident memory cells 
producing IL-17A in inflamed lung (TRM17), we further corroborated the existence 
of the newly identified population of IL-17A-producing TH17 cells in reconstructed 
COVID-19 blood data (Additional file 1: Fig. S48). In general, the T cell receptor clonal 
information in blood and lung therefore corroborated our cell type annotation in covid-
blood-hq data.

To understand the role of T cell subtypes in COVID-19 disease progression, we ana-
lyzed a second blood single-cell dataset (covid-blood-severity-lq) containing disease-
severity information for 130 COVID-19 patients [49]. To obtain optimal cell type 
resolution, we combined the covid-blood-severity-lq T cell data [49] with  CD3+ covid-
blood-lq cells [24] and reconstructed gene expression for the combined dataset using 
bulk T cell sequencing reference data [40], resulting in covid-blood-severity-hq data. 

(See figure on next page.)
Fig. 4 Expression reconstruction improves COVID-19 cell type identification and allows for efficient 
disease severity prediction. Two COVID-19 blood datasets were reconstructed and analyzed. Hamburg 
covid-blood-lq and covid-lung-lq data was reconstructed using bulk-hq data, resulting in the respective -hq 
datasets. Similarly, Cambridge covid-blood-severity-lq data, which contains disease severity information, 
was reconstructed using bulk-hq data. A t-SNE representation of TH17 subclusters using reconstructed 
covid-blood-hq data. Clusters were defined using the Leiden clustering algorithm on  CD4+ T cells. B t-SNE 
representation colored by expression of reconstructed genes distinguishing TH17_cluster1 and TH17_
cluster2 cells. TH17_cluster1 displays a central memory and TH17_cluster2 a more activated phenotype. 
C Violin plots of expression levels for genes distinguishing TH17_cluster1 (C1) and TH17_cluster2 (C2) cells 
before (covid-blood-lq) and after (covid-blood-hq) reconstruction with DISCERN. D Rare and unexpected cell 
types found in the reconstructed covid-blood-hq data with covid-blood-severity and bulk data. Cytotoxic 
 CD4+ T cells (CD4_cytotoxic) are displayed in green,  CD8+ Tc2 helper cells (CD8_Tc2) in blue, and all other 
cells in gray color. E t-SNE representation of key marker genes in covid-blood-hq data for CD4_cytotoxic 
and CD8_Tc2 cells displayed in D. F Confusion matrix predicted on collection site Ncl with classifier trained 
on Cambridge data and vise versa for disease severity prediction using GBM classifiers trained on fractions 
of five T cell types (CD4_CM, CD4_cytotoxic, CD4_naive, CD8_EM, CD8_effector) using reconstructed 
covid-blood-severity-hq data. Category “critical” was combined with “severe” and “asymptomatic” with “mild”. 
G ROC curve of the GBM predictions outlined in F using reconstructed (blue color) covid-blood-severity-hq 
(CD4_CM, CD4_cytotoxic, CD4_naive, CD8_EM, CD8_effector) and published T cell information from 
uncorrected (yellow color) data (CD4.CM, CD4.Tfh, CD8.EM, NKT, Treg). Confidence intervals (color shades) 
indicate one standard deviation



Page 17 of 40Hausmann et al. Genome Biology          (2023) 24:212  

Many of the 15  CD4+ T cell clusters identified in covid-blood-severity-hq data (Addi-
tional file 1: Fig. S50) were also present in the covid-blood-hq data, further validating 
the consistency of our cell type identification. This is also corroborated by the available 
surface protein data for covid-blood-severity data, substantiating that naive cells are 
CD45RA, memory cells are CD45RO, and effector cell types are CD45RO positive (fur-
ther details in Additional file 1: Fig. S51). We compared the clusters that we identified 

Fig. 4 (See legend on previous page.)



Page 18 of 40Hausmann et al. Genome Biology          (2023) 24:212 

in the covid-blood-hq with clusters identified in the covid-blood-severity-hq data and 
found confined and overlapping regions of TFH, TH17_cluster1, and TH17_cluster2 
cells (Additional  file  1:  Fig. S52). We also compared the identified clusters to clusters 
defined in the original publication (Additional file 1: Fig. S53). Cells identified as TFH 
in the original publication show significant overlap with naive  CD4+ T cells (defined on 
transcriptome and protein level) and  CD4+  IL22+ cells (CD4.IL22) show marked overlap 
with TREG cells. To further assess the robustness of the cell type annotation we utilized 
scANVI [52] and a kNN-based classifier to compare with automated cell type annota-
tions. Nearly all cell types could be detected using the automated approach (Addi-
tional file 1: Fig. S57). These results confirm once more the precise and robust cell type 
identification that can be achieved with DISCERN.

Interestingly, we also identified two rather unexpected cell types after reconstruction. 
One cluster is positive for CD4 and negative for CD8A while otherwise expressing a sig-
nature of  CD8+ effector memory cells with high expression of GZMB, GZMH, and PRF1 
(Fig. 4D and E). This signature points to a  CD4+ cytotoxic phenotype and indeed virus-
reactive  CD4+ cytotoxic cells were described to be increased in blood during COVID-
19 [53]. The other cell type expresses CD8, IL6R, and GATA3, while being negative 
for SLAMF7 (Fig.  4D and E). These cells were described in the literature to be  CD8+ 
T helper cells [54], exert T helper function, and have been shown to lack cytotoxicity. 
They lack expression of a significant number of cytokines and key transcription factors 
pointing to a TH17 or TH22 phenotype. On a protein level these cells express CCR4, 
while being negative for CCR6, making them cytolytic  CD8+ T helper type 2 cells (Tc2) 
cells. Part of this cluster overlaps with CD4 single-positive cells and might explain why T 
helper type 2 cells are missing in the  CD4+ T cell clustering.

Overall, the highly specific and sensitive cell type identification in covid-blood-sever-
ity-hq data enabled us to correlate the five COVID-19 disease severity categories to 
shifts in cell type and activity information. We first validated the decrease in TFH cells 
with increasing disease severity, as described in the original work (Additional file 1: Fig. 
S54) [49]. TH17 cells have been extensively studied using flow cytometry and in accord-
ance with our results MHC-II positive as well as CCR4 positive cells were described in 
COVID-19 patients (Fig. 4B) [51]. We observed a strong decrease in naive T helper cells 
in severe disease, most pronounced for naive TREGs, while the fraction of TH17 cells 
showed little correlation with disease severity (Additional  file  1:  Fig. S54). Of the two 
mixed cell types we detected in COVID-19 data, cytotoxic  CD4+ cells were increased in 
moderate and severe disease (Additional file 1: Fig. S55). A similar increase is visible in 
patients with severe respiratory disease without COVID-19 (Additional file 1: Fig. S56) 
and these cells might therefore be a general marker of severe respiratory illness. Cyto-
lytic  CD8+ Tc2 cells are increased in patients with severe symptoms and in those who 
died from COVID-19 (Additional file 1: Fig. S55) and are described to be reduced after 
recovery from COVID-19 [55]. This positive correlation and the known role of Tc2 cells 
in fibroblast proliferation induction and tissue remodeling could pinpoint a mechanistic 
role of these cells in lung fibrosis as witnessed in severe COVID-19 patients. The pos-
sibility to observe these cells in reconstructed single-cell data may pave the way to study 
the functional role of these cells in adverse COVID-19 outcome.
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The relatively strong correlation of some cell types with COVID-19 outcome sug-
gests that blood cell fraction information might be used for patient severity prediction. 
We trained a gradient boosting machine (GBM) on the fractions of all T cell types and 
performed a forward feature elimination, to obtain a sparse, optimal model for patient 
blood-based severity prediction. We first classified patients into three groups, mild 
(union of asymptomatic and mild, n = 26 ), moderate ( n = 26 ), and severe (union of 
severe and critical, n = 19 ), reaching an AUROC of 0.63 (Additional  file  2:  Table  S5). 
We noticed that the mild and moderate groups were indistinguishable for the classifier 
(Additional file 1: Fig. S58). Training a GBM classifier on mild and severe cases substan-
tially increased classification performance, reaching an AUROC of 0.80 and accuracy, 
and F1 score of 0.78 (Additional file 2: Table S5, Fig. 4F and G). Compared to the origi-
nal T cell types and fractions reported (accuracy 0.61) [49] or scANVI  [52] predicted 
cell types (0.64), DISCERN reconstructed T cell fractions are 22% to 25% more accu-
rate in the prediction of COVID-19 disease severity (Fig. 4G, Additional file 2: Table S5). 
DISCERN especially improved the performance when trained on the Ncl data set and 
predicted on the Cambridge data set (Additional file 1: Figure S59). This classification 
improvement is remarkable, given that DISCERN has no notion of disease severity when 
it reconstructs gene expression. These results further demonstrate DISCERN’s precise 
and robust expression reconstruction that enabled the discovery of a potential new 
blood-based biomarker for COVID-19 severity prediction.

Discussion
The sparsity of gene expression information and high technical noise in single-cell 
sequencing technologies limits the resolution of cell clustering, cell type identifica-
tion, and many other analyses. Several algorithms such as scImpute, MAGIC, Deep-
Impute, and DCA have addressed this problem by imputing missing gene expression 
in single-cell data by borrowing expression information from similar cells within the 
same dataset. While gene imputation clearly improves gene expression by inferring 
values for dropped out genes, it comes with several shortcomings. Andrews and Hem-
berg (2018) showed that several state-of-the-art imputation tools increase the number 
of false positives [56] by imputing biological absent genes. Additionally, the data gen-
erated by imputation methods often violate the statistical assumptions made by down-
stream algorithms, e.g., negative binomial distribution. Furthermore, imputation relies 
on the comparison of similar cells with largely absent gene expression information in the 
same dataset. With DISCERN, we approach to gene expression inference of single-cell 
data, by realistic reconstruction of missing gene expression in scRNA-seq data using a 
related dataset (single-cell or bulk RNAseq) with more complete gene expression infor-
mation. We thus propose to call this procedure “expression reconstruction” to highlight 
the fundamental difference to classical imputation and refer to the dataset with miss-
ing gene expression information as low quality (lq) and the reference dataset as high-
quality (hq). We considered a dataset high quality if it showed a good tradeoff between 
the mean number of expressed genes and the cell number. For example, in the pancreas 
dataset, the smartseq2 (6214.0 genes) and the fluidigmc1 (8127.4 genes) show the high-
est number of expressed genes, but the fluidigmc1 batch only consists of 638 cells com-
pared to the smartseq2 batch with 2394 cells; thus, we selected the smartseq2 batch as 
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the high-quality batch. While this approach is working in most cases, also low-quality 
batches can have a high number of expressed genes, e.g., due to high levels of ambi-
ent RNA. In this case, the actual performance on downstream applications (e.g., marker 
gene detection as in Additional file 1: Figs. S6 and S7) is more informative for assessing 
data quality but can only be performed after cell type annotation. However, DISCERN 
does not require the definition of a high-quality batch a priori and it can depend on the 
scientific question, e.g., a specific batch shows enriched expression of specific genes. In 
this case, the evaluation of multiple reconstructions with different “high-quality” batches 
can be useful and maybe require changing the high-quality batch after cell type anno-
tation for best performance. his evaluation needs to be performed as early as possible 
in the analysis process since Neufeld et  al. (2022) showed that stacked downstream 
applications, e.g., differential expressions analysis after cell type annotation, can over-
estimate the significance. Nevertheless, this is common practice [7, 57] but the use of 
methods like “count splitting” [57] could be explored in this context in further research 
as well. Furthermore, the use of the dropout estimation procedure in the decoder allows 
to achieve a single-cell data-like distribution of the reconstructed data and thus is not 
as strongly violating statistical assumptions of downstream analysis. Thus, we consider 
DISCERN as an approach for expression reconstruction including batch correction, 
where the reference does not need to be defined a priori and can come from single-cell 
as well as bulk RNAseq experiments, which enables DISCERN to improve over current 
state-of-the-art batch correction and imputation methods.

We provide compelling evidence that our reference-based reconstruction outperforms 
contemporary expression imputation algorithms as well as batch correction algorithms 
such as Seurat, scGen, scVI, and CarDEC when they are repurposed for expression 
reconstruction. To obtain an objective and thorough performance evaluation for expres-
sion inference, we used seven performance metrics on 19 datasets, including 12 single-
cell sequencing technologies. These datasets cover a range of differences, both technical 
and biological. While we do not distinguish them in this work, DISCERN could be con-
ditioned on technical as well as biological differences to, for instance, generate “dis-
eased” expression programs from healthy data. We focused our performance evaluation 
on three scenarios with available ground-truth information, (i) the in silico creation 
of defined gene and pathway dropout events in scRNA-seq data, (ii) published hq and 
lq data pairs from the same tissue (pancreas and difftec datasets), and (iii) CITE-seq 
protein expression as ground-truth for cell types (citeseq dataset). In total, DISCERN 
achieved best performance in 21 out of 27 experiments. While DISCERN yields first 
place to other methods in FC expression correlation comparisons, it always obtains best 
results across all datasets in gene expression, gene regulatory network analysis, pathway 
reconstruction, and cell type and activity identification and is the most stable algorithm 
for different lq to hq size ratios and cell type overlaps. Furthermore, it reaches best per-
formance in several batch correction evaluation metrics.

It is important to note that DISCERN is a precise network that models gene expression 
values realistically while retaining prior and vital biological information of the lq dataset 
after reconstruction. The network is also robust to the presence of different cell types in 
hq and lq data, or an imbalance in their relative ratios, and is robust to “hallucinating” 
hq-specific cells into the lq data. Thus, DISCERN evidently shows less increase in the 
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number of false positives compared to other data smoothing and imputation algorithms. 
Several algorithmic choices are the foundation of DISCERN’s precision and robustness. 
The network was designed to model the sequencing-technology-specific and the under-
lying biological signals in separate components of its architecture. Disentanglement of 
those two components is necessary to accurately reconstruct expression information in 
the case where lq and hq datasets have different content, i.e., cell type compositions. If 
the component designed to model the effect of sequencing technology also captures the 
difference in the biological signal, the reconstruction will lead to a lack of integration 
across the two datasets where some cell types are still clustered by dataset. On the con-
trary, if the component modeling the biological signal captures sequencing-technology-
specific features, the reconstruction will lead to an over-integration of the datasets where 
cells of different types are mixed together (similar to Seurat in Additional file 1: Fig. S26). 
The demonstrated ability of DISCERN to avoid those shortcomings, even in scenarios 
where there is very little to no overlap between cell types across datasets, lies in the care-
fully crafted balance between the expressivity of its components. The representational 
capabilities of DISCERN, achieved via batch normalization, five loss terms, and a dual 
head decoder, would reduce DISCERN’s usability, if they would require frequent dataset-
specific tuning. The stability and usability was therefore a central concern in the design 
and evaluation phase of DISCERN, which resulted in an algorithm that gave very good 
results with a single set of default (hyper-)parameters. All comparisons to other algo-
rithms, for instance, were performed with default settings. Only the expression recon-
struction of the exceptionally large COVID-19 datasets required the fine-tuning of the 
learning rate, cross entropy term, sigma, and the MMD penalty term. Another impor-
tant technical feature of DISCERN is that it can easily be integrated into existing work-
flows. It takes a normalized count matrix, as created by nearly all existing single-cell 
analysis workflows, as input and produces a reconstructed expression matrix. This can 
be used for most downstream applications (i.e., cell clustering, cell type identification, 
cell trajectory analysis, and differential gene expression). DISCERN can be trained on 
standard processors (CPU) for small and medium-sized datasets and requires graphical 
processing units (GPU) for the expression reconstruction of large datasets. Altogether, 
the usability and robustness of DISCERN should enable even non-expert users to per-
form gene expression reconstruction.

A unique feature of DISCERN is the use of an hq reference to infer biologically 
meaningful gene expression. The quality and number of new sequencing technologies 
is increasing, e.g., Smart-seq3 [58]. DISCERN should enable the use of old, potentially 
low-quality, datasets together with new high-quality datasets and thus can improve 
the reusability of already existing datasets. This is especially useful for cases where bio-
logical material is limited, for example in rare diseases. While we consider this a main 
strength of DISCERN, the dependence on a suitable reference dataset might also limit its 
application. We took great care in this manuscript to mitigate this concern by showing 
how DISCERN is able to reconstruct gene expression for many different types of lq and 
hq pairs. Remarkable in this context is DISCERN’s robustness to differences between 
the cell type compositions of lq and hq data pairs, with DISCERN being the only algo-
rithm obtaining robust expression reconstruction when few or no cell types overlap. 
We have also shown that purified bulk RNA-seq samples can be used as hq reference, 



Page 22 of 40Hausmann et al. Genome Biology          (2023) 24:212 

as successfully applied to PBMC and COVID-19 datasets in this study. We used 9852 
FACS purified immune cell bulk sequencing samples [40], comprising 27 cell types, to 
successfully reconstruct single-cell expression data. This implies that most single-cell 
studies involving immune cells (with or without other cell types present) can be recon-
structed with DISCERN using a single published bulk RNA-seq dataset. Furthermore, 
public RNA-seq repositories such as NCBI GEO contain tens of thousands of samples of 
immune and non-immune cells that could serve as reference for most expression recon-
struction experiments. Conversely, pure cell type or subtype bulk RNA-seq data could 
be hard to obtain as the sorting of cells might have limited resolution or might be par-
tially impure. In consequence, the usage of bulk RNA-seq data as reference for expres-
sion reconstruction could lead to a grouping or averaging of cell subtypes. While these 
potential caveats might adversely affect expression reconstruction, we have not observed 
merging or averaging effects of single-cell subtypes when corresponding bulk RNA-seq 
cell type information was not present or present at different proportions (Fig.  3B and 
C, Additional file 1: Fig. S36). Importantly, cells do not necessarily cluster into distinct 
classes but can build cell continua, as shown in the trajectory analysis in Fig. 3B and C, 
where T cells seem to differentiate into each other and do not form clearly separable 
clusters. In general, handling continua of cell types is challenging for imputation and 
batch correction algorithms, as many of them, including for instance scGEN, Bfimpute, 
SIMPLEs, and cscGAN, require or recommend cluster or cell type annotation. This 
might lead to under- or over-integration of cell continua. DISCERN does not rely on 
cluster (or cell type) information and seamlessly integrates and reconstructs cell clus-
ters and continua (Fig. 3C, Additional file 1: Fig. S44). In conclusion, we provide strong 
evidence that DISCERN is widely and easily applicable to many single-cell experiments.

While DISCERN gave good reconstruction results using default parameters for most 
datasets we analyzed, we would like to highlight that the immense representational 
power of generative neural networks can remove or hallucinate biological information if 
not properly handled [6]. Especially, if there are biological differences between the high- 
and low-quality batches, these algorithms can falsely impute or remove these biologi-
cal differences, since biological and technical differences cannot be distinguished. This 
is true for data integration [59, 60] as well as for expression reconstruction algorithms 
and we would highlight guiding principles for optimal results. For non-expert users, we 
would recommend the use of default settings and a careful selection of a related hq data-
set, which should not show any huge biological differences. When datasets are large and 
complex, with many cell types in the lq and several non-overlapping cell types in the 
hq data, one should always ensure that training does not merge or mix non-overlapping 
cell types with other cells, by investigating that these cells keep their cell type-specific 
marker gene expression. While DISCERN is robust to differences between batches, 
we still recommend users to validate findings in the uncorrected expression data, as 
exemplified in Additional file 1: Figs. S33 to S35, S38 and S45 to S47, and to perform 
experimental validation as recommended by [61]. Keeping these “checks and balances” 
will usually result in good reconstruction results even for complex datasets. We further 
advise every reader to validate imputation results by consulting the literature, as out-
lined in [61]. This will ensure reproducible results for every imputation method and pre-
vents authors from drawing biased conclusions.
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Following these principles, we were able to obtain novel insights into COVID-19 disease 
mechanisms and a new blood-based biomarker for disease severity we reconstructed two 
published datasets with DISCERN, Hamburg COVID-19 patients (covid-lung, -blood) and 
the COVID-19 cell atlas (covid-blood-severity). The application of DISCERN to the covid-
blood dataset (COVID-19 patient blood) enabled us to detect 24 different immune cell 
types and activity states, which is quite remarkable given that we find these cells in blood. 
Two TH17 subtypes caught our attention, as they share the TCR clonality with the lung 
data from the same patients (covid-lung), suggesting bloodstream re-entry of lung TH17 
cells. We linked these two subclusters to their functional role by separating them into a 
memory-like and activated-like phenotype. The clonal overlap of activated TH17 cells in 
blood with previously discovered lung-resident cells suggests that activated TH17 cells in 
blood are resident T cells from the lung reentering circulation. These cells might in part 
explain the multi-organ pathology observed in COVID-19, as activated T cells might travel 
via the blood to secondary organs and cause inflammation and tissue damage. Future work 
might demonstrate the effect of these activated T cells on tissue inflammation.

Given the detailed cell type and activity information we reached with gene expression 
reconstruction, we wondered if changes in blood immune cell populations might be use-
ful as a biomarker for disease severity prediction. We used DISCERN to reconstruct the 
covid-blood and the covid-blood-severity datasets and again identified a plethora of differ-
ent T cell subtypes in the blood of patients with COVID-19. Using these cell proportions, 
we were able to classify mild and severe diseases using a GBM machine learning algo-
rithm with 78 % accuracy, outperforming classification with the originally published T cell 
types by 18% points. This improvement isabsolutely striking, as DISCERN has no notion 
of the classification groups. It simply reconstructs gene expression and thereby improves 
cell type detection. These results are a convincing implicit proof not only of the usefulness 
of DISCERN but more importantly of its precision and robustness. While the use of this 
scRNA-seq-based biomarker would be too expensive and time-consuming for clinical care, 
it strongly suggests that FACS-based T cell fraction or count information from blood could 
be used to trace and predict the severity state and potentially the disease  trajectory of 
COVID-19 patients.

Interestingly, we also discovered two atypical T cell types in reconstructed COVID-
19 patient blood single-cell data. While cytotoxic  CD4+ T cells have been observed in 
COVID-19, we can show that this increase is not COVID-19 specific and is also observed 
in other types of pneumonia. Interestingly, we also detected cytolytic  CD8+ Tc2 cells that 
express CD8A, GATA3, and IL6R and are negative for SLAMF6. This cell type is linked to 
tissue fibrosis and steroid-refractory disease in asthma [62]. The increase in  CD8+ Tc2 cells 
that we observe specifically in COVID-related death could be associated with COVID-19 
patients that do not respond to steroids. Demonstration of an increase of this cell type in 
patients dying of COVID-19 points to a potential therapeutic intervention with the drug 
Fevipiprant, which blocks  CD8+ Tc2 cell activation and its pro-fibrotic effects by inhibit-
ing prostaglandin D2 signaling [63]. Functional analysis of these cells has to demonstrate 
whether these cells are an early marker of later death or whether it is a marker of already 
escalated treatment.

The basic concept of utilizing a high-quality reference to improve lower-quality data 
might be applied to many other research areas where technological limitations restrict 



Page 24 of 40Hausmann et al. Genome Biology          (2023) 24:212 

biological insights. The usage of deep generative networks and other artificial intelligence 
methodologies to infer information beyond what is technically measurable could be trans-
formative in future biomedical research.

Methods
Preprocessing

Raw expression data (Counts) preprocessing was performed as previously described 
[64] using the scanpy (v1.6.1, [65]) implementation. In particular, the intersection of 
genes between batches was used. The cells were filtered to a minimum of 10 genes per 
cell and a minimum of 3 cells per gene. Library size normalization was performed to a 
value of 20000 with subsequent log-transformation. As model input for DISCERN the 
genes were scaled to zero mean and unit variance. However, for all further evaluation 
the genes were scaled to their uncorrected mean and variance not considering the batch 
information.

Description of DISCERN

DISCERN is based on a Wasserstein Autoencoder with several added and modified fea-
tures. We will describe the details of DISCERN’s architecture in the next paragraphs and 
a compact representation can be found in Additional file 1: Fig. S1B.

Wasserstein autoencoder While neural network-based autoencoders have been widely 
used for decades for dimensionality reduction [66, 67], recent advances have also allowed 
their use to build a generative model of the distribution of the data at hand [68]. More 
recently, leveraging results from optimal transport [69], Wasserstein Generative Adver-
sarial Networks (WGAN) [70] and Wasserstein Autoencoders (WAE) [25] have been 
designed to explicitly minimize the (Wasserstein, or earth-mover) distance between the 
distribution of the input data and their reconstruction. WGANs only implicitly encode 
their input into a latent representation (called latent code), while WAE has the useful 
property of using an explicit encoder, which makes it possible for the model to directly 
manipulate the different representations of single-cell data. Finally, the WAE framework, 
established in [25], allows the use of a wide range of architecture and losses, which we 
are going to detail now. First of all, in order to effectively use a number of latent dimen-
sions that adaptively matches the intrinsic dimension of the scRNA-seq data at hand, 
DISCERN uses a random encoder as prescribed in [71].

Architecture Autoencoders widely used for transcriptomics applications are shown to 
perform well on several tasks, like drug perturbation prediction [23] or dropout imputa-
tion [12]. Since the ordering of the genes in scRNA-seq count matrices is mostly arbi-
trary, fully connected layers are usually used in this task. In our case, DISCERN con-
sists of three fully connected layers in the encoder and the decoder. The bottleneck of 
the autoencoder (or latent space) contains 48 neurons, which is sufficient to accurately 
model all the datasets we used in our experiments. Additionally, we exploit a finding 
from [71] to let the network learn the appropriate amount of latent dimensions. While 
the encoder will be tasked to transform the distribution of the input data into a fixed, 
low-dimensional prior distribution (i.e., a standard Gaussian), the decoder will perform 
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the opposite, i.e., transforming the fixed, low-dimensional prior distribution into gene 
space. scRNA-seq data is known to display a high level of zero measurements, called 
dropout, which is essential to accurately model the count distribution. To describe 
scRNA-seq data in a parametric way, it is common to model the expression level of a 
gene with zero-inflated negative binomial distribution [72]. Despite the several non-lin-
earities in the decoder architecture, it is, however, difficult to learn an encoding func-
tion that maps a simple prior to the distribution leading to low quality modeling of low 
expressed genes. To address this issue, we scale the gene expression and attach a sec-
ond head to the decoder (i.e., a second decoder sharing all weights with the first, except 
for the last layer). The task of the second decoder head is to predict, for each gene of a 
cell, the probability of its expression to be dropped out, giving rise to a random decoder. 
Thus, this second decoder head predicts dropout probabilities and models the dropout 
probabilities for different batches. This additional head allows modeling the dropout 
and the expression independently, to capture the specific distribution of single-cell data 
without the need for further explicit assumption about the distribution. During infer-
ence, the predicted expressions are randomly set to zero based on these predicted drop-
out probabilities. This sampling procedure does not have any trainable parameter and is 
therefore not part of the model training and only performed during inference.

Loss function The loss optimized during the training of DISCERN is composed of 
four terms: a data-fitting (or reconstruction) loss, a dropout fitting (cross entropy) loss, 
a prior-fitting term (ensuring that DISCERN approximately minimizes the Wasserstein 
distance), and a variance penalty term (that controls the randomness of the encoder). 
Thus, DISCERN can be considered as a Wasserstein Autoencoder as introduced in [25]. 
For the reconstruction term, the framework introduced in [25] allows the use of any pos-
itive cost function. We elected to use the Huber loss [73] as it is well suited for modeling 
scaled scRNA-seq expression data, because it allows to select a threshold value to give 
lower weight to high differences in highly expressed genes and thus allows the model to 
learn a more robust expression estimate without focusing too much on outlier values. 
This reconstruction term is defined as

where x is the input expression matrix, x̂count the predicted expression matrix from one 
decoder head, dx the number of genes, and δ a threshold deciding between the two con-
ditions of the Huber loss.

For the prior-fitting term, following [25], DISCERN uses the Maximum Mean Dis-
crepancy (MMD) [74] between the aggregate posterior (i.e., the distribution of the 
input single-cells after encoding) and a standard Gaussian. We use the sum over an 
inverse multiquadratic kernel with different sizes for this task.
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where PZ is the gaussian prior distribution and QZ the aggregated posterior in the latent 
space for a positive-definite reproducing kernel k : Z × Z → R and a corresponding 
real valued reproducing kernel hilbert space Hk . For the implementation details please 
refer to [25] or the provided implementation.

Then, to prevent the random encoder (with diagonal covariance) from collapsing to 
a deterministic one, a penalty term that enforces that some components of the vari-
ance are close to 1. Intuitively, that means that the superfluous latent dimensions will 
only contain random noise (see [71] for more details). We define this penalty term as

where dz is the number of latent dimensions and σ the function generating the compo-
nents of the variance in the latent space, in our case, the encoder network.

Another loss term, namely the binary cross-entropy loss, on the second decoder head 
is used to enable the model to learn a dropout probability for each gene and sample. 
The loss on the dropout layer enables the model to capture the bimodal distribution of 
single-cell data. We define the binary cross-entropy loss as

where xdropout is the binarized expression information, x̂dropout is the predicted binarized 
expression (probability of dropout) and dx the number of genes. Additionally, activity 
regularization is applied on the Conditional Layer Normalization (CLN), such that the 
weights of the conditional layers are only regularized in a batch-specific manner and 
the regularization is not applied for batches, which are not present in the current mini-
batch. This has the advantage that the batch dependent weights are not influenced too 
much by different batch sizes. The four loss terms are added (and weighed using � s) 
together to form the loss that DISCERN minimizes during training:

See also Additional file 1: Fig. S1B for a graphical depiction of the loss terms.

Conditional layer normalization The weights of those fully connected layers are 
shared for all the batches that DISCERN is trained on. However, to model the batch-
specific differences, we use a Conditional Layer Normalization (CLN) that applies the 
idea proposed in [27] to layer normalization [28] after each fully connected layer (see 
Additional file 1: Fig. S1B). In essence, for each batch, different sets of shifting factors 
are learned. Note that in DISCERN, no scaling factors are used to limit the expressiv-
ity of the conditioning and therefore reduce the chance of over integration. This allows 
not only to accurately model the batch-specific differences between batches but also to 
transfer the batch effect from one dataset onto another, in the spirit of the style-transfer 
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approach developed in [27]. To make things clear, DISCERN does not explicitly train to 
integrate datasets. Instead, it trains to accurately model the input data, capturing the 
batch-specific differences with the weights of the CLN layers (i.e., conditioning), and 
the biological signal (which is mostly shared across the batches to integrate) with the 
weights of the fully connected layers. After training, we encode all the cells we want to 
reconstruct, conditioning the process on their batch of origin. Then, we take the batch 
chosen by the user and proceed to decode all the cells conditioning on that specific 
batch, effectively transferring the batch effect of one specific batch onto all of the batches 
we want to integrate and reconstruct. The training loss is computed over the complete 
minibatch; thus, it is not different per batch (dataset). The weights of the Conditional 
Layer Normalization are learned together with the weights of the feed-forward network 
using the same loss function.

Activations and dropout With the exception of the output layer, every other fully con-
nected layer of the encoder and the decoder was followed by a CLN, a Mish ([75] activa-
tion function, and dropout during model training to reduce overfitting.

Optimization To optimize the weights of our model, DISCERN uses Rectified Adam 
([76], which addresses some of the shortcomings of the widely used Adam [77] and gen-
erally yields more stable training. To prevent overfitting, the optimization is stopped 
early. It is implemented as a modification of the Keras EarlyStopping (with parameter 
minDelta set to 0.01 and the patience to 30) where the callback is delayed by a fixed 
number of 5 epochs. The delay was implemented to prevent too early stopping due to 
the optimization procedure.

Reconstruction The reconstruction to a reference batch is not performed during train-
ing and thus the network is not optimized to it. However, during inference, the recon-
struction can be performed by providing the correct batch label in the encoder part of 
the network, while only providing the reference batch label for the decoder part. There-
fore, the network will encode the dataset to a batch-independent latent representation 
and decode it using only the reference label and therefore project the complete dataset 
to the reference batch. This can be done for any number of batches without re-training 
of DISCERN.

Running time and memory usage DISCERNs running time for training is linear in the 
number of cells and the number of training epochs. However, the use of the early stop-
ping mechanism greatly reduces the running time and improves model performance. 
Additionally, the running time, for training and inference, is dependent on the size of 
the mini-batches. The memory requirements are also linear in the number of cells and 
genes for training and inference. Since DISCERN is trained on mini-batches, the mem-
ory requirements can also be slightly adjusted by changing the mini-batch size during 
training or inference.
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Hyperparameters

As outlined in the architecture section of the methods and depicted in Addi-
tional  file  1:  Fig. S1, DISCERN features several learnable hyperparameters. The com-
plexity of the hyperparameter search space is a potential downside of DISCERN, if these 
hyperparameters would be unstable across different datasets or in other words, would 
require constant tuning. Fortunately, DISCERN’s hyperparameters are very stable across 
the multitude of datasets tested in this manuscript, which we will outline in this para-
graph. Naturally, there is no rule without an exception, which in this manuscript are the 
COVID-19 datasets that required optimization for several hyperparameters.

Constant hyperparameters DISCERN features a number of hyperparameters that can 
be tuned through hyperparameter optimization (see below for details). Most of them 
have default values that yield reasonable performance across the different datasets we 
used and are being kept constant across experiments, including the COVID-19 dataset. 
Those constant hyperparameters are as follows: the choice of the reconstruction loss 
(Huber loss), activation functions (Mish), CLN for the conditioning, number of fully 
connected layers (3) and their size (1024, 512, 256, and 256, 512, 1024 neurons for the 
encoder and the decoder respectively), number of latent dimensions (48), learning rate 
(1e−3), decay rates β1 and β2 of Rectified Adam (0.85 and 0.95 respectively), batch size 
(192), label smoothing for our custom cross entropy loss (0.1), dropout rates (0.4 in the 
encoder and 0 in the decoder), delta parameter of the Huber loss (9.0), weight on the 
penalty on the randomness of the encoder �sigma (1e−8), weight on the cross entropy 
loss term �dropout (1e5), weight on the MMD penalty term �prior (1500).

Dataset-specific hyperparameters The optimal value of the L2 regularization applied on 
the weights of our custom CLN highly depends on the dataset at hand and thus requires 
dataset-specific tuning. For datasets with a very small variance in cell compositions the 
L2 CLN regularization can be turned off (weight set to 0). When datasets have different 
compositions the L2 CLN regularization requires higher values (typically between 1e−3 
and 0.2).

COVID-19 hyperparameters For the experiments with COVID-19 datasets slightly 
adjusted hyperparameters were used: learning rate of 6e−3, label smoothing for our cus-
tom crossentropy loss of 0.05, weight on the penalty on the randomness of the encoder 
�sigma (1e−4), weight on the cross entropy loss term �dropout (2e3), weight on the MMD 
penalty term �prior (2000).

Hyperparameter optimization DISCERN implements different techniques for hyper-
parameter optimization by using the ray[tune] library [78]. For most use cases, the 
model does not require hyperparameter tuning and the default parameter should be suf-
ficient. However, DISCERN has a generic interface and supports nearly all techniques 
implemented in ray[tune]. The initial hyperparameters were found using grid search. 
The loss used for the hyperparameter selection is the classification performance of 
a Random Forest classifier trying to classify real vs. auto-encoded cells. Classification 
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performance was measured using the area under the receiver operating characteristic 
curve (AUC/AUROC).

Competing algorithms and methods

We briefly discuss competing methods and have compared their performance to DIS-
CERN in the results section. These algorithms can be grouped into two categories: 
(i) imputation algorithms that were developed to estimate drop-out gene expression 
based on dataset inherent information (MAGIC, DCA, scImpute) and (ii) algorithms 
designed for batch correction that we have modified or extended to reconstruct gene 
expression, although this is not their intended use (Seurat, scGen). Given the latter, 
it is clear that DISCERN could be used purely for batch correction in latent space, a 
subject beyond the scope of this manuscript.

MAGIC [13] Markov affinity-based graph imputation of cells (MAGIC) denoises and 
imputes the single-cell count matrix using data diffusion-based information sharing. The 
construction of a good similarity metric is challenging for finding biologically similar 
cells due to high sparsity. MAGIC finds a good similarity metric using a sophisticated 
graph-based approach that builds less-noisy cell-cell affinities and information shar-
ing across cells. A particular focus of MAGIC was to understand gene-gene relation-
ships and to characterize other dynamics in biological systems. MAGIC is provided as a 
Python package.

DCA [11]  DCA is a deep learning-based method for denoising single-cell count matri-
ces. DCA is implemented in Python and uses an autoencoder with a zero-inflated nega-
tive binomial (ZINB) loss function. For each gene, DCA computes gene-specific param-
eters of ZINB distribution, namely dropout, dispersion, and mean. By modeling gene 
distributions as a noise model and also computing dropout probabilities of each gene, 
DCA is able to denoise and impute the missing counts by identifying and correcting 
dropout events.

scImpute [12] Similarly to MAGIC, scImpute focuses on identifying cells that are simi-
lar, which is challenging due to the high sparsity of single-cell count matrices. scImpute 
is a statistical model using a three step process to impute scRNA-seq data. In the first 
step, spectral clustering is applied on principal components to find neighbors, which 
later can be used to detect and impute dropout values. In the second step, scImpute fits 
a mixture model of a Gamma distribution and a normal distribution to distinguish tech-
nical and biological dropouts. In the last step, the model uses a regression model for 
each cell to impute the expression of genes with high probability of dropout. With this 
approach, scImpute avoids hallucinations and keeps the gene expression distribution. 
scImpute is provided as an R package.

Seurat [26]  Seurat is an open-source toolkit for the analysis of single-cell RNA-
sequencing data. In addition to general analysis functions, Seurat offers batch-correc-
tion functionality. Seurat uses canonical correlation analysis to construct this lower 
dimensional representation and tries to find neighbors between batches in this shared 
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space. These anchors are filtered considering the local neighborhood of the cell pairs and 
remaining anchors are finally used to construct correction vectors for all cells in this low 
dimensional representation. While Seurat is intended to work in a lower dimensional 
representation, it can also be used to reconstruct the expression information from this 
lower dimensional representation. Seurat is provided as an R package.

scGen  [23]  scGen is a variational autoencoder based deep learning method with a 
focus on learning features that help distinguish responding and non-responding genes 
and cells. scGen constructs a latent space in which it estimates perturbation vectors 
associated with a change between different conditions. Since scGen models the pertur-
bation and infection responses in single cells, it is focused on in-silico screening with 
the use of cells coming from healthy samples.It can also be used for batch correction. 
For batch correction, and unlike DISCERN or Seurat, scGen uses both batch and cell 
type labels. scGen is built using the scvi-tools toolbox and implemented in Python and 
pytorch.

Multigrate [19]  Multigrate is an autoencoder based deep learning method developed 
for the integration of different modalities to improve single-cell RNA-seq downstream 
analysis, mainly clustering. The main focus is the integration of CITE-seq protein abun-
dance since it is often available together with scRNA-seq. They use individual encod-
ers for each modality and build a shared latent representation by partially sharing the 
decoder. Multigrate is built using the scvi-tools toolbox and implemented in Python and 
pytorch.

scVI [37] scVI is a variational autoencoder-based deep learning method developed for 
several single-cell analysis approaches like batch correction, clustering, and differential 
expression analysis. It models expression data using a zero-inflated negative binomial 
loss during the training. For comparison of scVI to other models, only the batch correc-
tion functionality was used. For the differential expression analysis, we used the same 
workflow as for the other methods to allow for a fair comparison. scVI is implemented in 
Python and pytorch.

CarDEC [14]  CarDEC is an autoencoder-based learning method developed for batch 
effect correction, denoising of expression data, and cell clustering. The CarDEC pipe-
line computes highly variable genes across all batches and pre-trains an autoencoder 
to reconstruct the expression of these genes. In a second step, the weights are trans-
ferred to a bigger network, which is trained jointly on the highly variable and lowly vari-
able genes using two reconstruction losses. Additionally, they include a self-supervised 
clustering loss in the latent space to improve batch mixing. CarDEC is implemented in 
Python and Tensorflow.

DeepImpute  [15] DeepImpute  is an ensemble method consisting of multiple autoen-
coder-like deep neural networks, where each network is trained to learn the relationship 
between a set of input genes and a set of target genes. Input and target gene sets are 
selected based on correlation of gene expression values. The estimated expression values 
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from each of the networks is combined to yield the final imputed dataset. DeepImpute is 
implemented in Python and Tensorflow.

trVAE  [36] trVAE  is a variational autoencoder based deep learning method devel-
oped for the generation of unseen samples or conditions of single-cell RNA-seq data. It 
uses an encoder with additional inputs for encoding the condition and a decoder which 
gets, together with the latent code, the target condition as input. To achieve a condition 
independence the first layer is regularized using maximum mean discrepancy. trVAE is 
implemented in Python and Tensorflow.

Evaluation metrics

t-SNE and UMAP For visualization of the datasets and to qualitatively assess the inte-
gration performance, tSNE and UMAP were used. Both methods are based on PCA rep-
resentation and use non-linear representations to create a 2D representation of the data. 
We used the scanpy [65] implementation. Default settings were used in nearly all cases 
except: In the combined COVID-19 dataset analog to Kobak et al. [79], the dataset was 
subset to 25,000 cells and tSNE was computed using a perplexity of 250 and a learning 
rate of 25000/12. These positions were taken and used as input to tSNE of all cells using 
a perplexity of 30 a learning rate of (number of observations)/12 and a late exaggera-
tion of 4.0 using FIt-SNE [80]. Clustering was performed using PARC [81] with default 
parameters except dist_std_local=1.5 and small_pop=300. Methods were changed here 
due to computation time issues for 350000 cells. covid-blood data was analyzed using a 
learning rate of (number of observations)/6 a perplexity of (number of observations)/120 
and early_exaggeration=4. Clustering was performed using default parameters except 
knn=100 and small_pop=100 to reduce the number of clusters with limited cell number. 
Clustering of the T helper cells in healthy blood was performed using coarse clustering 
with 30 nearest neighbors and Leiden clustering (https:// github. com/ vtraag/ leide nalg) 
with a resolution of 0.6. Afterwards, a combined cluster of IFN-regulated and TREG was 
reclustered using a resolution of 0.4 and effector T cells were reclustered using a resolu-
tion of 0.8. Resolution was chosen to dissect the raw gene expression changes of known 
cell types.

Mean gene expression Mean gene expression was calculated as average over log-nor-
malized expression over all cells, usually stratified by cell type. This evaluation of expres-
sion data consists of many data points where several have values close to zero, but could 
have a high weight on rank-based correlation methods. Thus Pearson correlation was 
used to evaluate the performance.

Differential gene expression Differential gene expression was performed using the 
scanpy [65] rank_gene_groups function using the t-test method for calculating statisti-
cal significance on log-normalized expression data. Differential gene expression analysis 
was always performed under consideration of the cell type information. For comparison 
of differential gene expression analysis between conditions, the Pearson correlation was 
used. It is calculated either on the log2 fold-change or in most cases on the t-statistics, 

https://github.com/vtraag/leidenalg
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computed during significance estimation. The data was compared using the t-statistics, 
because it aggregates information on both the variance and the change in mean expres-
sion. Thus, it allows, roughly speaking, for simultaneously evaluating the significance 
and the log2 fold change. Usually, all available genes were used for correlation, except in 
the in silico gene removal experiment, where only the removed genes were considered. 
We used Spearman rank correlation when all genes were available and Pearson correla-
tion otherwise.

Pathway analysis Pathway analysis or gene set enrichment analysis was done using 
the prerank function from gseapy [82] on the t-statistics, computed as described in the 
‘Differential gene expression’ section of the methods. To this end, the gene set library 
“KEGG_2019_Human” provided by enrichr [83] was used. Top pathways were selected 
using the normalized enrichment score as previously described [82].

Gene regulation [44]  The Python implementation of the SCENIC (pySENIC) was used 
to infer regulons specific for  CD4+ T helper cells. SCENIC infers a gene regulatory net-
work using GRNBoost2 and creates co-expression modules. The co-expression modules 
get associated with transcription factors using the transcription factor motif discovery 
tool RcisTarget. A pair of transcription factor and associated gene set is called a regulon. 
For each cell, the regulons get scored using the AUCell algorithm to examine if a cell is 
affected by the regulon. We used default parameters of the pySENIC implementation.

Silhouette score [84]  Silhouette score is a measure to evaluate clustering performance 
by comparing the mean intra-cluster distance to the mean nearest-cluster distance. The 
Silhouette score is computed for batch and cell type labels on the scaled and PCA-trans-
formed data using a varying number of principal components (interval [10, 50]). The 
score is defined in the intervall [−1, 1] , where a positive value indicates separated clus-
ters, a value of zero signifies cluster overlap, and a negative value when the closest clus-
ter is not the wrong cluster. For accessing batch mixing a low, close to zero, value is best, 
while for cell type clusters, a value close to 1 is best. The scikit-learn implementation was 
used.

Adjusted Rand Index [85] The Rand index estimates the similarity between two cluster-
ings by comparing all possible pairings of samples. The Adjusted Rand Index is adjusted 
for chance, such that a random labeling would result in a value close to 0, while a perfect 
clustering yields a score of 1. The Adjusted Rand Index is computed on the result of the 
Leiden clustering algorithm using 20 different resolution parameters in the interval of 
[0.1, 30] . The best value (lowest for batch mixing, highest for cell type clustering) was 
used as the final score. The neighborhood graph for the Leiden clustering algorithm is 
computed on scaled and PCA-transformed values, similar to the silhouette score, for a 
varying number of principal components (interval [10, 5]). The scikit-learn implementa-
tion was used.

Adjusted mutual information  [86] Mutual information measures the similarity 
between two clusterings by computing the sizes of the intersection of all possible cluster 
label pairs. The adjusted mutual information is adjusted for chance, such that a random 
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labeling would result in a value close to 0, while a perfect clustering yields a score of 1. 
Additionally, this accounts for the fact that mutual information is generally higher for 
clusterings with larger numbers of clusters. The AMI was computed on clustering results 
as described for the Adjusted Rand Index. The scikit-learn implementation was used.

COVID‑19 classification

To evaluate the importance of the cell types found in the covid-blood-severity-hq data-
set after reconstruction with DISCERN, the fraction for all T cell subtypes was used to 
predict the disease severity, as provided in [49]. The data was classified using a Gradi-
ent boosting classifier ([87], implemented in scikit-learn v1.0.2, default settings) using 
25 different random seeds. Training was performed on one collection site (e.g., Ncl) and 
prediction on the other collection site (e.g., Cambridge). This process was repeated with 
switched collection site, such that the perfomance could be evaluated for all samples. We 
used this approach to perform a cross-cohort analysis, but with the same approach for 
accessing disease severity in the ground truth labels. We used pycm ([88], v3.3) for the 
performance evaluation. The final evaluation was done using the accuracy and F1 score 
as provided by pycm. The area under the receiver operating characteristic (AUROC) 
curve is computed with scikit-learn. Before training the classifiers a forward feature 
selection was performed using the SequentialFeatureSelector implemented in scikit-
learn with default parameters. In total, four experiments were performed. In the first 
experiment, classification with three disease categories (mild, moderate, severe) was 
used. Patients who died were excluded. For the other two experiments, only patients 
with asymptomatic, mild, severe, and critical symptoms were included. In all experi-
ments, the asymptomatic and mild category was merged to mild and severe and critical 
to severe.

Datasets

Pancreas The pancreas dataset is a collection of different scRNA-seq datasets, profil-
ing pancreas cells in the context of diabetes [89]. The pancreas dataset is a widely used 
dataset for batch correction benchmark experiments, and due to its high number of cell 
types and sequencing technologies, it allows to evaluate differences between cells and 
sequencing technologies at the same time. The expression table, including the annota-
tion, is available from SeuratData (https:// github. com/ satij alab/ seurat- data) as panc8.
SeuratData (v3.0.2) [89]. The dataset was sequenced using five sequencing technolo-
gies (Smart-Seq2, Fluidigm C1, CelSeq, CEL-Seq2, inDrop) and consists of 13 cell types 
(alpha, beta ,ductal, acinar, delta, gamma, activated_stellate, endothelial, quiescent_stel-
late, macrophage, mast, epsilon, schwann). In total, before preprocessing, the dataset 
contains 14890 cells.

difftec The difftec dataset was created for a systematic comparative analysis of scRNA-
seq methods [90]. Similar to pancreas, the difftec dataset is ideal for the evaluation of 
expression reconstruction across many cell types and sequencing technologies. Seven 
sequencing technologies (10x Chromium v2, 10x Chromium v3, Smart-Seq2, Seq-Well, 

https://github.com/satijalab/seurat-data
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inDrop, Drop-seq, CEL-Seq2) were used with at least two replicates each. In this dataset, 
10 different cell types (cytotoxic T cell,  CD4+ T cell,  CD14+ monocyte, B cell, natural 
killer cell, megakaryocyte,  CD16+ monocyte, dendritic cell, plasmacytoid dendritic cell, 
unassigned) were annotated and make up for 31,021 cells in total before filtering. The 
expression table including the annotation is available from SeuratData as pbmcsca.Seu-
ratData (v3.0.0).

covid-lung and covid-blood The COVID-19 dataset we have previously published con-
sists of blood and bronchoalveolar lavage (BAL) samples from four patients with bacte-
rial pneumonia and eight patients with SARS-CoV-2 infection [24]. In total, 155,706 cells 
were sequenced using TCR-seq technology, which allows for the comparison of clonal 
expansion in both tissues. While we investigated the lung data in detail in the original 
publication, the analysis of the blood was largely limited to cell type identification. Using 
DISCERN, we use the blood data to find previously unobserved cell types, link them to 
cell clones found in the lung, and derive a biomarker based on cell fractions (see also 
covid-blood-severity data). Cell type annotations for the BAL samples were used as in 
the original publication.

citeseq This dataset contains CITE-seq information of healthy human PBMCs for 6 cell 
types (B cells, CD4 T cells, NK cells,  CD14+ monocytes,  FCGR3A+ monocytes, CD8 T 
cells) [39]. In our analyses, we used the cell type information provided in the original 
publication [37]. The CITE-seq data is ideal to benchmark DISCERN, as the informa-
tion of 13 surface proteins offers ground-truth information on the cell types and a good 
proxy for the expression of the 13 corresponding genes.

bulk We used this large dataset of 28 FACS sorted and bulk sequenced immune cell 
types as “ultimate” hq reference data for lq immune single-cell sequencing data. Each of 
the 9852 samples provides an average expression information for 13,104 genes for a spe-
cific immune cell type, providing a hq reference for, e.g., lq single-cell PBMC CITE-seq 
data with only 798 expressed genes per cell. We further assume that this dataset is large 
enough to provide enough per cell type variability for our deep neural network to faith-
fully learn and represent its gene expression. In more detail, the dataset consists of 28 
sorted immune cell types (naive CD4, memory CD4, TH1, TH2, TH17, Tfh, Fr. I nTreg, 
Fr. II eTreg, Fr. III T, naive CD8, memory CD8, CM CD8, EM CD8, TEMRA CD8, NK, 
naive B, USM B, SM B, plasmablast, DN B, CL monocytes, Int monocytes, NC mono-
cytes, mDC, pDC, neutrophils, LDG) with > 99% purity [40]. Total RNA was extracted 
using RNeasy Micro Kits  (QIAGEN). Libraries for RNA-seq were prepared using 
SMART-seq v4 Ultra Low  Input RNA Kit (Takara Bio). In total, the dataset contains 
9852 samples collected in two phases from 416 donors, out of which 79 are healthy. For 
training DISCERN, bulk TPM counts and all cell types were used if not stated otherwise.

covid-blood-severity This dataset is an aggregation of three COVID-19 sequencing 
studies using the 10X Genomics Chromium Single Cell 5’ v1.1 technology. It contains 
a large number of cell types with fine-grained cell type annotations that are comple-
mented with information on COVID-19 disease severity for each patient sequenced. 
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We used this dataset to obtain a blood-based biomarker of COVID-19 disease severity, 
based on T cell fractions observed with DISCERN. The data consists of PBMCs from 29 
healthy, 89 COVID-19, and 12 LPS-treated patients. The authors detected 51 cell types 
in their original work (see Additional file 2: Table S1) [49], and COVID-19 patients were 
classified by their disease severity (worst clinical outcome) into “asymptomatic,” “mild,” 
“moderate,” “severe,” “critical,” and “death.” Count data together with CITE-seq informa-
tion was used as provided in the original publication (https:// covid 19. cog. sanger. ac. uk/ 
submi ssions/ relea se1/ haniff a21. proce ssed. h5ad).
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