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Background
Single-cell RNA sequencing (scRNA-seq) has been widely conducted to determine het-
erogeneity and diversity of cell populations. It helps determine cellular differences with 
high specificity and provide a deeper understanding of complex biological variations at 
the individual cell level [1]. Most scRNA-seq studies involve clustering analysis to reveal 
cell types and infer cell lineages [2]. Available methods range from those based on classic 
K-means and spectral clustering [3, 4] to the more recent model-based clustering [5, 6]. 
We refer to [7] and [8] for more discussions.

Although scRNA-seq data clustering analysis is very promising owing to its exten-
sive applications, several challenges exist because of technical and biological reasons, 
such as batch effects and dropout events. Systematic differences in gene expressions 
between batches caused by data generated at different times are known as batch effects. 
Several batch effect correction methods have been developed for scRNA-seq data, 
such as mutual nearest neighbours (MNN) [9] and canonical correlation analysis [10]. 
These methods have been extensively used in preprocessing technical batch effects in 
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scRNA-seq clustering [11, 12]. Moreover, during cell-level resolution, the dropout phe-
nomenon leads to a large amount of zero-count observations in gene expression data, 
which may result in a serious loss of information in scRNA-seq clustering. Many impu-
tation methods have been proposed to recover dropouts, followed by a traditional clus-
tering method, such as CIDR [13] and CMF-Impute [14]. A few other studies take a 
different strategy and adopt zero-inflated distributions to model zeros due to dropout, 
such as ZIFA [15] and scDeepCluster [5]. However, among these methods, few have con-
sidered both batch effects and dropout events simultaneously. In addition, batch effect 
removal and dropout imputation or modelling are typically addressed at the preprocess-
ing stage before clustering. Such multi-staged strategies may lead to a loss of informa-
tion and even introduce new bias across the various steps.

Another challenge is the high dimensionality of scRNA-seq data. This usually pro-
duces extensive noises, resulting in poor clustering accuracy and significantly adding to 
computation time. Dimension reduction is commonly conducted in scRNA-seq as a pre-
liminary step prior to clustering. This step projects high-dimensional gene expression 
data into a lower dimension space and helps focus on relevant low-dimensional signals 
for better clustering [16]. Examples include incorporating principal component analysis 
into K-means clustering [17] and zero-inflated models [15, 18] and performing feature 
transformation through a stacked autoencoder [12]. However, the transformed lower-
dimensional representations often suffer from an ineffective recover of useful informa-
tion and a lack of biological interpretability [6, 18].

Feature selection can be used as an alternative to dimension reduction. It has attracted 
attention in recently published studies on scRNA-seq clustering and can output a sub-
set of the original genes without transforming them. Because the majority of the genes 
are not differentially expressed among various cell types, feature selection can enhance 
signal-to-noise ratios and subsequently improve cell clustering by reducing the number 
of genes under consideration [19, 20]. Moreover, the selected cell type-specific genes 
may additionally assist in understanding biological cell types. Examples of such develop-
ments are FSCseq [21] and snbClust [22], which are two negative binomial (NB) mixture 
model-based methods and perform feature selection using the penalisation technique. 
However, these models do not consider dropouts and may be ineffective with highly 
sparse data. Another example is RZiMM [6], which simultaneously conducts clustering 
and feature scoring along with an adjustment for dropout events and batch heterogene-
ity. Opposed to the mixture model, RZiMM introduces binary subgroup indicators and 
conducts hard clustering, and it models all zeros with one component and ignores the 
differences between dropout zeros and expression zeros, which may lead to additional 
bias. In addition, it requires another threshold for selecting important genes, which can-
not be determined automatically and may involve some subjectivity. Clustering analysis 
that can also conduct gene selection with effective adjustment of batch effects and drop-
outs is still limited for scRNA-seq data.

In this study, we propose a zero-inflated negative binomial mixture model (ZIN-
BMM) for scRNA-seq data clustering that can comprehensively account for the unique 
problems of batch effects, dropout events, and high dimensionality. The model directly 
applies to the raw counts without any transformation to avoid a potential loss of infor-
mation. The mixture model with biological effects of genes being modelled using cell 
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type-specific mean parameters is developed to accommodate heterogeneity, which 
achieves soft clustering and has the advantage of more meaningful probabilistic inter-
pretations. In addition to dealing with high sparsity owing to dropouts, our method 
can also accommodate zero-expressed gene counts and correct the confounding batch 
effects by introducing corresponding parameterisation into the ZINB mixture model. 
ZINBMM innovatively performs feature selection by imposing penalisation on the dif-
ferences between cluster-specific and global mean values. Thus, the informative genes 
can be identified automatically in the clustering process, which cannot be achieved in 
most of the existing scRNA-seq data clustering studies, such as [6]. We demonstrate that 
ZINBMM brings significant advancements over competing state-of-the-art methods 
using both simulated and five real scRNA-seq datasets including embryonic stem cells, 
lung, uterus, liver, and mammary gland tissues from humans and mice.

Results
Overview of ZINBMM

ZINBMM is a systemic model for the analysis of high-dimensional scRNA-seq data that 
have potential dropout events and batch heterogeneity. It can simultaneously identify 
cell types and cell type-specific genes. Herein, we briefly introduce the method. The 
technical details are provided in the “Methods” section, and a schematic view is pre-
sented in Fig. 1.

Consider n single cells and J genes, and denote Xij as the count expression of the 
jth (j = 1, . . . , J ) gene from the ith (i = 1, . . . , n) cell. We model Xij using a mixture of 
ZINB distributions, including a Bernoulli distribution for modelling zero-inflated 
dropout events and an NB distribution accounting for over-dispersed gene expression 
measurements with the count nature. The mixture model is developed to explicitly 
characterise cell type heterogeneity, where the probability mass function is defined as 

K
k=1 pk · fZINB(Xij;πjk ,µijk ,φj) , with K being the number of mixture components (clus-

ters) and pk ’s being the corresponding mixing proportions. Compared to the existing 
heuristic or geometric-based clustering methods [3, 13, 17], ZINBMM provides more 

Fig. 1  The schematic view of ZINBMM. With n cells and J genes, let Xij be the count expression of the 
jth (j = 1, . . . , J) gene from the ith (i = 1, . . . , n) cell; Xij follows f =

∑K
k=1 pk · fZINB

(

Xij;πjk ,µijk ,φj
)

 with 
fZINB(Xij;πjk ,µijk ,φj) = πjk I(Xij = 0)+ (1− πjk)fNB(Xij;µijk ,φj) and log(µijk) = βjk + B

′
iγ . The final output of 

ZINBMM includes a cluster assignment for each cell and the selected cell type-specific genes
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intuitive interpretations from a statistical perspective by assigning cluster-specific prob-
abilities to each cell. ZINBMM can also naturally model the heterogeneity of various cell 
types attributed to differential genes using cell type-specific mean parameters µijk’s, with 
the technical noises from dropouts eradicated using the zero inflation component.

To further control various technical batch effects, we propose a decomposition of µijk 
and introduce a parameterisation γ for joint batch effect removal. The inclusion of γ 
enables batch effect correction within the clustering procedure, without the need for a 
prior correction step that is usually required in most alternative methods. Significantly 
advancing from the existing scRNA-seq data clustering analysis, the proposed method 
can also conduct cluster-specific gene identification, where the penalisation technique, 
with a solid ground in both theory and practice, is adopted. Specifically, the L1 penalty 
is imposed to the difference between each cluster-specific value βjk and the global mean 
value β∗

j  , which yields automatic gene selection through shrinking the estimate of βjk 
toward the global mean.

Testing ZINBMM using simulated data

To evaluate the performance of ZINBMM in clustering and feature selection, we con-
duct extensive simulation studies. In brief, we consider three clusters and generate data 
from the ZINB mixture model using the baseline expression parameters obtained from 
the Zeisel dataset [23]. Dropout events are introduced using the zero-inflated param-
eters πjk’s, which are generated from a Uniform distribution with different parameters, 
resulting in three different levels of dropout rates: about 15% (low), 45% (medium), and 
75% (high). Two settings of batch parameters γ and three settings of expression param-
eters β are also considered, representing slight or large batch effects and low, medium, or 
high biological differences among clusters. More details are presented in the “Data sim-
ulation” section of the “Methods” section. Overall, the simulated experimental designs 
comprehensively cover a wide spectrum with various levels of dropouts, batch effects, 
and biological differences among clusters as well as both balanced and imbalanced sam-
ple distributions.

In addition to the proposed ZINBMM, we conduct analysis using nine competing 
clustering methods: CIDR [13], SC3 [3], Seurat [24], scDeepCluster [5], MNN-Graph 
[9, 25], MNN-Kmeans [9], RZiMM [6], snbClust [22], and sparseKmeans [26]. Among 
them, SC3 and Seurat are perhaps the most popular. CIDR, scDeepCluster, and RZiMM 
address the dropout problem. MNN-Graph, MNN-Kmeans, and RZiMM perform cor-
rection for batch effects. And RZiMM, snbClust, and sparseKmeans simultaneously con-
duct clustering and gene selection. Two other dropout-based gene selection methods, 
M3Drop and NBDrop [19], provide an additional comparison in terms of gene selection. 
We acknowledge the existence of other potential alternatives suitable for comparison. 
The above approaches are chosen owing to their popularity, competitive performance, 
and similar analysis frameworks. To evaluate clustering performance, we use adjusted 
Rand index (ARI). Moreover, Recall, Precision, and F1 are used to quantify gene selec-
tion performance (see Methods).

A hundred replicates are simulated under each setting, and medians and median abso-
lute deviations (MADs), as well as P-values computed from the Wilcoxon test for the 
proposed method and each alternative, are summarised. The median values of ARI and 
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F1 are shown in Fig.  2, and the rest results are presented in Additional file  1: Fig. S1 
and Additional file 2: Tables S1-S12. Here, the M3Drop and NBDrop methods’ ARI val-
ues are unavailable because they are primarily intended for gene selection and unable 
to identify cell clusters. Additionally, because the CIDR, SC3, Seurat, scDeepCluster, 
MNN-Graph, and MNN-Kmeans methods do not conduct gene selection, Recall, Preci-
sion, and F1 scores are not available for those methods.

As shown in Fig. 2a and b, ZINBMM exhibits favourable performance in terms of clus-
tering accuracy across all simulation scenarios. Compared to the alternatives, it achieves 
a higher median ARI and the P-values computed from the Wilcoxon test are mostly 
< 0.05 (Additional file  2: Tables S1–S12). Specifically, for the three levels of dropout 
rates, we follow the recent single-cell data analysis publications [27, 28] and consider the 
settings with dropout rates varying across clusters (see Methods). As pointed out in [29], 
the dropouts can also serve as informative signals for cell clustering, as the distributions 
of dropouts may vary across cell clusters. Thus, compared to the scenarios with a low 
and high dropout rate, all methods show a slightly worse clustering performance under 
the scenarios with a medium dropout rate. To get more intuitive insight, we consider 
three replicates simulated from the scenarios with three different levels of dropout rate 
but with the same biological cluster difference and batch effect. A special replicate with 
no dropouts is also considered. For these four replicates, the heatmaps of the 50 biologi-
cally important genes (with βjk ’s varying across clusters) and 20 none important genes 
and the boxplots of the mean expressions of the important genes and the proportions 
of zero observations in the three clusters are presented in Additional file 1: Fig. S2. It is 

Fig. 2  Simulation results with K = 3 . Plots of the median ARI under a a balanced sample distribution, b 
an imbalanced sample distribution, as well as median F1 under c a balanced sample distribution, and d an 
imbalanced sample distribution over 100 replicates. Different colours represent different methods.
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observed in Fig. S2a that, although the biological cluster difference is fixed, the signals 
of biologically important genes vary across different dropout rates, which are covered 
by different ratios of zeros. In addition, in Fig. S2b, compared to the scenarios with a 
low and high dropout rate, the diversity of expression distributions across clusters is less 
significant under the scenario with a medium dropout rate, leading to the inferior clus-
tering performance of the methods. Specifically, under the scenario with a low dropout 
rate, the diversity of expression distributions across clusters (p-value 0.00027) is mainly 
due to the biological cluster difference, which is not covered by the limited number of 
zeros (see the heatmap in Fig. S2a. Under the scenario with a medium or high drop-
out rate, biological information is somehow covered and confounded by dropout zeros 
(Fig. S2a). When the dropout rate is high, the differences across clusters are dominated 
by the distribution differences of zero observations across clusters, which are significant 
(p value 0.008) as shown in Fig. S2c, leading to significantly different mean expressions 
(p value 0.0071 in Fig. S2b). However, when the dropout rate is medium, both the dif-
ferences of biological information (covered by dropout zeros) and dropout distribution 
(not strong enough to be distinctive with a p value of 0.65) across clusters are weak, 
leading to slightly worse clustering performance. Similar statements that dropouts can 
be informative have also been presented in [30] and [31].

In addition to the above analyses, we consider another setting, under which dropout 
rate is independent of cell types and thus dropouts are non-informative for cell clus-
tering (see Methods), and observe that ARI values decrease as dropout rate increases 
(Additional file 2: Table S13). Performance of all methods generally decays as biological 
differences between clusters become smaller. However, the proposed method remains 
advantageous. Since both dropout distributions and biological information across cell 
types contribute to clustering, when dropout rate is high together with multiple levels of 
simulation randomness (e.g. top right panel of Fig. 2a), clustering performance does not 
significantly depend on biological cluster differences for some methods, such as the pro-
posed and SC3 methods. The superiority of ZINBMM becomes more prominent under 
the imbalanced sample distribution (Fig. 2b), which is more common with practical data.

On the other hand, as seen in Fig. 2c and d, the advantage of the proposed method in 
gene selection is strongly evident. The F1 score, which is the weighted average of Preci-
sion and Recall, can offer a thorough assessment of gene selection. With higher levels 
of cluster differences, it is seen that the proposed method significantly improves gene 
selection performance. Even though the signals of important genes are severely ham-
pered by the presence of high dropouts, where all methods have decreased F1 values, the 
proposed method is still far superior. As seen in Fig. S1a and b, NBDrop may have higher 
Recall values, primarily because it tends to choose more informative genes. In fact, the 
corresponding Precision values are only around 0.1 on average, compared to 0.75 of the 
proposed method.

We also perform simulations with various values of K (Additional file 1: Fig. S3 and 
Additional file 2: Tables S14-S18). It is observed that as the number of clusters increases, 
most methods perform worse as the underlying heterogeneity is more complex. When 
K = 4, 5, 8, and 10, all the informative genes are simulated to express both up-regulation 
(δ = 1) and down-regulation (δ = −1) across clusters (in comparisons with mostly up-
regulated genes when K = 3 ), which is much more friendly to the pairwise comparison 
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scheme of RZiMM. As a result, compared to K = 3 , performance of RZiMM increases 
when the dropout rate is low, with the biological cluster effects not covered by the drop-
out zeros, but is similarly unsatisfactory when the dropout rate increases. In most cases, 
the proposed method is still superior in both clustering and gene selection accuracy. In 
Table S18 (Additional file 2) with a fixed sample size n = 600 , when K is larger (6 and 8) 
with more unknown parameters and the sample size of each cluster is limited, clustering 
performance of the proposed method is slightly worse than SC3. However, such perfor-
mance can be easily enhanced by a larger sample size. The current simulation studies 
show that 150 samples per cluster can already provide satisfactory results, which can be 
easily satisfied with practical data.

Overall, the proposed method can achieve superior performance in both clustering 
and gene selection, and the significance of improvement is supported by statistical test-
ing. SC3 achieves the second best clustering accuracy. Under some settings with low 
levels of dropouts, SC3 behaves slightly better than the proposed, perhaps because of 
the combined clustering strategy. However, it gets less effective when there are higher 
levels of dropouts. RZiMM achieves the second best gene selection accuracy, since it 
also accommodates dropouts, batch effects, and cell heterogeneity. The superiority of 
the proposed method over CIDR, Seurat, snbClust, and sparseKmeans directly supports 
the zero-inflation-based strategy for accommodating for dropout events. Improved per-
formance over RZiMM and scDeepCluster suggests the effectiveness of the proposed 
penalisation scheme. Moreover, the proposed method performs much better than two 
MNN-based methods, partially suggesting the potential loss of information and bias 
introduction through multi-staged processing. Without an effective accommodation of 
cell heterogeneity, the two dropout-based gene selection methods M3Drop and NBDrop 
have unsatisfactory selection performance.

We further evaluate stability of the proposed method and examine whether it can 
maintain its superiority when the data generation model is misspecified. In particular, 
we consider three types of models: (a) the negative binomial mixture model considered 
in snbClust [22] without dropouts and batch effects, (b) the mixture zero-inflated Pois-
son model considered in RZiMM [6] in which a randomly selected cell type is designed 
to have a higher mean expression than the other types, and (c) the mixture zero-inflated 
Poisson model adopted in CIDR [13] in which the levels of dropouts are inversely pro-
portional to the expression levels following a decreasing logistic function. Summary 
results are presented in Table  1 (results for MNN-Graph and MNN-Kmeans are not 
available under the models considered in snbClust and CIDR without batch effects). It is 
not surprising that the proposed method has a slightly worse performance compared to 
the method that matches the data generation model. For example, under the NB mixture 
model without dropouts and batch effects (snbClust), the median ARI values of snbClust 
and the proposed method are 0.627 and 0.564, with P-value computed from the Wil-
coxon test being 0.946. However, the proposed method still outperforms the other com-
peting ones. The majority of the alternatives behave poorly under the RZiMM setting, 
probably due to the presence of multiple batch effects. On the other hand, under the 
CIDR setting, the inverse relationship between dropouts and expression levels enhances 
the differences among differentially expressed genes, leading to satisfactory clustering 
accuracy for most of the methods.
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To get more intuitive insight into the impact of batch effects and better appreciate 
the operating characteristics of the proposed method, we additionally conduct batch 
correction for SC3 and Seurat using the Harmony approach [32], under the scenarios 

Table 1  Simulation results under different model assumptions. In each cell, median (MAD) is based 
on 100 replicates, and P-value is computed from the Wilcoxon test for the proposed method and 
each competing method

Method ARI Recall Precision F1

Median 
(MAD)

P-value Median 
(MAD)

P-value Median 
(MAD)

P-value Median 
(MAD)

P-value

 snbClust

Proposed 0.564 (0.123) - 0.940 (0.040) - 0.430 (0.026) - 0.575 (0.027) -

CIDR 0.128 (0.065) 0.000 - - - - - - - - -

SC3 0.288 (0.102) 0.000 - - - - - - - - -

Seurat 0.462 (0.050) 0.000 - - - - - - - - -

scDeepClus-
ter

0.472 (0.056) 0.002 - - - - - - - - -

RZiMM 0.464 (0.404) 0.099 0.890 (0.070) 0.000 0.250 (0.220) 0.012 0.547 (0.093) 0.027

snbClust 0.627 (0.268) 0.946 0.980 (0.020) 0.915 0.268 (0.137) 0.000 0.391 (0.175) 0.000

sparseK-
means

0.001 (0.002) 0.000 1.000 (0.000) 1.000 0.050 (0.000) 0.000 0.095 (0.000) 0.000

M3Drop - - - 0.290 (0.030) 0.000 0.100 (0.012) 0.000 0.148 (0.017) 0.000

NBDrop - - - 0.280 (0.040) 0.000 0.104 (0.014) 0.000 0.152 (0.020) 0.000

 RZiMM

Proposed 0.897 (0.103) - 1.000 (0.000) - 0.573 (0.080) - 0.712 (0.060) -

CIDR 0.008 (0.007) 0.000 - - - - - - - - -

SC3 0.000 (0.001) 0.000 - - - - - - - - -

Seurat 0.034 (0.029) 0.000 - - - - - - - - -

scDeepClus-
ter

0.014(0.014) 0.000 - - - - - - - - -

MNN-Graph 0.001 (0.001) 0.000 - - - - - - - - -

MNN-
Kmeans

0.002 (0.001) 0.000 - - - - - - - - -

RZiMM 1.000 (0.000) 0.999 1.000 (0.000) 0.041 0.883 (0.000) 1.000 0.909 (0.000) 1.000

snbClust − 0.001 
(0.001)

0.000 0.165 (0.165) 0.000 0.055 (0.005) 0.000 0.097 (0.010) 0.000

sparseK-
means

0.069 (0.012) 0.000 0.405 (0.385) 0.000 0.631 (0.369) 0.729 0.179 (0.031) 0.000

M3Drop - - - 0.695 (0.025) 0.000 0.188 (0.007) 0.000 0.297 (0.012) 0.000

NBDrop - - - 1.000 (0.000) 1.000 0.100 (0.000) 0.000 0.182 (0.000) 0.000

 CIDR

Proposed 0.965 (0.035) - 0.990 (0.010) - 0.718 (0.036) - 0.820 (0.017) -

CIDR 0.999 (0.001) 0.994 - - - - - - - - -

SC3 1.000 (0.000) 1.000 - - - - - - - - -

Seurat 1.000 (0.000) 1.000 - - - - - - - - -

scDeepClus-
ter

0.570 (0.138) 0.000 - - - - - - - - -

RZiMM 0.957 (0.043) 0.015 0.880 (0.040) 0.000 0.587 (0.027) 0.000 0.704 (0.032) 0.000

snbClust 0.954 (0.046) 0.028 0.955 (0.015) 0.000 0.977 (0.010) 1.000 0.964 (0.006) 1.000

sparseK-
means

0.913 (0.041) 0.000 0.915 (0.085) 0.001 0.192 (0.092) 0.000 0.193 (0.000) 0.000

M3Drop - - - 0.810 (0.020) 0.000 0.147 (0.004) 0.000 0.248 (0.007) 0.000

NBDrop - - - 0.990 (0.010) 0.139 0.109 (0.001) 0.000 0.196 (0.001) 0.000
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where batch effects are relatively large and easier to correct for. It is noted that among 
the eleven competing methods, MNN-Graph, MNN-Kmeans, and RZiMM are already 
able to accommodate the batch effects. In addition, since the batch correction step (such 
as Harmony) usually involves data transformation and/or dimension reduction and 
makes corrected data continuous, it is not feasible to introduce a batch correction step 
for the sparseKmeans, M3Drop, and NBDrop methods, which conduct gene selection, 
and the CIDR, scDeepCluster, and snbClust methods, which rely on raw count or CPM 
data structure. The corresponding clustering results are presented in Additional file 2: 
Table  S19. It is observed that under some scenarios with relatively low dropout rates, 
the median ARI value of Seurat is improved by batch correction but still much smaller 
than that of the proposed method (for example, increased from 0.424 to 0.796 com-
pared to 0.980 of the proposed method under the scenario with a low dropout rate and 
a balanced sample distribution). On the other hand, when dropout rate is high, the ARI 
values of both SC3 and Seurat decrease, which may be attributed to bias caused by the 
PCA embedding of Harmony. In fact, as demonstrated in [32], Harmony tends to have 
poor performance with lowly expressed data. This analysis supports the validity of the 
proposed strategy for accommodating batch effects, dropouts, and high dimensionality 
simultaneously.

Finally, we examine computational efficiency of the proposed method under the above 
simulation settings with various numbers of cells, genes, and clusters. All analysis is 
conducted using a computer with an Intel Core i5 processor and 16 GB RAM, and the 
average computer time with fixed tuning parameters is provided in Table  S20 (Addi-
tional file 2). As M3Drop and NBDrop only do gene selection but do not take clustering 
analysis into account, they are found to be much faster than the other ten methods. In 
general, the proposed method requires heavier computing than some graph-based (e.g. 
MNN-graph and Seurat) and geometric-based (e.g. MNN-Kmeans and CIDR) cluster-
ing methods, where dimension reduction is applied and low-dimensional factors are 
analysed in clustering analysis. However, when compared to the more direct competi-
tors, scDeepCluster, RZiMM, and snbClust (which are similarly model-based and work 
on raw counts), and the most popular scRNA-seq clustering method SC3, the proposed 
method is observed to be competitively efficient. We additionally apply the proposed 
method to a simulated dataset with 100,000 cells, and the proposed analysis takes about 
9.8 h, indicating its computational feasibility even for large-scale datasets.

Applying ZINBMM to real scRNA‑seq datasets

We consider five publicly available scRNA-seq datasets, on mouse embryonic stem cells 
(mESCs) [33], human lung adenocarcinoma (LUAD) cell lines [34], uterus, liver, and 
mammary gland cells from the Mouse Cell Atlas (MCA) [35]. In all of these five data-
sets, each cell has been annotated by cell and lineage markers, and the annotations of 
cells and cell type memberships have been treated as gold standards to facilitate objec-
tive clustering comparisons. Summary information, including the numbers of cells and 
genes, proportion of zeros, number of cell types, and batch information, is provided in 
Table 2.

To obtain deeper insights into batch characteristics, we further provide a visualized 
illustration of these datasets in Fig. 3. Specifically, the raw count data is projected using 
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the t-SNE method [36] and then mapped onto a two-dimensional space. The related 
t-SNE plots are shown in the left panel of Fig. 3, with different cell types and batches 
illustrated using different colours and shapes. In addition, the proportions of cell types 
in different batches are presented in the right panel of Fig. 3. In the mouse embryonic 
stem cell dataset, the differences between cell types are dominated by batch effects. Spe-
cifically, the cells from batch 1 (plus-shaped) gather at the bottom right, whereas cells 
from batch 2 (square-shaped) gather at the top left. In addition, Fig. 3b shows that the 

Fig. 3  Visualization of the five real datasets. Two-dimensional t-SNE projection of cells (coloured and shaped 
by different types and batches) and compositional bar plots of cell types among different batches for a 
mouse embryonic stem cells, b human lung cancer cells, c mouse uterus cells, d mouse liver cells, and e 
mouse mammary gland cells
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human lung cancer cells are well separated with regard to both protocol differences and 
cell types. The mouse uterus dataset represents a more complex situation wherein there 
is some confounding between batch and biology, as shown in Fig. 3c. The mouse liver 
dataset represents a special case wherein batch effect contributes to cell-type differences. 
Specifically, the second batch almost only contains cells from Hepatocyte_Fabp1, which 
separately gather at the top left as illustrated in Fig.  3d. The mouse mammary gland 
dataset (Fig.  3e) is a large-scale dataset with larger numbers of clusters and batches, 
where the distributions of both clusters and batches are highly imbalanced. Overall, as 
illustrated in Table 2 and Fig. 3, the five datasets comprehensively cover a wide spectrum 
with different levels of dropout rates as well as diverse batch effect types.

For each dataset, in principle, the proposed method can be directly applied. However, 
considering that only a small number of genes are potentially associated with the forma-
tion of cell types, we conduct a pre-screening by selecting the top 1,000 highly variable 
genes (HVGs) with the largest standard deviations for downstream analysis. As stated in 
[37], this screening step can amplify underlying information in the retained genes while 
significantly reducing computational cost. The choice of 1,000 HVGs has been widely 
adopted in scRNA-seq clustering [11, 38, 39]. More details regarding the collection and 
processing of data are provided in the “Real scRNA-seq datasets” section of the “Meth-
ods” section.

Examination of the number of clusters

We consider the following candidate sequence: K = {2, 3, · · · , 19, 20} . For the proposed 
method, the modified Bayesian Information Criterion (BIC) is adopted. For the nine 
alternatives, we use the criteria recommended by the corresponding published studies: 
Calinsk-Harabasz index for CIDR [13], random matrix theory (RMT) for SC3 [3], reso-
lution parameter-based strategy for Seurat [24], elbow-method strategy for scDeepClus-
ter [5], modularity maximisation for MNN-Graph [25], modified BIC for RZiMM [6], 
BIC for snbClust [22], and Gap statistic for MNN-Kmeans and sparseKmeans [26].

The results are presented in Table 3. For the mouse embryonic stem cell and human 
lung cancer cell datasets, which have relatively small numbers of cell types, the proposed 
method can correctly identify the true numbers of cell types. For the mouse uterus, liver, 
and mammary gland cell datasets, the proposed method identifies five, four, and five 
clusters, respectively, and some cell types with a certain similarity are clustered into large 

Table 2  Summary information of the five real datasets

Dataset No. of cells No. of genes Proportion 
of zeros

No. of 
cell 
types

Batch information

Mouse embryonic stem 
cells

469 38,658 71.22% 3 Factorial design with bal-
anced distribution

Human lung cancer cells 1402 12,997 41.16% 3 Factorial design from differ-
ent protocols

Mouse uterus cells 2965 8994 91.47% 8 Confounding factors 
between batch and biology

Mouse liver cells 3971 8868 93.60% 8 Slight batch influence

Mouse mammary gland 
cells

5154 8254 93.72% 14 Multiple batches
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cell types. For example, for the mouse uterus cell dataset, three types Cxcl14, Has1 and 
Hsd11b2 from Stromal are grouped into two types. In addition, for the mammary gland 
cell dataset, two B cell subtypes and three T cell subtypes are clustered into two groups 
separately. As shown in Table  3, few other methods can identify the true numbers of 
cell types. Specifically, SC3, Seurat, and scDeepCluster tend to choose larger numbers of 
clusters, while the optimal numbers chosen by Gap statistics for the two Kmeans-based 
methods are small. For making a fair comparison, we set K as the true number of cell 
types for all methods in the following analysis, which is a common practice in recent 
clustering analysis of scRNA-seq data [5, 22].

ZINBMM leads to biologically sensible clusters

We conduct analysis using the proposed method as well as the nine alternatives and 
present the ARI values in Fig. 4. The proposed method consistently outperforms the 
other nine clustering methods. We also present the t-SNE projection plots wherein 
each cell is coloured by its annotated cell type (Fig. 5, left) and the cluster label identi-
fied using the proposed method (Fig. 5, right), respectively. For each dataset, a high 
similarity between these two plots is observed. Similar t-SNE projection plots for 
the nine alternatives are presented in Additional file 1: Figs. S4–S8. The alternatives 

Fig. 4  Clustering performances measured using ARI for the five real datasets
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cannot effectively identify the true patterns of cell types occasionally. First of all, the 
presence of a strong batch effect in the mouse embryonic stem cell dataset poses 
a problem for the methods without accommodation of batch effects. However, the 
design in which each batch includes cells from each biological condition favours an 

Fig. 5  Clustering performance of the proposed method for the five real datasets. Two-dimensional t-SNE 
projection of cells (coloured based on the annotated cell types and clustering results identified using the 
proposed method) for a mouse embryonic stem cells, b human lung cancer cells, c mouse uterus cells, d 
mouse liver cells, and e mouse mammary gland cells
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effective batch effect correction, making the proposed and two MNN-based batch 
correction methods able to identify cell types perfectly. Second, in the human lung 
cell dataset, the low level of dropouts and high level of variations with regards to 
both batches and cell types lead to a satisfactory clustering accuracy for the proposed 
method, as well as for the CIDR, RZiMM, MNN-Graph, and MNN-Kmeans methods. 
Third, under a more complex setting wherein a high level of dropouts and confound-
ing factors (mouse uterus cells) are present, a special case with small batch effects 
(mouse liver cells), and a larger dataset with higher numbers of clusters and batches 
(mouse mammary gland cells), the proposed method is observed to have much 
greater advantages in terms of clustering accuracy. Overall, the methods that cannot 
handle dropouts, such as snbClust and sparseKmeans, always have inferior perfor-
mance. In addition, without an adjustment for batch effects, the clustering patterns 
identified by CIDR, SC3, and Seurat are likely to be dominated by batch effects rather 
than heterogeneity. The proposed method also behaves much better than RZiMM and 
scDeepCluster owing to the effective penalised feature selection.

ZINBMM selects genes associated with cell types

Besides cell types, the proposed method also identifies 33, 24, 51, 55, and 80 important 
cell type-associated genes for the mouse embryonic stem cell, human lung cancer cell, 
mouse uterus cell, mouse liver cell, and mouse mammary gland datasets, respectively. 
We also conduct gene selection using RZiMM, snbClust, sparseKmeans, M3Drop, and 
NBDrop. The summary results are shown in Additional file  2: Tables S21–S25, where 
the numbers of genes identified with these methods and their overlaps are presented. 
Because RZiMM provides gene importance score instead of gene selection results, we 
focus on the top 50 genes with the largest scores. Tables S21–S25 provide information 
on the differences and similarities between the findings. It is observed that different 
methods identify different sets of genes with moderate overlapping.

To obtain insights into the selected genes using the proposed method, we present an 
expression heatmap based on the ground true cell types in Fig. 6a. The corresponding 
heatmap plots of the selected genes using the alternative methods are shown in Addi-
tional file 1: Figs. S9–S13. The methods with extremely large numbers of selected genes 
are not presented. Compared with the alternatives, evident differences are noted in the 
expression levels among different cell types using the proposed method, which supports 
significance of the selected genes. Consider gene Krt18 in the mouse embryonic stem 
cell dataset as an example. This gene is highly expressed in the cell type “lif ”, whereas 
its expression is extremely low in the other two cell types. Additionally, for the human 
lung cell dataset, a group of low-expressed genes is detected in the cell type “H1975”, and 
notably different sets of highly-expressed genes are detected in the cell types “H2228” 
and “HCC827”. We note that for the mouse uterus dataset with a relatively lower ARI 
value (0.668), the proposed method also has satisfactory gene selection performance as 
shown in Fig.  6a. In fact, true cluster labels are identified for almost 75% of the cells. 
ZINBMM is able to effectively capture biological information from these appropriately 
assigned cells while remaining resistant to the misclassified cells. In addition to heat-
map, for each dataset, we consider three important genes as examples and show pre-
dictive data distribution based on the proposed ZINBMM and estimated parameters as 
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well as the empirical data distribution in Fig. 6b. The predictive data distributions are 
observed to fit the empirical data very well, regardless of whether the genes have a high 
(e.g. Tagln) or a low level of dropouts (e.g. HLA-C). This indicates that ZINBMM can 
effectively model technical zeros and biological zeros as well as biological effects while 
simultaneously accommodating cell heterogeneity and batch effects.

Literature search suggests that many of the identified genes have strong biological 
implications for cell types. For example, for the mouse embryonic stem cell dataset, 
the high expression of gene Krt18 has been found to contribute to the formation of a 
minor formative-state pluripotent population [40]. Gene GJA1 has been implicated as 
one of the markers in [41] for quiescent nonspecific conversion pioneer factors (qNSCs) 
to induce pluripotency in mouse embryonic stem cells. Gene Trh is a unique endo-
derm marker that transiently marks the entire definitive endoderm population and is 
not expressed in the extraembryonic endoderm. In the human lung cell dataset, gene 
CD74 has been shown to play an important role in eliciting immune response in lung 

Fig. 6  Gene selection performance of the proposed method for the five real datasets. a Log-transformed 
expressions of the identified genes among different true cell types. b Predictive and empirical data 
distributions of representative genes
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adenocarcinoma [42]. CDKN2A has been identified as a tumour suppressor associated 
with the detection of regulatory gene hubs [42]. Gene EGFR has been commonly used 
as an important therapeutic target for non-small-cell lung carcinoma (NSCLC) [43]. 
Among the genes detected in the mouse uterus cell dataset, Col1a1 encodes collagen 
and laminin, the high expressions of which have been reported in adventitial stromal 
cells [44, 45]. Gene CD74 has been shown to contribute to macrophage separation [46]. 
Preferential expression of gene Sprr2f has been found conducive to epithelial cluster for-
mation in uterus [47]. For the mouse liver cell dataset, gene C1qa is a commonly used 
biomarker, and the high expression of C1qa has been identified as a tumour-specific sig-
nature [48]. Gene CD36 has been suggested as a regulator of Kupffer cell metabolism 
[49]. Highly upregulated Col3a1 has been identified to be particularly important for spa-
tial heterogeneity across liver tissues [50]. For the mouse mammary gland dataset, gene 
Lyz1 has been implicated as a marker gene for myeloid cells in mammary glands [51]. 
Mif has been identified as a lineage-specific gene with a strong correlation with stem 
pseudotime in mammary epithelium cells [52]. Expression of gene Apoe has been found 
to help discriminate tumour-associated macrophages in breast tumours [53].

To provide an additional indicator for the quality of gene selection, we further ana-
lyse biological relevance of the selected genes by conducting gene ontology (GO) 
enrichment analysis. The analysis is conducted to evaluate molecular functions, cellular 
components, and biological processes of the selected genes. The results are shown in 
Fig. 7. Significantly enriched categories are observed, with distinct categories across the 
five datasets. Specifically, seven significantly enriched terms are observed from Fig. 7a 
for mouse embryonic stem cells, including membrane raft, myelin sheath, disordered 
domain specific binding and structural constituent of cytoskeleton. One biological pro-
cess term and multiple cellular component terms are significantly enriched for human 
lung cancer cells, as observed in Fig. 7b, including coated vesicle membrane, endoplas-
mic reticulum lumen and intrinsic component of the endoplasmic reticulum membrane. 
A total of 60 significantly enriched GO terms are observed for mouse uterus cells, and 
we show the top 20 in Fig. 7c. The results suggest that these genes are significantly con-
tributed to extracellular organisation and molecular binding. The enriched terms of the 
detected genes in liver cells are associated with biological migration and cellular activity, 
as shown in Fig. 7d. The top 20 significant GO terms for mouse mammary gland cells 
are presented in Fig. 7e, where the associations with different processes and functionali-
ties are observed. Overall, the significance of the associated GO categories supports the 
validity of the proposed gene selection procedure.

Discussion
Advances in single-cell technologies have enabled the measurement of gene expressions 
in massive individual cells, providing opportunities for a better understanding cellular 
heterogeneity. However, scRNA-seq experiments suffer from severe batch effects and 
dropout events, making read count data noisy and sparse. Furthermore, these experi-
ments are characterised as high dimensional, because they typically measure the expres-
sions of tens of thousands of genes. Even after pre-processing, the remaining genes may 
still contain redundant information. These factors call for the development of effective 
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statistical models that can account for high-dimensional scRNA-seq data clustering with 
batch effects and zero inflation.

We have developed ZINBMM, incorporating a penalisation technique that simultane-
ously achieves clustering and gene selection. ZINBMM directly models raw count data 
without transformation. The mixture model can naturally describe batch effects and 
dropout events, facilitating a biologically interpretable clustering analysis. Furthermore, 
with penalisation on the differences between global and cluster-specific means, ZIN-
BMM can conduct cluster-discriminatory gene selection, improving clustering accu-
racy and biological understanding. Comprehensive evaluations and comparisons with 

Fig. 7  GO enrichment analysis with reference P values of the selected genes for the five datasets: a Mouse 
embryonic stem cells, b human lung cancer cells, c mouse uterus cells, d mouse liver cells, and e mouse 
mammary gland cells
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state-of-the-art methods on both simulation and real data applications have been con-
ducted. ZINBMM has demonstrated stable and superior results over the alternatives.

We have developed a two-layer mixture model, where the first and second layers have 
been proposed to accommodate cell heterogeneity and zero-inflated values. The identifi-
ability of mixture distributions is unfortunately still a wide-open problem [54]. In pub-
lished studies, the identifiability of the NB mixture model and the zero-inflated model 
has been well established. Moreover, the two-layer mixture model has been common 
in recent studies [55], where a two-layer EM algorithm has been adopted for optimi-
zation. For one simulated replicate, we have conducted the proposed analysis multiple 
times and obtained the same estimator, which may suggest the identifiability of the pro-
posed method. In this study, we have mostly focused on methodological development 
and implementation. Theoretical studies on identifiability may be beyond the scope of 
this study. We have introduced the parameter vector γ , which accommodates the lin-
ear batch effects and may have been overly simplified when compared to what is practi-
cally observed. We have adopted this strategy to enhance computation efficiency, and it 
has been demonstrated to exhibit satisfactory performance in both simulation and data 
analysis with various types of batch effect patterns. This strategy may be of interest in 
extending the proposed framework to accommodate nonlinear batch effects using non-
parametric techniques. This study has focused on the heterogeneity of cell types. The 
proposed method has the potential to be extended to account for both individual- and 
cell-level heterogeneity by adding more parameters.

We have conducted analysis with 1000 HVGs to improve performance and reduce 
computational cost. Additionally, we have also examined the results with 2000 HVGs. 
The comparison is provided in Additional file 2: Table S26. It is observed that both the 
clustering and gene selection results do not significantly depend on the number of input 
genes. More rigorous investigation on the impact of the number of input genes will be 
pursued in future work. We have adopted the modified BIC to select the optimal num-
ber of cell clusters, and it has been the most popular in published model-based cluster-
ing analysis studies [6, 22]. For the datasets with a larger number of cell types, as the 
modified BIC tends to select models with a relatively smaller number of parameters, a 
smaller number of cell types is usually identified and some cell types are clustered into 
a larger one. If there are reasons to believe that a sample is heterogeneous or if one is 
interested in uncovering new subtypes, it is convenient for the proposed method to fur-
ther cluster cells based on the existing results. Additional investigation on the optimal 
number of clusters is deferred to further study. In data analysis, we have made findings 
different from those of the alternatives. Literature search and GO enrichment analy-
sis have shown their important biological implications. A more definitive confirmation 
from functional validations will be needed.

Conclusion
In this work, we have developed a novel statistical method ZINBMM to conduct simul-
taneous clustering and cluster-specific gene identification for scRNA-seq data, specifically 
to address the challenges of batch effects and dropout events. Experiment results on both 
simulation and five real datasets have demonstrated that the proposed method signifi-
cantly improves clustering and gene selection performance compared to the alternatives. 
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Motivated by the importance of clustering analysis for high-dimensional scRNA-seq data, 
ZINBMM is a valuable tool for elucidating cellular heterogeneity and providing biological 
insights into the underlying mechanism.

Methods
Statistical model

Let Xij be the expression of the jth gene from the ith cell, for i = 1, . . . , n, j = 1, . . . , J . For 
the ith cell, to account for heterogeneity and dropouts in the single-cell expression count 
data, we assume that the expression Xij follows a mixture zero-inflated negative binomial 
distribution. The probability mass function is as follows:

with fNB(Xij;µijk ,φj) =
Ŵ(Xij+φj)

Xij !Ŵ(φj)

(

µijk

µijk+φj

)Xij
(

φj
µijk+φj

)φj
 and I(·) being the indicator 

function. Here, K is the number of cell types (mixture components), p = (p1, . . . , pK )
′ is 

the vector of mixing proportions satisfying pk ≥ 0 and 
∑K

k=1 pk = 1 , πjk is the probabil-
ity that the jth gene in the kth cluster expresses zero caused by dropouts, and µijk and φj 
are the mean and dispersion parameters of the negative binomial distribution. To adjust 
for batch effects, we further parameterize the mean value µijk as:

where βjk is the mean expression of the jth gene in the kth cluster on the log scale after 
controlling for batch effects, Bi = (Bi1, . . . ,BiS)

′ is the indicator vector corresponding to 
the batches with Bis = 1 indicating that the ith cell belongs to the sth batch and S being 
the number of batches known in advance, and γ = (γ1, . . . , γS)

′ is the parameter vector 
of batch effects. Overall, the vector of unknown parameters θ includes all pk’s, πjk’s, βjk
’s, and rs’s.

For regularised estimation and gene selection, we propose the following penalised objec-
tive function:

where β∗
j  is the pre-estimated global expression measurement of the jth gene assum-

ing no cluster effects after controlling for batch effects, and � is a tuning parameter. In 
(2), the first term is the log-likelihood function, whereas the second term is proposed 
to identify cell type-specific genes, wherein we impose regularisation on the difference 
between βjk and β∗

j  to promote βjk to shrink to the global value β∗
j  . By maximising (2), 
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gene j that has all βj1, . . . ,βjK  equal to β∗
j  will be identified as an unimportant gene. The 

important genes, on the other hand, are those with at least one βjk different from β∗
j .

Optimisation

We adopt an expectation-maximisation (EM) algorithm for the maximisation of (2). 
First, an unobserved indicator zik is introduced for the ith cell, where zik = 1 if the 
ith cell belongs to the kth cell type and zik = 0 if otherwise. Then, based on (2), the 
complete-data objective function is:

With (3) and a fixed tuning parameter, the optimisation proceeds as follows:

Initialisation:  Set t = 0 . 

(a)	 For j = 1, · · · , J  , pre-estimate the global parameter β∗
j = β̃j by maximising 

∑n
i=1 log fZINB

(

Xij; π̃j , exp
(

β̃j + B′
iγ̃

)

, φ̃j

)

 , assuming homogeneity. The estima-

tors π̃j , γ̃j , and φ̃j are also obtained.
(b)	 Initialise p(0)k = 1

K , k = 1, . . . ,K  , γ (0)
jk = γ̃j , and φ(0)

j = φ̃j.
(c)	 Initialise β

(0)
jk = β̃j(1+ 0.01(k − 1)) and 

π
(0)
jk = π̃

(0)
j (1+ 0.01(k − 1)), k = 1, . . . ,K  , by shifting β̃j and π̃ (0)

j  to avoid equiva-
lent posterior probabilities at the first iteration.

E‑step:  Update t = t + 1 . The conditional expectation of lc(θ) with respect to θ (t−1) is

where ẑ(t)ik = E
θ
(t−1) (zik) =

p
(t−1)
k

∏J
j=1 fZINB

(

Xij;π
(t−1)
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(
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)
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j

)
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) .

M‑step:  Optimise E
θ
(t−1) (lc(θ)) with respect to θ . First, introduce the unobserved indi-

cators mijk ’s where mijk = 1 if the value of Xij is produced by dropouts, and mijk = 0 if 
the value exhibits the true expression level and follows a negative binomial distribution. 
Then, for k = 1, . . . ,K  , conduct the following steps sequentially: 
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(b)	 Compute m̂(t)
ijk =
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(t−1)
jk
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(t−1)
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
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φ
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j

 if Xij = 0 , and 

m̂
(t)
ijk = 0 , otherwise.
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∑n
i=1 ẑ
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, j = 1, . . . , J .

(d)	 Optimise φ
(t)
j = argmaxφj

∑K
k=1

∑n
i=1 ẑ

(t)
ik

∑J
j=1

(

1− m̂
(t)
ijk

)

log fNB

(

Xij; 

exp
(

β
(t−1)
jk + B′

iγ
(t−1)

)

,φj

)

 using the Broyden-Fletcher-Goldfarb-Shanno (BFGS) 

quasi-Newton method for j = 1, . . . , J .
(e)	 Optimise γ

(t)
s = argmaxγs

∑K
k=1

∑n
i=1 ẑ

(t)
ik

∑J
j=1

(

1− m̂
(t)
ijk

)

log fNB

(

Xij; 

exp
(

β
(t−1)
jk + B′

iγ

)

,φ
(t)
j

)

 using the BFGS quasi-Newton method for s = 1, . . . , S.

(f )	 Optimise β
(t)
jk = argmaxβjk

∑K
k=1

∑n
i=1 ẑ

(t)
ik

∑J
j=1

(

1− m̂
(t)
ijk

)

log fNB

(

Xij; 

exp
(

βjk + B′
iγ

(t)
)

,φ
(t)
j

)

 using the iteratively reweighted least squares method for 

j = 1, . . . , J  , as presented in Algorithm S1 (Additional file 3: Supplementary Note).

We iterate the E and M steps until convergence, which is concluded in our numerical 
study if 

∥

∥

∥θ
(t+1) − θ

(t)
∥

∥

∥

∞
< 10−3 . Convergence is achieved in all of our numerical exam-

ples with a moderate number of iterations. In the proposed algorithm, as the closed-
form solutions of parameters φ and γ are not available, the BFGS quasi-Newton method 
is adopted for optimising. This quasi-Newton algorithm has fewer constraints on the 
convexity of the target function. The BFGS quasi-Newton method has been widely 
adopted and shown to have satisfactory performance in published studies [56, 57]. We 
have followed these studies and used the R function “optim” to realise the BFGS quasi-
Newton method. The tuning parameter � is determined by the Bayesian Information 
Criterion (BIC), which is commonly adopted in published studies. Specifically, we con-
sider a candidate set of � with a length of M = 10 constructed as 
�
(i) = �

(1) +
(

�
(M) − �

(1)
)

(i − 1), i = 1, . . . ,M with �(1) = 0.01 and �(M) = 20 . As in 
perhaps all studies, the choice of the candidate tuning parameters cannot be fully objec-
tive. The adopted strategy has been very common in published studies [6, 21]. Such a 
choice of candidate values has led to satisfactory performance in our numerical studies. 
In data analysis, a more refined search can be obtained by expanding the range of candi-
date parameters, and a reduced range of candidates can help improve the computation 
efficiency. For each of the candidate values of � and its corresponding estimator θ̂ , 
BIC = −2l(θ̂)+ log(n)d, where l(θ̂) is the log-likelihood in (2), 
d = (K − 1)+ J + S + 2KJ − q is the effective number of parameters, and q is the num-
ber of β̂jk ’s that are shrunken to the global mean. The � value with the lowest BIC is then 
chosen.

Competing methods

CIDR, SC3, Seurat, scDeepCluster, MNN-Graph, MNN-Kmeans, RZiMM, snbClust, 
sparseKmeans, M3Drop, and NBDrop are considered as competing methods. Among 
these, CIDR [13] is an imputation-based clustering method that handles dropout in 
scRNA-seq data analysis. SC3 [3] is a popular pipeline for scRNA-seq data, using 
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combined clustering methods. Seurat [24] performs graph-based clustering on the pro-
jected space from PCA. scDeepCluster [5] is a deep learning clustering method that 
integrates the ZINB model with clustering loss. MNN-Graph and MNN-Kmeans are 
two multi-staged approaches that first perform dimension reduction and correct for 
batch effects using the MNN approach [9], followed by Graph-based [25] and K-means 
clustering, respectively. RZiMM [6] develops a zero-inflated NB model with binary sub-
group indicators for hard clustering analysis, using a zero-inflated strategy for adjust-
ing for dropouts and penalisation on the pairwise differences of cluster effects for gene 
selection. snbClust [22] proposes a negative binomial mixture model for clustering anal-
ysis as well as a penalty for gene selection. sparseKmeans [26] is a modified K-means 
algorithm that can also conduct gene selection. M3Drop and NBDrop [19] are two 
methods that take advantage of the prevalence of zeros in scRNA-seq data to identify 
features. For the methods with continuous data assumptions, we conduct a transforma-
tion of the original count measures following published studies. Specifically, for sparseK-
means, we transform the raw data into CPM by the edgeR package following [22], and 
global-scaling log-transformed normalisation is adopted for Seurat and two MNN-based 
method. For Seurat that cannot give a specific number of clusters, we run multiple times 
with the “resolution” parameters tuned from 0.5 to 1.5 by an increase of 0.1 and record 
the best ARI value as in [58]. CIDR, SC3, and Seurat are implemented using R pack-
age CIDR, SC3, and Seurat, respectively. For the two MNN-based methods, fastMNN 
in R package batchlor is first conducted to adjust for batch effects, and graph-based and 
K-means clustering are then conducted using R package igraph and stats, respectively. 
scDeepCluster, RZiMM, and snbClust are implemented using codes from https://​github.​
com/​ttgump/​scDee​pClus​ter, https://​github.​com/​Skadi​Eye/​RZiMM  and https://​github.​
com/​Yujia​Li1994/​snbCl​ust, respectively. SparseKmeans is implemented using R package 
sparcl. M3Drop and NBDrop are conducted with the functions M3DropFeatureSelec-
tion and NBumiFeatureSelectionCombinedDrop in R package M3Drop, respectively. For 
each competing method, we adopt the running settings and convergence criterion sug-
gested by the corresponding package or code.

Data simulation

We consider the following settings. (a) Sample size n = 300 , number of genes 
J = 1000 , percentage of differentially expressed genes = 5% , and number of clusters 
K = 3 . (b) The baseline parameters are set as follows. We first download the read 
count matrix of the 3005 cells profiled by [23], genes with low expressions (<10 reads 
in <20 cells) are excluded, resulting in a total of 2563 genes. Using the expressions of 
these 2563 genes, we compute the maximum likelihood estimates (MLEs) of the mean 
and dispersion parameters under the ZINB model. Then, the baseline expression level 
µ̂ =

(

µ1, . . . ,µJ

)′ and dispersion φ̂ =
(

φ1, . . . ,φJ
)′ are obtained by sampling J values 

from the MLEs. (c) Three settings of dropout levels are considered, where the dropout 
rates πjk ’s are sampled from three different uniform distributions 
U(0.0,  0.3), U(0.3,  0.6), and U(0.6,  0.9), resulting in low (about 5%), medium (about 
45%), and high (about 75%) level of dropout rates, respectively. Here, for each j, we 
sample K different πjk ’s from the assumed distribution and πjk  = πjk ′ when k  = k ′ . (d) 
Consider two settings for batch effects: γ = (γ1, γ2)

′ = (0.1, 0.2)′ and (0.1, 0.4)′ with 

https://github.com/ttgump/scDeepCluster
https://github.com/ttgump/scDeepCluster
https://github.com/SkadiEye/RZiMM
https://github.com/YujiaLi1994/snbClust
https://github.com/YujiaLi1994/snbClust
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the number of batches S = 2 to account for various levels of batch differences. (e) 
Consider both balanced and imbalanced cell types, with the mixing proportions 
p = ( 13 ,

1
3 ,

1
3 )

′ and ( 12 ,
1
3 ,

1
6 )

′ , respectively. (f ) Set βjk = log(µ̂j × 2�δjk ) , where the pat-
tern 

(

δj1, δj2, δj3
)

 is randomly set to be (−1, 0, 1), (1, 1, 0) , or (0,  1,  1) for informative 
genes, and (0,  0,  0) for non-informative genes. Consider three values of � , namely 
0.8,  1.2, and 1.6, to simulate low, medium, and high levels of biological differences 
among cell types. Under the aforementioned settings, we first determine the cell type 
k of each cell following a multinomial distribution with probability p . For simplicity, 
we assume a balanced batch distribution where Bi = (1, 0)′ for i = 1, . . . , n2 , and 
Bi = (0, 1)′ for i = n

2 + 1, . . . , n . Then, given the cell type k and Bi , we generate Xij 
from ZINB

(

exp
(

βjk + B′
iγ
)

; φ̂j ,πjk

)

.

Beyond the above scenarios with n = 300 and K = 3 , we conduct additional simu-
lation under scenarios with various numbers of n and K. Specifically, we consider 
γ = (0.1, 0.2)′,� = 1.2 , a balanced sample distribution design, and three levels of 
dropouts. Then, we first set K = 4, 5, 8 , and 10 with increasing sample sizes, which is 
common in practical data. In particular, we set n = 600 and informative gene pat-
terns as 

(

δj1, δj2, δj3, δj4
)

∈ {(−1, 1, 0, 1), (1,−1, 1, 0), (1, 1,−1,−1)} for K = 4 , 
n = 750 and (δj1, δj2, δj3, δj4, δj5) ∈ {(−1,−1, 1, 0, 1), (−1, 1, 1, 1, 0), (0, 1,−1,−1,−1)} 
for K = 5 , n = 1200 and (δj1, δj2, δj3, δj4, δj5, δj6, δj7, δj8) ∈ {(1, 1, 1,−1,−1,−1, 0, 0), 
(−1,−1, 0, 1, 1,−1, 1, 1), (1,−1, 0, 1, 1,−1,−1, 0), (0, 1, 0,−1, 0,−1,−1,−1)} for 
K = 8 , and n = 1500 and (δj1, δj2, δj3, δj4, δj5, δj6, δj7, δj8, δj9, δj10) ∈ {(−1, 1, 1, 0,−1,−1, 
−1, 0, 0, 1), (−1, 1,−1, 1, 0, 1, 1, 0, 0, 1), (−1,−1, 0, 1, 1,−1,−1, 1,−1,−1), (−1,−1, 0, 
1, 1, 1, 0, 1, 1, 1)} for K = 10 . Second, for the medium dropout rate with 
πjk ∼ U(0.3, 0.6) and 10% differentially expressed genes, we further set 
K = 3, 4, 5, 6, and 8 with a fixed total sample size n = 600 . In particular, the 
informative gene patterns for K = 3, 4, 5, and 8 are the same as above, and 
the pattern for K = 6 is set as 

(

δj1, δj2, δj3, δj4, δj5, δj6
)

∈ {(1, 1,−1,−1, 0, 0), 
(−1, 0, 1,−1, 1, 1), (1, 0, 1,−1,−1, 0), (0, 0,−1,−1,−1,−1)}.

In the above simulations, we assume that the dropout rate πjk of the jth gene varies 
across clusters. We additionally consider the scenarios under which dropout rate is 
independent of clustering with πj1 = · · · = πjK � πj . Specifically, we consider n = 300 , 
K = 3 , 10% differentially expressed genes, γ = (0.1, 0.2)′,� = 1.2 , a balanced sample 
distribution design, and three levels of dropout rates: about 30%, 50%, and 70% with 
πj ∼ U(0.2, 0.4), U(0.4, 0.6) and U(0.6, 0.8), respectively.

Evaluation metrics

For data with known cell-type labels, we use ARI to compare clustering performance of 
different algorithms. Specifically, for the true and estimated cluster assignment A and Â , 
define a =“the number of cell pairs that are assigned to the same cell types with both A 
and Â ”, b =“the number of cell pairs that are assigned to different cell types with both A 
and Â ”, c =“the number of cell types that are assigned to the same cell types with A but 
to different cell types with Â ”, and d =”the number of cell types that are assigned to the 
same cell types with Â but to different cell types with A ”. Then, the ARI value is defined 
as:



Page 25 of 28Li et al. Genome Biology          (2023) 24:208 	

with range [−1, 1] , where a larger value indicates a higher clustering accuracy.
For simulated data with known significant genes, to evaluate gene selection perfor-

mance, we adopt Recall = TP
TP+FN , Precision = TP

TP+FP , and F1 = 2·Precison·Recall
Precison+Recall  , where TP, 

FP, and FN are the numbers of true positives, false positives, and false negatives, respec-
tively. Recall, Precision, and F1 range from 0 to 1, with a higher value indicating better 
gene selection performance.

Real scRNA‑seq datasets

In the mouse embryonic stem cell dataset, the transcriptome of 704 mouse embryonic 
stem cells was sequenced across three culture conditions (lif, 2i, and a2i), using the 
Fluidigm C1 microfluidics cell capture platform followed by illumina sequencing [33]. 
Following the published studies [18], we only consider the cells in the second and third 
batches wherein all three culture types were collected for the experiments.

The human lung cell dataset was collected from three lung adenocarcinoma cell lines 
HCC827, H1975, and H2228 on three different platforms with CELseq2, 10x Chromium, 
and Drop-seq protocols [34], respectively.

The mouse uterus, mouse liver, and mouse mammary gland datasets were processed 
on the Microwell-seq platform from the Mouse Cell Atlas project [35]. We consider the 
count matrix of single cells from the uterus, liver, and mammary gland tissues with the 
corresponding cellular component annotations. Following [59], we remove cells express-
ing < 250 genes, genes expressed in < 50 cells, and cell types representing < 3% of the 
total population in the tissue.
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