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Background
Members of the same bacterial species can display a wide variety of different pheno-
types, and intra-species variation in pathogenicity, virulence, drug resistance, envi-
ronmental range, and stress response has been observed across the tree of life [1–5]. 
Variation in phenotypes can in part be explained by genotypic variation, which is also 
considerable because mechanisms of genetic recombination in bacteria facilitate large 
genetic variation even within narrow organismal groups. For example, of 7385 gene clus-
ters observed in a study of 31 genomes in the genus Prochlorococcus, only 766 gene clus-
ters were detected in all genomes [6]. We refer to the set of genes shared by all members 
of a clade as the core genome and we refer to the set of genes not shared by all mem-
bers as the accessory genome [7]. Together, these sets of genes comprise a clade’s pange-
nome: the entire collection of genes present in one or more organisms within the clade. 
In this paper, we describe a novel tool for pangenome analysis. Our tool is a statisti-
cal method to model the association between gene presence and covariates (predictors). 

Abstract 

Recovering metagenome-assembled genomes (MAGs) from shotgun sequencing 
data is an increasingly common task in microbiome studies, as MAGs provide deeper 
insight into the functional potential of both culturable and non-culturable micro-
organisms. However, metagenome-assembled genomes vary in quality and may 
contain omissions and contamination. These errors present challenges for detect-
ing genes and comparing gene enrichment across sample types. To address this, 
we propose happi, an approach to testing hypotheses about gene enrichment 
that accounts for genome quality. We illustrate the advantages of happi over existing 
approaches using published Saccharibacteria MAGs, Streptococcus thermophilus MAGs, 
and via simulation.

Keywords:  Shotgun metagenomics, Metagenome-assembled genomes, Microbiome, 
Statistical models, Hypothesis testing

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

METHOD

Trinh et al. Genome Biology          (2023) 24:214  
https://doi.org/10.1186/s13059-023-03040-6

Genome Biology

*Correspondence:   
adwillis@uw.edu

1 Department of Environmental 
& Occupational Health Sciences, 
University of Washington, Seattle, 
WA, USA
2 Department of Biostatistics, 
University of Washington, Seattle, 
WA, USA

http://orcid.org/0000-0002-2802-4317
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-023-03040-6&domain=pdf


Page 2 of 15Trinh et al. Genome Biology          (2023) 24:214 

Our method offers interpretable parameter estimates, a fast algorithm for estimation, 
and a flexible hypothesis testing procedure.

While cultivation-based studies have historically been used to study the gene content 
of bacteria, it has become increasingly common to employ shotgun metagenomics to 
study bacterial genomes and communities. Shotgun metagenomic sequencing involves 
untargeted sequencing of all DNA in an environment, enabling the study of genomes 
in their environmental context. Short reads from shotgun sequencing can be assembled 
into contigs and binned into metagenome-assembled genomes (MAGs), which repre-
sent a partial reconstruction of an individual bacterial genome. Despite major advances 
in methods for binning MAGs, MAGs can contain two types of errors. First, there can 
be genes that are truly present in the genome the MAG represents but are unobserved 
in a MAG. Common reasons for this error include inadequate sequencing depth, high 
diversity in the metagenomes under study, and the inherent limitations of short read 
sequencing for reconstructing repetitive regions [8–12]. A second type of error in MAGs 
is erroneously observed genes: genes that are included in a MAG that are not truly pre-
sent in the originating genome. This phenomenon is often referred to as contamination. 
The use of automated binning tools in the absence of manual inspection and refinement 
can lead to elevated rates of contamination. For example, the identification of contami-
nating contigs from manual refinement of MAGs produced by a massive unsupervised 
genome reconstruction effort removed 30 putative functions from a single contaminated 
genome [13, 14].

To address the challenges that contaminating and unobserved genes create for 
detecting enriched genes, our proposed method incorporates information about each 
genome’s quality. Under our proposed model, a gene may be unobserved in a genome 
either because the gene is not present in the source genome or because it could not be 
recovered from the obtained sequencing data. Our proposed method is based on the 
rationale that poorer quality (i.e., more shallowly sequenced) genomes or metagenomes 
are more likely to fail to detect genes. If, for example, the coverage of short reads across 
the genome was high and most of the expected core genes were observed, then the lack 
of detection of a given gene is more likely attributable to its true absence. The user can 
select which variables they believe to be the most informative for genome quality in their 
dataset. We develop estimators of the parameters of our model, discuss interpretation 
of model parameters, propose a hypothesis testing approach, and illustrate the perfor-
mance of our model on shotgun sequencing and simulated data.

Results
A hierarchical model for gene presence

We present a hierarchical model for the association between bacterial gene presence and 
covariates of interest (e.g., host treatment status, environment of origin, relevant con-
founders, etc.). We consider observations on n genomes, which could be either metagen-
ome-assembled genomes, isolate genomes, reference genomes, or any combination. Let 
Yi be an indicator variable for the gene of interest being observed in genome i, Yi = 1 if 
the gene is observed in genome i and Yi = 0 otherwise. However, we are not interested 
in whether the gene is observed in each genome  —  we are interested in whether it is 
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present in each genome. To this end, we define �i to be a latent (unobserved) random 
variable that indicates if the gene is truly present in genome i ( �i = 1 if present).

We propose a logistic model to connect gene presence to covariate vector Xi ∈ R
p:

where the �i s are conditionally independent given Xi and follow a Bernoulli distribution. 
Therefore, when comparing groups of genomes that differ by one unit in X·k but are alike 
with respect to X·1,X·2, . . . ,X·,k−1,X·,k+1, . . . ,X·p , βk gives the difference in the log-odds 
that the gene will be present between these two groups of genomes. To connect �i to Yi 
we propose the following model

where Yi are conditionally independent Bernoulli distribution random variables; ε 
is the probability that a gene is observed in a genome in which it is absent (e.g., due 
to contamination or crosstalk); Mi ∈ R

q is a vector of genome quality covariates; and 
f (·) : Rq → R is a flexible function to connect quality variables to the probability of 
detecting a present gene. Relevant quality variables are context-dependent and could 
include coverage of the gene from metagenomic read recruitment, completion (percent-
age of single copy core genes observed in the genome), redundancy (percentage of sin-
gle copy core genes observed more than once in the genome), and an indicator for the 
genome originating from an isolated bacterial population.

Parameter estimation

The latent variable structure of our model makes the expectation-maximization algo-
rithm [15] an appealing choice for estimating unknown parameters θ = β , f  . Because 
we do not observe {�i}ni=1 , ε and f are not, in general, jointly identifiable. Therefore, we 
treat ε as a hyperparameter that can be fixed by the user or leveraged for sensitivity anal-
yses. To improve stability of parameter estimates, we impose a Firth-type penalty on β . 
The complete data penalized log-likelihood is linear in �i , which allows us to simplify the 
expected complete data penalized log-likelihood at step t of an EM iteration as

where ε̃ = logit(ε) , f̃ (x) = logit(f (x)) for all x, and p(t)i = E[�i|Yi, θ
(t−1)] can be simpli-
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where the terms in the numerator are given in (1) and (2), and the denominator is given 
by

We maximize the expected complete data penalized log-likelihood separately for β 
and f. Owing to the form of the expected complete data penalized log-likelihood, effi-
cient algorithms exist to perform each of these maximizations. Optimizing (3) with 
respect to β is equivalent to fitting a binomial generalized linear model with logit 
link function for outcomes p(t)i  via Firth-penalized maximum likelihood, and we find 
Newton’s method to be stable and fast for this purpose.

Optimizing for f depends on the class of functions in which f falls. We investigated 
two flexible non-parametric options for f: f ∈ F  , where F  is the class of bounded 
non-decreasing functions that map from R to R , and f ∈ I  where I  is the class of lin-
ear combinations of k I-spline basis functions and a constant function where all basis 
functions have nonnegative coefficients. Both f ∈ F  and f ∈ I  result in a monotone 
estimate for f. To obtain the EM update for f ∈ F  , we use the primal active set algo-
rithm of isotone [16] with custom loss function given by the first term in (3) plus a 
penalty term −cosh

(
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)2
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∣

∣
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∣
 from growing without bound. We found that 

setting a = 50 gives a sensible tradeoff between algorithm convergence and numerical 
stability. To obtain the EM update for f ∈ I  , we fit a logistic regression on p(t)i  with 
predictors consisting of an I-spline basis with all non-intercept coefficients con-
strained to be nonnegative. We use the I-spline basis functions implemented in 
splines2 [17]. In an analysis where we used short-read subsampling to approximate 
an empirical f, we found that f ∈ I  outperformed f ∈ F  (see the “Methods: simula-
tion studies:Evaluating estimators for f” section), and for that reason, we consider 
f ∈ I  throughout the remainder of this manuscript. We run the estimation algorithm 
for tmax steps or until the relative increase in the log-likelihood is below threshold � 
for 5 consecutive steps.

Hypothesis testing

To enable inference on the odds that a gene will be present in groups of genomes that 
differ in their covariate attributes, we construct a hypothesis test for null hypotheses 
of the form Aβ = c for A ∈ R

h×p and c ∈ R
h where rank(A) = h . This allows testing 

of null hypotheses including βk = 0 (the odds that the gene will be present are equal 
when comparing groups of genomes that differ in X·k but are alike with respect to 
X·1,X·2, . . . ,X·,k−1,X·,k+1, . . . ,X·,p ). We propose to use a likelihood ratio test for Aβ = c , 
rejecting H0 at level α if QLRT = 2[L(θ̂ )− L(θ̂0)] exceeds the upper 100α% quantile of 
a χ2

h distribution, where θ̂ is the maximum likelihood estimate of θ ; θ̂0 is the maximum 
likelihood estimate of θ under the null hypothesis; and L is the log-likelihood function:
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When n is large, we find that the distribution of QLRT is well-approximated by the χ2
h 

distribution (the “Simulation study” section). We also provide a nonparametric permu-
tation-based hypothesis test (Additional file 1: S1) that controls error rates for modest 
sample sizes.

Data analysis: Saccharibacteria MAGs

We consider a publicly-available dataset of n = 43 non-redundant Saccharibacte-
ria (TM7) MAGs recovered from supragingival plaque ( n = 27 ) and tongue dorsum 
( n = 16 ) samples of seven individuals from [18] (see the  “Methods:  Saccharibacteria 
MAGs” section for more information). The wide variation in mean coverage across the 
MAGs (1.07 – 26.35× ) makes this an appealing dataset on which to illustrate our quality 
variable-adjusting pangenomics method.

We consider methods that allow us to test the null hypothesis that the probability 
(equivalently, odds) that a gene is present in Saccharibacteria genomes are equal for 
tongue and plaque-associated genomes. The alternative hypothesis is that the prob-
abilities differ. We compare our proposed method (happi: a hierarchical approach to 
pangenomics inference) with two competitors: a logistic regression model for Yi with a 
likelihood ratio test (GLM-LRT) and a logistic regression model for Yi with a Rao test 
(GLM-Rao). Note that these latter two methods test hypotheses about the odds that a 
gene is observed, while our proposed approach tests hypotheses about the odds that a 
gene is present, but we believe that results can be reasonably compared between these 
methods. We consider a single quality variable Mi for our analysis with happi: mean 
coverage across genome i. Given n = 43 we run happi’s nonparametric hypothesis 
testing approach with 1000 permutations (see “Simulation study” section). Our pri-
mary comparison is with GLM-Rao, which is the method currently implemented for 
pangenomics hypothesis testing in anvi’o [18]. We also note that the results from GLM-
Rao and GLM-LRT are highly correlated, especially for larger p-values.

Different methods identified different differentially present genes. Out of 713 COG 
functions tested, happi identified 176 differentially present genes when controlling 
false discovery rate (FDR) at the 5% level; GLM-LRT identified 219 genes; and GLM-Rao 
identified 175 genes. Out of the 176 genes identified as differentially present by happi, 
all 176 genes were also identified by GLM-LRT as differentially present and 166 genes 
were identified by GLM-Rao as differentially present.

To investigate the biological plausibility of the results from each method, we assessed 
the number of core genes that were identified as differentially present. [18] identified 172 
COG functions in the TM7 core genome, and because core genes are genes that are pre-
sent in most genomes of a particular clade, we consider differentially present core genes 
to be false positives. Controlling FDR at 5%, happi identified 6 out of 172 core genes 
to be differentially present; GLM-LRT identified 10 genes; and GLM-Rao identified 7 
genes. While this difference is not substantial, we consider this reduction in the number 
of false positives to be an advantage of happi.
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Our proposed method calculated lower p-values for 16% and 29% of genera compared 
to GLM-LRT and GLM-Rao. We show results from 6 specific model estimates in Fig. 1: 
3 core genes for which happi produced greater p-values than GLM-Rao (upper panels; 
we believe these signals to be truly null), and 3 accessory genes for which it produced 
smaller p-values than GLM-Rao (lower panels). In all instances where happi produced 
greater p-values than GLM-Rao, non-detections generally occurred in genomes with 
low mean coverage. GLM-Rao does not account for coverage information, and so unlike 
happi, it can conflate gene absence with non-detections due to quality. We believe that 
statements about significance should be moderated when detection patterns can be 
attributable to quality variables and therefore that it is reasonable that p-values are larger 
in these three cases. In contrast, happi produced smaller p-values than GLM-Rao in 
instances when non-detections occurred for greater coverage MAGs, or broadly across 
the range of MAG coverage (lower panels). In these instances, differences in detection 
are less likely to be attributable to quality factors, and it is reasonable that the signifi-
cance of findings can be strengthened by including data on quality variables.

Data analysis: Streptococcus thermophilus MAGs

We also consider a larger data analysis of n = 157 Streptococcus thermophilus MAGs 
available from MGnify [19]. These MAGs were recovered from human gastrointesti-
nal samples from Spain ( n = 82 ) and Sweden ( n = 75 ), and test the null hypothesis 
that the probability that a gene is present in S. thermophillus genomes is equal for the 
Spanish and Swedish genomes. The CheckM completion and contamination [20] for 
these MAGs ranges between 51.62–99.89% and 0–4.89%, respectively. Given the large 
sample size, we use happi’s asymptotic hypothesis testing procedure. We consider 
CheckM genome completion as our quality variable Mi . Given the maximum con-
tamination percentage across genomes in our sample, we choose ε = 0.05.

Fig. 1  We test the null hypothesis that the probability that a gene is present are equal for tongue and 
plaque-associated Saccharibacteria genomes. The top 3 panels show core genes for which our proposed 
method resulted in greater p-values than existing methods, and the lower 3 panels show accessory genes 
for which our proposed method resulted in smaller p-values than existing methods. Our method reduced 
p-values when differences in detection cannot be attributed to genome quality factors (here, coverage), and 
increased p-values in situations when non-detection may be conflated with lower quality genomes. Points 
have been jittered vertically to separate observations
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As in the “Data analysis: Saccharibacteria MAGs” section, different methods yielded 
different results. Out of 2799 genes tested, happi identified 219 differentially present 
genes when controlling FDR at the 5% level, GLM-LRT identified 311 genes, and GLM-
Rao identified 254 genes. Out of the 219 genes identified as differentially present by 
happi, 202 genes were also identified as differentially present by GLM-LRT and 196 
genes were identified as differentially present by GLM-Rao. To investigate the biological 
plausibility of the results, we assessed the number of core genes that were erroneously 
identified as differentially present by each method. Out of 813 core genes annotated by 
MGnify as belonging to the core S. thermophilus genome, happi identified 3 differen-
tially present core genes when controlling FDR at the 5% level, GLM-LRT identified 27 
core genes, and GLM-Rao identified 6 core genes. Only one (the nrdG gene) out of the 3 
core genes that happi identified as differentially present was also identified as differen-
tially present by GLM-LRT and GLM-Rao. Notably, happi identified the fewest num-
ber of differentially present core genes out of all methods investigated, which we view as 
evidence of an improved false positive rate in practice.

We also investigated the sensitivity of the results of happi to different choices of ε , 
the probability of observing a gene given that it is truly absent (Additional file 1: S2). For 
specific genes of interest, we encourage users to investigate plausible levels of ε to con-
firm the robustness of their results to this hyperparameter. In general, we recommend 
choosing ε based on genome redundancy metrices or based on other tuning parameters 
for MAG construction. We discourage further exploration of genes whose significantly 
differential presence hinges on the assumption of low genome contamination levels and 
is not robust across small increases in ε.

Simulation study

Finally, we investigate the performance of our approach by evaluating its type 1 error 
rate and power. To generate data that most realistically reflects the relationship between 
coverage and gene detection in shotgun metagenomics studies, we construct f (·) for 
use in this simulation by subsampling short-reads from host-associated E. coli genomes 
([21]; see “Methods: simulation studies” section). By utilizing an empirically con-
structed f (·) as the basis of our simulation study, we are able to simulate a relationship 
between coverage and genome quality that we believe is representative of many shot-
gun metagenomics studies. We consider q = 1 and q = 2 , and let Mi = 10+ 30 i−1

n−1 , 
Xi1 = 1 , Xi2 = N ( i−1

n−1 , σ = σx) and ε = 0 . σx is a parameter that controls the degree of 
correlation between Mi and Xi2 , with larger values resulting in less correlation between 
quality variables and the predictor of interest. We simulate data according to the model 
described in (1) and (2), with β = (0, 0)T for type 1 error simulations and β = (0,β1)

T 
with β1  = 0 for power simulations. We investigate two happi-based approaches to 
hypothesis testing: an asymptotic approach (happi-a) and a nonparametric approach 
(happi-np). The asymptotic approach considers the distribution of QLRT as a χ2

h distri-
bution (which is the case for large sample sizes), while the nonparametric approach uses 
permutations to construct a sampling distribution for QLRT (see Algorithm 1, Additional 
file 1: S1). In this simulation, we ran 1000 permutations for happi-np. GLM-LRT and 
GLM-Rao produced highly similar p-values (mean squared difference 1.3× 10−5 , corre-
lation = 0.99996, nsim = 3000 ), and therefore we only show results for GLM-Rao.
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The results of type 1 error rate simulations are shown in Fig. 2 (left panels). Notably, 
the logistic regression methods are anti-conservative and do not control type 1 error 
rates at nominal levels. For example, for a 5%-level test, type 1 error rates for GLM-
LRT range from 8.8% ( n = 30 and σx = 0.5 ; 95% CI: 6.3–11.3%) to 32.2% ( n = 100 and 
σx = 0.25 ; 95% CI: 28.1–36.3%). Stated differently, under H0 , GLM-LRT will return 
p-values that are usually too small, leading to more frequent incorrect conclusions 
of an association. In contrast, happi-np does control the type 1 error rate, behav-
ing near-exactly (viz., with nominal error rates). We estimate that happi-np’s type 
1 error rates for a 5% test when n = 30 and σx = 0.5 is 4.6% (95% CI: 2.7–6.4%), and 
when n = 100 and σx = 0.25 , happi-np’s empirical type 1 error rate is 6.8% (95% CI: 
4.6–9.0%). Greater correlation between the quality variable (coverage) and the covari-
ate of interest leads to greater anti-conservativeness for logistic regression methods, 
which incorrectly attribute differences in gene presence to the covariate of interest. 
However, happi-np appears to control type 1 error across the range of σx inves-
tigated here. We further note that happi-a appears to control the type 1 error at 
larger sample sizes and lower correlation between the quality variable (coverage) 
and the covariate of interest with a type 1 error rate for a 5% test when n = 100 and 
σx = 0.5 of 6.6% (95% CI: 4.4–8.8%). For even larger sample sizes, happi-a gives 
reliable inference (Additional file 1: Fig. S1) with the advantage of reduced run times 
compared to happi-np.

We show the power of happi-np and happi-a to correctly reject a null hypoth-
esis at the 5% level in Fig. 2 (right panels). We do not evaluate power for GLM-Rao 
and GLM-LRT because they have uncontrolled type 1 error rates, making them inva-
lid tests. Similarly, we do not evaluate the power for happi-a for all sample sizes, 
because it does not control type 1 error rates for n = 50 and below. We observe that 
the power of happi-np to reject a false null hypothesis increases with the effect size 
and sample size but decreases with greater correlation between Mi and Xi1 . Stated 
differently, happi-np has low power to detect true associations between gene pres-
ence and covariates of interest when covariates are correlated with genome quality, 
though this can be remedied with larger sample sizes. Furthermore, we see that when 

Fig. 2  We investigate the performance of methods for testing for differential gene presence under 
simulation. (left) We find that logistic regression methods (e.g., GLM-Rao) do not control type 1 error, while 
happi-np controls type 1 error at nominal levels for all sample sizes. Additionally, we find that happi-a 
controls type 1 error for large sample sizes ( n = 100 ) and lower correlation between quality variables and 
the covariate of interest ( σx = 0.5 ). (right) For tests that control error rates at nominal levels, we evaluate the 
power of happi-np and happi-a to reject a false null hypothesis, finding that happi-a has slightly 
higher power than happi-np at sample size n = 100 . We find that power increases for all methods as 
sample sizes and effect sizes grow, but decreases with greater correlation between quality variables and the 
covariate of interest
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n = 100 and σx = 0.5 , happi-a similarly has increased power with increasing effect 
size while maintaining slightly higher power than happi-np to reject a false null 
hypothesis.

Taken together, these results show that happi is robust to potential correlation 
between covariates of interest and genome quality. This is not the case for logistic 
regression-based methods, which cannot distinguish between differential gene presence 
due to genome quality and differential gene presence due to associations with covariates. 
No method will perform well under the alternative with small sample sizes and high cor-
relation (see Fig. 2, third panel), but happi has some power for large sample sizes and 
large effect sizes in this setting and controls type 1 error at nominal levels regardless 
of the sample size. By using a simulation framework based on an empirically informed 
data generation structure, we demonstrate the disadvantages of using methods that do 
not account for differential genome quality. However, we note that in some settings (e.g., 
very deep short-read sequencing combined with short-read assembly) our assumption 
that the probability of gene detection increases with genome coverage may not hold [22]. 
We investigate the performance of happi under this form of model misspecification in 
Additional file 1: S3 and Fig. S2.

Discussion
Many tools exist to study associations between microbial genome variation and micro-
bial or host phenotypes [23–27]. Studies investigating the association between microbial 
genomes and phenotypes are often referred to as microbial genome-wide association 
studies (mGWAS) [28, 29]. Most mGWAS tools have been developed for the analysis of 
pure microbial isolates, and do not account for differential genome quality in genomes 
analyzed collectively. mGWAS tools may be better-suited when the hypothesized causal 
direction is that the presence of genetic features gives rise to a phenotypic characteris-
tic, and not the reverse. In this paper, we propose and validate a novel method (happi) 
to understand how non-microbial variation (e.g., environmental variation) is associated 
with microbial genome variation. The implied direction of modeling is reversed in our 
model compared to mGWAS models: our response variable is gene presence rather than 
phenotype. This allows interrogation of questions about factors influencing selection 
pressures on genomes, rather than questions about the impact of the microbiome on 
phenotypic outcomes.

We view the main advantage of happi to be its use of data about genome quality 
factors in modeling gene presence to improve statistical inference. We believe this to 
be especially advantageous in the context of shotgun metagenomic data, where factors 
such as shallow sequencing depth may impact the ability to detect genes. To support the 
increasing use of shotgun metagenomic data to recover fragmented microbial genomes, 
researchers need methods that are capable of analyzing incomplete and imperfect 
genomes. While we are not aware of methods for modeling gene enrichment in MAGs, 
we offer comparisons to commonly used methods for analyzing near-complete genomes, 
such as logistic regression (used by anvi’o [18, 30]; see also [31]). In situations where dif-
ferences in gene detection can be attributed to differences in genome quality, happi 
correctly infers that gene enrichment is ambiguous, and correspondingly identifies asso-
ciations as less significant compared to competitor methods. However, in  situations 
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where genome quality cannot explain gene detection patterns, happi has greater preci-
sion than other methods and produces smaller p-values. We show via simulation that 
the advantages of happi are most pronounced when there is correlation between covar-
iates and quality variables.
happi has reasonable run times on a modern laptop, averaging 2.11 s per gene over 

500 genes in n = 157 samples with tmax = 1000 and � = 0.01 on a 2.6 GHz i7 proces-
sor with 16 GB RAM with no parallelization. Since genes are treated independently, this 
analysis can be trivially parallelized, and furthermore, accuracy in estimation can be 
traded off for reduced runtime by reducing tmax or increasing � . happi’s nonparamet-
ric hypothesis testing procedure run with P permutations has runtime approximately B 
times greater than the asymptotic approximation. For our “Data analysis: Saccharibacte-
ria MAGs” section analysis with n = 43 , the average runtime was 4.25 minutes per gene 
with B = 1000 for tmax = 1000 , and � = 0.1 on a 2.6 GHz i7 processor with 16 GB RAM 
and parallelized across 6 cores.

We suggest several avenues for further research. The first is to study the impact of 
experimental design on the statistical power of our proposed hypothesis testing proce-
dure. Researchers often have to decide how to allocate budget across number of samples 
(including replicates and control data) and sequencing depth per sample. While exist-
ing guidelines for sequencing depth have focused on taxonomy estimation, MAG recon-
struction, and gene detection [9–11, 32–34], our proposed modeling approach enables 
the principled study of the design of shotgun sequencing experiments to maximize 
power to detect differences in gene presence across sample groups.

We additionally note that the datasets and simulation study settings used in this paper 
to assess happi were low contamination ( < 5% ) MAGs. These MAGs reflect higher 
quality genomes that can be obtained using modern software for assembly, binning, 
and refinement [13]. Our supplementary investigation into the robustness of p-values 
obtained from running happi with varying levels of contamination (Additional file 1: 
Fig.  S3) suggests that utilizing more highly contaminated MAGs would lead to larger 
overall p-values when using happi. However, specific recommendations on thresholds 
for the use of higher contamination levels in MAGs for reliable inference, as well as the 
incorporation of other genome quality metrics, require further research and develop-
ment. This remains an ongoing area of investigation.

Our latent variable model also has possible utility for modeling the presence of ampli-
con sequence variants and could offer a method for studying patterns of sequence vari-
ant presence when shotgun sequencing is infeasible or not preferred. For example, if a 
sequence variant is observed Wi times in sample i, then it would be reasonable to model 
Yi = 1{Wi>0} . This would permit inference on the equality of the probability that the 
sequence variant is absent in a sample across sample groups. Notably, by choosing an 
ε > 0 (e.g., via the use of negative control samples), happi can adjust for the impact of 
index switching in studies that leverage multiplexing [35, 36]. We leave the application of 
happi to modeling the presence of amplicon sequence variants to future research.

Collectively, we have shown that happi is accurate and robust, even when genome 
quality is correlated with gene presence predictors. As the recovery of metagenome-
assembled genomes becomes increasingly common, statistical tools that account for 
errors in recovered genomes become increasingly necessary. By leveraging genome 
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quality metrics to model gene presence, happi provides sensible and interpretable 
results in an analysis of metagenome-assembled genome data, improves statistical infer-
ence under simulation, and can run efficiently on a local machine. We view happi as a 
complementary tool to existing methods for the analysis of metagenomics data, such as 
methods for differential taxon abundance (e.g., MetaPhlAn [37]). Finally, by distributing 
open-source software in R implementing our proposed estimation and inference meth-
ods, we hope that happi can be used widely in a variety of genomics research settings. 
happi, along with workflows and vignettes demonstrating its use, is available as an 
open-source R package via https://​github.​com/​statd​ivlab/​happi under a BSD-3-Clause 
license.

Conclusions
Fragmented microbial genomes, such as metagenome-assembled genomes, pose chal-
lenges in accurately detecting enriched genes due to the potential presence of contami-
nant genes or the possibility of missing genes altogether. To address these challenges, we 
present happi, a pangenomics method designed to test hypotheses about gene enrich-
ment while taking into account genome quality. Using published shotgun sequencing 
data and simulations, we demonstrate the accuracy and robustness of happi to poten-
tial correlation between genome quality and covariates of interest. We also demonstrate 
a reduction in the number of false positives compared to existing methods. By leverag-
ing genome quality metrics, happi improves statistical inference for gene enrichment 
hypotheses while providing sensible and easily interpretable results. To facilitate broad 
utilization and collaborative research in genomics, we distribute happi as documented, 
open-source software in R.

Methods
Methods: Saccharibacteria MAGs

The Saccharibacteria MAGs used in “Data analysis: Saccharibacteria MAGs” section, 
were taken from publicly available data [18]. Specifically, data on genome quality met-
rics (i.e., mean coverage) of these Saccharibacteria MAGs were retrieved from Supple-
mentary materials https://​doi.​org/​10.​6084/​m9.​figsh​are.​11634​321 and information on 
the presence or absence of COG functions in each MAG was extracted from the Sac-
charibacteria pangenome contigs databases and profiles located at https://​doi.​org/​10.​
6084/​m9.​figsh​are.​12217​811. Functional annotation of the genes was performed using 
NCBI’s Clusters of Orthologous Groups (COG) database [38]. Further details on sam-
pling, assembly, binning, and refinement can be found in [18]. In our data analysis, we 
utilized happi’s nonparametric approach to hypothesis testing due to the limited sam-
ple size and specified tmax = 1000 , B = 1000 , � = 0.1 and ε = 0 . We set ε = 0 because 
these MAGs had undergone careful manual refinement to remove contamination from 
other genomes. We suggest the use of ε > 0 when binning is performed automatically 
and without additional manual refinement.

Methods: Streptococcus thermophilus

The Streptococcus thermophilus MAGs used in the “Data analysis: Streptococcus thermo-
philus MAGs” section were taken from publicly available data [19]. Using the MGnify 

https://github.com/statdivlab/happi
https://doi.org/10.6084/m9.figshare.11634321
https://doi.org/10.6084/m9.figshare.12217811
https://doi.org/10.6084/m9.figshare.12217811
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online tool, we queried for Streptococcus thermophilus MAGs from human gastroin-
testinal samples resulting in a match with MGYG000004345. Genome quality metrics, 
gene presence absence matrices, and annotated core genes data were retrieved from the 
pangenome analysis downloads tab of MGYG000004345 made available at [39]. The full 
metadata from MGnify studies can be found at [40] and were used to identify Strepto-
coccus thermophilus MAGs from individuals originating from Sweden and Spain. Fur-
ther details on the sampling, assembly, binning, and refinement of these genomes can 
be found in [19]. In our data analysis, we used happi’s asymptotic hypothesis testing 
approach and specified tmax = 1000 , � = 0.01 and ε = 0.05 . We selected ε = 0.05 based 
on the maximum observed percent contamination across our genomes as determined by 
CheckM [20]. For our sensitivity analyses, we used various specifications of ε = 0.01, 0.1 , 
tmax = 1000 , and � = 0.01.

Methods: simulation studies

Subsampling study of E. coli isolate DRR102664

To investigate the probability of detecting a gene that it is truly present 
( Pr(Yi = 1|�i = 1,Mi = m) ), we conducted a subsampling simulation study of an E. coli 
isolate genome taken from [21]. We selected E. coli isolate DRR102664 to perform our 
subsampling simulation and the eaeA gene (K12790) as our target gene of interest. In 
enteropathogenic Escherichia coli, the eaeA gene produces a 94-kDa outer membrane 
protein called intimin which has been shown to be necessary to produce the attaching-
and-effacing lesion. For our subsampling study, we subsampled paired sequences 50 
times from the DRR102664 genome at approximate coverages 
m = (2×, 3×, ..., 24×, 25×) . Coverages were estimated using the calculation 
read count×read length

genome length  . We annotated and identified the eaeA gene in each set of subsam-
pled sequences and calculated the empirical probability of detection as the fraction of 
samples of coverage m that detected eaeA. The results of our subsampling investigation 
of the impact of coverage on the probability of detection given presence are shown in 
Fig. 3.

Evaluating estimators for f

Many different choices of functions f could be used to connect the probability of detect-
ing a present gene to quality variables Mi . We evaluated two options under simulation: 
f (Mi) ∈ F  for F  the class of bounded non-decreasing functions and f (Mi) ∈ I  for I  
the class of bounded non-decreasing functions. As in the  “Simulation study”  section, 
we set Mi = 10+ 30 i−1

n−1 , Xi1 = 1 , Xi2 = N ( i−1
n−1 , σ = σx) , β0 = 0 , and ε = 0 . The true 

f (·) in this simulation is a generalized additive model with binomial link function [41] 
fit to the observations shown in Fig. 3. This was done to select a true detection curve 
that well-reflects empirical probabilities of detecting a gene at a given coverage, such as 
gene eaeA in E. coli isolate genome DRR102664. We evaluated all estimators via mean 
squared error and median squared error for estimating β1 . We investigated all combina-
tions of n ∈ {30, 50, 100} , β1 ∈ {0.5, 1, 2} , and σx ∈ {0.25, 0.5}  and performed 250 draws 
for each combination. For 17 out of 18 combinations of n, β1 and σx , we found that f ∈ I  
outperformed f ∈ F  with respect to median squared error, with an average reduction 
in median squared error of 54%. For 18 out of 18 combinations, f ∈ I  outperformed 
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f ∈ F  with respect to mean squared error, with an average reduction of 51%. For this 
reason, we chose to set f ∈ I  as the default option happi and used this class of func-
tions for both our data analyses and error rate simulations.

Type 1 error and power simulations

For the type 1 error rate and power simulations shown in the “Simulation study” section, 
we performed 500 simulations for each combination of σx , β1 and n. We set a minimum 
of 16 EM iterations, tmax = 1000 , B = 1000 , and � = 0.1 for both the null and alterna-
tive models.
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