
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Li et al. Genome Biology          (2023) 24:204  
https://doi.org/10.1186/s13059-023-03039-z

Genome Biology

COLLAGENE enables privacy‑aware 
federated and collaborative genomic data 
analysis
Wentao Li1, Miran Kim2,3,4, Kai Zhang1, Han Chen5,6, Xiaoqian Jiang1 and Arif Harmanci1,6*    

Abstract 

Growing regulatory requirements set barriers around genetic data sharing and col-
laborations. Moreover, existing privacy-aware paradigms are challenging to deploy 
in collaborative settings. We present COLLAGENE, a tool base for building secure col-
laborative genomic data analysis methods. COLLAGENE protects data using shared-
key homomorphic encryption and combines encryption with multiparty strategies 
for efficient privacy-aware collaborative method development. COLLAGENE provides 
ready-to-run tools for encryption/decryption, matrix processing, and network trans-
fers, which can be immediately integrated into existing pipelines. We demonstrate 
the usage of COLLAGENE by building a practical federated GWAS protocol for binary 
phenotypes and a secure meta-analysis protocol. COLLAGENE is available at https://​
zenodo.​org/​record/​81259​35.

Keywords:  Collaborative analysis, Federated model training, Genomic data privacy, 
Data security

Background
The accumulation of genetic and biomedical data is promising for advancing transla-
tional approaches [1–3], diagnosis and management of diseases [4], and improving the 
quality of life for patients and individuals at risk [5]. As the high-throughput data acqui-
sition cost is decreasing (DNA sequencing, EHR databases, high-throughput phenotyp-
ing technologies), several major challenges are rising around governance [6] and the 
protection of individual-level data [7–9].

As open data sharing is more incentivized by funders and the scientific community 
[10–12], the challenges around data management become more pronounced [13]. Par-
ticularly, data sharing requires collaboration among multiple institutions that would 
like to share data to increase the statistical power of the models that can detect more 
intricate patterns within complex biomedical data, e.g., genome-wide association stud-
ies among sites [14–16]. However, collaborations can only be possible if the regulations 

*Correspondence:   
Arif.O.Harmanci@uth.tmc.edu

1 Center for Secure Artificial 
Intelligence For hEalthcare 
(SAFE), D. Bradley McWilliams 
School of Biomedical Informatics, 
University of Texas Health 
Science Center, Houston, TX 
77030, USA
2 Department of Mathematics, 
Department of Computer 
Science, Hanyang University, 
Seoul 04763, Republic of Korea
3 Research Institute 
for Convergence of Basic Science, 
Hanyang University, Seoul 04763, 
Republic of Korea
4 Bio‑BigData Center, Hanyang 
Institute of Bioscience 
and Biotechnology, Hanyang 
University, Seoul 04763, Republic 
of Korea
5 Human Genetics Center, 
Department of Epidemiology, 
Human Genetics 
and Environmental Sciences, 
School of Public Health, The 
University of Texas Health 
Science Center at Houston, 
Houston, TX 77030, USA
6 Center for Precision Health, 
D. Bradley McWilliams School 
of Biomedical Informatics, 
The University of Texas Health 
Science Center at Houston, 
Houston, TX 77030, USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-023-03039-z&domain=pdf
http://orcid.org/0000-0002-9696-1118
https://zenodo.org/record/8125935
https://zenodo.org/record/8125935


Page 2 of 38Li et al. Genome Biology          (2023) 24:204 

around data sharing are adhered to [17–21]. Policy-makers around the world are push-
ing for more data protection with almost zero tolerance on sharing, reuse, and inciden-
tal reporting of individual-level datasets, even at the encrypted and pseudo-anonymized 
level, e.g., GDPR [22–25]. Federated model development [26–28] is a promising 
approach for this purpose: Each site locally processes sensitive dataset and share only 
intermediate model updates with other sites. Since the sites only exchange aggregated 
data, these approaches provide a certain level of protection [29–33]. However, previous 
studies demonstrated that even summary statistic-level data may impose privacy risks 
on participants [34–38].

Privacy-aware collaboration has been an extensive and active field of research. Of par-
ticular interest is the horizontal partitioning of data, where each site harbors data for 
different subjects with similar features across sites [39–42]. Libraries such as FedML [43] 
and PySyft [44, 45] provide programming interfaces to build machine learning models 
using a federated approach. Specifically, PySyft integrates privacy and security into the 
model-building framework and it is targeted for building deep learning applications. Dif-
ferential privacy-based data protection has been utilized in many previous methods. For 
example, TensorFlow-Privacy [46] makes use of differential privacy (DP) [47] to protect 
intermediate summary statistics in the training of deep learning models. One of the main 
challenges of the DP-based approaches is the selection of the privacy budget and balanc-
ing noisy data utility for ensuring model accuracy [48]. A related approach, HyFED [49], 
provides means to use masking intermediate data with noise to protect these data while 
building more custom approaches and mitigating privacy issues. However, it is necessary 
to make use of two sites, aggregator and compensator, which must be included in the 
computation protocol for removing noise from the data. Any collusions between these 
sites and other sites will leak intermediate or individual data.

Homomorphic encryption (HE) [50, 51] provides strong guarantees for the protection 
of data because the data is encrypted once and is not decrypted even while it is being 
analyzed. While HE does not provide straightforward collaboration among multiple par-
ties, multi-key [52, 53] approaches and threshold-HE [54] approaches are developed for 
enabling the data encryption using single or multiple keys and using collective decryp-
tion among collaborating sites. Lattigo [55], Palisade [56, 57], and MK-TFHE [58] are 
libraries that provide the programming interfaces to use threshold and multi-key-based 
collaborative tool development. Similar to HE, multiparty computation (MPC) [59] pro-
vides the frameworks for developing provably secure data analysis approaches with the 
added benefit of collaboration among sites. Two recent MPC-based efforts for directly 
compiling code to be runnable in MPC-based primitives (MPC-SoK [60]) and for build-
ing MPC-based pipelines (Sequre [61]) can benefit more advanced users because these 
approaches use specialized programming languages. One of the limiting factors around 
MPC is that it relies on large data transfers, which may be a limiting factor for their 
widespread usage when network bandwidth cost is not negligible, e.g., costs for data 
transfer out of the cloud. Indeed, several previous methods demonstrated that network 
bandwidth and cost of storage/transfer is the limiting factor for the algorithm efficiency 
in collaborative studies [62–64]. The most promising approaches are hybrid frameworks 
that combine HE, MPC, and DP to adhere to the privacy requirements of the local regu-
lations while algorithmic efficiency is satisfied.



Page 3 of 38Li et al. Genome Biology          (2023) 24:204 	

Another major challenge is usability. For instance, in the homomorphic encryp-
tion domain, there are numerous libraries such as SEAL [65] and TFHE [66] that pro-
vide single-key encryption functionalities but they require a working understanding of 
homomorphic encryption and are not immediately usable in collaborative and federated 
cases. While these libraries are accessible to advanced users, they are not immediately 
accessible to general users, for whom there is a steep learning curve for parameter selec-
tion, algorithm conversion, and implementation of distributed and privacy-preserving 
methods.

To overcome these challenges of development and integration, we developed COL-
LAGENE, a library of tools and services that enable collaborative biomedical data anal-
ysis. COLLAGENE makes use of HE as the main means for data protection using the 
primitives as implemented by the SEAL library. The collaboration is achieved using a 
threshold-HE system that implements the secret key sharing that was originally pro-
posed by Asharov [67]. COLLAGENE integrates components of MPC, HE, and matrix 
masking that is motivated by matrix-level differential privacy [68, 69] for performing 
complex operations (e.g., matrix inversion) efficiently while preserving privacy. COL-
LAGENE provides ready-to-run implementations for encryption, collective decryption, 
matrix masking, a suite of secure matrix arithmetic operations, and network file input/
output tools for sharing encrypted intermediate datasets among collaborating sites. 
These tools can be immediately run and integrated into existing pipelines for develop-
ing new collaborative analysis protocols or conversion of existing methods into a secure 
implementation.

Compared to the low-level implementations such as Palisade, and Lattigo, which 
require high level of expertise, COLLAGENE is more application-oriented (as command 
line tools) to enable easier development and deployment of collaborative tools. Com-
pared to the higher-level libraries with security integration such as PySyft and FedML 
that specifically focus on machine learning-based applications, COLLAGENE provides 
an alternative that can be used for building custom analysis protocols in biomedical 
informatics community.

For demonstrating the usage of COLLAGENE, we provide examples of encryption, 
collaborative decryption, and matrix arithmetic operations. As separate use cases, we 
demonstrate the usage of COLLAGENE’s functionality by implementing genome-wide 
association testing and meta-analysis for binary traits using a generalized linear model. 
We present an approach that adopts the efficient 2-step variant scoring of the GMMAT 
[70] algorithm. We modify GMMAT’s score test to perform a practical privacy-preserv-
ing GWAS among multiple sites and demonstrate the usage of COLLAGENE’s tools for 
converting an existing method into a secure federated approach. COLLAGENE’s com-
mand line tools aim at increasing accessibility to secure analysis methods and they can 
be seamlessly integrated into existing analysis pipelines.

Results
We first present COLLAGENE’s secure collaboration framework and present the use 
cases of COLLAGENE framework for federated GWAS on binary phenotypes and meta-
analysis of binary traits.



Page 4 of 38Li et al. Genome Biology          (2023) 24:204 

Collaborative analysis framework

Cloud‑based key sharing service by KeyMaker

The collaborative analysis with COLLAGENE makes use of a common public key and 
usage of secret key shares that are distributed to each collaborating site (Fig. 1). This 
approach relies on the composability of the secret keys in ring-learning-with-errors 
schemes. This technique was first proposed by Asharov et al. and has been adopted 
by numerous other approaches. COLLAGENE relies on a central key sharing ser-
vice (KeyMaker) that generates and shares secret keys among sites, which is publicly 
available at https://​www.​secur​eomics.​org/​KeyMa​ker. KeyMaker generates a master 
key and utilizes a noise addition step to “share” it among sites (Methods). The master 
secret key is not shared with any of the sites and is discarded after keys are generated. 
In addition to secret key sharing, KeyMaker generates the common public key, relin-
earization keys, and Galois keys, which are necessary for performing HE operations 
on encrypted data, e.g., secure matrix arithmetic. KeyMaker also generates a sym-
metric encryption key that can be used for tasks such as the encryption of partially 
decrypted datasets. After keys are generated, the sites download all the keys and inde-
pendently perform their calculations. KeyMaker does not partake in the data analysis. 
Unlike other approaches that rely on online algorithms that require all sites to be up 
and running, the usage of a central service for key sharing decreases the workload of 
generating the shared keys.

Fig. 1  Illustration of the collaborative analysis framework that COLLAGENE implements. Three sites are 
shown as an example. The sites (rounded rectangles), which host their local datasets, initiate key request 
from KeyMaker. After keys are generated, each site download and decrypt their key shares. Sites also have a 
common encryption (i.e., public key, green). Next, sites setup a shared space on an FTP server or on the cloud, 
e.g., AWS S3 bucket. According to the agreed protocol, each sites process their local data using COLLAGENE’s 
tools and upload encrypted intermediate results to the shared space. Sites download intermediate results 
from other sites and process these for the next iteration. After all the iterative analysis steps are complete, the 
sites perform collective decryption as specified by the agreed protocol. Note that KeyMaker only participates 
in the key generation and does not (and should not) take part in data analysis protocol

https://www.secureomics.org/KeyMaker


Page 5 of 38Li et al. Genome Biology          (2023) 24:204 	

Secure matrix processing library

The second component of COLLAGENE is the set of standalone command line tools 
and libraries for processing matrix-formatted datasets. Matrix-based data representa-
tion is adopted since most tools in bioinformatics are based on matrix algebra. COL-
LAGENE implements secure matrix arithmetic operations such as matrix additions, 
subtractions (Fig. 2a), multiplications (Fig. 2b), and inner products (Fig. 2c) using row 
and column expansions of matrices, and efficient inner product operators (Methods).

Additionally, COLLAGENE implements two operations necessary for building 
collaborative and federated algorithms: First is the collaborative decryption of data-
sets using the secret key shares at each site (Methods). Collaborative decryption is 
necessary for decrypting matrices (e.g., final results or intermediate statistics) that 

Fig. 2  Matrix arithmetic operations supported by COLLAGENE. a A matrix is flattened into an array and 
encrypted using the public key. Encryption output a series of ciphertexts, each of which contains a pair of 
polynomials in the ring Zq[X ]/ XNq + 1  , details of which are encapsulated by COLLAGENE. Elementwise 

multiplication is illustrated between 3× 3 matrices (middle). Row expansion of a matrix is illustrated for a 
3× 3 matrix (bottom). b Multiplication of two matrices ( A and B ) is illustrated using the column and row 
expansions, denoted by ce(3)· (A) , and re(3)· (B) . Multiplication is calculated as the inner product of the 
expansion matrices, denoted by �ce(3)· (A), re

(3)
· (B)� . c Secure row-row inner product of two matrices by 

shift-and-add operations. Given A and B matrices of size 2 × 4, row-row inner product is a 2× 1 vector whose 
entries are the inner products of rows of A and B (top). To calculate the inner products, the ciphertext that 
corresponds to the elementwise multiplication of the matrices ( A⊙ B ) is shifted and added recursively 
(Bottom). The flattened representations of matrices stored in the ciphertexts are colored to indicate rows of A 
and B . At each step, the inner product ciphertext is circularly rotated using Galois keys and added to the 
current ciphertext. The rotations are depicted by arrows to show the rotated entries. Gray shaded entries 
indicate unused entries. After 2 rotations, the row-row inner products for each row are stored in orange and 
green entries. These entries are masked and copied to the final row-row inner product ciphertext, 〈A, B〉r2r . d 
Collaborative matrix inversion protocol that utilizes matrix masking to calculate the inverse of a matrix. Three 
sites would like to invert the summation of local matrices X1 , X  , and X3 that stores sensitive data. Each site first 
generates a masking matrix M1 , M2 , M3 , then encrypt them and upload to the shared space. Next, sites locally 
pool the mask matrices M123 = M1 +M2 +M3 to generate the collective encrypted mask. Sites locally 
multiply the collective mask with their matrix, i.e., site-1 securely multiplies X1 ×M123 , and upload to the 
shared space. Each site downloads the masked matrices and pools the matrices to calculate X123 ×M123 , 
which is still encrypted. The sites collectively decrypt this matrix, then locally invert the decrypted matrix, 
which yields M−1

123 × X123 . Sites finally multiply the inverted matrix on the left with M123 , which results in the 
X−1
123 . The row and column expansions are not shown for the sake of simplicity



Page 6 of 38Li et al. Genome Biology          (2023) 24:204 

are encrypted by the public key generated by KeyMaker. Given a ciphertext (e.g., 
encrypted matrix data) that the sites would like to decrypt, each site uses their secret 
key share to partially decrypt the ciphertext. These partially decrypted data matri-
ces are shared among sites. After each site retrieves the partial decryptions from all 
other sites, they pool the partial decryptions and obtain the fully decrypted matrix 
data. This step is implemented into COLLAGENE’s command line tool base so that 
users can seamlessly integrate them into their pipelines.

The second operation is “matrix masking” which enables the development of 
multiparty-type protocols. Matrix masking refers to adding noise to matrices in 
the encrypted domain (additive or multiplicative noise) to hide the underlying data 
using preset noise levels. In turn, the masked matrix can be decrypted collectively 
without leakage of sensitive information. This is advantageous since complex opera-
tions (e.g., matrix inversions) can be performed on the decrypted masked matrices in 
the plaintext domain. After the masked matrix is processed in the plaintext domain, 
the matrix can be re-encrypted, and the mask can be removed appropriately (i.e., 
additively, or multiplicatively). This process is advantageous since it accomplishes 
two goals simultaneously, namely, a complex step is efficiently performed, and the 
matrix is encrypted into a “fresh” ciphertext, and it can be operated on further in the 
secure domain. This decreases the effective multiplicative depth of the protocol and 
the storage and CPU requirements (Fig. 2d).

An important aspect of matrix masking is how much masking noise should be 
added to the matrices before collective decryption. The studies in matrix data pri-
vacy based on DP are helpful to set theoretically provable privacy for setting up the 
mask matrices. These approaches formulated the appropriate structure and levels of 
matrix noise for privacy-aware matrix-valued data publishing [68, 69]. It should be 
noted that matrix masking has been utilized in previous studies for implementing 
secure protocols [55, 71] but are not available for developers in an easy-to-use man-
ner. Currently, COLLAGENE implements mask matrix generation using Gaussian-
valued noise by default that can be used for masking encrypted matrices. We provide 
examples of using the matrix library for different types of operations. COLLAGENE 
also provides several options to make it easy to select HE parameters (modulus size, 
polynomial degrees) before building their pipelines while guaranteeing a certain 
level of security (e.g., 128-bit).

Network communication using shared space

An important component of federated learning frameworks is setting up a secure chan-
nel for passing intermediate data among the collaborating sites. By default, COLLA-
GENE relies on sharing encrypted files from a central storage, i.e., a star-shaped network 
(Fig. 1). File-based communication among sites simplifies broadcasting data that will be 
shared with all sites, e.g., partially decrypted matrices. COLLAGENE implements the 
options for uploading to and downloading from the shared space. Additionally, COL-
LAGENE includes functions to probe and wait for files to become available in the shared 
space. By default, an SCP file server, or an Amazon Web Services (AWS) S3 bucket can 
be used to upload, download, probe, and wait for encrypted files.



Page 7 of 38Li et al. Genome Biology          (2023) 24:204 	

Qualitative comparison with other secure federation frameworks

We first compare COLLAGENE’s functionalities with other frameworks that support 
the development of secure federation tools. We compiled the existing collaborative 
data analysis methods from the literature and qualitatively compared these approaches, 
which is summarized in Table 1. We first divided the approaches with respect to appli-
cation versus library-level implementation. Overall, COLLAGENE aims at providing 
a ready-to-be-used implementation of encryption/collective decryption and several 
matrix operations. Among these methods, Cho et  al. [72] implements an MPC-based 
approach for crowdsourcing of GWAS and TrustGWAS [73] provides outsourcing 
GWAS implementations using Asharov-type multi-key HE to pool data from all sites at 
an outsourcing entity (e.g., AWS instance) and perform pooled analysis. These methods 
are case-specific implementations and do not provide standalone libraries or executables 
for custom operations. Another approach, sPLINK [74], implements a GWAS method 
and extends the HyFED [49] scheme that relies on trusted Aggregator and Compensa-
tor entities that take a direct role in executing the protocols. HyFED relies upon strict 
non-collusion of these two entities, which receive sensitive components of the data. In 
comparison, COLLAGENE does not require an external party to be included in the data 
processing steps, other than KeyMaker which does not take part in the processing of 
sensitive data.

Libraries such as FedML [43] enable users to build machine learning applications with 
a specific focus on deep learning methods. Of note, PySyft [44, 45] integrates MPC (e.g., 
SPDZ scheme [75, 76] that requires a central key and share generator [48]) and data 
encryption to protect the shared intermediate gradient information for training machine 
learning models. However, there is a strong reliance on specific types of models that 
can be built using these libraries. In addition, the security of intermediate statistics is 
not easily modified as they are integrated into the source code. Recent interest in fed-
erated machine learning model training led to development of newer libraries [77–81], 
predominantly by industry efforts [80], with varying degrees of user-friendly interfaces 
(Flower [79]) to more low-level control on parameters (OpenFL [77], Vantage6 [78]). 
These libraries provide varying levels of privacy protection for the summary-level data 
and mainly rely on protection provided by aggregated statistics. Notably, some librar-
ies use modified programming languages (e.g., SEQURE [61]), which can help optimize 
low-level implementations at the expense of complexity and maintainability.

Among the library implementations, Palisade and Lattigo are implementations of 
several lattice-based homomorphic encryption schemes to enable secure data analy-
sis. These libraries also include the implementations of key sharing approaches (e.g., 
Asharov’s approach) for building collaborative tools. Usage of Lattigo and Palisade may 
be hindered by the necessity to implement the functions from scratch, and knowledge 
of details of parameter selections in HE. In comparison, COLLAGENE aims to provide 
more application-level functionality and ease of deployment specifically for collaborative 
scenarios. COLLAGENE also provides default file network I/O options and removes the 
necessity to implement the network functionalities by the users. Similar libraries, such as 
SEAL, provide single-key HE functionalities that are useful for building outsourcing ser-
vices but SEAL currently does not have implementations for collaborative data analysis. 
TenSEAL [82] is a python-based wrapper for the SEAL library and provides tensor-level 



Page 8 of 38Li et al. Genome Biology          (2023) 24:204 

Table 1  Overview of existing libraries and applications. Majority of the approaches are open source 
with a focus on data protection against honest but-curious (HBC) adversaries. Federated protection 
is provided using combination of homomorphic encryption (HE), multiparty computation MPC), and 
differential privacy (DP). Majority of the libraries provide custom API for building applications but 
limited command line (CLI) tools that can be deployed immediately by users

Method Link/
reference

Description Open 
Source

Application 
library

Adversary Federated 
protection

Matrix 
functions

Custom CLI Custom 
API

SEAL https://​
github.​com/​
micro​soft/​
SEAL

C++ imple-
mentation of 
RLWE-based HE 
schemes

Yes Library HBC None No No Yes

TenSEAL https://​
github.​com/​
OpenM​ined/​
TenSE​AL

Python wrap-
per for SEAL 
with focus 
on tensor 
processing

Yes Library HBC None No No Yes

HyFED https://​
github.​com/​
TUMAI​MED/​
hyfed

MPC-type 
privacy frame-
work with 
Aggregator/
Compensator 
entities for 
secret sharing

Yes Library HBC MPC No No Yes

MK-TFHE https://​
github.​com/​
ilach​ill/​
MKTFHE

C++ imple-
mentation 
of Multi-Key 
lattice-based 
HE

Yes Library HBC HE No No Yes

Lattigo https://​
github.​com/​
tunei​nsight/​
latti​go

GO imple-
mentation of 
lattice-based 
multiparty HE 
schemes

Yes Library HBC HE/MPC No No Yes

PySyft https://​
github.​com/​
OpenM​ined/​
PySyft

Python-based 
Federated 
machine learn-
ing with secure 
primitives 
based on SPDZ 
Protocol

Yes Library HBC DP/MPC/HE No No Yes

FedML https://​
github.​com/​
FedML​AI/​
FedML

Python-based 
Federated 
machine 
learning

Yes Library HBC None No No Yes

TrustGWAS https://​
github.​com/​
melob​io/​
Trust​GWAS

Outsourcing 
for collabora-
tive GWAS 
method using 
Asharov-type 
key sharing

No Application HBC HE No No No

Intel HE-
Toolkit

https://​
github.​com/​
intel/​he-​
toolk​it

SEAL/Palisade 
wrapper with 
Intel CPI Opti-
mizations

Yes Library HBC None Yes No Yes

SEQURE https://​
github.​com/​
0xTCG/​
sequre

MPC-based 
custom 
python-like 
programming 
interface

Yes Library HBC MPC No No Yes

MPC GWAS https://​
github.​com/​
hhcho/​
secure-​gwas

MPC-based 
GWAS method

Yes Application HBC MPC over 
secure 
channel

No No No

sPLINK https://​
github.​com/​
TUMAI​MED/​
splink

Privacy-aware 
GWAS method 
via HyFED

Yes Application HBC HyFed No No No

OpenFL https://​
github.​com/​
secur​efede​
rated​ai/​
openfl

Python-based 
Federation 
workflow

Yes Library HBC None No No Yes

https://github.com/microsoft/SEAL
https://github.com/microsoft/SEAL
https://github.com/microsoft/SEAL
https://github.com/microsoft/SEAL
https://github.com/OpenMined/TenSEAL
https://github.com/OpenMined/TenSEAL
https://github.com/OpenMined/TenSEAL
https://github.com/OpenMined/TenSEAL
https://github.com/TUMAIMED/hyfed
https://github.com/TUMAIMED/hyfed
https://github.com/TUMAIMED/hyfed
https://github.com/TUMAIMED/hyfed
https://github.com/ilachill/MKTFHE
https://github.com/ilachill/MKTFHE
https://github.com/ilachill/MKTFHE
https://github.com/ilachill/MKTFHE
https://github.com/tuneinsight/lattigo
https://github.com/tuneinsight/lattigo
https://github.com/tuneinsight/lattigo
https://github.com/tuneinsight/lattigo
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft
https://github.com/OpenMined/PySyft
https://github.com/FedMLAI/FedML
https://github.com/FedMLAI/FedML
https://github.com/FedMLAI/FedML
https://github.com/FedMLAI/FedML
https://github.com/melobio/TrustGWAS
https://github.com/melobio/TrustGWAS
https://github.com/melobio/TrustGWAS
https://github.com/melobio/TrustGWAS
https://github.com/intel/he-toolkit
https://github.com/intel/he-toolkit
https://github.com/intel/he-toolkit
https://github.com/intel/he-toolkit
https://github.com/0xTCG/sequre
https://github.com/0xTCG/sequre
https://github.com/0xTCG/sequre
https://github.com/0xTCG/sequre
https://github.com/hhcho/secure-gwas
https://github.com/hhcho/secure-gwas
https://github.com/hhcho/secure-gwas
https://github.com/hhcho/secure-gwas
https://github.com/TUMAIMED/splink
https://github.com/TUMAIMED/splink
https://github.com/TUMAIMED/splink
https://github.com/TUMAIMED/splink
https://github.com/securefederatedai/openfl
https://github.com/securefederatedai/openfl
https://github.com/securefederatedai/openfl
https://github.com/securefederatedai/openfl
https://github.com/securefederatedai/openfl


Page 9 of 38Li et al. Genome Biology          (2023) 24:204 	

operations for building machine learning applications. TenSEAL’s current implementa-
tion does not provide an explicit interface for building federated tools.

There are also more focused library development efforts from industry and aca-
demia, e.g., Intel HE-toolkit [83], and PyFHEL [84], for utilizing HE-based opera-
tions. These are generally at the programming interface level and focus on single-key 
encryption without the network interfaces and collective decryption functionalities. 
In addition, GenoPPML [85] is a recently developed framework that combines MPC-
based primitives with DP specifically for privacy-aware training regression models 
that use genomic data. In comparison to these, COLLAGENE aims to be more appli-
cation-oriented with a focus on providing functionality at the command line interface 
level to make it more seamless to build collaborative methods.

Federated genome‑wide association testing (GWAS) and meta‑analysis for binary traits

For demonstrating COLLAGENE’s usage, we implemented a federated binary-trait 
GWAS protocol using the matrix-level arithmetic operations provided by COLLA-
GENE. For binary-trait GWAS, we implement a federated logistic regression to perform 
a variant-level scoring test. Our implementation adopts the score test approach of the 
highly efficient GMMAT [70] algorithm that separates GWAS into two distinct steps. 
GMMAT relies mainly on matrix algebra and is amenable to a secure conversion by the 
COLLAGENE suite of tools. In essence, GWAS for binary traits relies on the relation-
ship between genotype, covariates, and the phenotypes that are formulated by a general-
ized linear model:

E(Yi) = g−1
(

Xiα + Gijβj
)

Table 1  (continued)

Method Link/
reference

Description Open 
Source

Application 
library

Adversary Federated 
protection

Matrix 
functions

Custom CLI Custom 
API

Vantage6 https://​
github.​com/​
vanta​ge6/​
vanta​ge6

Python-based 
Federated 
Learning plat-
form with UI

Yes Application HBC None No Yes Yes

Flower https://​flower.​
dev/​docs/​
index.​html

Python-based 
Federated 
machine learn-
ing library

Yes Library HBC MPC No No Yes

FATE https://​
github.​com/​
Feder​atedAI/​
FATE

Python-based 
Federated 
Learning plat-
form with UI

Yes Application HBC DP/MPC/HE No Yes Yes

NVFlare https://​
github.​com/​
NVIDIA/​
NVFla​re

Python-based 
Federated 
machine learn-
ing library

Yes Library HBC None No No Yes

APPFL https://​
github.​com/​
APPFL/​APPFL

Python-based 
Federated 
machine learn-
ing library

Yes Library HBC None No No Yes

COLLA-
GENE

https://​
github.​com/​
harma​ncilab/​
COLLA​GENE

C++ SEAL 
wrapper with 
threshold mul-
tiparty keys

Yes Library HBC HE/MPC Yes Yes Yes

https://github.com/vantage6/vantage6
https://github.com/vantage6/vantage6
https://github.com/vantage6/vantage6
https://github.com/vantage6/vantage6
https://flower.dev/docs/index.html
https://flower.dev/docs/index.html
https://flower.dev/docs/index.html
https://github.com/FederatedAI/FATE
https://github.com/FederatedAI/FATE
https://github.com/FederatedAI/FATE
https://github.com/FederatedAI/FATE
https://github.com/NVIDIA/NVFlare
https://github.com/NVIDIA/NVFlare
https://github.com/NVIDIA/NVFlare
https://github.com/NVIDIA/NVFlare
https://github.com/APPFL/APPFL
https://github.com/APPFL/APPFL
https://github.com/APPFL/APPFL
https://github.com/harmancilab/COLLAGENE
https://github.com/harmancilab/COLLAGENE
https://github.com/harmancilab/COLLAGENE
https://github.com/harmancilab/COLLAGENE


Page 10 of 38Li et al. Genome Biology          (2023) 24:204 

where Y  is an N × 1 vector of phenotypes of N  individuals, X is an N × p matrix of the 
p covariates (including an intercept term), and G is the N ×M genotypes vector for M 
variants. αp×1 and β are the covariate and genotype weights, respectively. Finally, g(·) 
denotes the link function that links the relationship between the expected value of the 
phenotypes and the linear combination of the predictors. For binary traits, the logit link 
is used for quantifying the log-odds ratio of the case-vs-control subjects. GMMAT solves 
the generalized linear model by first fitting a null model that does not use genotypes:

where α0 denotes the null model weights that do not rely on the genotypes. After null 
model fitting, GMMAT estimates the score test statistic and its variance using the geno-
types and the null model predicted phenotype values. The separation of these steps not 
only makes GWAS efficient but also simplifies the privacy considerations in federated 
implementation:

(1)	 Null model fitting (Fig. 3a). This step fits the null model weights, i.e., α0 , using only 
the covariates in the model via a federated iteratively re-weighted least squares 
(IRLS) approach (Methods). Notably, this step does not make use of the sensi-
tive genotype data from any of the sites. The non-reliance on sensitive genotype 
data alleviates the main genomic privacy concerns. Our current implementation 
decrypts the intermediate estimates of the null model parameters. This is deemed 
safe since the null model weights are usually very small in dimension (At most 
10–20 covariates per study) compared to the aggregated sample sizes (tens of thou-
sands) and do not leak much-identifying information. No other individual-level or 
summary-level information is shared among sites in cleartext form. Null model fit-
ting is performed in 8 steps that first calculate a weighted covariance matrix of the 
covariates and invert it (Steps 1–5). Next, the null model parameter estimates are 
updated to be used in the next iteration of model fitting (Steps 5–8) (Methods).

(2)	 Scoring of the variants using the null model (Fig. 3b). After null model fitting, each 
variant is scored using the score test of GMMAT. This step protects the genotype 
data and related summary-level matrices. It relies on first calculating the encrypted 
score statistic and its variance (Steps 9, 10), followed by secure collective decryp-
tion of the statistics (Steps 11–13) (“Methods” section).

(3)	 Secure meta-analysis (Fig. 3c). The meta-analysis relies on the pooling of the score 
test statistic and the variance estimate from different sites. This is performed in 
5 steps as shown in Fig. 3c. Meta-analysis is highly efficient as the only necessary 
operation is the summation of the statistics from all sites. Similar to steps 11–13 
of Fig. 3b, we mask the score and scale parameters using pooled site-specific mask 
vectors, which are then pooled and collectively decrypted. The final results con-
serve the normalized score test statistic (which is distributed as per chi-squared 
distribution with 1 degree of freedom) that is used for p-value assignment.

E(Yi) = g−1(Xiα0)



Page 11 of 38Li et al. Genome Biology          (2023) 24:204 	

Comparison of secure federated GWAS with plink2

We compared the secure federated GWAS testing approach with plink2 using simulated 
and real datasets. In simulations, we generated datasets by simulating population-spe-
cific genotype data for 3 sites where sites harbored European, East Asian, and African 
genomes, respectively (Methods). The genotype data at each site was set to 4800 subjects 
that contained the genotype values (0,1,2) for 57,344 variants (number of variants that 
fit 7 ciphertexts). Gender was randomly assigned to each subject with 50% male/female 
probability. Eight population-level covariates were estimated by projection of the study 
subject genotype onto the 3 reference populations (European, East Asian, and African) 
from the 1000 Genomes panel. The binary phenotypes were simulated using a logit link 
linear model whose weights were randomly selected including a gender-specific fixed 
effect (Methods). We ran plaintext (unprotected) federated GWAS, secure federated 
GWAS, and plink2-based pooled GWAS using the genotype–phenotype dataset from 
all sites. We observed high concordance between secure and plaintext-federated GWAS 
results (Spearman R2 between p-values assigned by the methods was higher than 0.99, 
Fig. 4a), which indicates that secure protocol accurately replicates the expected results. 
We also observed high concordance to plink2 results for which the correlation between 
p-values was 0.97 (Fig. 4b).

These results highlight that COLLAGENE’s toolbase can be used for accurately imple-
menting a real use case and demonstrates the potential of COLLAGENE for new tool 
development.

Time and memory requirements

We next evaluated the time and memory requirements of federated secure GWAS as 
implemented by COLLAGENE’s toolbase. We used the simulated sample set (14,400 
samples divided among 3 sites). The sites used an AWS S3 bucket to share the encrypted 
intermediate matrices. We modified our testing scenario to use 6 covariates to be more 
compatible with the testing scenario that was used in sPLINK, another privacy-aware 
federated method that utilizes the HyFED framework, which requires 2 trusted entities 
(Aggregator and Compensator) that participate in the protocol for removing the noise in 
global model parameters. This framework is comparable to our secure GWAS setting as 
both frameworks are privacy-aware and federated.

Fig. 3  Illustration of federated GWAS algorithm. a 8 steps of null model fitting that is used in the GWAS 
protocol. First 4 steps utilize the matrix inversion (Fig. 2d) using the mask matrices H1 , H2 , and H3 to calculate 
the encrypted inverse of the pooled covariance matrix of covariates, i.e., 

(

X
′
WX

)−1 . This matrix is also padded 
to the next power of 2 for usage later. In step 6, the weights are updated using a row-row multiplication, i.e., 
α =

(

X
′
WX

)−1
·
(

X
′
Wz

)

 . The parameter estimates for the current epoch is collectively decrypted and used 
in the next iteration. b 5 steps of p-value assignment, denoted by steps 9–13. Each site first calculates the 
components of the p-value statistics using local genotype and phenotype data. These are, T = G

′
1

(

Y1 − µ0,1

)

 , 
G
′
1W1G1 , G′

1W1X1 ·
(

X
′
WX

)−1 , and G′
WX  . Next, each matrix is pooled among sites (Step 10) and the scale 

parameter is calculated, i.e., S = tr(G′
WG)− �G′

WX ·
(

X
′
WX

)−1
,G′

WX�
r2r

 , where tr(A) denotes the trace of 
matrix A . Next, each site generates a mask vector, denoted by N1 , and elementwise multiplies with both T  
and S vector with the same mask vector. The masked statistics are pooled among sites to calculate the final 
collectively masked statistics, which are collectively decrypted and used for assigning final p-values. c The 
meta-analysis steps. These steps start from the S and T  statistics that GMMAT calculates. Each site performs 
the masking, pooling, and collective decryption followed by the p-value assignment step

(See figure on next page.)



Page 12 of 38Li et al. Genome Biology          (2023) 24:204 

Fig. 3  (See legend on previous page.)



Page 13 of 38Li et al. Genome Biology          (2023) 24:204 	

From a security perspective, Aggregator and Compensator entities in sPLINK take 
part in sensitive data processing and there can be risks around sensitive leakage with the 
existence of curious colluding entities. Although this is unlikely, the main issue for the 
usage of sPLINK is how well the usage of Aggregator/Compensator sites can be justified 
in the presence of the regulatory requirements. Our approach, however, relies only on 
the KeyMaker who does not take any part in the sensitive data processing and the collu-
sions among collaborating sites should not lead to data leakage.

We focused on 57,344 variants and measured the throughput of single-threaded secure 
GWAS. The whole calculation is finished in 5346  s (approximately 1.49 h) (Fig. 4c, d) 
with peak main memory usage of 1.09 GB (Fig. 4e, f ). Compared to the sPLINK, which 
processed approximately 58,000 variants per hour per thread (estimated from the result 
as reported in Figure 7a in Nasirigerdeh et al. [74], “Methods”), which indicates that our 
implementation has slightly lower throughput. This is expected since our implementa-
tion does not make use of the Aggregator/Compensator entities to remove noise from 
intermediate datasets and relies on HE to protect intermediate statistics (except null 
model weights) with much lower potential risks as a results of collusion among curious 
entities.

As our approach separates the null model fitting from the p-value assignment, we next 
separated the total time required for null model fitting and p-value assignment steps. 
The complete protocol finished in 5346 s in which model fitting and p-value assignment 
were completed in 1761s (0.48 h) and 3585 s (0.99 h), respectively. This indicates that 
after the model fitting step, each thread processes 57,344 variants per hour (i.e., 57,344 
variants are processed in 0.99 h). This is an important quantity since the model fitting is 
required only once and sites can re-utilize the model to perform p-value assignment in 
larger variant sets without the additional requirement of model fitting.

In terms of network traffic, each site used 1.49 GB of network traffic over a total of 
490 network requests, which totals 4.5  GB of network traffic over all sites. Our net-
work usage is higher compared to sPLINK’s usage of 1.6 GB (As reported in Figure 7b 
in [74]). This difference can be partially explained by the fact that secure protocol trans-
fers only encrypted data which are inflated in size by the ciphertext expansion rate (i.e., 
size of encrypted matrix divided by size of plaintext matrix), which is approximately 22.1 
(“Methods”). There are, however, other factors that may impact differences. For exam-
ple, sPLINK and our protocol use fundamentally different architectures (sPLINK uses 
central aggregator/compensator while our protocol relies on encrypted data exchanges 
from shared disk space) and methodology such as differences in model optimization 
(Newton-Raphson in sPLINK and IRLS in secure protocol) and estimation of p-values. 
The difference in network traffic is therefore a result of these factors. Furthermore, our 
approach separates the null model fitting from p-value assignment and exchanges only 
null model parameters in the model fitting stage (i.e., 1 ciphertext per site per exchange, 
which is around 1 MB in size). This stage can be optimized to make full utilization of 
the ciphertexts by concatenating several matrices together. In the p-value assignment 
stage (Table 2), the ciphertexts are fully utilized to ensure no slot space is wasted in the 
exchanges.

We next assessed how much of the computation time is taken by network traffic. We 
ran our secure GWAS locally, i.e., all sites are simulated to share the same file system 



Page 14 of 38Li et al. Genome Biology          (2023) 24:204 

without any network exchanges. The overall protocol finished in 3092 s (0.86 h) wherein 
the model fitting required 877.8 s and the p-value assignment was completed in 2214 s. 
When compared with networked protocol that finished in 5346 s, this indicates that net-
work transfers required 2254 s (5346 minus 3092), approximately 42% of the computa-
tion time (2254 s out network of 5346 s of total time) for federated GWAS (A similar 
result was reported by sPLINK.) Overall, network traffic is a major bottleneck for col-
laborative studies and is an important factor in designing federated protocols that have a 
lower network footprint for increasing efficiency.

Software and hardware‑level optimization of storage and ciphertext processing

In the above experiments, COLLAGENE was compiled with a baseline build of the SEAL 
library that does not make use of the ciphertext compression (removes redundancy in 
the serialized ciphertext file format) for decreasing storage and the AVX512-enabled 
optimizations using that enable streamlined ciphertext processing using Homomorphic 
Encryption eXtensions Library (HEXL) [86, 87]. While these optimizations are partially 
CPU-specific, new Intel and AMD family processors support the AVX512 instruction 
set. We re-compiled SEAL and COLLAGENE’s matrix library with these operations and 
measured the run time with these optimizations to evaluate which steps benefit from 
these optimizations. Also, while these optimizations do not reflect innovations from 
COLLAGENE’s design, they provide a baseline for the best performance that COLLA-
GENE can deliver.

The federated calculation completed the GWAS pipeline in 4547  s (1.26  h) with an 
optimized build of COLLAGENE. Of this total time, 1652  s (0.46  h) were spent for 
null model training, and 2895 s were spent (0.80 h) for p-value assignment (Fig. 4g). In 

Table 2  Total disk space storage and network usage by each client. The two columns show 
disk storage and network transfer size. Rows indicate the base and optimized build of SEAL that 
COLLAGENE was compiled with

Total disk storage Total network 
upload/
download

Base SEAL 4.18 Gb 1.48 Gb

Optimized SEAL 3.60 Gb 1.19 Gb

(See figure on next page.)
Fig. 4  GWAS p-value concordance and time/memory requirements. a The p-value concordance between 
secure federated GWAS (x-axis) and plain federated GWAS (y-axis) using the simulated genotype data among 
3 sites. The Spearman R2 of the correlation is reported at the top of each plot. b The p-value concordance 
between federated GWAS (x-axis) and plink2 GWAS using pooled simulated dataset (y-axis). c The time usage 
of secure federated GWAS (in seconds) at each step of null model training (x-axis) and at each epoch (bar 
colors). d The time usage of secure GWAS for p-value assignment. e Peak memory usage (in gigabytes) of 
secure null model fitting. f Peak memory usage of secure p-value assignment. g Difference between total 
time usage (in seconds) of GWAS protocol using base and optimized build of COLLAGENE. Each bar shows 
the total time usage difference between base and optimized builds for one step in the protocol. For steps 
1–8 (null model fitting with multiple epochs), time usage of the protocol is summed over all epochs. Blue 
(red) bars indicate that optimized build requires less (more) time than base build. h Difference between peak 
memory usage (in megabytes) for base and optimized build of COLLAGENE. Each bar shows the difference 
in memory usage for one step in the protocol. Red bars indicate that optimized build uses slightly more 
memory



Page 15 of 38Li et al. Genome Biology          (2023) 24:204 	

Fig. 4  (See legend on previous page.)



Page 16 of 38Li et al. Genome Biology          (2023) 24:204 

comparison with the baseline build, we observed the main difference is at Step-6 where 
null model parameters were updated (Fig. 3a). This is expected as this step contains the 
most demanding HE operations (row-row matrix multiplications) that are optimized 
by the HEXL library. Similarly, the largest improvement for p-value assignment runt-
ime was at Step-10 (Fig. 3b) where the sites pool the intermediate encrypted matrices 
(Fig. 4g). Peak memory usage of an optimized build of COLLAGENE was 1.1 GB slightly 
higher (around 30 MB) than the baseline build (Fig. 4h). We also observed that the net-
work I/O and storage were decreased in comparison to the baseline build. The optimized 
build of COLLAGENE used around 1.2  GB of network I/O and in total 3.6  GB were 
used for storage at each client (Table 2). In summary, the optimizations in the underlying 
SEAL library make observable improvements in the performance.

Comparisons with real data

We next compared the secure federated GWAS pipeline with plink2 using the late-onset 
Alzheimer’s disease (LOAD) Cohort that comprises 2545 subjects that were accessed 
through the database of genotypes and phenotypes (dbGaP) study accession identifier 
phs000168.v2.p2. For simulating federation, we shuffled and horizontally split the data-
set among 3 sites with a similar number of subjects (848 subjects per site, 6 population 
covariates, and 1 gender). The genotype data comprised 557,056 variants. For decreasing 
the network cost associated with AWS transfers, we used a directory on local file system 
as the shared disk space rather than a shared AWS bucket (no changes in the underlying 
encrypted protocol).

We executed the COLLAGENE-based secure and plaintext-federated protocols, and 
plink2 on the pooled dataset. We also ran GMMAT on the pooled dataset to have a 
separate baseline while comparing methods. We first compared the p-values assigned to 
the variants by each method. The p-values assigned by plaintext-federated protocol and 
GMMAT are concordant to secure protocol (Fig. 5a, b, Spearman R2 0.99), which indi-
cates that secure protocol replicates the federated plaintext result and GMMAT’s pooled 
analysis results with high concordance. Similar comparison between plink2 and secure 
protocol showed a high concordance between the methods as well (Fig. 5c, Spearman 
R2 = 0.99).

We focused on the variants that exhibit the largest differences between plink2 and 
secure federated protocol. Of note, we do not expect a perfect concordance because 
the score test has different statistical properties than plink2’s approach (e.g., score test 
asymptotically converges to the chi-squared distribution under null hypothesis). We 
focused on the variant allele frequency and missingness as the possible source for differ-
ences. Concordant with GMMAT protocol, the secure protocol assigned mean imputed 
genotypes to each variant while plink2 excludes, for each SNP, the subjects with miss-
ing genotype. We observed that the SNPs with high p-value difference exhibit high 
missingness (Fig.  5d, e). This result shows that missingness may create minor differ-
ences between methods. We did not observe correlation between p-value differences (of 
secure protocol and plink2) versus variant allele frequencies.

We next evaluated the top SNPs identified as significantly associated with pheno-
type (i.e., AD diagnosis). Manhattan plots (Fig. 5f, g) show that the most highly associ-
ated SNPs are located on 19q13.3 [88], which is a known locus that is associated with 



Page 17 of 38Li et al. Genome Biology          (2023) 24:204 	

Fig. 5  GWAS results using LOAD dataset with secure and plain protocols, GMMAT, and plink2. aP-value 
concordance between secure and plain federated GWAS using LOAD dataset. b Concordance between 
secure protocol and GMMAT. c Concordance between secure protocol and plink2. d The distribution of 
number of missing subjects per variant (y-axis) stratified by difference in absolute log10(p-value) assigned 
by secure protocol and plink2. The bars correspond to low (red) and high (blue) p-value difference. Number 
of variants is shown at the top of the bars. e The distribution of missing subjects per variant stratified by 
difference in absolute log10(p-value) assigned by secure and plain federated protocol. The bars correspond 
to low (red) and high (blue) p-value difference. f Manhattan plot shows the variant position (x-axis) 
vs − log10(p-value) for secure protocol. Red horizontal line shows 5 × 10−8 cutoff for the p-value. g Manhattan 
plot shows the variant position (x-axis) vs − log10(p-value) for plink2



Page 18 of 38Li et al. Genome Biology          (2023) 24:204 

AD status. We extracted the SNPs that pass the GWAS threshold (5 × 10−8) and found 
9 SNPs that are identified by secure protocol, GMMAT, and plink2 (Table 3). Overall, 
GMMAT and secure protocol assigned the same SNPs to be statistically significant. 
Among these variants, 8 of them were marked as significant by plink2. The remain-
ing variant, rs4796606 on chr17:36917613 (hg18), was assigned borderline p-value 
(5.38 × 10−8) by plink2.

Comparison of meta‑analysis of association testing results

Meta-analysis of GWAS summary statistics is a computationally efficient approach for 
combining GWAS results from multiple sites. We adopt the meta-analysis strategy of 
the GMMAT tool that combines the appropriate statistics from individual sites. How-
ever, sharing the SNP-level summary statistics can create privacy concerns. We utilize 
COLLAGENE’s matrix masking procedure that combines noise from all sites and hides 
the summary statistics that are being aggregated in the meta-analysis while preserving 
the final meta-analysis result (Steps 11–13 in Fig. 3b). The final results that are collec-
tively decrypted by all sites can only be used for estimating the significance of variant 
association from the meta-analysis.

To test meta-analysis, we executed the secure meta-analysis protocol among 3 sites 
using the data from our population-specific site dataset used in previous comparisons. 
Here, each site first locally executed GMMAT on the local genotype/covariate/pheno-
type dataset. Next, the score test statistics are extracted and encrypted. The meta-anal-
ysis protocol is executed using an S3 bucket for storing the encrypted intermediate data 
files (the encrypted masked summary statistics) using a single thread per site. Compared 
to the p-values assigned by plink2 on the pooled sample set, the secure meta-analysis 
results were highly concordant (Fig. 6a, b) when compared in terms of rank-based cor-
relation of p-values. We, however, did observe a slight decrease in the concordance of 
p-values between the secure meta-analysis and plink2 (Spearman R2 statistic for plink2-
vs-meta-analysis in Fig. 6b is 0.95) when compared with the concordance of p-values in 
federated GWAS analysis (Spearman R2 for plink2-vs-Federated GWAS is 0.97 Fig. 4b). 
This is expected because meta-analysis uses summary statistics while federated GWAS 

Table 3  9 SNPs that were significant with respect to GWAS cutoff 5 × 10−8. ars4796606 is identified 
by 3 methods

Variant Position Assigned P-value Alternate 
allele 
frequency

Missing 
subjects

Plink2 Secure 
federated

Plain federated GMMAT

rs2075650 19:50087459 6.43E-52 2.72E-56 2.64E-56 3.96E-56 0.2766 1

rs6859 19:50073874 1.21E-17 5.37E-18 5.21E-18 5.88E-18 0.5102 0

rs405509 19:50100676 6.93E-17 3.55E-17 3.52E-17 3.95E-17 0.4393 0

rs8106922 19:50093506 7.31E-16 3.52E-16 3.49E-16 3.88E-16 0.3081 1

rs157580 19:50087106 4.48E-14 1.94E-14 1.90E-14 2.09E-14 0.702 4

rs439401 19:50106291 7.92E-10 6.27E-10 5.94E-10 6.33E-10 0.7016 0

rs10402271 19:50021054 3.34E-09 2.73E-09 2.71E-09 2.87E-09 0.3764 0

rs3103765 8:96460015 2.26E-08 1.45E-08 1.43E-08 1.51E-08 0.5122 0

rs4796606a 17:36917613 5.38E-08 3.40E-08 2.69E-08 2.83E-08 0.9387 0



Page 19 of 38Li et al. Genome Biology          (2023) 24:204 	

uses raw data. Secure meta-analysis protocol finished in approximately 311 s (5.2 min) 
(Fig.  6c), indicating high efficiency in time usage. The peak main memory usage was 
approximately 1 GB (Fig. 6d).

In summary, our results indicate that COLLAGENE’s toolbase can be used in a real-
world scenario for building federated and secure data analysis methods.

Discussion
We presented COLLAGENE, a new framework for building collaborative and federated 
pipelines for the analysis of sensitive datasets. COLLAGENE combines HE primitives 
and multiparty calculations for decreasing development time and efforts. COLLAGENE 
encapsulates and relieves much of the underlying complexity around key sharing using 
KeyMaker service and HE-level implementations by providing command line tools and 
programming libraries that can be integrated into new data analysis pipelines. Primary 
emphasis of COLLAGENE is on enabling secure matrix operations, aligning with the 
widely used data representations in bioinformatics. Unlike numerous federated meth-
ods, it eliminates the need for a central instance that handles sensitive data because Key-
Maker never receives sensitive data.

Fig. 6  P-value concordance and resource requirement of secure meta-analysis. P-value concordance of 
secure meta-analysis p-values with a plaintext protocol and b plink2. c, d Time/memory requirements of 
secure meta-analysis



Page 20 of 38Li et al. Genome Biology          (2023) 24:204 

We advocate the usage of federated approaches that are supplemented using HE, 
MPC, and DP appropriately. COLLAGENE provides several options to implement these 
in an integrated fashion for matrix-formatted datasets, which encompasses most tools 
in the field of biomedical informatics and bioinformatics. Compared to the outsourcing-
based approaches (e.g., TrustGWAS [89]) where the pooled and encrypted raw data is 
sent to an outsourcing site, the secure federated approaches are more promising in the 
efficiency of disk and network usage without sacrificing accuracy. In the setting of cloud 
computations where most outsourcing is currently performed, this directly impacts cost 
estimates: While storage costs may be manageable, the network costs (e.g., download-
ing data out of AWS S3 buckets) are charged once per transfer and they may become a 
strict bottleneck in the long term. This, however, requires the appropriate formulation 
and implementation of the protocols to ensure that algorithms are efficiently ported into 
the secure domain.

Several rules follow to ensure that risks are minimized against the assumed adver-
sarial model that COLLAGENE targets. COLLAGENE assumes that collaborating sites 
are honest-but-curious entities [90], who adhere to the analysis protocols without mali-
cious deviations. We believe that the majority of the adversarial entities in the biomedi-
cal research community can be considered as honest-but-curious entities [90] who are 
not actively trying to break protocols to steal individual-level information. Overall, when 
the protocols are appropriately designed, COLLAGENE should be effective for protect-
ing against accidental leakages [91, 92] wherein a researcher may accidentally re-iden-
tify a study participant, e.g., linking two datasets may pinpoint an individual’s unique 
identifying information in a third dataset [93, 94]. The most prevalent privacy concerns 
in genomics and biomedical literature stem from re-identification concerns such as the 
scenarios laid out by Gymrek et  al. [95] (linking genomics to genealogical datasets), 
Homer et al.’s t-test [38] and Sankararaman et al.’s likelihood ratio [96] test, and Busta-
mante et  al.’s beacon attack [97], which are relatively easy to execute when large-scale 
summary statistics are available. Due to their simplicity, these attacks can be applied 
by honest-but-curious entities, without actively breaking protocols. We provide several 
suggestions against these attacks.

Most importantly, the sites must ensure that individual-level data is never shared 
with other sites even if it is encrypted. Any intermediate data that will be collectively 
decrypted should be aggregated to small dimensions with non-linear functions and be 
masked using strong masks (DP can set the noise levels) to thwart unmasking attacks 
[98–100]. The partial decryptions should be encrypted using symmetric keys that 
KeyMaker generates to avoid unauthorized accession. This is important since there 
are known attacks even on the encrypted data for revealing model parameters [101, 
102]. To counter these attacks, COLLAGENE uses a fixed smudging noise level to sani-
tize partially decrypted data, which is set to 40 bits by default. The estimation of this 
“smudging” noise for ciphertext protection is an open problem and is an active field of 
research [103, 104].

We would like to note that COLLAGENE does not protect against malicious enti-
ties, which actively seek to deviate from protocols to steal data or disrupt the integrity 
and accuracy of the analysis. These entities may selectively target certain datasets (e.g., 
marginalized populations, stigmatizing conditions). Protection against these entities is 



Page 21 of 38Li et al. Genome Biology          (2023) 24:204 	

computationally challenging [105]. Finally, regardless of whether the entities are consid-
ered malicious or honest-but-curious, sites must establish policies about usage of final 
results because these will be revealed to all collaborating sites. The privacy concerns 
around usage of final results should be accounted for based on the data access and usage 
policies among the participants for ensuring that the collaborating entities do not use 
the data for any unintended purposes.

There are several limitations of COLLAGENE that warrant further research. For 
example, it is necessary to put complete trust in the keys generated by the KeyMaker 
service. This is a fundamental issue faced by many practically feasible federated analy-
sis frameworks because key generation is an integral step that relies on collective trust 
among parties. Any collusion among the parties can lead to partial leakage of keys. In 
our framework, we pool the trust on a single site, KeyMaker, which can be operated by 
a recognized entity (such as NIH or local regulators). In addition, KeyMaker does not 
(and should not) take part in the data analysis steps, i.e., even if KeyMaker starts acting 
maliciously, the sites can make sure that KeyMaker does not receive any data encrypted 
by the keys that it generated.

COLLAGENE currently lacks the key-switching and bootstrapping capabilities that 
single-user libraries have. We would like to note that these operations can be simu-
lated using matrix masking. For example, the encrypted data can be masked, collec-
tively decrypted, and re-encrypted in the target public key, and finally, the mask can 
be removed. Similarly, the bootstrapping can be simulated by a ciphertext-refreshing 
operation: Sites can first add a collective mask to the encrypted data matrix, collectively 
decrypt it, re-encrypt it, and finally remove the noise to generate a freshly encrypted 
data matrix. It should be noted that currently available implementations of bootstrap-
ping require careful parameter selection (e.g., TFHE, Lattigo) that makes it challenging 
for practical use in real-life scenarios, especially for non-experts. For advanced users, 
these implementations can serve as more useful options. We are currently implementing 
key-switching operations directly on the ciphertext-level data and exploring the user-
friendly implementation of bootstrapping to integrate these functionalities into COLLA-
GENE. COLLAGENE’s current matrix arithmetic library delivers baseline performance 
but the performance can be improved using more convenient methods. We are planning 
on integrating more matrix encoding techniques and expanding the toolbase to increase 
the efficiency of some of the operations. This, however, usually incurs a cost on disk and 
network storage in the collaborative analysis settings. We leave these considerations to 
the future development of COLLAGENE.

Another limitation of COLLAGENE is the privacy concerns around sharing of the 
unprotected null model parameters in the federated binary phenotype GWAS. Although 
this is a case-specific limitation, it is important for users while building new secure pipe-
lines. As we described above, the currently implemented model shares the null model 
parameters in plaintext (unprotected) among sites. Because the null model parameters 
are a certain type of summary statistic, sharing them may cause concerns around re-
identification attacks. This is, however, rather unlikely for several reasons. First, the null 
model parameters are calculated once using only a small number of covariate informa-
tion compared to the large sample sizes. Covariates are, unlike genotypes, not expected 
to leak much individual re-identifying information since they are a small number of 



Page 22 of 38Li et al. Genome Biology          (2023) 24:204 

nuisance parameters that are used for correcting the fixed population stratification and 
gender effects. Notably, including too many known and non-confounding covariates in 
a GWAS study (or any analysis tool) can also hinder the power of the study as the null 
model becomes too conservative [106].

Secondly, the null model parameters are highly aggregated and non-linear functions of 
the covariate information from all sites. The contribution of each individual to the null 
model parameters is in turn a complex function of the covariates. It should also be noted 
that IRLS, by design, rejects outlier data points by automatically down-weighting them 
in the parameter inference [107]. This property of IRLS is advantageous from a privacy-
preserving point of view since the contribution of outlier samples is down-weighted 
in the final parameter estimates. Since the accuracy of the statistical re-identification 
attacks that make use of high dimensional summary statistics (e.g., variant-level sum-
mary statistics in Homer et al. [38]) relies on a direct relationship between the individ-
ual-level data and the summary statistic, it is unlikely that knowledge of the covariates 
for one individual will be sufficient to evaluate their participation into the study [108]. 
We would like to re-iterate that this is a case-specific limitation that is not inherent to 
COLLAGENE and leave the analysis of identifying information leakage from the null 
(covariate-only) model parameters as a future research direction.

Conclusions
COLLAGENE is a novel framework that can accelerate development of collaborative 
pipelines. COLLAGENE aims to make secure and collaborative genomic data analy-
sis more easily accessible. It can be flexibly expanded into more focused development 
efforts or it can be used for simply encrypt-aggregate-decrypt operations for securing 
intermediate data [109]. Its tool base can be expanded with community-driven efforts 
such as iDASH genomic privacy challenges [110].

Methods
We present the details of the algorithms underlying the COLLAGENE framework.

Considerations around encryption parameter selection

COLLAGENE uses CKKS as the default homomorphic encryption scheme [111, 112] 
with the underlying primitives implemented by the SEAL C++ library [65]. The encryp-
tion parameters are set using a configuration file, which stores the number of bit sizes 
for the residual number system (RNS) representation of the ciphertext coefficient modu-
lus (referred to as log(q) ), the polynomial degree modulus ( n ) for describing the CKKS 
scheme. In general, the length of the modulus bit sizes vector is equal to the multiplica-
tive depth of the evaluation using the keys with these parameters. The polynomial degree 
modulus relates to the slot size, i.e., the number of plaintext numbers one can store in 
each ciphertext: The slot size is exactly half of the polynomial degree modulus. The final 
parameter is the bit size for noise that is added to the secret key shares generated by Key-
Maker, which is only necessary for KeyMaker. COLLAGENE provides options to ensure 
that the selected n and log(q) parameters adhere to the required security levels.



Page 23 of 38Li et al. Genome Biology          (2023) 24:204 	

COLLAGENE provides several options for making it easier for users to interpret and 
set these parameters in accordance to the protocol that will be executed among sites. 
The length of the coefficient modulus bit sizes vector determines how many multipli-
cations the protocol can perform before decryption fails. For algorithms that require a 
large number of multiplications (i.e., deep neural networks or function approximations 
with large polynomial degrees), it is necessary to use longer bit size vectors. This, how-
ever, degrades security (requires larger n ) and also the performance as each operation 
needs to loop over all the decomposition levels in the bit size vector. To get around this 
limitation, users can perform masked matrix re-encryption (i.e., ciphertext refreshing) 
on “exhausted” ciphertexts using COLLAGENE and use the freshly encrypted ciphertext 
to keep operating on the data. The options that should be used eventually depend on the 
multiplicative depth of the algorithm and we recommend users to consider formulation 
of the algorithms to decrease multiplicative depth of calculations.

Ciphertext expansion rates

Ciphertext expansion refers to inflation of size of ciphertext data compared to the under-
lying plaintext data. To estimate the ciphertext expansion rate for the GWAS protocol, 
we generated a random 64 × 128 matrix (full utilization of a ciphertext that can hold 
8192 entries) and encrypted it using COLLAGENE, and calculated the expansion rate as

We repeated this estimation 100 times and found that the mean expansion rate is 
22.1 with standard deviation of 0.08.

Secret key sharing protocol by KeyMaker

Before the generation of keys, the sites agree on the calculation that will be per-
formed (e.g., collaborative GWAS) and have the a priori knowledge of multiplicative 
depth necessary for executing the calculations (bit size vector of coefficient modulus). 
The sites agree on the encryption parameters for the calculation. Each site generates 
a public/private key pair that will be used for encrypting/decrypting their distributed 
CKKS secret key share (DSK) generated by KeyMaker. We refer to these first set of 
keys as DSK encryption keys. Each site sends their DSK encryption key to one of the 
sites that initiates the key generation (Fig.  1). The key sharing used by KeyMaker is 
implemented by modifying SEAL’s secret key generation routine.

Generation of DSKs

Given S sites whose DSK encryption keys are sent to KeyMaker, KeyMaker first gener-
ates one master CKKS secret key, msk , which is a vector of length n whose elements are 
selected from {−1, 0, 1}mod(q) . Next, KeyMaker generates a noise vector for each site 
that will be added to msk to generate the DSK for the corresponding site. The noise vec-
tor is also a length n vector whose elements are selected from a discrete Gaussian noise 
with variance equal to the DSK noise level ( σ 2

DSK ∝ 2�dsk ) that is specified in the param-
eters. For each of the p entries in the master key, KeyMaker samples the noise vector 

expansion rate =
size of encrypted matrix

size of plaintext matrix
.



Page 24 of 38Li et al. Genome Biology          (2023) 24:204 

for all sites from the DSK noise levels. This process is done for all sites except one site, 
which receives the negative of the total DSK error:

(1)	 At key msk entry j ≤ n , shuffle the site indices [1, S] , and select a random site index 
in which the master key’s value will be added to. We denote this site index with s∗.

(2)	 Select the next site index, snext , among the shuffled indices
(3)	 If snext = s∗ , set dsksnext ,j = mskj

(4)	 If this is not the last to be assigned, set its dsk entry as: 
dsksnext ,j ← dsksnext ,j + eDSK , eDSK ∝ N

(

0, σ 2
DSK

)

(5)	 If this is the last site to be assigned a key value, set it to 
dsksnext ,j =

(

dsksnext ,j −
∑

s �=snext
dsks,j

)

mod(q)

The basic idea in this approach is to ensure that ∀j ≤ n,
(

∑

sdsks,j

)

mod(q) = mskj . At 

each entry of the secret key, the master key is added exactly to one of the randomly 
selected sites and the complementary noise is added to all of the sites. This procedure 
requires very small computational resources and is performed in memory without any 
disk accession. The master secret key is discarded after key shares are generated. COL-
LAGENE implements the secret key sharing by accessing and modifying the internal 
arrays that store the secret key coefficients.

Next, KeyMaker uses the master secret key to generate a public key that will be shared 
with all sites:

where error polynomial e is sampled from a discrete Gaussian distribution and a is sam-
pled from uniform distribution. Note that the public key is composed of two polynomi-
als pk0, pk1 , which are the same length as the secret key. KeyMaker uses SEAL’s native 
interface to generate the public key. After all DSKs are collected, KeyMaker encrypts 
each site’s secret key share with the DSK encryption (public) key of the site. This way, 
key share for each site is protected from other sites and outside malicious entities. Key-
Maker also creates a symmetric encryption key that is to be shared among all sites. This 
symmetric key is used for encryption/decryption of partially decrypted data in collective 
decryption protocols. KeyMaker also generates the relinearization keys, and the Galois 
keys, which are necessary for processing encrypted data. The final set of keys (encrypted 
DSKs, public, relinearization, and Galois keys, and common symmetric key encrypted 
by DSK encryption key) are stored in a tar archive file and returned to the sites for 
downloading. It should be noted that KeyMaker does not have any further role in the 
data analysis.

Encryption and collective decryption protocol

Encryption of plaintext data is done using the conventional RLWE procedure as imple-
mented in SEAL. COLLAGENE adds wrappers to simplify encryption and also imple-
ments the collective decryption operation.

(

pk0, pk1
)

= (−a ·msk + e, a)mod(q)



Page 25 of 38Li et al. Genome Biology          (2023) 24:204 	

Data encryption

Given a plaintext matrix m , the matrix is flattened and encoded using a CKKS encoder 
using SEAL (SEAL::CKKSEncoder). Next, the ciphertext polynomials are calculated: 
c0 = (pk0 +m)modq , c1 = pk1 where m is the plaintext polynomial for the encoded 
plaintext matrix. This is encapsulated in encryption option of COLLAGENE, which is 
performed by SEAL library (SEAL::Encryptor). For encryption, COLLAGENE takes as 
input the common public key and the plaintext data matrix that will be encrypted and 
uses SEAL’s native encryption function. Of note, the polynomial multiplication (addi-
tion) operations in key generation and encryption correspond to polynomial modulus 
multiplication (addition). When needed, COLLAGENE uses SEAL’s optimized imple-
mentations for polynomial arithmetic.

Collective decryption

Given a ciphertext, ct , and the corresponding master secret key, decryption in SEAL is 
performed as:

It can be shown from above equation that dec(ct = (c0, c1);msk) = m+ e′ , where e′ 
is the accumulated plaintext noise in the ciphertext. This decryption operation is imple-
mented into SEAL::Decryptor class.

For the multiparty key scenario, no entity has access to the master secret key. We can, 
however, use the secret key shares in the collective decryption. We can write the decryp-
tion operation in terms of the secret key shares:

It can be seen that each site can calculate a “partial decryption” (i.e., c1 · dsksmod(q) ) 
and share it with other sites. The final decryption can be calculated by aggregat-
ing the partial decryptions from all sites and adding c0 polynomial once to obtain 
dec(ct = (c0, c1);msk) . The partial decryption at each site is:

which is implemented into COLLAGENE using the existing decryption function and the 
modular polynomial matrix subtraction in SEAL as:

After each site calculates partial decryptions, it encrypts the partially decrypted 
ciphertexts using the common symmetric key (from KeyMaker) and shares it among 
each other (through shared space such as an AWS bucket). This encryption aims 
at ensuring that outside parties cannot directly access the partial decryptions. This 
symmetric encryption is implemented using openssl and is independent of CKKS 
and SEAL.

dec(ct = (c0, c1);msk) = (c0 +msk · c1)mod(q)

dec(ct = (c0, c1);msk) = (c0 +msk · c1)mod(q) =

(

c0 +
∑

s

(dsks · c1)

)

mod(q)

= c0 + (dsk1 · c1 + dsk2 · c1 + · · · + dskS · c1)mod(q).

pardec(ct; dsks) = (c1 · dsks)mod(q)

pardec((c0, c1); dsks) = (dec((c0, c1); dsks)− c0)mod(q)



Page 26 of 38Li et al. Genome Biology          (2023) 24:204 

Aggregation of partial decryptions

Each site downloads the partial decryptions of other sites (using network interface) 
and decrypts the symmetric encryption. Next, the partial decryptions are pooled to 
obtain the decryption under master secret key:

In the aggregation, the summations of the list of partial decryptions are performed 
using SEAL’s polynomial arithmetic functions. In the aggregation process, each 
site must also add c0 term only once for correct decryption. This is implemented 
into COLLAGENE by allowing only one site to include c0 in the partial decryp-
tions. This can be alternatively implemented by accessing to the decrypted cipher-
text since all sites have access to c0 . After the aggregation, the data is decoded using 
SEAL::CKKSEncoder class.

Another important aspect of collective decryption is the protection of the partially 
decrypted data. In the above formulation, the partial decryptions are simple polyno-
mial multiplications, (c1 · dsks)mod(q) . Any entity who has access to partial decryp-
tions and the ciphertext (c0, c1) can try to divide the partial decryption by c1 and 
recover the secret key share of site s . To provide protection against these attacks, 
COLLAGENE uses a large noise term (also referred to as “smudging” or “cipher-
text flooding” noise [113]), which is generated from the discrete Gaussian distribu-
tion implemented in SEAL library. Given a smudging noise variance in nsm bits, i.e., 
σ 2
sm = 2nsm , a polynomial, denoted by esm , is sampled from the clipped normal distri-

bution with variance σ 2
sm and added to the partial decryption:

For an adversarial entity with access to c1 and the partial decryption, the goal will 
be to recover dsks when esm is not known by the adversary. In the above equation, the 
exponentially large smudging noise statistically obliterates the information leakage 
from the partial decryption result, i.e., (c1 · dsks) . COLLAGENE utilizes 40 bits of 
noise by default to increase noise level in the partially decrypted data and the noise 
variance can be can be modified by the users.

Matrix representation and arithmetic

Matrix encryption

For storing a matrix with a rows and b columns, COLLAGENE first concatenates the 
rows of the matrix into an array of length a× b (Fig. 2a). Next, the array is encrypted 
into 

⌈

a · b
slot_size

⌉

 many ciphertexts using the common public key, where slot_size is equal 

to half of the polynomial modulus degree. The matrix dimensions and the encrypted 
ciphertext are written to a binary file. Plaintext matrices are stored with matrix dimen-
sions and the flattened vector.

dec(ct = (c0, c1);msk) =

(

c0 +
∑

s

pardec((c0, c1); dsks)

)

mod(q)

pardec((c0, c1); dsks) = ((c1 · dsks)+ esm)mod q



Page 27 of 38Li et al. Genome Biology          (2023) 24:204 	

Matrix arithmetic

COLLAGENE has options to perform basic matrix arithmetic operations including 
secure addition, subtraction, and matrix/scalar multiplication. Elementwise summation, 
subtraction, and multiplication of matrices are implemented by addition, subtraction, 
and multiplication of the ciphertexts for the matrices. For matrix multiplications, we 
adopt a simplification of the approach devised in Jiang et al. [114]: Given two plaintext 
matrices of sizes (a× b) and (b× c) , we first generate the column expansion of the M1 
and row expansion of M2 , which are basically repetitions of columns and rows of the 
matrices. Given M , an (a× b) matrix, the c-sized column expansion is an ordered  
set of (a× c) sized matrices ce(c)· (M) =

[

ce
(c)
i (M), i ≤ b

]

 , denoted by ce(c)i (M) , is  

formed by concatenation of the ith column of matrix M for c times, i.e., 
col

(c)
i (M) = [M·,iM·,iM·,i . . .M·,i]a×c for 1 ≤ i ≤ b . Similarly, the a-sized row expansion 

of a (b× c) matrix M , re(a)· (M) , is an ordered set of (a× c) sized matrices, which are 
formed by concatenating each of the b rows of M , i.e., re(a)i (M) =

[

M′
i,·M

′
i,·M

′
i,· . . .M

′
i,·

]′

a×c
 

for 1 ≤ i ≤ b.
Row and column expansions of plaintext matrices are performed efficiently by copy-

ing memory using parallelized calculations. Each matrix in the expansion is encrypted 
before being saved. Given the column and row expansions of two matrices M1 and M2 , 
respectively, matrix multiplication of M1×M2 can be written as elementwise matrix 
products [114]:

where ⊙ denotes elementwise matrix multiplication, i.e., (M1⊙M2)i,j = M1i,j ·M2i,j . 
Elementwise multiplication is implemented by multiplication of corresponding cipher-
texts in M1 and M2 . A useful property of the expansions is that they are distributive 
over addition (and subtraction), e.g.,

Secure row‑row multiplication (Fig. 2c)

Inner products are often used in statistical inference. While these can be implemented 
using row/column expansions, this may impose a performance penalty. To counter this, 
COLLAGENE implements row-to-row inner products, denoted by 〈M1,M2〉r2r of two 
encrypted matrices. Given two encrypted matrices M1,M2 with dimensions a× b , 
row-row multiplication at row i requires calculating the inner product of M1i and M2i , 
〈M1i,M2i〉 , and storing this encrypted value at the ith entry of the resulting vector. 
We implement the inner products using a recursive shift-and-add approach that uses 
log2(b) rotations by iteratively adding the row-row multiplications after applying circu-
lar shifts on the accumulated values:

M1a×b ·M2b×c =
∑

1≤i≤b

(

ce
(c)
i (M1)⊙ re

(a)
i (M2)

)

re
(c)
i (M1+M2) = re

(c)
i (M1)+ re

(c)
i (M2), ∀i ∈ {1, 2, . . . , b}.



Page 28 of 38Li et al. Genome Biology          (2023) 24:204 

(1)	 Set the current inner product vector for row i as r2ri = (M1i ⊙M2i) , and set cur-
rent rotation to t = 1.

	 The inner product vector is calculated by elementwise multiplication of the cipher-
texts in M1 and M2 that contain row i.

(2)	 Update r2ri ← (r2ri + (r2ri ≪ t))

	 In this step, we use the Galois keys to perform rotations by t , which circularly rotates 
the underlying array in the ciphertext by t entries to left. Summations are per-
formed elementwise.

(3)	 Update t ← 2t

(4)	 If t > b , return r2ri , otherwise go to step 2.

This algorithm runs for log2(b) iterations and is efficient even for large b . After the 
inner product vector is calculated, the first entry in it contains the inner product 
of ith rows of M1 and M2 . We copy the first entry in r2ri to the ith element of the 
final vector. A useful observation is that when the above iterations are executed on 
a ciphertext that contains multiple rows, row-row inner products for all of the rows 
in the ciphertexts are simultaneously calculated at every bth entry. After processing 
one ciphertext with shift-and-add method, we copy every bth element in the resulting 
ciphertext to the final row-row inner product vector. For matrices that are stored in 
multiple ciphertexts, we repeat this process over all ciphertexts. It is, however, neces-
sary to ensure that the column number b is an exact power of 2, i.e., b = 2n for ∈ Z+ . 
This can be satisfied by padding the rows of the matrix with zeros before encryp-
tion. Row-row inner products are useful to perform consecutive multiplications of 
encrypted matrices that involve quadratic forms, i.e., XWX ′ , which are commonly 
used in statistical inference (Fig. 2b).

COLLAGENE uses a similar shift-and-add approach to perform row expansions 
of encrypted matrices. For this case, each row is copied to a new ciphertext, which 
is recursively shifted and added to expand the rows to requested size. Finally, the 
ciphertexts corresponding to the expansion of the current row are saved. This opera-
tion is repeated for all the rows in the matrix.

Matrix padding, scaling, and random matrix generation

Matrix padding has numerous important applications for secure matrix arithmetic. 
COLLAGENE has functions to pad plaintext matrices with zero values in rows and 
columns to custom and specific sizes (e.g., row/column numbers are powers of 2) 
makes it convenient to process matrices to specific shapes, i.e.,

For processing matrices with large dynamic ranges, scaling the matrices increases 
numerical accuracy. For example, this is observed while padding a matrix that contains 
entries close to zero if the matrix will be multiplied with another matrix with larger val-
ues. To counter these, COLLAGENE has number of functions to make it convenient to 

pad(M, c, d) = M′
c×d =

[

Ma×b 0a×(d−b)

0(c−a)×b 0(c−a)×(d−b)

]

c×d



Page 29 of 38Li et al. Genome Biology          (2023) 24:204 	

scale matrices. Finally, COLLAGENE implements options to generate random matrices 
that can be used as noise to hide data while performing certain intermediate steps, e.g., 
matrix inversion, efficiently (Fig. 2d).

Network I/O for exchanging intermediate encrypted matrices

After each site performs secure calculations and wants to share encrypted intermediate 
results, the data is written into an encrypted matrix file and sent over the network to the 
shared storage space. COLLAGENE currently implements a separate network module 
that can be configured to use 3 options: First is the “local” option, where the files are 
stored in a local disk. This option is used for simulating collaborative analysis without 
any network traffic and can be used for development or debugging protocols. Second 
option is the “SCP” option where sites can configure an FTP/SFTP server to store the 
files for executing the protocols. This option utilizes scp command line tool for upload-
ing/downloading and probing files. Third option is “S3” that utilizes an AWS S3 bucket 
to store the encrypted intermediate matrix files. This option uses the AWS command 
line interface utilities for file transfers (upload, download, probe, and wait).

Federated GWAS for binary phenotypes

We describe the specific matric operations federated GWAS calculations that utilize 
COLLAGENE’s functionalities. We denote the number of sites with S , the number of 
variants with M , and sample size with Ns for s ≤ S , and the number of covariates with p , 
which includes an intercept by default.

The null model fitting starts with the covariate matrix Xs , binary phenotype vector ys , 
and the initial null model weights, α = 0 . We assume that the sites setup an SCP file 
server or use an AWS S3 bucket to be used for storing the encrypted intermediate files. 
Following is calculated at each site:

	 (1)	 Calculate µ0,s = sigmoid(Xs · α) , where sigmoid(a) = e−a

1+e−a

	 (2)	 Calculate Ws = diag
(

µ0,s ·
(

1− µ0,s

))

	 (3)	 Calculate zs = Xs · α +
(ys−µ0,s)

µ0,s·(1−µ0,s)

	 (4)	 Calculate ϒs = X ′
sWsXs ( p× p) and X ′

sWszs ( p× 1 ) at each site s ≤ S.
	 (5)	 Each site generates a ( p× p ) masking matrix Hs by sampling unit Gaussian ran-

dom variable, calculates the encrypted size-p row expansion re(p)i (Hs) , and 
uploads the expansions to the shared space. Each site also pads the masking 
matrix to set the size to be equal to the closest power-of-2, i.e., 
pad

(

Hs, 2
⌈log2(p)⌉, 2⌈log2(p)⌉

)

 . Each site then calculates the size-2⌈log2(p)⌉ column 

expansion of the padded noise matrix, i.e., ce

(

2⌈log2(p)⌉
)

i (pad(Hs)) . The encrypted 
column expansions of the padded noise matrix are uploaded to the shared server.

	 (6)	 Sites download the encrypted row and column expansions from the shared 
server and calculate the total expansions of the masking matrix:

(a)	 re
(p)
i (H) =

∑

s≤Sre
(p)
i (Hs) , where H is the total encrypted noise matrix that 

includes noise from all sites.

(b)	 ce

(

2⌈log2(p)⌉
)

i (pad(H)) =
∑

s≤Sce

(

2⌈log2(p)⌉
)

i (pad(Hs))



Page 30 of 38Li et al. Genome Biology          (2023) 24:204 

(c)	 Calculate the column expansion of ϒs , i.e., ce(p)i (ϒs) and calculate the multipli-

cation of ϒs with H : ϒsH =
∑

i≤p

(

ce
(p)
i (ϒs)⊙ re

(p)
i (H)

)

 , and uploads 

encrypted ϒsH to shared server.

	 (7)	 Sites download ϒsH for all s ≤ S from the shared server and securely add them 
to calculate the total masked and encrypted ϒH =

∑

s(ϒsH).

(a)	 This matrix is collaboratively decrypted: coldec(ϒH) , which reveals ϒH , 
(

X ′WX
)

H to all sites. At this point, each site inverts the ϒH in plaintext form 
to calculate H−1ϒ−1 = H−1

(

X ′WX
)

 . Each site pads this inverted masked 
matrix and calculates the row expansion of the padded inverted matrix, 

re

(

2⌈log2(p)⌉
)

i

(

pad
(

H−1ϒ−1
))

(b)	 Finally, each site removes the masking noise H−1 securely using the row in Step 
7a and column expansion in Step 6b:

	 (8)	 We now update α . First each site downloads encrypted and padded 
pad

(

X ′
sWszs, 2

⌈log2(p)⌉, 1
)

 from the shared server and securely sums these vec-

tors among sites: X ′Wz =
∑

s

(

pad
(

X ′
sWszs, 2

⌈log2(p)⌉, 1
))

 , which is a 
(

2⌈log2(p)⌉ × 1
)

 vector. Each site generates the encrypted row expansion of pad-

ded 
(

X ′Wz
)′ , i.e., re

(

2⌈log2(p)⌉
)

i

(

pad
(

X ′Wz
)′
)

 , which has only one matrix in it 

since it is a row vector. We finally use the row-row multiplication to calculate the 
updated the null model parameter estimate in encrypted form:

	 (9)	 Sites collectively decrypt αnew and use it in a new update.
	(10)	 Move back to step 1.

The main ingredient of the null model fitting is inversion of 
(

X ′WX
)

 in plaintext 
domain after hiding it with collective mask. This step aggregates a mask matrix from 
all sites and the pooled mask matrix is multiplied with 

(

X ′WX
)

 . This multiplication 
is performed in secure domain and hides covariate covariance values. We thus make 
use of the masking to simplify matrix inversion. It should be noted that the inversion 
can be performed fully in secure domain using an implementation of the Gauss-Jor-
dan inverse, which has n3 time complexity. But this method has a large multiplica-
tive depth and becomes infeasible with 10–15 covariates and requires large number of 
ciphertext refreshes or bootstraps.

The null model fitting is an implementation of the IRLS algorithm [115] that cal-
culates αnew =

(

X ′WX
)−1

· (X ′Wz) using the current estimate αcurrent to calculate W  
and z in the current iteration. An important aspect is that covariate data X is always 

pad
(

ϒ−1
)

=
∑

i≤2⌈log2 (p)⌉

(

ce

(

2⌈log2 (p)⌉
)

i (pad(H))⊙ re

(

2⌈log2 (p)⌉
)

i

(

pad
(

H−1ϒ−1
))

)

αnew = �pad
(

ϒ−1
)

, re

(

2⌈log2(p)⌉
)

0

(

pad
(

X ′Wz
)′
)

�
r2r



Page 31 of 38Li et al. Genome Biology          (2023) 24:204 	

in aggregated form (via matrix products with W  ) and is stored in small dimensions 
( p× p ) as masked and/or encrypted form. We reformulated the inference steps for 
federated scenario by partitioning the matrix multiplications and implemented the 
algorithm using COLLAGENE’s modules. In the above formulations, all aggrega-
tions (which we refer to as pooling in figures) are implemented by secure elementwise 
matrix additions. Matrix multiplications, including row and column expansions and 
row-row inner products, are described in matrix operations.

Assignment of p‑values

We use the GMMAT’s score test to assign the p-values using the null model predicted 
phenotypes to all subjects:

(1)	 Calculate Ts = G′
s(ys − µ0,s)  

(2)	 Calculate G′
sWsGs  

(3)	 Calculate G′
sWsXs , do column expansion on it and multiply it with 

pad(ϒ−1, 2⌈log2(p)⌉, 2⌈log2(p)⌉) (computed in step 7b) on the right using its row 
expansion. This multiplication yields the padded version of 

(

G′
sWsXsϒ

−1
)

 . These 
matrices are uploaded to the shared working space.

(4)	 Each site downloads Ts,G
′
sWsGs,G

′
sWsXs , and 

(

G′
sWsXsϒ

−1
)

 for all s ≤ S , 
and securely pools them across all sites: T =

∑

sTs , S1 =
∑

sG
′
sWsGs , 

S21 =
∑

sG
′
sWsXs , S22 =

∑

s

(

G′
sWsXsϒ

−1
)

.

(a)	 It should be noted that these are encrypted matrices and S21 and S22 are pad-
ded to the next power of 2. Each site performs row-row multiplication of these: 
S2 = �S21, S22�r2r

(b)	 S = S1 − S2 is calculated as the scale parameter of the chi-squared distribution 
for the p-values.

(5)	 We cannot decrypt T  and S to assign the p-values because T  can leak genotype 
information and cannot be decrypted without privacy concerns. To get around this 
issue, we propose using a multiplicative mask that conserves TS  ratio but hides the 
actual values of T  and S statistics before collective decryption.

(a)	 Each site samples a random noise value and multiplies T  and S statistics using 
the same sampled noise value and uploads the noisy T  and S statistics to the 
shared space.

(6)	 All sites download the noisy T  and S statistics from the shared space and pool them 
among all sites. The final noisy T  and S statistics that contain the noise levels from 
all sites are collectively decrypted. The p-values are assigned using the asymptotic 
null distribution of TS  statistic, which is a chi-squared distribution with 1-degree-of-
freedom.

It should be noted that this protocol requires sites to adhere to the protocol without 
malicious deviations from the protocol. Any malicious deviation can result in either cor-
rupted data or decryption of data that is not intended to be decrypted.



Page 32 of 38Li et al. Genome Biology          (2023) 24:204 

Secure meta‑analysis of GWAS results among multiple sites

Given GMMAT results with S and T  statistics, we implement the secure meta-analysis 
by first pooling of masked TS  statistics from each site. The masked statistics are pooled 
and collectively decrypted. As GMMAT can integrate random effects into analysis, 
meta-analysis provides a very efficient way of combining summary statistics in a secure 
manner while accounting for complex random effects such as kinship [116].

Estimation of per‑thread throughput for sPLINK

Nasirigideh et al. [74] reported sPLINK finished a 3-site federated GWAS for 580,000 
SNPs in 75 min. Each client used 4 threads with total of 12 threads. sPLINK also utilizes 
2 more sites, i.e., Compensator and Aggregator sites that used 8 and 4 threads, respec-
tively. In total, all sites (including clients, Aggregator, and Compensator) utilized 24 
threads. We therefore estimate the per-thread throughput of sPLINK as:

We acknowledge that the above formula may underestimate the actual throughput 
since all threads are not utilized with 100% efficiency. However, the CPUs are allocated 
for the algorithm, and we believe this is a fair estimate that reflects the overall algorith-
mic efficiency for sPLINK.

Data simulations

Simulated genotype‑phenotype datasets

We obtained the VCF formatted genotype datasets and the population information from 
the 1000 Genomes Project Portal (see “Availability of data and materials”).

Genotype data simulation  We separated the 1000 Genomes panel with respect to 
three super-population-based cohorts; specifically, we used EUR (European), AFR (Afri-
can), and EAS (East Asian) subjects. Next, we uniformly subsampled the variants down 
to 57,344 variants to decrease computational requirements. Next, each cohort was sepa-
rated into a distinct genotype file. Each super-population cohort is used to simulate the 
genotype dataset for a corresponding site, i.e., for the 3 sites that are collaborating. For 
each super-population cohort, we sampled genotypes of the 57,344 variants for 4800 
individuals. This sampling is done without accordance to the linkage-disequilibrium 
(LD) structure. We used a pedigree-based sampling, which was not explicitly used in the 
analysis.

Phenotype data simulation  Among 4800 subjects at each site, we first assigned gender 
such that half of the cohort was assigned female and remaining half is set to male sub-
jects. Next, we extracted the covariates by projecting the samples on the principal com-
ponents (PCs) that are calculated from the original pooled EUR, AFR, and EAS sample 
set. We used the top 8 PCs and these projected coordinates were used as fixed covariates 
for population-level stratification in GWAS calculations. Next, we generated a random 

(

580, 000 SNPs
site × 3 sites

75minutes
× 60minutes

)

×
1 thread

24 thread
≈ 58, 000 SNPs



Page 33 of 38Li et al. Genome Biology          (2023) 24:204 	

model that used 20 random SNPs as causal variants for which the effect size was set 
by randomly sampling uniform random variable, i.e., β ∼ U(−0.5, 0.5) . The gender was 
assigned a constant effect size of 0.1. This model was used first used to calculate the 
linear combination of all covariates and genotype effect sizes for all individuals in the 3 
sites using following relationship:

ǫ denotes the environmental noise component and is sampled from ǫ ∼ N (0, 0.5) . Here, 
Xi includes only the gender for simulating the phenotype. We finally mapped the linear 
combinations using a logistic function to assign the final simulated phenotypes:

LOAD dataset

LOAD data was acquired from dbGAP under accession identifier phs000168.v2.p2 
that contains 571,166 variant genotypes for 3007 subjects, among which 2545 sub-
jects had an assigned AD diagnosis phenotype. We used the first 557,056 variants in 
the dataset which can be loaded exactly into 68 blocks of ciphertexts (i.e., 68 blocks of 
8192 variants). The subject identifiers were shuffled and split among 3 sites for simu-
lating collaborative analysis. Plink2 analysis was performed using “—glm” option to 
calculate p-values for each variant using the pooled dataset. GMMAT was run with 
default parameters. It should be noted that the LOAD dataset is under restricted 
access and we are not allowed to share it publicly.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​023-​03039-z.

Additional file 1. Review history.

Acknowledgements
Not applicable.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora-
tion with the rest of the editorial team.

Review history
The review history is available as Additional file 1.

Authors’ contributions
AH, XJ, and MK designed the study. AH and WL implemented collaborative analysis framework and the KeyMaker server. 
WL, HC, and KZ worked to build the federated GWAS pipeline and the meta-analysis pipeline. AH, XJ, MK, and WL drafted 
the manuscript. All authors wrote and approved the final manuscript.

Funding
During this work, AH was supported by startup funds from The University of Texas Health Science Center, Houston. MK 
was supported by the research fund of Hanyang University(HY-202200000003000), National Research Foundation of 
Korea(NRF) grant funded by the Korea government(MSIT) (No.2021R1C1C1010173), Institute of Information & communi-
cations Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) [No.2022-0-01047, Devel-
opment of statistical analysis algorithm and module using homomorphic encryption based on real number operation], 
and Samsung Research Funding & Incubation Center of Samsung Electronics under Project Number SRFC-TB2103-01. XJ 

ηi =





�

j

Gijβj



+ Xiαgender + ǫi

Yi =

{

1, if logistic(ηi) > 0.5
0, if logistic(ηi) < 0.5

https://doi.org/10.1186/s13059-023-03039-z


Page 34 of 38Li et al. Genome Biology          (2023) 24:204 

is CPRIT Scholar in Cancer Research (RR180012), and he was supported in part by Christopher Sarofim Family Profes-
sorship, UT Stars award, UTHealth startup, the National Institute of Health (NIH) under award number R13HG009072, 
R01GM114612, and the National Science Foundation (NSF) RAPID #2027790.

Availability of data and materials
Simulated genotype-phenotype datasets
We downloaded the VCF formatted genotype datasets from the 1000 Genomes Project [117] Portal [118] at https://​ftp-​
trace.​ncbi.​nih.​gov/​1000g​enomes/​ftp/​phase1/​analy​sis_​resul​ts/​integ​rated_​call_​sets/. The population-level information is 
obtained from the 1000 Genomes Project Portal from ftp://​ftp.​1000g​enomes.​ebi.​ac.​uk/​vol1/​ftp/​techn​ical/​worki​ng/​20130​
606_​sample_​info/​20130​606_​sample_​info.​xlsx.
LOAD data can be accessed from database of Genotypes and Phenotypes (dbGAP) via accession identifier phs000168.
v2.p2. This dataset is distributed under a restricted access data usage agreement and requires approval by dbGAP before 
accession.
The simulated datasets supporting the conclusions of this article are available in the Zenodo repository (DOI 10.5281/
zenodo.8106630 [119]) at following link:
https://​zenodo.​org/​record/​81066​30/​files/​CLLGN_​DATA_​DIR_​07_​02_​23_​20_​00_​40.​tar.​bz2?​downl​oad=1
These data can be downloaded and extracted using the following commands:
wget -c https://​zenodo.​org/​record/​81066​30/​files/​CLLGN_​DATA_​DIR_​07_​02_​23_​20_​00_​40.​tar.​bz2?​downl​oad=1
This directory contains the simulated federated GWAS and meta-analysis datasets that can be readily run after installing 
COLLAGENE. The latest version of COLLAGENE is available under open source MIT license at https://​github.​com/​harma​
ncilab/​COLLA​GENE [120]. It can be downloaded from the GitHub repository using following command:
git clone https://​github.​com/​harma​ncilab/​COLLA​GENE.​git
The code, documentation, and usage examples are included in the repository. The code that is used in the manuscript is 
separately archived in Zenodo (DOI 10.5281/zenodo.8125935 [121]), which can be accessed through https://​zenodo.​org/​
record/​81259​35.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 26 December 2022   Accepted: 16 August 2023

References
	 1.	 Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, et al. ACMG recommendations for reporting of inciden-

tal findings in clinical exome and genome sequencing. Genet Med. 2013. https://​doi.​org/​10.​1038/​gim.​2013.​73.
	 2.	 Richards CS, Bale S, Bellissimo DB, Das S, Grody WW, Hegde MR, et al. ACMG recommendations for standards for 

interpretation and reporting of sequence variations: revisions 2007. Genet Med. 2008;10:294–300.
	 3.	 Miller DT, Lee K, Gordon AS, Amendola LM, Adelman K, Bale SJ, et al. Recommendations for reporting of secondary 

findings in clinical exome and genome sequencing, 2021 update: a policy statement of the American College of 
Medical Genetics and Genomics (ACMG). Genet Med. 2021;23:1391–8.

	 4.	 Owen MJ, Lefebvre S, Hansen C, Kunard CM, Dimmock DP, Smith LD, et al. An automated 13.5 hour system for scal-
able diagnosis and acute management guidance for genetic diseases. Nat Commun. 2022;13:4057.

	 5.	 McCormick KA, Calzone KA. The impact of genomics on health outcomes, quality, and safety. Nurs Manage. 
2016;47:23–6.

	 6.	 Fan J, Han F, Liu H. Challenges of Big Data analysis. Natl Sci Rev. 2014;1:293–314.
	 7.	 Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L, et al. The real cost of sequencing: scaling computation to 

keep pace with data generation. Genome Biol. 2016;17:53.
	 8.	 Wan Z, Hazel JW, Clayton EW, Vorobeychik Y, Kantarcioglu M, Malin BA. Sociotechnical safeguards for genomic 

data privacy. Nat Rev Genet. 2022;23:429–45.
	 9.	 Bonomi L, Huang Y, Ohno-Machado L. Privacy challenges and research opportunities for genomic data sharing. 

Nat Genet. 2020;52:646–54.
	 10.	 Rowhani-Farid A, Aldcroft A, Barnett AG. Did awarding badges increase data sharing in BMJ Open? A randomized 

controlled trial. R Soc Open Sci. 2020;7:191818.
	 11.	 Rowhani-Farid A, Allen M, Barnett AG. What incentives increase data sharing in health and medical research? A 

systematic review. Res Integr Peer Rev. 2017;2:4. https://​doi.​org/​10.​1186/​s41073-​017-​0028-9.
	 12.	 Donaldson DR, Koepke JW. A focus groups study on data sharing and research data management. Sci Data. 

2022;9:345.
	 13.	 Kaye J. The tension between data sharing and the protection of privacy in genomics research. Annu Rev Genom-

ics Hum Genet. 2012;13:415–31.

https://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase1/analysis_results/integrated_call_sets/
https://ftp-trace.ncbi.nih.gov/1000genomes/ftp/phase1/analysis_results/integrated_call_sets/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/20130606_sample_info.xlsx
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/technical/working/20130606_sample_info/20130606_sample_info.xlsx
https://zenodo.org/record/8106630/files/CLLGN_DATA_DIR_07_02_23_20_00_40.tar.bz2?download=1
https://zenodo.org/record/8106630/files/CLLGN_DATA_DIR_07_02_23_20_00_40.tar.bz2?download=1
https://github.com/harmancilab/COLLAGENE
https://github.com/harmancilab/COLLAGENE
https://github.com/harmancilab/COLLAGENE.git
https://zenodo.org/record/8125935
https://zenodo.org/record/8125935
https://doi.org/10.1038/gim.2013.73
https://doi.org/10.1186/s41073-017-0028-9


Page 35 of 38Li et al. Genome Biology          (2023) 24:204 	

	 14.	 Cheng F, Ma Y, Uzzi B, Loscalzo J. Importance of scientific collaboration in contemporary drug discovery and 
development: a detailed network analysis. BMC Biol. 2020;18:138.

	 15.	 Kerasidou A. The role of trust in global health research collaborations. Bioethics. 2019;33:495–501.
	 16.	 Eikey EV, Reddy MC, Kuziemsky CE. Examining the role of collaboration in studies of health information technolo-

gies in biomedical informatics: a systematic review of 25 years of research. J Biomed Inform. 2015;57:263–77.
	 17.	 Vlahou A, Hallinan D, Apweiler R, Argiles A, Beige J, Benigni A, et al. Data sharing under the general data protection 

regulation: time to harmonize law and research ethics? Hypertension. 2021;77:1029–35.
	 18.	 Wirth FN, Meurers T, Johns M, Prasser F. Privacy-preserving data sharing infrastructures for medical research: 

systematization and comparison. BMC Med Inform Decis Mak. 2021;21:242.
	 19.	 Scheibner J, Raisaro JL, Troncoso-Pastoriza JR, Ienca M, Fellay J, Vayena E, et al. Revolutionizing medical data shar-

ing using advanced privacy-enhancing technologies: technical, legal, and ethical synthesis. J Med Internet Res. 
2021;23:e25120.

	 20.	 Dove ES, Phillips M. Privacy law, data sharing policies, and medical data: a comparative perspective. In: Medical 
data privacy handbook. Cham: Springer International Publishing; 2015. pp. 639–678.

	 21.	 Gonzales S, Carson MB, Holmes K. Ten simple rules for maximizing the recommendations of the NIH data manage-
ment and sharing plan. PLoS Comput Biol. 2022;18:e1010397.

	 22.	 Bull S, Roberts N, Parker M. Views of ethical best practices in sharing individual-level data from medical and public 
health research: a systematic scoping review. J Empir Res Hum Res Ethics. 2015;10:225–38.

	 23.	 Bull S, Cheah PY, Denny S, Jao I, Marsh V, Merson L, et al. Best practices for ethical sharing of individual-level health 
research data from low- and middle-income settings. J Empir Res Hum Res Ethics. 2015;10:302–13.

	 24.	 Piasecki J, Cheah PY. Ownership of individual-level health data, data sharing, and data governance. BMC Med Eth-
ics. 2022;23:104.

	 25.	 Federer LM, Lu Y-L, Joubert DJ, Welsh J, Brandys B. Biomedical data sharing and reuse: attitudes and practices of 
clinical and scientific research staff. PLoS One. 2015;10:e0129506.

	 26.	 Crowson MG, Moukheiber D, Arévalo AR, Lam BD, Mantena S, Rana A, et al. A systematic review of federated learn-
ing applications for biomedical data. PLoS Digit Health. 2022;1:e0000033.

	 27.	 Mandl KD, Kohane IS. Federalist principles for healthcare data networks. Nat Biotechnol. 2015;33:360–3.
	 28.	 Sheller MJ, Edwards B, Reina GA, Martin J, Pati S, Kotrotsou A, et al. Federated learning in medicine: facilitating 

multi-institutional collaborations without sharing patient data. Sci Rep. 2020;10:12598.
	 29.	 Bonawitz K, Kairouz P, McMahan B, Ramage D. Federated learning and privacy. ACM Queue. 2021;19:87–114.
	 30.	 Sadilek A, Liu L, Nguyen D, Kamruzzaman M, Serghiou S, Rader B, et al. Privacy-first health research with federated 

learning. NPJ Digit Med. 2021;4:132.
	 31.	 Truong N, Sun K, Wang S, Guitton F, Guo Y. Privacy preservation in federated learning: an insightful survey from the 

GDPR Perspective. arXiv [cs.CR]. 2020. Available: http://​arxiv.​org/​abs/​2011.​05411.
	 32.	 Xu R, Baracaldo N, Zhou Y, Anwar A, Kadhe S, Ludwig H. DeTrust-FL: privacy-preserving federated learning in 

decentralized trust setting. arXiv [cs.CR]. 2022. Available: http://​arxiv.​org/​abs/​2207.​07779.
	 33.	 Warnat-Herresthal S, Schultze H, Shastry KL, Manamohan S, Mukherjee S, Garg V, et al. Swarm Learning for decen-

tralized and confidential clinical machine learning. Nature. 2021;594:265–70.
	 34.	 El Emam K, Jonker E, Arbuckle L, Malin B. A systematic review of re-identification attacks on health data. PLoS One. 

2011;6:e28071.
	 35.	 Raisaro JL, Tramèr F, Ji Z, Bu D, Zhao Y, Carey K, et al. Addressing Beacon re-identification attacks: quantification and 

mitigation of privacy risks. J Am Med Inform Assoc. 2017;24:799–805.
	 36.	 von Thenen N, Ayday E, Cicek AE. Re-identification of individuals in genomic data-sharing beacons via allele infer-

ence. Bioinformatics. 2019;35:365–71.
	 37.	 Shabani M, Marelli L. Re-identifiability of genomic data and the GDPR: assessing the re-identifiability of genomic 

data in light of the EU General Data Protection Regulation. EMBO Rep. 2019;20:e48316.
	 38.	 Homer N, Szelinger S, Redman M, Duggan D, Tembe W, Muehling J, et al. Resolving individuals contributing 

trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genet. 
2008;4(8):e1000167. https://​doi.​org/​10.​1371/​journ​al.​pgen.​10001​67.

	 39.	 Li Y, Jiang X, Wang S, Xiong H, Ohno-Machado L. VERTIcal Grid lOgistic regression (VERTIGO). J Am Med Inform 
Assoc. 2016;23:570–9.

	 40.	 Kim J, Li W, Bath T, Jiang X, Ohno-Machado L. VERTIcal Grid lOgistic regression with Confidence Intervals 
(VERTIGO-CI). AMIA Jt Summits Transl Sci Proc. 2021;2021:355–64.

	 41.	 Chen F, Mohammed N, Wang S, He W, Cheng S, Jiang X. Cloud-assisted distributed private data sharing. In: Pro-
ceedings of the 6th ACM conference on bioinformatics, computational biology and health informatics. New York: 
Association for Computing Machinery; 2015. pp. 202–211.

	 42.	 İnan A, Kaya SV, Saygın Y, Savaş E, Hintoğlu AA, Levi A. Privacy preserving clustering on horizontally partitioned 
data. Data Knowl Eng. 2007;63:646–66.

	 43.	 He C, Li S, So J, Zeng X, Zhang M, Wang H, et al. FedML: a research library and benchmark for federated machine 
learning. arXiv [cs.LG]. 2020. Available: http://​arxiv.​org/​abs/​2007.​13518.

	 44.	 Ziller A, Trask A, Lopardo A, Szymkow B, Wagner B, Bluemke E, et al. PySyft: a library for easy federated learning. In: 
Federated learning systems. Cham: Springer International Publishing; 2021. pp. 111–139.

	 45.	 Bouraqqadi H, Berrag A, Mhaouach M, Bouhoute A, Fardousse K, Berrada I. PyFed: extending PySyft with N-IID 
federated learning benchmark. In: Proceedings of the Canadian conference on artificial intelligence. 2021. https://​
doi.​org/​10.​21428/​59475​7db.​9c555​0b5.

	 46.	 Abadi M, Chu A, Goodfellow I, McMahan HB, Mironov I, Talwar K, et al. Deep learning with differential privacy. arXiv 
[stat.ML]. 2016. Available: http://​arxiv.​org/​abs/​1607.​00133.

	 47.	 Dwork C. Differential privacy. Int Colloq Automata Lang Program. 2006;4052:1–12.
	 48.	 Ryffel T, Trask A, Dahl M, Wagner B, Mancuso J, Rueckert D, et al. A generic framework for privacy preserving deep 

learning. arXiv [cs.LG]. 2018. Available: http://​arxiv.​org/​abs/​1811.​04017.

http://arxiv.org/abs/2011.05411
http://arxiv.org/abs/2207.07779
https://doi.org/10.1371/journal.pgen.1000167
http://arxiv.org/abs/2007.13518
https://doi.org/10.21428/594757db.9c5550b5
https://doi.org/10.21428/594757db.9c5550b5
http://arxiv.org/abs/1607.00133
http://arxiv.org/abs/1811.04017


Page 36 of 38Li et al. Genome Biology          (2023) 24:204 

	 49.	 Nasirigerdeh R, Torkzadehmahani R, Matschinske J, Baumbach J, Rueckert D, Kaissis G. HyFed: a hybrid federated 
framework for privacy-preserving machine learning. arXiv [cs.LG]. 2021. Available: http://​arxiv.​org/​abs/​2105.​10545.

	 50.	 Gentry C. A fully homomorphic encryption scheme. PhD Thesis. 2009. pp. 1–209.
	 51.	 Kim M, Lauter K. Private genome analysis through homomorphic encryption. BMC Med Inform Decis Mak. 

2015;15(Suppl 5):S3.
	 52.	 Kim T, Kwak H, Lee D, Seo J, Song Y. Asymptotically faster multi-Key Homomorphic Encryption from homomorphic 

gadget decomposition. Available: https://​eprint.​iacr.​org/​2022/​347.​pdf. Cited 19 Nov 2022.
	 53.	 Peikert C, Shiehian S. Multi-key FHE from LWE, Revisited. Theory of cryptography. Berlin, Heidelberg: Springer 

Berlin Heidelberg; 2016. p. 217–38.
	 54.	 Boneh D, Gennaro R, Goldfeder S, Jain A, Kim S, Rasmussen PMR, et al. Threshold cryptosystems from threshold 

fully homomorphic encryption. In: Lecture notes in computer science. Cham: Springer International Publishing; 
2018. pp. 565–596.

	 55.	 Mouchet C, Troncoso-Pastoriza J, Bossuat J-P, Hubaux J-P. Multiparty homomorphic encryption from ring-learning-
with-errors. Proc Priv Enhancing Technol. 2021;2021:291–311.

	 56.	 Blatt M, Gusev A, Polyakov Y, Goldwasser S. Secure large-scale genome-wide association studies using homomor-
phic encryption. Proc Natl Acad Sci U S A. 2020. https://​doi.​org/​10.​1073/​pnas.​19182​57117.

	 57.	 Paper: large-precision homomorphic sign evaluation using FHEW/TFHE bootstrapping. Available: https://​www.​
iacr.​org/​crypt​odb/​data/​paper.​php?​pubkey=​32480. Cited 19 Nov 2022.

	 58.	 Chen H, Chillotti I, Song Y. Multi-key homomophic encryption from TFHE. Available: https://​eprint.​iacr.​org/​2019/​
116.​pdf. Cited 19 Nov 2022.

	 59.	 Orlandi C. Is multiparty computation any good in practice? ICASSP, IEEE International Conference on Acoustics, 
Speech and Signal Processing - Proceedings. 2011. https://​doi.​org/​10.​1109/​ICASSP.​2011.​59476​91.

	 60.	 Hastings M, Hemenway B, Noble D, Zdancewic S. SoK: general purpose compilers for secure multi-party computa-
tion. In: 2019 IEEE Symposium on Security and Privacy (SP). San Francisco; 2019. p. 1220–37. https://​doi.​org/​10.​
1109/​SP.​2019.​00028.

	 61.	 Smajlović H, Shajii A, Berger B, Cho H, Numanagić I. Sequre: a high-performance framework for rapid development 
of secure bioinformatics pipelines. In: 2022 IEEE International Parallel and Distributed Processing Symposium 
Workshops (IPDPSW). Lyon; 2022. p. 164–5. https://​doi.​org/​10.​1109/​IPDPS​W55747.​2022.​00040.

	 62.	 Yao X, Huang C, Sun L. Two-stream federated learning: reduce the communication costs. In: 2018 IEEE Visual Com-
munications and Image Processing (VCIP). Taichung; 2018. p. 1–4. https://​doi.​org/​10.​1109/​VCIP.​2018.​86986​09.

	 63.	 Hou C, Thekumparampil KK, Fanti G, Oh S. FedChain: chained algorithms for near-optimal communication cost in 
federated learning. arXiv [cs.LG]. 2021. Available: http://​arxiv.​org/​abs/​2108.​06869.

	 64.	 Yang G, Mu K, Song C, Yang Z, Gong T. RingFed: reducing communication costs in federated learning on non-IID 
data. arXiv [cs.LG]. 2021. Available: http://​arxiv.​org/​abs/​2107.​08873.

	 65.	 Fawaz SM, Belal N, ElRefaey A, Fakhr MW. A comparative study of homomorphic encryption schemes using Micro-
soft SEAL. J Phys Conf Ser. 2021;2128:012021.

	 66.	 Chillotti I, Gama N, Georgieva M, Izabachène M. TFHE: fast fully homomorphic encryption over the torus. J Cryptol-
ogy. 2020;33:34–91.

	 67.	 Asharov G, Jain A, López-Alt A, Tromer E, Vaikuntanathan V, Wichs D. Multiparty computation with low commu-
nication, computation and interaction via threshold FHE. In: Advances in cryptology – EUROCRYPT 2012. Berlin, 
Heidelberg: Springer Berlin Heidelberg; 2012. pp. 483–501.

	 68.	 Chanyaswad T, Dytso A, Poor HV, Mittal P. MVG mechanism: differential privacy under matrix-valued query. arXiv 
[cs.CR]. 2018. Available: http://​arxiv.​org/​abs/​1801.​00823.

	 69.	 Blocki J, Blum A, Datta A, Sheffet O. The Johnson-Lindenstrauss transform itself preserves differential privacy. arXiv 
[cs.DS]. 2012. Available: http://​arxiv.​org/​abs/​1204.​2136.

	 70.	 Chen H, Wang C, Conomos MP, Stilp AM, Li Z, Sofer T, et al. Control for population structure and relatedness for 
binary traits in genetic association studies via logistic mixed models. Am J Hum Genet. 2016;98:653–66.

	 71.	 Son Y, Han K, Lee YS, Yu J, Im Y-H, Shin S-Y. Privacy-preserving breast cancer recurrence prediction based on homo-
morphic encryption and secure two party computation. PLoS One. 2021;16:e0260681.

	 72.	 Cho H, Wu DJ, Berger B. Secure genome-wide association analysis using multiparty computation. Nat Biotechnol. 
2018;36:547–51.

	 73.	 TrustGWAS: a full-process workflow for encrypted genome-wide association studies using multi-key homomor-
phic encryption and pseudo-random number perturbation. Github. Available: https://​github.​com/​melob​io/​Trust​
GWAS. Accessed 3 Aug 2023.

	 74.	 Nasirigerdeh R, Torkzadehmahani R, Matschinske J, Frisch T, List M, Späth J, et al. sPLINK: a hybrid federated tool as 
a robust alternative to meta-analysis in genome-wide association studies. Genome Biol. 2022;23:32.

	 75.	 Damgård I, Pastro V, Smart N, Zakarias S. Multiparty computation from somewhat homomorphic encryption. In: 
Lecture notes in computer science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. pp. 643–662.

	 76.	 Damgård I, Keller M, Larraia E, Pastro V, Scholl P, Smart NP. Practical covertly secure MPC for dishonest majority – or: 
breaking the SPDZ limits. In: Lecture notes in computer science. Berlin, Heidelberg: Springer Berlin Heidelberg; 
2013. pp. 1–18.

	 77.	 Foley P, Sheller MJ, Edwards B, Pati S, Riviera W, Sharma M, et al. OpenFL: the open federated learning library. Phys 
Med Biol. 2022;67:214001.

	 78.	 Moncada-Torres A, Martin F, Sieswerda M, Van Soest J, Geleijnse G. VANTAGE6: an open source priVAcy preserviNg 
federaTed leArninG infrastructurE for Secure Insight eXchange. AMIA Annu Symp Proc. 2020;2020:870–7.

	 79.	 Beutel DJ, Topal T, Mathur A, Qiu X, Fernandez-Marques J, Gao Y, et al. Flower: a friendly federated learning research 
framework. arXiv [cs.LG]. 2020. Available: http://​arxiv.​org/​abs/​2007.​14390.

http://arxiv.org/abs/2105.10545
https://eprint.iacr.org/2022/347.pdf
https://doi.org/10.1073/pnas.1918257117
https://www.iacr.org/cryptodb/data/paper.php?pubkey=32480
https://www.iacr.org/cryptodb/data/paper.php?pubkey=32480
https://eprint.iacr.org/2019/116.pdf
https://eprint.iacr.org/2019/116.pdf
https://doi.org/10.1109/ICASSP.2011.5947691
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/IPDPSW55747.2022.00040
https://doi.org/10.1109/VCIP.2018.8698609
http://arxiv.org/abs/2108.06869
http://arxiv.org/abs/2107.08873
http://arxiv.org/abs/1801.00823
http://arxiv.org/abs/1204.2136
https://github.com/melobio/TrustGWAS
https://github.com/melobio/TrustGWAS
http://arxiv.org/abs/2007.14390


Page 37 of 38Li et al. Genome Biology          (2023) 24:204 	

	 80.	 Roth HR, Cheng Y, Wen Y, Yang I, Xu Z, Hsieh Y-T, et al. NVIDIA FLARE: federated learning from simulation to real-
world. arXiv [cs.LG]. 2022. Available: http://​arxiv.​org/​abs/​2210.​13291.

	 81.	 Ryu M, Kim Y, Kim K, Madduri RK. APPFL: open-source software framework for privacy-preserving federated learn-
ing. In: 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW). IEEE; 2022. 
https://​doi.​org/​10.​1109/​ipdps​w55747.​2022.​00175.

	 82.	 Benaissa A, Retiat B, Cebere B, Belfedhal AE. TenSEAL: a library for encrypted tensor operations using Homomor-
phic Encryption. arXiv [cs.CR]. 2021. Available: http://​arxiv.​org/​abs/​2104.​03152.

	 83.	 Intel® Homomorphic Encryption Toolkit V1.1.0. Available: https://​www.​intel.​com/​conte​nt/​dam/​devel​op/​public/​
us/​en/​docum​ents/​intel-​he-​toolk​it-​white​paper.​pdf. Cited 19 Nov 2022.

	 84.	 Ibarrondo A, Viand A. Pyfhel. Proceedings of the 9th on workshop on encrypted computing & applied homomor-
phic cryptography. New York: ACM; 2021. https://​doi.​org/​10.​1145/​34743​66.​34869​23.

	 85.	 Carpov S, Gama N, Georgieva M, Jetchev D. GenoPPML – a framework for genomic privacy-preserving machine 
learning. In: 2022 IEEE 15th International Conference on Cloud Computing (CLOUD). IEEE; 2022. https://​doi.​org/​10.​
1109/​cloud​55607.​2022.​00076.

	 86.	 Boemer F, Kim S, Seifu G, de Souza FDM, Gopal V. Intel HEXL: accelerating homomorphic encryption with intel 
AVX512-IFMA52. arXiv [cs.CR]. 2021. Available: http://​arxiv.​org/​abs/​2103.​16400.

	 87.	 Boemer F, Kim S, Seifu G, D.M. de Souza F, Gopal V. Intel HEXL. In: Proceedings of the 9th on workshop on 
encrypted computing & applied homomorphic cryptography. New York: ACM; 2021. https://​doi.​org/​10.​1145/​
34743​66.​34869​26.

	 88.	 Rao S, Ghani M, Guo Z, Deming Y, Wang K, Sims R, et al. An APOE-independent cis-eSNP on chromosome 
19q13.32 influences tau levels and late-onset Alzheimer’s disease risk. Neurobiol Aging. 2018;66:178.e1-178.e8.

	 89.	 Yang M, Zhang C, Wang X, Liu X, Li S, Huang J, et al. TrustGWAS: a full-process workflow for encrypted GWAS using 
multi-key homomorphic encryption and pseudorandom number perturbation. Cell Syst. 2022;13:752-767.e6.

	 90.	 Paverd A, Martin A, Brown I. Modelling and automatically analysing privacy properties for honest-but-curious 
adversaries. Available: https://​www.​cs.​ox.​ac.​uk/​people/​andrew.​paverd/​casper/​casper-​priva​cy-​report.​pdf. Cited 31 
May 2023.

	 91.	 Emam KE, Dankar FK, Vaillancourt R, Roffey T, Lysyk M. Evaluating the risk of re-identification of patients from 
hospital prescription records. Can J Hosp Pharm. 2009;62:307–19.

	 92.	 Langer SG, Shih G, Nagy P, Landman BA. Collaborative and reproducible research: goals, challenges, and strategies. 
J Digit Imaging. 2018;31:275–82.

	 93.	 Sweeney L. Simple demographics often identify people uniquely. Carnegie Mellon University, Data Privacy 
Working Paper 3 Pittsburgh 2000; 2000. https://​priva​cytoo​ls.​seas.​harva​rd.​edu/​publi​catio​ns/​simple-​demog​raphi​
cs-​often-​ident​ify-​people-​uniqu​ely.

	 94.	 Sweeney L, Abu A, Winn J. Identifying participants in the personal genome project by name (a re-identification 
experiment). SSRN Electron J. 2013:1–4. https://​arxiv.​org/​abs/​1304.​7605.

	 95.	 Gymrek M, McGuire AL, Golan D, Halperin E, Erlich Y. Identifying personal genomes by surname inference. Science. 
2013;339:321–4.

	 96.	 Sankararaman S, Obozinski G, Jordan MI, Halperin E. Genomic privacy and limits of individual detection in a pool. 
Nat Genet. 2009;41:965–7.

	 97.	 Shringarpure SS, Bustamante CD. Privacy risks from genomic data-sharing beacons. Am J Hum Genet. 
2015;97:631–46.

	 98.	 Sang Y, Shen H, Tian H. Effective reconstruction of data perturbed by random projections. IEEE Trans Comput. 
2012;61:101–17.

	 99.	 Liu K, Kargupta H, Ryan J. Random projection-based multiplicative data perturbation for privacy preserving 
distributed data mining. IEEE Trans Knowl Data Eng. 2006;18:92–106.

	100.	 Cristiani V, Lecomte M, Hiscock T, Maurine P. Fit the joint moments: how to attack any masking scheme. IEEE 
Access. 2022;10:127412–27.

	101.	 Bourse F, Del Pino R, Minelli M, Wee H. FHE circuit privacy almost for free. In: Advances in cryptology – CRYPTO 
2016. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016. pp. 62–89.

	102.	 Li B, Micciancio D. On the security of homomorphic encryption on approximate numbers. In: Lecture notes in 
computer science. Cham: Springer International Publishing; 2021. pp. 648–677.

	103.	 Ducas L, Stehlé D. Sanitization of FHE Ciphertexts. In: Advances in cryptology – EUROCRYPT 2016. Berlin, Heidel-
berg: Springer Berlin Heidelberg; 2016. pp. 294–310.

	104.	 Paper: securing approximate homomorphic encryption using differential privacy. Available: https://​iacr.​org/​crypt​
odb/​data/​paper.​php?​pubkey=​32162. Cited 20 Nov 2022.

	105.	 Aumann Y, Lindell Y. Security against covert adversaries: efficient protocols for realistic adversaries. In: Theory of 
cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg; 2007. pp. 137–156.

	106.	 Pirinen M, Donnelly P, Spencer CCA. Including known covariates can reduce power to detect genetic effects in 
case-control studies. Nat Genet. 2012;44:848–51.

	107.	 Peng L, Kummerle C, Vidal R. On the convergence of IRLS and its variants in outlier-robust estimation. Available: 
https://​opena​ccess.​thecvf.​com/​conte​nt/​CVPR2​023/​papers/​Peng_​On_​the_​Conve​rgence_​of_​IRLS_​and_​Its_​Varia​
nts_​in_​Outli​er-​Robust_​CVPR_​2023_​paper.​pdf. Cited 1 Jul 2023.

	108.	 Wang Z, Lee J, Lei Q. Reconstructing training data from model gradient, provably. arXiv [cs.LG]. 2022. Available: 
http://​arxiv.​org/​abs/​2212.​03714.

	109.	 Kim M, Wang S, Jiang X, Harmanci A. SVAT: secure outsourcing of variant annotation and genotype aggregation. 
BMC Bioinformatics. 2022;23:409.

	110.	 Kuo T-T, Jiang X, Tang H, Wang X, Harmanci A, Kim M, et al. The evolving privacy and security concerns for genomic 
data analysis and sharing as observed from the iDASH competition. J Am Med Inform Assoc. 2022;29:2182–90.

	111.	 Cheon JH, Kim A, Kim M, Song Y. Homomorphic encryption for arithmetic of approximate numbers. In: Lecture 
notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinfor-
matics). 2017. pp. 409–437.

http://arxiv.org/abs/2210.13291
https://doi.org/10.1109/ipdpsw55747.2022.00175
http://arxiv.org/abs/2104.03152
https://www.intel.com/content/dam/develop/public/us/en/documents/intel-he-toolkit-whitepaper.pdf
https://www.intel.com/content/dam/develop/public/us/en/documents/intel-he-toolkit-whitepaper.pdf
https://doi.org/10.1145/3474366.3486923
https://doi.org/10.1109/cloud55607.2022.00076
https://doi.org/10.1109/cloud55607.2022.00076
http://arxiv.org/abs/2103.16400
https://doi.org/10.1145/3474366.3486926
https://doi.org/10.1145/3474366.3486926
https://www.cs.ox.ac.uk/people/andrew.paverd/casper/casper-privacy-report.pdf
https://privacytools.seas.harvard.edu/publications/simple-demographics-often-identify-people-uniquely
https://privacytools.seas.harvard.edu/publications/simple-demographics-often-identify-people-uniquely
https://arxiv.org/abs/1304.7605
https://iacr.org/cryptodb/data/paper.php?pubkey=32162
https://iacr.org/cryptodb/data/paper.php?pubkey=32162
https://openaccess.thecvf.com/content/CVPR2023/papers/Peng_On_the_Convergence_of_IRLS_and_Its_Variants_in_Outlier-Robust_CVPR_2023_paper.pdf
https://openaccess.thecvf.com/content/CVPR2023/papers/Peng_On_the_Convergence_of_IRLS_and_Its_Variants_in_Outlier-Robust_CVPR_2023_paper.pdf
http://arxiv.org/abs/2212.03714


Page 38 of 38Li et al. Genome Biology          (2023) 24:204 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

	112.	 Cheon JH, Han K, Kim A, Kim M, Song Y. A full RNS variant of approximate homomorphic encryption. Sel Areas 
Cryptogr. 2018;11349:347–68.

	113.	 Langlois A, Stehlé D, Steinfeld R. GGHLite: more efficient multilinear maps from ideal lattices. In: Advances in 
cryptology – EUROCRYPT 2014. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. pp. 239–256.

	114.	 Jiang X, Lauter K, Kim M, Song Y. Secure outsourced matrix computation and application to neural networks. In: 
Proceedings of the ACM conference on computer and communications security. 2018. https://​doi.​org/​10.​1145/​
32437​34.​32438​37.

	115.	 Dempster AP, Laird NM, Rubin DB. Maximum Likelihood from Incomplete Data Via the EM Algorithm. J R Stat Soc 
Series B Stat Methodol. 1977;39:1–22.

	116.	 Wang S, Kim M, Li W, Jiang X, Chen H, Harmanci A. Privacy-aware estimation of relatedness in admixed popula-
tions. Brief Bioinform. 2022;23. https://​doi.​org/​10.​1093/​bib/​bbac4​73.

	117.	 The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015:68–74. 
https://​doi.​org/​10.​1038/​natur​e15393.

	118.	 Fairley S, Lowy-Gallego E, Perry E, Flicek P. The International Genome Sample Resource (IGSR) collection of open 
human genomic variation resources. Nucleic Acids Res. 2020;48:D941–7.

	119.	 Harmanci A. Experimental datasets for COLLAGENE. Zenodo; 2023. https://​doi.​org/​10.​5281/​ZENODO.​81066​30.
	120.	 COLLAGENE: COLLAGENE is a toolbase for building secure protocols in collaborative studies. Github; Available: 

https://​github.​com/​harma​ncilab/​COLLA​GENE. Accessed 3 Aug 2023.
	121.	 Harmanci A. COLLAGENE code for publication. Zenodo; 2023. https://​doi.​org/​10.​5281/​ZENODO.​81259​35.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1145/3243734.3243837
https://doi.org/10.1093/bib/bbac473
https://doi.org/10.1038/nature15393
https://doi.org/10.5281/ZENODO.8106630
https://github.com/harmancilab/COLLAGENE
https://doi.org/10.5281/ZENODO.8125935

	COLLAGENE enables privacy-aware federated and collaborative genomic data analysis
	Abstract 
	Background
	Results
	Collaborative analysis framework
	Cloud-based key sharing service by KeyMaker
	Secure matrix processing library
	Network communication using shared space

	Qualitative comparison with other secure federation frameworks
	Federated genome-wide association testing (GWAS) and meta-analysis for binary traits
	Comparison of secure federated GWAS with plink2
	Time and memory requirements
	Software and hardware-level optimization of storage and ciphertext processing
	Comparisons with real data

	Comparison of meta-analysis of association testing results

	Discussion
	Conclusions
	Methods
	Considerations around encryption parameter selection
	Ciphertext expansion rates
	Secret key sharing protocol by KeyMaker
	Generation of DSKs

	Encryption and collective decryption protocol
	Data encryption
	Collective decryption
	Aggregation of partial decryptions

	Matrix representation and arithmetic
	Matrix encryption
	Matrix arithmetic
	Secure row-row multiplication (Fig. 2c)
	Matrix padding, scaling, and random matrix generation

	Network IO for exchanging intermediate encrypted matrices
	Federated GWAS for binary phenotypes
	Assignment of p-values

	Secure meta-analysis of GWAS results among multiple sites
	Estimation of per-thread throughput for sPLINK
	Data simulations
	Simulated genotype-phenotype datasets
	LOAD dataset


	Anchor 40
	Acknowledgements
	References


