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Abstract 

Diversity-generating and mobile genetic elements are key to microbial and viral evolu-
tion and can result in evolutionary leaps. State-of-the-art algorithms to detect these 
elements have limitations. Here, we introduce DIVE, a new reference-free approach 
to overcome these limitations using information contained in sequencing reads alone. 
We show that DIVE has improved detection power compared to existing reference-
based methods using simulations and real data. We use DIVE to rediscover and charac-
terize the activity of known and novel elements and generate new biological hypoth-
eses about the mobilome. Building on DIVE, we develop a reference-free framework 
capable of de novo discovery of mobile genetic elements.

Keywords: Horizontal gene transfer, Mobile genetic elements, Diversity-generating 
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Background
Recent estimates predict the existence of 1 trillion microbial species subject to large 
intraspecies variation [1, 2]. This genetic diversity results from multiple processes, such 
as point mutations, but is increasingly appreciated to be driven by mobile genetic ele-
ments (MGEs). These elements abruptly modify the genome and rapidly provide new 
phenotypes [3]. The rapid spread of these elements is causing a surge of antibiotic resist-
ance, considered an urgent public health crisis [4]. In addition, diversity-generating 
mechanisms (DGMs), such as diversity-generating retroelements and CRISPR-Cas sys-
tems, further contribute to microbial diversity. These mechanisms allow pathogens to 
adapt rapidly to changing environmental conditions and acquire resistance against bac-
teriophages. Nevertheless, current estimates point to > 40% of sequenced bacteria lack-
ing annotated CRISPR systems [5], suggesting other DGMs remain to be discovered.

State-of-the-art algorithms [6–11] to detect MGEs or DGMs have many limita-
tions, including reliance on reference genomes, assemblers, and heuristics, resulting in 
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bottlenecks and limiting the breadth of biological discoveries. Reference genomes are only 
available for relatively few organisms which are, in turn, constantly evolving. Assembly 
algorithms are computationally expensive, especially in the metagenomic setting, and fail 
to capture the inherent complexity in the bacterial and viral world [12]. Lastly, commonly 
used heuristics embedded in these algorithms impose assumptions that may not hold in 
general, such as the existence of target site duplications [8].

Alignment-free methods have shown great promise in several genomics problems, 
including transcript abundance estimation [13] and association mapping [14]. However, 
their applications have been limited and have not been used to discover genomic variation. 
We reasoned that reference-free methods could have much broader discovery power in this 
setting. This realization led us to develop DIVE, a novel reference-free algorithm designed 
to identify sequences that cause genetic diversification such as transposable elements, 
within MGE variability hotspots, or CRISPR repeats (Fig. 1a). DIVE operates directly on 
sequencing reads and does not rely on a reference genome. We designed DIVE from a sim-
ple observation: a mobile genetic element such as a transposon is defined by its bounding 
sequence or transposon arms A. These arms mechanistically enable mobility, but they also 
define the element in an algorithmic sense: the constant sequence A will be flanked by a 
highly diverse set of sequences if A is indeed the arm of an MGE (Fig. 1a). This principle 
applies to MGE magnets and other constant/variable sequence assemblies, such as CRISPR 
arrays. Thus, we reasoned it should be possible to discover such elements by identifying 
sequences A with highly diverse neighboring sequences.

DIVE makes the preceding logic into a statistical algorithm. We define k-mers anchor and 
target, both sequences of a predefined length k. DIVE aims to find anchors with neighbor-
ing (upstream or downstream) statistically highly diverse (target) sequences. DIVE pro-
cesses each read sequentially using a sliding window to construct target dictionaries for 
each anchor encountered in each read (Fig. 1b–c). For each anchor, DIVE uses the number 
of target clusters CN , constructed using the Jaccard similarity, to compute the probability 
that the observed target diversity is due to background variability, resulting in a set of p-val-
ues that are corrected for multiple hypothesis testing (Methods). Lastly, anchors are clus-
tered to reduce redundancies in the output, and a representative anchor (RA) maximizing 
the effect size α ≡ log(CN /E[CN |N ]) in each direction is picked (Additional file 1). Nota-
bly, α is a relative measure of the observed diversity compared to the expected diversity for 
a given coverage. This quantity can be used to prioritize CRISPR arrays with high diversity 
over those with less or highly mobilized over less mobile MGEs (Methods). Annotation and 
references are not used during any step of DIVE except as a post-facto option for inter-
pretation. Lastly, DIVE anchors can be extended using any assembly algorithm producing 
longer sequences which can be subsequently used to perform protein domain homology 
search and classification (Methods). Together, this enables reference-free de novo MGE dis-
covery, which is critical and currently unavailable to our knowledge.

Results
K‑mer variability cannot be explained by k‑mer abundance

We first evaluated the dependence of DIVE’s effect size α on the abundance of a k-mer in 
the reads by correlating it with the number of observations N, a proxy for the abundance 
of a k-mer. The lack of correlation indicates that k-mer prevalence alone does not predict 
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Fig. 1 DIVE algorithm and simulations. a The termini of transposable elements (TEs) shown in red (5′ end) 
and green (3′ end) will contain a diverse set of neighboring sequences as a result of different insertions in a 
genome. In turn, a highly variable set of target sequences will be observed for the anchors overlapping with 
the termini (red and green k-mers). Similarly, the sequences sorrounding cargo gene hotspots in integrative 
and conjugative elements (ICE) will be followed or preceded by a set of diverse sequences when the cargo 
genes vary across the analyzed sample. Lastly, CRISPR repeats will also contain a diverse set of neighboring 
sequences due to the diversity of spacer sequences. In this case, the diversity will be observed both upstream 
and downstream of the anchor as shown in the cartoon. b DIVE processes reads sequentially using a sliding 
window that moves along the sequencing reads, recording for each anchor the upstream and downstream 
k-mers (targets). For each anchor, a target dictionary is constructed where DIVE keeps track of the target 
sequences observed clustering them as they are observed. c Example of the cluster formation process based 
on Jaccard similarity (JS) for a given anchor (downstream case). The first target observed for the green anchor 
is a pink sequence. An entry is created for the green anchor in the anchor dictionary and a target dictionary is 
initialized for this anchor containing just the pink sequence. Then a yellow and a blue sequence are observed 
which, given the dissimilarity with respect to the previously observed sequences, result in a new entries in 
the target dictionary of the anchor. Finally, another pink sequence is observed, and given its similarity to the 
firstly observed pink sequence, the two are clustered together. With probability 50%, the newly observed 
pink sequence becomes the key in the target dictionary and the count for the pink cluster is increased. 
d Sensitivity curves for DIVE and MGEfinder in our simulations of ancestral and active MGEs (Additional file 1). 
In the ancestral element simulations we evaluate the performance considering different copy numbers, 
whereas in the active element we consider various levels of element activity. The sensitivity of DIVE in 
detecting MGE termini is higher than that of MGEfinder in both cases for most coverages, copy number, and 
activity level
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diversifying sequences as expected (Additional file  1: Fig. S1). We then used whole-
genome sequence (WGS) data from Escherichia coli and Vibrio cholerae to compare the 
proportion of annotated RAs between DIVE and a naive algorithm that randomly picks 
anchors based on prevalence (Methods, Additional file 2: Table S1–2). RAs reported by 
DIVE were strongly enriched relative to the naive algorithm for mapping to known ele-
ments (Additional file 2: Table S3), showing DIVE’s sensitivity is not a function of k-mer 
abundance.

DIVE has higher sensitivity than state‑of‑the‑art MGE termini detection methods

Next, we performed a set of simulations to systematically evaluate DIVE’s ability to iden-
tify MGE termini in two different scenarios. We considered the case where an MGE is 
not active and has multiple copies, and the case where a single copy of an active ele-
ment has been active within a single sample (Additional file 1: Fig. S2). DIVE achieved 
an area under the curve (AUC) of >99% in all scenarios with coverage > 30 X (Fig. 1d, 
S3, S4), even when the genomic divergence in the genome was considerable. We also 
compared the discovery power of DIVE to that of MGEfinder, a de novo MGE detection 
tool that outperformed the state of the art in a recent benchmark [8]. MGEfinder heav-
ily relies on heuristics, an assembly step involving all the reads, and requires a reference 
genome, which affects the algorithm’s sensitivity (Additional file 1). MGEfinder showed 
higher sensitivity than DIVE when CN ≤ 5 and the mutation and indel rate (MIR) was 
the lowest considered. Nevertheless, DIVE showed higher sensitivity than MGEfinder 
in all other scenarios involving different coverages, element activity, copy number, and 
genome variability levels (Additional file 1: Fig. S5–6). We also compared the two algo-
rithms using real Neisseria gonorrhoeae isolate WGS data using reads not mapping to the 
reference used by the authors (Additional file 1). DIVE reported RAs mapping to over 
100 known TEs [15] using data from 200 isolates (Additional file 2: Table S4), whereas 
MGEfinder reported 28 unique TEs (891 isolates), consistent with the lower sensitivity 
observed in our simulations (Fig.  2a). In addition to known TEs, DIVE reported RAs 
mapping to known CRISPR direct repeats and other MGEs.

De novo detection of CRISPR repeats

We next tested whether DIVE could identify CRISPR repeats de novo in E. coli using 
purely statistical features. Three hundred one of the RAs identified by DIVE mapped 
to known CRISPR repeats, with their associated targets mapping to 774 known spac-
ers in the CRISPR-Cas++ database [6] (Methods). In particular, of the 59 known E. 
coli repeats present in the data and meeting the minimum sample size ( Nmin = 25 ), 
DIVE detected 50 (85%). Additionally, DIVE detected eight repeats not annotated in 
E. coli (seven known in Enterobacteria and one in Proteobacteria) (Additional file 2: 
Table  S5). Of all categories, RAs mapping to CRISPR repeats showed the largest 
median effect size (Additional file 1: Fig. S1). They were further distinguishable from 
other RAs in that they belonged to anchor clusters with bidirectional significance, 
showed large effect size ( 0.5(αu + αd) ≥ 3.5 ) and appeared more than once within a 
read. Imposing these requirements restricted to ten RAs, perfectly mapping to six 
known E. coli CRISPR repeats (Additional file 2: Table S6), achieving 100% specificity. 
This observation suggests that these criteria may be used to identify CRISPR repeats 
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de novo. Using these criteria, we identified a novel CRISPR repeat in human gut 
metagenomic samples (Fig. 2c). This repeat was related but not identical to a known 
repeat in the CRISPR-Cas++ database, and formed an array with many spacers map-
ping to known phages. BLAST of the RA to the NCBI WGS database restricted to 
the bacterium Ruminococcus bromii gave perfect matches in a locus with CRISPR-
associated (Cas) genes, suggesting this RA constitutes a novel functional CRISPR DR 
(Additional file 1). We also used these criteria to identify six novel repeats in micro-
biota metagenomic samples (Methods). This set of repeats included five with 1–5 
mismatches to the closest repeat on CRISPR-Cas++ and one that did not match any 
known repeat (Additional file 1: Fig. S7). Three of the six repeats completely aligned 
to at least one bacterial genome on NCBI (BLAST). These repeats had varying copy 
numbers in the genomes, ranging from 1 to 12. In addition, we found annotated 
CRISPR Cas and Csd proteins nearby for two of the repeats. Interestingly, the array 
consisted of just 1–2 repeats in these cases, constituting mini-CRISPR arrays. This 
result shows that DIVE permits the discovery of CRISPR arrays lacking Cas genes in 
cis since it does not rely on heuristics such as nearby known Cas proteins, as well as 
arrays with low numbers of repeats.

DIVE provides additional information about CRISPR repeats beyond discovering 
them de novo, establishing a framework to estimate spacer diversity in CRISPR arrays 
as a function of available covariates when multiple samples are available. The target 
clusters produced by DIVE for a given anchor can be compared across different envi-
ronments or conditions and statistically modeled using a binomial generalized lin-
ear model to identify covariates driving the differences in target diversity (Methods). 
In the E. coli dataset, five RAs mapped to E. coli CRISPR repeats with spacer (tar-
get) diversity being a function of the isolation source (Fig. 2b, S8, S9). In addition to 
CRISPR, several other loci had high target diversity, including 77 RAs mapping to 
lambdoid phages, ICEs, TEs, and non-coding RNA (ncRNA), where target diversity 
varied as a function of the isolation source (Additional file 1: Fig. S8, S10, S11). Thus, 
this framework can enable the study of genetic diversity as a function of available 
covariates beyond CRISPR arrays.

(See figure on next page.)
Fig. 2 DIVE quantifies activity of mobile genetic elements and diversity-generating mechanisms. a Number 
of distinct transposable elements (TEs) detected by each method and number of reads containing an anchor 
mapping to TE detected by DIVE among unaligned reads in N. gonorrhoeae data from Durrant et al. (2020). 
Tn3 transposons TnXc5, TnTsp1, and TnArsp6 were most prevalent, whereas TnXAj417 and Tn3434 showed 
the largest median effect size (Additional file 2: Table S4). b Boxplot of the ratio of number of clusters to the 
number of observation (C/N) of the anchor sequence GTG TTC CCC GCG CCA GCG GGG ATA AAC called by DIVE 
in E. coli. The target diversity in four environments (shown in blue) is significantly larger than that of the rest 
of environments (Methods). c Putative direct repeat TAG TGT AAA TCT ATA AGG TAG TAA AAC detected by DIVE 
in the human gut metagenomic samples. The anchor reported by DIVE is two substitutions away from a 
known CRISPR direct repeat, and maps to an assembly (ctAYv1) containing a phage (orange) and a genomic 
segment (gray) having a canonical CRISPR array, derived from Ruminococcus bromii. d Alignment of all 
significant anchors from the V. cholerae analysis to the six available sequences of integrative and conjugative 
elements (ICEs) in the ICEberg database. The annotated genes for each SXT ICE are shown above the plot 
(yellow genes: integrases; red genes: antibiotic resistance; mauve genes: type IV secretion systems (T4SS)). 
Below the ICE, a heatmap shows the coverage of anchors with respect to the element. Anchors cluster in the 
neighborhood of known antibiotic resistance genes in all but ICEVchBan8, where they overlap with a known 
transposase
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Rediscovery of non‑coding RNA as MGE insertion hotspots

Next, we investigated whether DIVE could rediscover the role that non-coding RNA 
(ncRNA) loci play in the genome as insertion hotspots for MGEs [16, 17] (Additional 
file  1). For example, regions coding for tRNA genes are common insertion sites for 
phages and plasmids [18]. DIVE found substantial target diversity among RAs mapping 
to ncRNAs, including several examples where the target variability was a function of 
available covariates (Additional file 1: Fig. S11). In E. coli, DIVE called 712 unique RAs 
mapping to 84 different Rfam accessions annotated as tRNA genes (BLAST e< 0.01 ), 

Fig. 2 (See legend on previous page.)
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aligning to the ends of the genes (Additional file 2: Table S7). DIVE RAs also mapped 
to 82 Rfam accessions annotated as nucleoid-associated noncoding RNA 4 (naRNA4) 
genes (Additional file 2: Table S8). These genes are encoded in repetitive extragenic pal-
indrome (REP) regions, which have been previously observed at the recombination junc-
tions of lambda phages and described as hotspots for transposition events [19, 20]. DIVE 
also identified 264 RAs mapping (BLAST e< 0.01 ) to 26 Rfam accessions annotated as 
antisense RNA 5 (asRNA5) among V. cholerae isolates, four of which have a target diver-
sity significantly associated with available covariates, including date, country, and isola-
tion environment (Additional file 2: Table S9).

A reference‑free framework for MGE de novo discovery

DIVE can detect many kinds of sequence diversity. To specifically illustrate DIVE’s appli-
cation to reference-free de novo MGE discovery, we analyzed a subsample of seventy-
five M. tuberculosis isolates from the CRyPTIC consortium [21] and focused on de novo 
discovery of transposon sequences. Using the RAs reported by DIVE for each isolate, 
we reconstructed putative transposons by performing seed-based assembly on the RAs 
showing hyper-variability in a single direction since that is the expected behavior in 
MGE termini. Subsequently, we performed protein homology analysis on the resulting 
contigs, after translating them in silico, allowing us to identify sequences with transpo-
son-associated domains for each isolate (Fig. 3a; Methods). We clustered the resulting 
contigs using CD-HIT-EST [22] to collapse similar sequences from different isolates 
(>90% identity), producing 47 clusters (of which 37 were singletons) with sizes ranging 
from 236 to 20,000 bp. The contig assemblies showed good fidelity, as all BLAST align-
ments of the longest contig from each cluster gave near full-length matches in genomes 
from M. Tuberculosis complex with ≥99% identity. Furthermore, we observed different 
degrees of alignment multiplicity across the contigs, which we attribute to differences in 
copy number (Fig. 3b; Methods). Alignment to the database ISfinder [23] showed that 19 
clusters contained strong matches to insertion sequences (BLAST e ≤2e−75; Additional 
file 2: Table S10). Nine clusters matched IS6110 (BLAST e =0), a well-known insertion 
sequence in M. Tuberculosis commonly used to type strains (Fig. 3d). When we aligned 
the input seeds in the assembly step onto this element, we found they accumulated on 
the ends as expected (Fig.  3c). Eleven other clusters matched nine known transposon 
sequences in Mycobacteria, among which we completely assembled the sequences of 
ISMt1 (Fig. 3e), ISMt2, ISMt3, IS1553, and IS1538 (Additional file 2: Table S10). Among 
the remaining 28 clusters, BLAST of representative contigs against the NCBI database 
showed that 14 could be explained by other repetitive elements (lying near to insertion 
sequences), the major categories being PE/PPE genes [24] and REP13E12/HNH endo-
nuclease/DUF222 [25, 26] (Additional file 2: Table S10). To our knowledge, such a refer-
ence-free approach for de novo discovery of MGEs is not currently available.

Evidence of extensive sequence diversity in MGE cargo

State-of-the-art methods do not attempt to discover within-MGE variability, which 
is known to have a significant phenotypic impact [27]. We hypothesized that DIVE 
could discover hotspots of genetic rearrangements within MGEs. As an example, 
integrative and conjugative elements (ICEs) confer various properties to their hosts 
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through cargo genes, such as phage and antibiotic resistance [28]. In V. cholerae, SXT 
ICEs determine phage resistance, and deletion of hotspot five in SXT ICEs leads to 
susceptibility to ICP1 phage infection [27]. We hypothesized that DIVE could recog-
nize the boundaries of cargo gene hotspots in SXT ICEs in V. cholerae isolates. To test 
this hypothesis, we looked at the concentration of anchors around known SXT cargo 
hotspots. DIVE’s RAs clustered around the edges of cargo gene hotspots in five SXT 
ICE variants and a putative hotspot in an unannotated SXT ICE (Fig. 2d, Additional 
file  1). Extension of these anchors through an assembly algorithm could enable the 
study of differences in antibiotic resistance gene composition.

Fig. 3 De novo discovery of transposons. a DIVE anchors with variability in a single direction are chosen as 
putative transposon termini that can be used as seeds in an seeded assembly step. The resulting contigs are 
translated in silico to produce amino acid sequences. Lastly, protein domain homology can be performed 
on the resulting protein sequences to identify putative transposons, as well as other elements of interest. 
b Histogram of the number of alignment loci for each contig in at least a M. tuberculosis genome in the NCBI 
nucleotide database. c Pile up of anchors in IS6110 concentrating on the ends of the insertion sequence, 
which has a length of 1354 bp. d BLAST alignment of contig104 against a M. tuberculosis genome, mapping 
to two copies of the element inserted in opposite directions. This contig corresponds to the insertion 
sequence IS6110. e BLAST alignment of contig2 against a M. tuberculosis genome. This contig corresponds to 
the insertion sequence ISMt1 
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Unannotated genetic hyper‑variability in E. coli and V. cholerae

DIVE also discovered a large number of unannotated genetic hyper-variable regions 
in well-studied organisms like E. coli and V. cholerae. We filtered the unannotated RAs 
with at least a median α ≥ 2 and a sample prevalence > 5% , resulting in a shortlist of 
5 anchors among E. coli isolates and 29 among V. cholerae isolates (Additional file  2: 
Table  S11), and here, we highlight two examples (Additional file  1). In each case, raw 
reads containing the corresponding RA were multiple-sequence aligned [29] showing a 
sudden decay in consensus nucleotide composition on one end of the RA consistent with 
DIVE’s output. In the E. Coli example, the RA produces a unique match in the E. coli 
O157 reference proximal to the 3′ end of isomerase Arabinose 5-phosphate isomerase 
(kdsD), an intramolecular oxidoreductase that interconverts aldoses and ketoses, with 
target diversity that results in downstream non-synonymous mutations and indels in the 
enzyme (Fig. 4a). In V. cholerae, the RA produced a single match in at least one hundred 
NCBI V. cholerae accessions, mapping to the intergenic region between tRNA-Cys and 
the artP gene (arginine ABC transporter ATPase), with the former being in the direction 
of more target diversity. The target diversity observed was not well represented on the 
reference genomes available on NCBI, with > 30% of targets not blasting to any genome 
in either case (Fig. 4b). Furthermore, the sequence variability extended well beyond the 
range of the target sequence, spanning over 100 nt, including substitutions and indels 
altering the protein sequence. These unannotated hyper-variable regions warrant further 
investigation to identify the mechanism and functional consequences of their sequence 
variability.

Discussion
DGMs and MGEs are crucial to microbial evolution, driving evolutionary leaps and 
leading to the emergence of novel phenotypes such as antimicrobial resistance [3]. How-
ever, detecting these elements remains a challenge, as existing algorithms have several 
limitations such as reliance on reference genomes, assemblers, and heuristics, resulting 
in computational bottlenecks and limiting the scope of biological discoveries [12].

To overcome these limitations, we propose a new reference-free approach that uses 
information contained in sequencing reads alone and we demonstrate that this approach 
has improved detection power compared to state-of-the-art reference-based methods, 
such as MGEfinder [8], both through simulations and real data. We show that DIVE can 
detect MGE termini both for ancient and active elements. Moreover, DIVE can perform 
well even when there is important sequence divergence within the sample analyzed, in 
contrast to the state of the art. This is mainly due to the fact that DIVE can detect ele-
ments without relying on a reference genome, making it a valuable especially for organ-
isms with no reference genome.

DIVE can be used to discover DGMs de novo. Here, we used DIVE to rediscover 
CRISPR and identify novel repeats. In particular, in E. coli, we were able to rediscover 
85% of the repeats present in the data, and we discovered several novel repeats in 
metagenomic samples, including two constituting mini-CRISPR arrays. Furthermore, 
we illustrate how DIVE’s output can be used to establish associations between sequence 
variability and available covariate information. For example, we identified five CRISPR 
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repeats for which their spacer variability is a function of the isolation source in E. coli, 
and we identified other elements for which the variability was associated to the isola-
tion date and country in V. cholerae. Using DIVE, we also rediscovered ncRNA coding 
regions as MGE insertion hotspots [16, 17], including tRNA and naRNA4, in E. coli and 
V. cholerae isolates. We also found asRNA5 loci to show hyper-variability in V. cholerae, 
in some instances associated to the isolation date, country, and environment.

Combining DIVE with a seed-based assembler and a protein domain homology algo-
rithm, we propose a reference-free framework for de novo discovery of MGEs, which to 
the best of out knowledge is not currently available. We used this framework to redis-
cover the majority of known insertion sequences in M. tuberculosis. This framework 
could also be used to discover other types of MGEs, for example phages, by filtering the 
contigs for phage-associated protein domains. We also show how DIVE can be used to 

Fig. 4 DIVE discovers unexplained hyper-variability in E. coli and V. cholerae. a The anchor CCG CCA TAT CAC 
CTC CGT GAT GGT TGC showed the largest median effect among unannotated anchors in E. coli ( α = 4.22, 
prevalence = 5.28%). The anchor produces a unique match in E. coli O157 overlapping isomerase Arabinose 
5-phosphate isomerase (kdsD). The multiple sequence alignment (CLUSTALW) of a random selection of 20 
reads containing the unannotated anchor (below). The sequence consensus (black bars) is approximately 
100% upstream of the anchor (light blue), whereas downstream of the anchor the sequences found across 
the reads diverge significantly and introduce substitutions and indels. b The unannotated anchor CCG CCA TAT 
CAC CTC CGT GAT GGT TGC showed the largest median effect size among unannotated anchors in V. cholerae 
( α = 3.47, prevalence = 5.17%). The anchor produced a single match in at least one hundred NCBI accessions, 
all V. cholerae strains, mapping to the intergenic region between tRNA-Cys and the artP gene (arginine ABC 
transporter ATPase), with the former being in the direction of more target diversity. The multiple sequence 
alignment (CLUSTALW) of a random selection of 20 reads containing the unannotated anchor (below). 
The sequence consensus (black bars) is approximately 100% upstream of the anchor (light blue), whereas 
downstream of the anchor the sequences found across the reads diverge significantly and introduce 
substitutions and indels
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study MGE intra-variability in the context of SXT ICE elements in V. cholerae, which 
determinines phage resistance [27], where we rediscover cargo gene hotspots bounda-
ries. Extending the target sequences in this case would enable further analysis of the 
relationship between cargo gene content and antibiotic resistance phenotypes.

Lastly, DIVE can discover unannotated genetic hyper-variability hotspots in genomes. 
Here, we identify several loci in E. coli and V. cholerae presenting a sudden decay in 
sequence consensus. Furthermore, we highlight two examples where the decay occurs 
in coding regions leading to protein sequence alterations. Thus, we believe these loci 
warrant further investigation to identify the mechanism and functional consequences of 
their sequence variability.

A current limitation of DIVE is that it is designed to analyze a single sample at a time. 
Nevertheless, in certain contexts, it might be of interest to study differential variabil-
ity across groups, for example [30]. Furthermore, we envision that the assembly process 
could be better focused by leveraging information from other anchors. For example, the 
extension process could stop when another anchor, for which we observed downstream 
hyper-variability, is included in the contig.

Overall, we believe the development of DIVE provides a valuable contribution to the 
field of microbial genomics. The ability to detect DGMs and MGEs without relying on 
reference genomes, and the development of a de novo discovery framework for MGEs, 
expands the scope of biological discoveries that can be made.

Conclusions
DIVE offers a new reference-free paradigm for studying genetic bacterial evolution. It 
is a statistically-grounded algorithm, providing probabilities that can be used to assess 
the statistical significance of the discoveries and to control for false positives. DIVE 
offers higher sensitivity than state of the art methods both in simulations and real data. 
In addition, DIVE is a reference-free algorithm, which makes it an ideal candidate to 
study DGMs and MGEs in settings where a reference genome is not available. Further-
more, DIVE can be used in conjunction with seed-based assemblers and protein domain 
homology algorithms, enabling reference-free de novo discovery of MGEs. More impor-
tantly, given the generality of the principle, DIVE could enable the discovery of entirely 
novel biological mechanisms that diversify genomes. Overall, DIVE offers numerous 
new possibilities and research avenues to study bacterial evolution.

Methods
DIVE configuration

Here, we defined the k-mer size k to be 27, striking a balance between the memory 
requirements and the specificity of the sequence. DIVE also allows the user to introduce 
a gap in between the anchor and the targets of an arbitrary distance g, which here we set 
at g = 0 . We defined the minimum and the maximum number of targets per anchor to 
be Nmin = 25 and Nmax = 75 , respectively. Finally, to strike a balance between power 
and computational resources, we decided to limit the number of FASTQ records pro-
cessed per sample to 2.5M.
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Clustering targets on the fly

Upon observing a target k-mer, DIVE checks whether the k-mer produces a Jaccard 
similarity (JS) larger than a given threshold (0.2) with any of the previously observed 
targets. If so, the counter of that key is increased by one, and, with a probability of 
50% , the key is replaced by the newly observed target sequence. If no such target 
sequence exists in the dictionary, a new key is created, and its counter is initialized 
at one. To calculate the JS between two targets of length k = 27 , DIVE splits each one 
into smaller k-mers of length seven and computes the JS similarity between the two 
using

where Xi is the set of 7-mers in the ith target sequence.

Minimum and maximum N

For each anchor, DIVE requires a minimum number of targets observed Nmin to proceed 
with the downstream statistical analysis. In addition, since it might not be necessary to 
keep all the targets observed exhaustively, DIVE also imposes a maximum number of 
targets Nmax to be observed for each anchor. This allows the algorithm to skip anchors 
for which it has already observed Nmax targets in each direction and move faster along 
the FASTQ file. Here, we set these parameters to Nmin = 25 and Nmax = 75.

Minimum sample size prediction

To manage the memory burden and make the algorithm more efficient, we impose a 
minimum number Nmin of targets to be observed by the end of the FASTQ file. We let 
the total number of FASTQ records in the file be L and the number of observed records 
so far be l. Then, letting pmin=Nmin/L be the probability that we will observe a target 
sequence for any given anchor in a single read at least once, we compute the probability 
that, after l records observed, we have observed zero instances using

When this probability becomes smaller than 0.01 this implies that the rate we are observ-
ing targets for the anchor is too slow for us to observe Nmin by the end with 99% prob-
ability. Thus, DIVE does not accept new anchors into the anchor dictionary DA past this 
point. This condition allows us to discard new anchors that appear late in the FASTQ 
file, which will likely not produce enough data to test for hyper-variability, reducing 
an unnecessary burden for dictionary DA . Past the point where DIVE does not accept 
new anchors, DIVE also anticipates the number of targets that will be observed for each 
anchor remaining in the dictionary to decide whether a given anchor should remain in 
the dictionary DA . More precisely, the oracle used by DIVE computes the probability 
that we will observe at least Nmin targets by the end of the FASTQ file. Letting L be the 
total number of FASTQ reads, x the number of targets observed, and l the number of 
FASTQ reads processed so far, we can compute

(1)JS(X1,X2) =
X1 ∩ X2

X1 ∪ X2

(2)P[N = 0; l] = (1− pmin)
l
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where x/l is an empirical estimate of the probability of observing a target sequence for 
the given anchor at least once in a single read. However, we use the normal approxima-
tion to the binomial distribution for efficiency to compute this probability. The anchor 
is conserved in the dictionary DA if this probability is larger than 50% . Otherwise, the 
anchor is removed to reduce the size of the dictionary and speed up the algorithm.

Target sequence hyper‑variability

We let Xn be a binary random variable indicating whether we created a new key in the 
target sequence dictionary upon observing the nth target sequence for a given anchor 
and direction. Let Cn be the total number of target sequence clusters (keys) formed 
after observing the n-th target sequence. Then, assuming that Xn is independent and 
distributed according to a Bernoulli distribution with success probability pn , we have 
that CN ∼ PoissBin(p1, . . . , pN ) . Upon observing a set of trajectories {C1,C2, . . . ,CM} , 
the success probabilities {pn} can be estimated from the data by simply computing

This follows from the fact that we can assume that most of the anchors will not be nearby 
hyper-variable regions. Nevertheless, the following test will be more conservative if we 
happen to include anchors adjacent to hyper-variable regions by chance. For a given 
CN = c , we can compute the probability under the null hypothesis that the observed 
value c can be explained by the background biological (e.g., point mutations) and techni-
cal variability (e.g., sequencing errors) using

Note that the JS threshold determines the propensity of creating new target clusters. 
However, the null distribution of this test statistic is estimated from the dataset and 
thus is created for the specific JS threshold chosen by the user and the test will be valid 
regardless of the threshold. Nevertheless, this threshold needs to be small enough so 
that whenever there is true diversity new target clusters are formed so that differences 
can be observed. At the same time, having a very high JS threshold would result in very 
large target dictionaries since for every new sequence observed with a single nucleo-
tide difference a new target cluster would be created. Even though the hypothesis testing 
framework could handle this situation, this would require a lot of RAM memory since 
the target dictionary of every single anchor would grow substantially. In our work we 
found that a 0.2 threshold achieves a good compromise for k=27.

The resulting p-values are corrected using the Benjamini-Hochberg (BH) correction, 
resulting in a list of q-values that allow us to perform false discovery rate (FDR) control.

(3)P[N ≥ Nmin; x, l] =

L

n=Nmin

L
n

x

l

n
1−

x

l

L−n

(4)p̂n =

∑M
m=1 xm,n

∑M
m=1 1{Nm ≥ n}

(5)PH0 [CN ≥ c] =

N
∑

k=CN

1

N + 1

N
∑

l=0

R−lk
N
∏

n=1

(

1+
(

Rl − 1
)

p̂n

)
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Efficient Benjamini‑Hochberg correction

To correct for multiple hypothesis testing, we DIVE implements a memory-efficient ver-
sion of the Benjamini-Hochberg (BH) correction. DIVE records the total number of sta-
tistical tests performed m and drops non-significant cases ( p > 0.1 ). Then, it adjusts the 
remaining m′ p-values by using the following procedure. First, it ranks the remaining 
m′ p-values {pi} in ascending order {p(1), p(2), . . . , p(m′)} . Then, it computes the adjusted 
p-value using q(i) = p(i)m/i , and it reports the anchors for which q < 0.1 . Note that 
p-values computed for overlapping k-mers will be positively correlated. Nevertheless, 
the BH correction can still control the FDR under that form of dependence [31].

Clustering of anchors

Once the BH correction is applied to the computed p-values, DIVE uses DBSCAN 
(Levenshtein edit distance) to cluster the anchor sequences to avoid redundancies 
in the output. This is done using the function DBSCAN from the Python package 
sklearn with parameters eps=2 and min_samples=1. For each anchor cluster, a 
representative anchor is chosen for each direction (upstream and downstream) by 
picking the anchor that maximizes the effect size.

Effect size computation

The effect size is quantified using the log-fold change between the observed number 
of clusters CN  and the expected number of clusters for a given number of observed 
targets, as quantified by N, and it is given by

This quantity can be used to rank the results in terms of effect size and allows the user to 
filter out positives with small effect size and thus little biological interest.

Annotation of DIVE’s output

To validate our results, we used blastn-short 2.11.0 [32] to align the detected k-mers 
to a set of sequence databases stored in FASTA format comprised of CRISPR direct 
repeats (CRISPR-Cas++ [6]), transposable elements (Dfam [33]; TnCentral [15]), 
mobile genetic elements (ACLAME [34]), internal transcribed spacers 1 and 2 
(ITSoneDB [35], ITS2 [36]), integrative and conjugative elements (ICEberg [37]), and 
RNA sequence families of structural RNAs (Rfam [38]). Furthermore, we cross-ref-
erenced our results with Illumina adapter (obtained from TrimGalore) and UniVec 
sequences (NCBI) to remove technical artifacts. We classified each representative 
anchor (upstream and downstream) as unannotated if no BLAST produced e ≤ 0.25 , 
questionable if 0.01 ≤ e < 0.25 , and annotated if the lowest e ≤ 0.01 with the corre-
sponding annotation. Here, we chose this comprehensive set of annotation files. Nev-
ertheless, DIVE can take an arbitrary number of annotation files as input, and thus 
this step can be adjusted depending on the application.

(6)α(CN ) = log2
CN

E[CN | N ]
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Enrichment analysis of positive controls

A total of 100,000 27-mers were chosen at random among the entire E. coli dataset, 
allowing for repetition. We used BLAST to align this set of random anchors to the set 
of annotation files we used during our analysis. Then, we deemed anchors as unan-
notated and annotated if their BLAST e-values were e > 0.25 and e < 0.01 , respec-
tively. Then, we used the function fisher_exact Python’s scipy package to perform a 
two-sided Fisher’s exact test comparing the proportions of annotated to unannotated 
between this set of random anchors and the set of DIVE anchors.

Binomial regression

To find associations between the target variability and a set of covariates given by x , 
we use a binomial regression model such that C ∼ Binomial(N ; p(x)) , such that

For E. coli isolates, we used the isolation source as a covariate, whereas for V. cholerae 
isolates we used the environment, date, country, as well as first-order interactions.

A posteriori clustering of targets

To cluster the targets across samples a posteriori, we used a greedy clustering 
approach. We rank the targets based on their total count across the entire data-
set. Starting from the most prevalent target, we recruit all targets for which the 
JS > 0.2 and eliminate these from the list. We proceed with the most prevalent tar-
get sequence remaining in the list the same way, and we repeat this procedure until 
no sequences are left. The number of times we repeat this procedure defines the 
number of across-sample target sequence clusters.

Anchor extension and protein domain homology

In a given sample, DIVE anchors can be extended using an assembly algorithm to 
produce a longer sequence of interest. To that end, we used SSAKE (v4.0) in the 
seed mode iteratively (-p 1 -m 20 -o 1 -c 1 -w 5 -r 0.51 -i 0). In each iteration, 
SSAKE produced a set of contigs that where used in the next iteration as seeds. In 
our analysis, we performed ten iterations. This process results in a set of extended 
anchors that we subsequently translate in silico, resulting in a set of amino acid 
sequences that can be used as input to protein domain homology search algorithms. 
To that end, we used HMMER (v3.3.2) in conjunction with Pfam35 in the default 
setting. In our example, we search for transposon-associated domains since we 
are interested specifically in the detection of such elements. However, the list of 
domains is application-specific and other elements could be prioritized by using the 
corresponding protein domain list.

(7)p(x) =
1

1+ e−βT
x
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