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Abstract 

Cell-type composition is an important indicator of health. We present Guided Topic 
Model for deconvolution (GTM-decon) to automatically infer cell-type-specific gene 
topic distributions from single-cell RNA-seq data for deconvolving bulk transcriptomes. 
GTM-decon performs competitively on deconvolving simulated and real bulk data 
compared with the state-of-the-art methods. Moreover, as demonstrated in decon-
volving disease transcriptomes, GTM-decon can infer multiple cell-type-specific gene 
topic distributions per cell type, which captures sub-cell-type variations. GTM-decon 
can also use phenotype labels from single-cell or bulk data to infer phenotype-specific 
gene distributions. In a nested-guided design, GTM-decon identified cell-type-specific 
differentially expressed genes from bulk breast cancer transcriptomes.
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Background
Cell-type composition and its relative proportions in a tissue is an indicator of 
health. For example, several studies have shown that type 2 diabetes is characterized 
by reduced beta cell mass and number in pancreatic tissue [1, 2]. In acute myeloid 
leukemia (AML), cell-type abundance variation between patients was indicative of 
degree of malignancy [3]. Experimental approaches such as fluorescence-activated 
cell sorting (FACS) and immunohistochemistry (IHC) are used to elucidate cell-
type composition of biological samples. Single-cell RNA-sequencing (scRNA-seq) 
technology enables high-resolution cell-type-specific (CTS) transcriptome analysis, 
providing molecular insights into the cell-type composition, cell-state behavior, and 
cell-type heterogeneity [4–7]. In the context of cancer research, scRNA-seq has led to 
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identification of distinct cancer cell states. These are shown to occur across a range of 
cancer types and are implicated in tumor progression, with high cell-type heterogene-
ity associated with poor prognostic outcomes [8, 9]. However, challenges such as high 
cost, lower throughput, and difficulties in dissociation of cell types in solid samples 
make it hard to apply these experimental approaches at the patient population scale.

On the other hand, bulk RNA-seq has been the workhorse behind transcriptome 
research over the past decades. Its falling costs and ease of experimental setup make it 
an attractive tool to work with any organism [10]. Several databases host tremendous 
amounts of bulk RNA-seq data such as Gene Expression Omnibus (GEO) [11, 12], 
Genotype-Tissue Expression (GTEx) [13], and The Cancer Genome Atlas (TCGA), a 
repository of bulk RNA-seq data for more than 11,000 primary cancer samples [14]. 
However, bulk RNA-seq data are mixture of gene expression profiles in the tissue. 
Computational approaches have been developed to deconvolve these bulk RNA-seq 
profiles into their constituent cell types in the form of cell-type proportions, since 
these are substantially cheaper and easier to obtain than conducting scRNA-seq 
experiments. Moreover, deconvolving the bulk data into constituent cell-type com-
ponents can not only yield the cell-type proportions facilitating clinical investigation 
but also enable high-resolution differential analysis of gene expression. Studying the 
differentially expressed genes at the cell-type or cell-state level can help uncover gene 
regulatory programs that drive different tissue states. Many deconvolution methods 
were developed to this end.

Most of the deconvolution approaches require a set of gene markers for each cell 
type of interest. These marker genes are derived from expert knowledge or differential 
expression analysis of purified samples of specific cell types. Early methods that lever-
age these marker genes could achieve good performance in deconvolving mixtures with 
highly distinct cell types such as blood [15]. CIBERSORT improved on these approaches 
by incorporating a feature selection step, where genes are adaptively selected from the 
signature matrix based on the input bulk RNA-seq data [16]. It uses a linear support vec-
tor regression (SVR) to delineate closely related cell types such as leukocytes. BSEQ-sc 
combined with CIBERSORT was an early method that used scRNA-seq data as a refer-
ence for bulk deconvolution [17]. CIBERSORTx also uses scRNA-seq as reference pro-
files, along with improved normalization schemes to suppress cross-platform variation, 
and an adaptive noise filter to eliminate unreliably estimated genes [18]. MuSiC adopts 
a weighted non-negative least-squares regression approach and addresses the issue 
of cross-subject heterogeneity as well as within-cell-type variation of gene expression 
[19]. EPIC accommodates user-defined reference profiles to account for the presence 
of uncharacterized cell types in the target bulk samples [20]. Bisque learns gene-spe-
cific transformations of the bulk data based on the single-cell reference profiles and the 
corresponding cell proportions to account for their differences [21]. BayesPrism uses 
Bayesian inference to model scRNA-seq data jointly with bulk RNA-seq data to infer 
cell-type composition and their proportions [22]. The joint modeling overcomes biases 
that may arise due to technical and biological differences. Beyond cell-type deconvolu-
tion, some recently developed methods can estimate CTS gene expression from the bulk 
samples [23, 24]. However, these methods rely on an external cell-type deconvolution 
method like those aforementioned ones and do not utilize or model the distribution of 
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the scRNA-seq reference data to properly express statistical uncertainty while leveraging 
their information richness.

In this study, we present a guided topic model for cell-type deconvolution (GTM-
decon). As an overview of our analysis, we first benchmark GTM-decon on deconvolv-
ing simulated and real bulk data in comparison with the state-of-the-art deconvolution 
methods. We then train GTM-decon on pancreatic and breast scRNA-seq datasets to 
deconvolve bulk RNA-seq datasets from pancreatic and breast tissues, respectively. 
When applied to deconvolving cancer bulk transcriptomes, GTM-decon successfully 
identifies the cell type of origin for pancreatic and breast cancer datasets. Interestingly, 
the results for human pancreatic cancer are recapitulated using the CTS topics inferred 
from the mouse pancreas scRNA-seq data, postulating cross-species deconvolution as 
an option where it is difficult to obtain scRNA-seq data due to technical or ethical chal-
lenges. Furthermore, our GTM framework also enables the inference of phenotype-spe-
cific topic distributions from bulk RNA-seq data by using the phenotypes (e.g., breast 
cancer subtypes) from single cell or bulk RNA-seq data as a guide for the topic inference. 
We leverage this capability to distinguish basal from estrogen receptor (ER) positive 
(ER +) breast tumor samples, not only achieving high classification accuracy but also 
identifying the genes and pathways that segregate the cancer subtypes. By fine-tuning 
the inferred CTS topic distributions guided by the breast cancer subtypes, we decon-
volve the average differential gene expression into CTS expression changes, thereby ena-
bling discovery of the subtype-specific aberrance of the gene regulatory programs.

Results
GTM‑decon model overview

In GTM-decon, we have made three methodological contributions. As our first and the 
main contribution, GTM-decon is a marker-free method and automatically infers the 
contribution of each gene for each cell type in the form of CTS categorical distribu-
tions, which we define as “topics” [25], without using marker gene information. Each 
CTS topic distribution is related to the transcriptional rate of each gene for each cell 
type. For instance, B cells have higher transcription rate for CD19 compared to alpha 
cells, which have relatively high rate for FXYD5. Conceptually, we consider genes as 
vocabulary and cells as documents whose word tokens (i.e., scRNA-seq reads) are sam-
pled from the vocabulary with the CTS topic probabilities. We incorporate the observed 
cell-type labels for each cell in the form of topic prior to guide the inference of CTS 
topic mixture, which reflects the uncertainty of the noisy cell-type label. Specifically, the 
cell-type mixture for cell m follows a K-dimensional asymmetric Dirichlet distribution, 
θm ∼ Dir(αm + 0.1) , with the hyperparameter αm,k set to a relatively high value (i.e., 
0.9 by default) given the cell-type label ym = k ; the rest of the K-1 αm,k′ values, where 
ym  = k′ , are set to a relatively low values (i.e., randomly sampled from a range between 
0.1 and 0.01). As a result, each topic is automatically identified with exactly one cell type. 
This differs from the standard topic model, where topics are not directly associated with 
any known concept and require post hoc manual inspection based on their top scoring 
words to interpret them. Given the CTS gene distributions, we can infer the CTS topic 
mixtures from the bulk transcriptomes, which are the desired cell-type mixing propor-
tion in the context of deconvolution (Fig. 1a).
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Fig. 1  GTM-decon overview. a Inferring cell-type-specific (CTS) topics from scRNA-seq reference data. 
In brief, GTM-decon infers CTS topics from scRNA-seq data by using a guided topic modeling approach 
utilizing cell-type labels from the reference. High prior values are assigned to the topic corresponding to the 
cell type, and lower prior values are assigned to the other topics, enabling it to learn a genes-by-CTS topics 
matrix, with each topic anchored to a specific cell type. This matrix is used to infer cell-type proportions in 
bulk RNA-seq data using standard topic modeling, capturing variations in cell type proportions between 
healthy and diseased tissue. The probabilistic graphical model (PGM) diagram depicts the data generative 
process assumed by the proposed guided topic model. Suppose there are K cell types in the scRNA-seq data. 
For each cell indexed by m ∈ {1, . . . ,M} , we use K-dimensional Dirichlet-distributed cell-type topic mixture 
θm ∼ Dir(αm) to represent the statistical uncertainty of the noisy cell-type label ym ∈ {1, . . . , K} . Specifically, 
we clamp the Dirichlet hyperparameter αm,ym of the Dirichlet variable to a relatively high value while setting 
the rest of the values of αm,k′ ( ym  = k′ ) to relatively low values (i.e., 0.9 and [0.01, 0.1], respectively in the 
cartoon illustration of M = 8 cells and K = 3 cell types). The non-zero prior values for the K – 1 unobserved 
cell types allow the cell-type mixture variable θm to have non-zero density over those cell types as dictated 
by the scRNA-seq data likelihood and therefore account for potentially mislabeled cell types. Suppose there 
are in total Nm reads in cell m . Each scRNA-seq read i ∈ {1, . . . ,Nm} is assumed to be originated from one of 
the K CTS topics with the categorical rates fixed to the cell-type mixture, i.e., zi,m ∼ Cat(θm) . Given cell-type 
topic assignment zi,m ∈ {1, . . . , K} , the ith read is then mapped to one of the G genes as indexed by xi,m with 
categorical rates set to be φzi,m , which itself is a G-dimensional Dirichlet variable of flat hyperparameter β , i.e., 
xi,m ∼ Cat(φzi,m

) . To infer the latent variables, namely cell-type mixture proportion θm ∼ Dir(α) , CTS topic 
assignments for each read zi,m , and CTS topic distributions � , we employ an efficient collapsed variational 
Bayes algorithm as detailed in the “Methods” section. The genes-by-CTS-topic � matrix estimated from the 
scRNA-seq reference then serves as a template when it comes to infer the cell-type mixing proportions 
θj of a bulk RNA-seq sample j using essentially the same inference algorithm as in the scRNA-seq data 
modeling except for having a flat hyperparameter for the prior (e.g., αk = 1∀k by default) while fixing �̂ 
and only inferring the expected total reads allocated for each CTS topics (i.e., Eq[n.,j,k ] = Eq[

∑
i[zi,j = k]

]). b Phenotype-guided modeling of bulk RNA-seq data. GTM-decon can also use phenotype labels as a 
guide for topic inference to model sparsified bulk transcriptomes in a disease study. In this design, instead 
of having each row as a cell and each column as a cell type, each row corresponds to a bulk sample and 
each column to a phenotype class. For each subject j, we set the topic hyperparameter αj,yj based on the 
noisy phenotype label yj of the subject. The inference algorithm is the same as in modeling the scRNA-seq 
reference data. Given a test subject j′ , the inferred topic mixture θj′ represents the phenotypic probabilities 
of the subject. c Nested-guided topic model for detecting cell-type-specific differentially expressed genes 
between phenotypes. In this nested design, we treat the phenotype as level 1 and the cell types as level 
2. The pretrained genes-by-CTS-topic distribution �̂ learned from panel a are used to initialize the topic 
distributions for each phenotype in a sparsified bulk transcriptome disease study. As illustrated in the cartoon, 
for example, for 2 phenotypes and 3 cell types, there are 6 topics. GTM-decon then fine-tunes the combined 
cell-type-specific topic distribution by running the same algorithm described in panel b. The resulting 
topic distributions reflect the phenotypic influences on CTS gene distributions, which are the statistics for 
conducting differential expression analysis in a case–control study design



Page 5 of 32Swapna et al. Genome Biology          (2023) 24:190 	

As our second contribution, we extend GTM-decon to infer multiple topics per cell 
type. The rationale is that cells of the same cell type can manifest in different cell states 
due to the changes of environments or stimuli. As a result, these cells may exhibit 
expression patterns that are different from the canonical CTS expression pattern. While 
there are sophisticated hierarchical topic models involving Dirichlet Processes [26], we 
took a simple and elegant design. Specifically, we extend the basic GTM-decon model to 
infer sub-cell-type topics by dedicating multiple topics per cell type (Additional file 1: 
Fig. S1). As our third contribution, we extend GTM-decon to infer phenotype-specific 
(PTS) topic distributions using the phenotype label (e.g., cancer subtypes or cancer 
stages) available in the single-cell or bulk transcriptome data as a guide to detect PTS 
gene expression (Fig. 1b). We then further extend it to a nested-guided topic model to 
conduct CTS differential expression analysis in the single-cell or bulk patient cohort 
data (Fig. 1c). To that end, we use the phenotype labels as the level-1 guide and the cell-
type labels as the level 2 guide. Through the same guided topic mechanism, GTM-decon 
updates the CTS topic distributions under each phenotype by fitting the data likelihood 
of the transcriptomes from either the single-cell or bulk data. The algorithmic details for 
the 3 contributions were described in “Methods.”

Experimentation of data preprocessing and GTM‑decon model configurations

We experimented gene selection, data normalization, hyperparameter settings, and 
number of topics per cell type. We find that GTM-decon works the best with raw read 
count data using all genes (Additional file 1: Figs. S2 and S3), and it is fairly robust to dif-
ferent hyperparameter values for the topic mixture prior (Figs. S4-S6) and the CTS topic 
prior values (Fig. S7). In general, GTM-decon confers better deconvolution performance 
using multiple topics per cell type than the baseline GTM-decon with one topic per cell 
type (Fig. S8). Please refer to Additional file 1 Section S1-S5 for more details.

Evaluation of deconvolution of simulated bulk from scRNA‑seq data

To quantitatively benchmark GTM-decon, we compared it against five existing deconvo-
lution methods, namely Bisque [21], Bseq-sc [17], CIBERSORTx [18], MuSiC [19], and 
BayesPrism [22] on artificially simulated bulk RNA-seq datasets from the scRNA-seq 
data (Additional file 1: Table S1). To simulate bulk data, three human scRNA-seq data-
sets (Pancreas—E-MTAB-5061, Breast Tissue with GEO accession number GSE113197, 
and Rheumatoid Arthritis (RA) Synovium—SDY998), generated using different technol-
ogies (Smart-seq2, 10 × Genomics Chromium, CEL-Seq2) were used. The artificial bulk 
data for each individual was constructed by summing up the counts for each gene from 
all cells in that individual [19]. This allowed us to use the cell-type proportions from the 
single-cell data as the ground-truth proportions. Artificially constructed bulk data from 
scRNA-seq data appear to be a good surrogate of the real bulk data, as observed from the 
excellent correlation of the log-transformed artificial counts with the log-transformed 
counts from real bulk data for each gene (Additional file 1: Fig. S9). We performed leave-
one-out cross-validation (LOOCV), to avoid any leakage from training data, and used 
the single-cell RNA-seq of the left-out individual to simulate the bulk RNA-seq (i.e., the 
total read counts of each gene for that sample) as the validation data and its cell-type 
proportions as the ground-truth mixing proportions. GTM-decon performs better than 
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other models on the Pancreas and Breast Tissue datasets in terms of both Spearman 
Rank-based correlation (Spearman R) and Cross Entropy and conferred comparable per-
formance on the RA Synovium dataset (Additional file 1: Fig. S10). Notably, GTM-decon 
achieves smaller variance for both the pancreatic and breast tissue datasets. We further 
ascertained the qualities of the predicted cell-type proportions of each method against 
the ground-truth cell-type proportions (Fig. S10a) and observed that GTM-decon reca-
pitulates cell-type proportions well for pancreatic (Fig. S10b), breast tissues (Fig. S10c), 
and RA synovium dataset (Fig. S10d).

Evaluation of deconvolution of real bulk with ground‑truth cell‑type proportions

We also benchmarked GTM-decon on 5 real bulk RNA-seq data with known ground-
truth cell-type proportions from 3 different tissue types (Additional file  1: Table  S1 
and S2; “Methods”). We evaluated deconvolution performance using Spearman R 
and Root Mean Square Error (RMSE), by comparing the inferred proportions for the 
matching cell types against the ground-truth proportions for each sample. GTM-
decon conferred on-par or superior performance compared to the existing meth-
ods for all the datasets (Fig. 2a left). In particular, GTM-ALL performed the best for 
deconvolving PBMC-1 and PBMC-2. For deconvolving whole blood (WB), GTM-
HVG performed the best in terms of both metrics and MuSiC is a close second. While 
deconvolving bulk RNA-seq from the prefrontal brain region from ROSMAP dataset, 
all methods except Bseq-sc and GTM-HVG performed reasonably well. It is possible 
that the HVG are the genes having high variance within the cell types, which caused 
the poor performance of GTM-HVG on this dataset. For the pancreatic dataset with 
the paired single-cell and bulk RNA-seq data collected from the same individuals, 
GTM-HVG performs the best with GTM-PP as the runner-up in terms of Spearman 

(See figure on next page.)
Fig. 2  Evaluation of deconvolution performance on real bulk data. a Evaluation of sample deconvolution. 
We evaluated the deconvolution performance of GTM-decon using all genes (GTM-ALL), preprocessed genes 
(GTM-PP), and highly variable genes (GTM-HVG) with five SOTA methods—CIBERSORTx, MUSIC, BSEQ-sc, 
BISQUE, BayesPrism. The 3 immune bulk data and the brain data were deconvolved using independent 
references of a similar tissue, while the pancreas bulk data is deconvolved using single-cell reference from the 
same individuals in a leave-one-out cross-validation (LOOCV) manner. The bulk labeled PBMC-1 corresponds 
to SDY67 dataset, PBMC-2 corresponds to S13 cohort, whole blood to whole blood dataset, and prefrontal 
cortex to ROSMAP dataset (Additional file 1: Table S2). For each test bulk sample, Spearman correlation and 
root mean square error (RMSE) were computed between its ground truth and predicted cell-type proportions 
by each method. The box and whiskers in each boxplot indicate the 25–75% quartile and min–max of the 
evaluation scores over all samples in a dataset, respectively. The boxplot on the left displays the evaluation 
across cell types per sample, and the boxplot on the right displays the evaluation across samples per cell 
type. b Heatmaps comparing the cell-type-specific deconvolution performance of GTM-decon against 
existing methods on 5 different real bulk datasets with known ground truth mixing proportions. The cell 
types are ordered from most to least prevalent in the bulk data (green barplots in first row indicate average 
proportion for each cell type in the bulk data). The middle row shows the Pearson correlation coefficient 
between the predicted and known cell-type proportions. The lower row shows the inverse RMSE (higher 
is better, scaled between 0 and 1), per cell type per dataset. The barplots on the right show the average 
performance over all cell types for each method. For each cell type, Pearson correlation and RMSE were 
computed between its ground truth and predicted cell-type proportion for each dataset by each method. c 
Cell-type prediction accuracy of the purified immune bulk RNA-seq samples. The two panels indicate the use 
of different independent immune references, for the deconvolution of two purified bulk immune datasets 
(Accession Numbers: GSE107011, GSE64655). For each purified bulk sample, the cell type corresponding to 
the highest inferred cell-type proportion by each method was used as the predicted cell type. The barplots 
show the prediction accuracy as the percentage of the correctly predicted samples
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R, and RMSE are similar among all methods except MuSiC with notably higher error. 
In summary, GTM-ALL performed the best in 3 datasets; GTM-HVG performed the 
best in the other two datasets, where the CTS gene expression might exhibit more 
distinct inter-cell-type variability. Furthermore, we also evaluated the deconvolution 

Fig. 2  (See legend on previous page.)
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performance for separate cell types in terms of the correlation between ground-truth 
proportions and predicted proportions for each cell type across samples. Overall, 
GTM-decon conferred competitive performance with the runner-up method being 
BayesPrism (Fig. 2a right and b; Additional File 1: Figs. S11-S15). Therefore, the results 
suggest the general effectiveness of topic modeling in cell-type deconvolution and the 
additional benefits conferred by GTM-decon due to its algorithmic innovations.

Additionally, we evaluated the deconvolution accuracy for purified bulk RNA-seq data 
of immune cells (GEO accession numbers: GSE107011 and GSE64655; Table S2) using 
two different independent references (HBC and PBMC2; Table S1). Overlapping cell 
types were used to evaluate the performance on the purified bulk samples, whereby the 
highest deconvolution proportion was used as the predicted cell-type label for comput-
ing the prediction accuracy. GTM-HVG achieved the highest accuracy across all four 
experiments (Fig. 2c). Moreover, since some cell types present in the bulk are missing 
in the scRNA-seq reference, a robust model should either find the closest-matched cell 
types or properly express statistical uncertainty in this situation. To this end, we exam-
ined the inferred cell proportions of the purified bulk for those missing cell types. Plas-
mablast samples are present among the purified PBMC samples (GSE107011) but absent 
in the HBC reference (Additional file  1: Fig. S16a). GTM-decon assigned Plasmablast 
samples with high cell-type proportions for B-cell, a cell type that shares Plasmablast 
cell lineage. The inferred cell-type proportions for Basophils purified samples were 
split between HSPCs (immune progenitor cells) and neutrophils, which is also classi-
fied as granulocyte. Granulocytes are the most common white blood cells, consisting of 
3 specific cell types—neutrophils, eosinophils, and basophils. Using PBMC2 as a refer-
ence to deconvolve the same purified bulk immune samples led to similar deconvolu-
tion patterns for the missing cell types of plasmablast and basophils (Additional file 1: 
Fig. S16b). Interestingly, neutrophils were absent in the PMBC2 reference and inferred 
to be monocytes, which are related to the granulocyte family—a class of immune cells 
that include basophils, eosinophils, and neutrophils [27]. Another missing cell type 
HSPC (hematopoietic stem and progenitor cells) have their signal spread across all the 
cell types. These results suggest that when some cell types are missing in the reference, 
GTM-decon either finds the closest match or appropriately expresses uncertainty.

Finally, we performed benchmarking on the time and memory usage of our GTM-
decon software. GTM-decon scales linearly with both the number of topics per cell 
type and the number of cells (Additional file 1: Section S6; Fig. S17), which is what we 
expected since its time and space complexity are both O(N × G × K ) for N cells, G 
genes, and K topics. For large number of cells, we can also perform stochastic variational 
inference [28] to rapidly update model parameters based on mini-batches of cells with 
much lower memory overhead. It also compares favorably with BISQUE, BSEQ-sc, and 
MuSiC in terms of running time and memory usage.

GTM‑decon automatically learns CTS gene signatures from scRNA‑seq reference

We evaluated the performance of GTM-decon in recapitulating cell-type-specific 
information as well as deconvolution using pancreatic tissue as a reference. The pan-
creas consists of several cell types including exocrine and endocrine. While the former 
aids digestion by secreting several enzymes, the latter regulates glucose uptake and 
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processing by secreting hormones. With a vast literature documenting the biological 
roles of several cell types and their behavior in healthy and diseased conditions, such as 
diabetes and cancer, the pancreatic tissue serves as a good benchmark to assess GTM-
decon. We trained GTM-decon on an scRNA-seq reference dataset of pancreatic tissue 
from Segerstolpe et al. [29], consisting of 2209 cells, corresponding to 14 cell types from 
10 individuals. GTM-decon captured distinct sets of CTS gene signatures, as shown 
by the gene-by-topic probability distributions (i.e., the matrix φ ) for the top 20 genes 
in each topic (Fig. 3a). Indeed, each topic recovers a large number of marker genes for 
the corresponding cell types based on two databases, namely CellMarker database [30], 
a manually curated resource of cell markers in human and mouse and the PanglaoDB 

Fig. 3  Cell-type-specific topic inference and deconvolution of pancreatic tissue. a Gene signatures of 
cell-type-specific topics in pancreas. We trained GTM-decon on the PI-Segerstolpe scRNA-seq dataset 
of pancreas tissue. We used 5 topics per cell type, allowing sub-cell-type inference. For the inferred 
genes-by-cell-type matrix � , we took the top 20 genes under each topic and visualized their topic 
distributions in heatmap. Whenever available from CellMarkerDB and PanglaoDB, cell-type marker genes 
are indicated on the left. For the cell types where marker genes are not available, “NA” were indicated on 
the left. The number of statistically significantly different genes in each cell type based on their topic scores 
(p-value < 0.05; permutation test) is shown below. b Gene set enrichment analysis (GSEA) of inferred topics 
based on known marker genes. Cell-type-specific topics for acinar, alpha, and beta were evaluated based on 
whether the top genes are enriched for the known marker genes under that cell type. The bar plots show 
the − log10 (p.adj values of enrichment score) for the gene set enrichment analysis for each of the 5 topics. 
The leading-edge plot for the topic with the best adj. p-value for that cell type is shown on the right. In 
each of the leading-edge plots, genes were ordered in decreasing order from left to right. The green curves 
indicate the running scores of enrichments. The barcode bars indicate cell-type marker genes. Adjusted 
p-values based on the GSEA enrichment scores are indicated in each panel. The three large panels display the 
most significantly enriched topic of among the five topics for each cell type and the 12 small panels display 
the remaining topics. c, e Deconvolution of bulk RNA-seq samples of 89 human pancreatic islet donors. The 
GTM-decon models separately trained on the Segerstolpe pancreas islet dataset (i.e., panel c) and Baron 
pancreas islet data (i.e., panel e) reference datasets were used to deconvolve the 89 bulk transcriptomes. As 
indicated by the legend, the 89 subjects consist of 51 normal, 15 impaired glucose tolerance, and 12 T2D 
individuals. In the heatmap, the rows represent subjects, and the columns represent cell types; the color 
intensity are proportional to the inferred cell-type proportions. d, f Deconvolved cell-type proportions as a 
function of Hemoglobin A1c (HbA1c) level. GTM-decon were trained on Segerstolpe (i.e., panel d) and Baron 
scRNA-seq (i.e., panel f) reference datasets. Each of the 10 panels displays a scatter plot of inferred cell-type 
proportion (y-axis) and HbA1c level (x-axis). The color legend indicates the 3 phenotypes. The heatmap on 
the right shows the deconvolved proportion of 3 most indicative cell types with subjects (rows) ordered on 
the basis of inferred beta cell-type proportions
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[31], a database of marker genes generated from scRNA-seq datasets (Fig. 3a). We fur-
ther ascertained the cell-type coherence of each topic by Gene Set Enrichment Analysis 
(GSEA), while using the probabilities learnt for each cell type against the CellMarkerDB. 
For the three cell types with abundant marker genes—acinar, alpha, and beta, each of the 
5 topics recovers the exact cell type as the top-most hit in the analysis, with the adjusted 
p-value ≤ 1 × 10−15 (permutation test) in most cases (Fig. 3b). Furthermore, the enrich-
ment of known marker genes for the main cell types suggested that GTM-decon with 5 
topics per cell type best captures the cell-type-specific signatures (Additional file 1: Fig. 
S18). We also evaluated the effect of different number of cells per cell type. As expected, 
the topic confidence scores as measured by the average probabilities over the CTS gene 
distributions increase with the increasing number of cells for that cell type (i.e., evi-
dence) (Additional file 1: Fig. S19).

GTM‑decon delineates the variations of cell‑type proportions in pancreatic tissues 

of healthy and T2D subjects

Based on the inferred CTS topic distributions φ , we used GTM-decon with 5 top-
ics per cell type to infer the cell-type proportions of bulk RNA-seq data from a cohort 
of 89 human pancreatic islet donors with and without type 2 diabetes (GEO accession 
number: GSE50244) [32] (Fig.  3c). The dataset consists of 51 individuals with normal 
glucose tolerance (N), 15 with impaired glucose tolerance (IGT) and 12 with type 2 dia-
betes (T2D); it also has a good segregation of males (N1 = 54) and females (N2 = 35). As 
expected, the inferred proportions of most types of cells for these two sets of individu-
als are similar since they came from the same tissue. However, GTM-decon predicted 
a significant reduction in beta cells in T2D individuals (Pearson correlation coefficient 
(PCC) with HbA1c =  − 0.4, p-value = 0.00031; t-distribution with n-2 degrees of free-
dom) (Fig. 3d). IGT and T2D individuals exhibit low Beta cell-type proportions (Fig. 3d), 
which was supported by the literature [1, 2]. The increase in ductal cells is possibly 
caused by their regulation of glucose uptake (Fig. 3d). These results are consistent when 
using a different pancreatic dataset as reference (i.e., the PI-Baron reference dataset, 
generated via Drop-seq instead of PI-Segerstolpe, generated via Smart-seq) (Fig. 3e, f ).

Deconvolving human pancreatic data from mouse pancreas scRNA‑seq reference

For cases where scRNA-seq data were not available for the organism of interest, due 
to either ethical, technical, or financial challenges, there is a need to leverage scRNA-
seq collected from a model organism. To this end, we investigated the possibility of 
deconvolving bulk RNA-seq data by training GTM-decon on a mouse scRNA-seq data. 
We separately trained two GTM-decon models on the human and mouse pancreatic 
datasets. Specifically, the human datasets include the Segerstolpe and Baron datasets 
(Additional file 1: Table S1), which consist of 2209 cells from 10 individuals and 8569 
cells from 4 individuals, respectively; the mouse dataset consists of 1886 cells collected 
from 2 mice. For comparative analysis, we focused on only the common set of high-
confidence orthologous genes between the two species mapped by the Ensembl data-
base [33]. We visualized the cell-type proportions comparing against the ground-truth 
values (Additional file 1: Fig. S20a). As expected, the cell-type proportions deconvolved 
using the two human datasets accurately recapitulate the ground-truth proportions 
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(median PCC of 0.94 and 0.97). Interestingly, GTM-decon trained on the non-refer-
ence human dataset performed better than the one trained on the reference-matched 
dataset, which was probably due to the tenfold higher number of cells in the former 
scRNA-seq dataset. Moreover, GTM-decon trained on the mouse reference dataset 
also performed quite well in terms of the concordant proportions of the shared cell 
types (PCC of 0.94).

Deconvolving pancreatic cancer transcriptomes identified tumor cell‑type origin

We next turned to deconvolving pancreatic adenocarcinoma (PAAD) (also known as 
pancreatic ductal adenocarcinoma or PDAC) tumor bulk samples from TCGA. For this 
application, we also used GTM-decon with 5 topics per cell type. Since the tumor micro-
environment is known to be infiltrated with immune cells [34, 35], we sought to train 
GTM-decon on a single-cell reference dataset derived from individuals with pancreatic 
cancer, in order to capture the cell types of both the tissue of interest and the immune 
cells in its tumor microenvironment. To this end, we trained GTM-decon on an scRNA-
seq dataset comprised of the transcriptomic profiles of about 57,000 cells from 24 pri-
mary PAAD tumors and 11 healthy control pancreas samples [36] in order to deconvolve 
the 174 bulk RNA-seq profiles from the TCGA-PAAD tumor samples. Additionally, we 
also sought to identify possible novel cell types or pathways present in the bulk RNA-
seq, which are not represented in the reference profiles. This is achieved by running 
an unguided topic model (i.e., a standard LDA) on the sparsified bulk RNA-seq data to 
detect de novo bulk RNA-seq (bulkRS) topics (“Methods”). We empirically chose the 
number of de novo bulkRS topics based on how well they could explain the variation 
observed in the clinical phenotypes.

We observe that the most prevalent cell types are 4 main pancreatic cell types, namely 
ductal (type 2), acinar, endocrine (alpha and beta cell types), and fibroblasts (Fig.  4a). 
Notably, the cell type of tumor origin is correctly predicted for the samples: Ductal cells 
have the highest proportion among the PAAD samples (Fig. 4b; brown rectangle), and 
acinar for a subset of the PAAD samples (Fig. 4b; blue rectangle). This recapitulates the 
literature remarkably well, as ductal cells are known to be the site of the tumor origin for 
most cases of PAAD; however, a subset arises from acinar cells [37]. More significantly, 
an unknown subtype is predicted to originate from endocrine cells (Fig. 4b; green rec-
tangle). This is supported by the recent literature, which reported these samples as the 
derivatives of the pancreatic neuroendocrine tumor (PNET) were in fact misclassified 
as PAAD [38]. PNET are supposed to originate from alpha or beta cells (endocrine cells) 
[39]. In addition, most of the samples are predicted to have a high proportion of fibro-
blasts, which are known to be prevalent in pancreatic cancer (Fig. 4b; blue dot) [40–42]. 
Interestingly, deconvolving the pancreatic cancer PAAD dataset using mouse reference 
dataset also conferred high-quality patient clustering comparable to that of human data-
set (Additional file 1: Fig. S20b). Notably, the PAAD “other subtype” was predicted to 
originate from alpha cells (an endocrine cell), which mirrors the results from human ref-
erence data (Fig. S20b; shown in blue rectangles).

Interestingly, the de novo bulkRS topics cluster with the most abundant reference 
topics inferred from the scRNA-seq reference data (Fig. 4b, blue circles). For exam-
ple, bulkRS Topic 2 corresponds to the CTS topic for acinar cell type, Topic 10 to the 
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CTS topic for endocrine cell type, Topic 9 to Ductal_type_2, Topic 8 to Fibroblast, 
and Topic 6 to stellate cells. However, there are a few de novo bulkRS topics, such as 
bulkRS Topic 1, Topic 4, and Topic 5, capturing distinct distributions for specific sub-
sets of samples (Fig. 4b; red dots). These topics could correspond to either novel cell 
types or gene pathways in the bulk but not implicated in the scRNA-seq reference.

We next estimated whether variation in cell-type proportions or bulkRS topics is 
indicative of survival time. To this end, we performed Cox Regression to regress the 
number of days patients lived since their cancer diagnosis on their inferred cell-type 
proportions as well as the de novo bulkRS topics. Overall, the Cox Regression model 
is statistically significant compared to the bias term (adjusted p-value = 9 × 10−5 
based on likelihood ratio test). To explore the marginal effect of individual cell-type 

Fig. 4  Deconvolution of bulk RNA-seq samples for pancreatic cancer from TCGA-PAAD. GTM-decon was first 
trained on an scRNA-seq dataset from individuals with pancreatic cancer. The trained GTM-decon model 
was then used to infer the cell-type proportions of the 174 TCGA-PAAD bulk RNA-seq profiles. a The average 
inferred cell-type proportion across the TCGA-PAAD tumor samples. We summed up inferred cell-type 
proportions over all samples followed by normalization. The pie chart displays the resulting percentage 
of cell-type proportions. b Inferred cell-type proportions of individual TCGA-PAAD tumor samples. To 
complement the inferred proportions of known cell types, we also ran unguided topic model (i.e., LDA) on 
the TCGA-PAAD bulk RNA-seq profiles directly to detect de novo topics that are not present in scRNA-seq 
reference. The heatmap visualizes the combined deconvolution results based on the 10 pancreatic cell types, 
and 10 de novo topics (i.e., columns). Each of the 174 rows represents a subject. Three types of demographic 
or clinical phenotypes were shown in the legend to aid result interpretation. These include “days to death,” 
cancer subtype, and whether the cancer type is PNET or not. The regions in the highlighted boxes were 
discussed in more details in the main text. c Survival analysis of the CTS and de novo topics using inferred 
cell-type proportions. The 174 subjects were divided into two groups based on K*-means clustering with 
K* set to 2 (not to be confused with the K cell types or topics). Kaplan–Meier curves were generated for 
these groups and compared using log-rank test. The plot shows the − log10(p-value) from the log-rank test 
for all the CTS and de novo topics, in decreasing order of significance. d Kaplan–Meier curve for endocrine 
cell-type proportion. The curve and shaded area represent the mean and standard deviation of the cell-type 
proportions in the two groups, respectively. The number of subjects for each cluster was indicated in the 
bottom panel
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proportions on survival, we performed Kaplan–Meier analysis by separating patients 
into two groups based on K-means clustering (Fig.  4c). We observe that among the 
cell types, endocrine cell type exhibits a significant hazard ratio, predicting a good 
survival outcome (Fig.  4d; p-value = 0.0091; log-rank test), which is supported by 
the literature as PNETs are mostly benign [43]. However, ductal cell type 2 is associ-
ated with poor survival outcome, which is expected as pancreatic adeno carcinoma 
are aggressive (p-value = 0.03; log-rank test). On the other hand, Topic 1 and Topic 5 
indicate poorer survival, with hazard ratios of 4 and 40 respectively (Additional file 1: 
Fig. S21) although their roles are unclear since they do not cluster with any of the 
CTS topics (Fig. 4b). This reiterates the usefulness of using CTS topics in conjunction 
with de novo bulkRS topics to enable their interpretation wherever possible.

A similar analysis conducted using a separate scRNA-seq reference from healthy pan-
creatic subjects only reveals similar results (Additional file 1: Fig. S22). However, in this 
analysis, only two of the de novo bulkRS topics clearly correspond to CTS topics (aci-
nar and ductal), suggesting that the usage of an appropriate scRNA-seq reference with 
matched tumor environment is preferred.

Deconvolving breast cancer transcriptomes revealed subtype‑specific markers

To capture specific subtypes of breast tumor samples from the TCGA data, we trained 
GTM-decon on an scRNA-seq reference data from 26 primary tumors of breast can-
cer (BRCA) patients with three major clinical subtypes of BRCA, including 11 ER + , 5 
HER2 + and 10 TNBC [44]. The data consists of about 1 million cells and covers 7 major 
cell types and 29 minor cell types. This served as a high-resolution reference for anno-
tating the TCGA-BRCA tumor samples (n = 1212) based on the major subtypes from 
the scRNA-seq dataset, namely Cancer-Basal, Cancer-Her2, Cancer-LumA, and Can-
cer-LumB (Additional file 1: Fig. S23a). As expected, significantly higher proportions of 
endothelial and myoepithelial cell types are found in the normal-like samples, in com-
parison to the cancer subtypes (Fig. S23a). Furthermore, basal subtype is enriched for 
cancer-basal cells (Fig. S23b, shown in dotted brown rectangle), and the cancer-asso-
ciated fibroblasts (CAFs) are enriched in almost all the samples (Fig. S23b, shown in 
blue rectangles). Similar to the above analyses, some of the de novo bulkRS topics from 
sparsified samples overlap with the most represented cell types. For example, Topic 6 
resembles myofibroblast-like cancer-associated fibroblasts (myCAF-like), and Topic 8 
resembles LumA subtype cancer cells.

Deconvolution using the scRNA-seq reference from the healthy individuals also cap-
tures the cell type of origin for the different breast cancer subtypes implicated in the bulk 
samples (Additional file 1: Fig. S24). For this analysis, using highly variable genes is more 
discriminatory than all genes (Additional file 1: Fig. S25). The inferred CTS topic distri-
butions from normal breast tissue recapitulate several marker genes from CellmarkerDB 
and PanglaoDB (Fig. S24a). Furthermore, GTM-decon-inferred cell-type proportions 
clearly distinguish TCGA breast tumor samples from GTEx normal breast tissues (Fig. 
S24b). Moreover, the basal cell type is predicted to have the highest proportion in the 
basal subtype defined by the PAM50 classification in comparison to other subtypes (Fig. 
S24c) [45]. Also, we observed higher predicted proportion for Luminal_2 cell type in 
both LumA and LumB subtypes as expected [46] (Fig. S24c). Among the de novo bulkRS 
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topics from sparsified samples, Topic 5 is highly enriched in LumB, while Topic 7 and 
Topic 8 are enriched in basal and LumA subtypes (Fig. S24c). The guided topic score 
for the basal subtype also correlates with higher proliferation score as expected [45]. 
Specifically, the basal cell type is enriched in this subtype (Fig. S24d; enclosed in green 
rectangle), whereas Luminal_2 is depleted (Fig. S24d; enclosed in green dashed rectan-
gle). In contrast, ER + samples appear to be enriched for Luminal_2 cells (Wilcoxon test 
p-value = 4.5e − 10; Fig. S26), as expected [46, 47]. Furthermore, Topic 7 clearly captures 
the basal subtype (enclosed in brown rectangle in Fig. S24d), whereas there is no clear 
topic capturing the ER + phenotype.

GTM‑decon learns phenotype‑guided gene topics specific to BRCA subtypes

Our guided topic mechanism is not limited to inferring CTS topics, but can be extended 
to inferring phenotype-specific topics (i.e., topics capturing phenotype-specific gene 
expression) (Fig. 1b), thereby discovering gene signatures of subtypes or different cancer 
stages. We applied this approach to study the differences between basal and ER + BRCA 
subtypes (Fig. 5a–c) and the difference between ductal carcinoma and lobular carcinoma 

Fig. 5  Phenotype-guided topic modeling of bulk RNA-seq data of breast cancer. a Predicted top genes for 
the phenotype-guided topics for basal and ER + breast cancer subtypes. GTM-decon was trained on the 
sparsified TCGA-BRCA bulk RNA-seq data with the basal and ER + cancer subtypes as the guide. Five topics 
were used per subtype and therefore 10 topics in total. The heatmap illustrates the topic probabilities of the 
top 20 genes from each topic. As a comparison, the genes were also labeled as up- or downregulated if they 
were deemed differentially expressed by the DESeq2 analysis. b Classification of basal and ER + subtypes 
based on phenotype-guided topic scores. The 5 topics for the same subtype were summed to obtain the 
overall score for basal and ER + subtype. Subjects in the rows were sorted by their basal topic scores. c GSEA 
analysis of the basal and ER + subtype topics. Significantly enriched MSigDb HALLMARK pathways were 
identified for each topic and displayed as barplots. The heights of the bar indicate the − log10 adjusted 
p-values and the colors indicate enriched pathways. d Predicted top genes for the phenotype-guided 
topics for histological subtypes. Same as in panel a but for ductal and lobular subtypes. e Classification of 
histological subtypes. Same as in panel b but for ductal and lobular subtypes. f Evaluation of the subtype 
classification accuracy on the test breast tumor samples. We trained the phenotype-guided GTM-decon 
separately on 80% of the sparsified TCGA-BRCA tumor samples using basal/ER + and histological types 
as the guides and evaluated its phenotype prediction accuracy on the 20% held sparsified samples. As a 
comparison, we also trained and evaluated logistic regression and random forest on the same training and 
test split, respectively. The classification accuracy on the test set by each method were displayed in the 
barplots
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(Fig.  5d–f). We modeled each phenotype using 5 topics each, based on a sparsified 
matrix of bulk RNA-seq data (“Methods”), resulting in a genes-by-phenotypes matrix 
φ with 5 topics per phenotype (Fig. 5a). We then ranked genes by the topic scores under 
each topic. Almost all the genes identified by our approach were also deemed as dif-
ferentially expressed (DE) genes by DESeq2 differential analysis [48] (Fig. 5a). GSEA of 
the topics shows differences between the basal and ER + phenotypes, although there is 
not much difference among the 5 topics for basal (Fig. 5c). Moreover, the trained GTM-
decon confers accurate phenotype classification with 97% accuracy for discriminating 
basal and ER + (Fig. 5b) and 82% for discriminating ductal and lobular subtypes (Fig. 5d), 
which is comparable to the traditional supervised learning methods namely logis-
tic regression and random forest (Fig.  5f ). We also evaluated phenotype classification 
accuracy as a function of sparsification rate (described in Additional file  1 Section S7 
and illustrated in Additional file 1: Fig. S27) suggesting the importance of sparsification 
for inferring topics from bulk RNA-seq data using GTM-decon. We also trained GTM-
decon only on the highly variable genes in the unsparsified bulk RNA-seq samples. This 
results in lower classification accuracy (76% for ductal-lobular samples as compared to 
82%, and 95% for basal-ER + samples as compared to 97%), which might be due to infor-
mation loss (HVG = 1391 for basal-ER + samples, HVG = 445 for ductal-lobular sam-
ples). Training using DE genes between the two phenotypes identified by DESeq2 also 
results in lower classification accuracy of 83% and 75%, respectively. These experiments 
suggest that GTM-decon can utilize more informative genes to discriminate the breast 
cancer subtypes than the traditional differential analysis approach.

Nested‑guided topic modeling identifies CTS DE genes in breast cancer subtypes

scRNA-seq can facilitate molecular understanding of genes and pathways in specific 
cell types with respect to phenotypic states. This level of detail is absent in bulk RNA-
seq data, which profiles only the averaged gene expression from all cell types in the tis-
sue. However, due to the cost, scRNA-seq profiles at the patient cohort size are rare. 
To take advantage of both types of data, we sought a way to identify cell-type-specific 
gene expression differences corresponding to the phenotypes observed for the bulk sam-
ples. Briefly, we took a pretrained GTM-decon on a scRNA-seq reference data and then 
updated its CTS topics based on the corresponding phenotypes from the sparsified bulk 
data (Fig.  1c). This is equivalent to treating the phenotype as level 1 and cell types as 
level 2 in a two-stage nested factor design in statistics.

For the TCGA-BRCA data, in particular, we first initialized the genes-by-topic matrix 
φ with the pretrained guided topics learned from the scRNA-seq reference for normal 
breast tissue. We then fine-tuned 5 CTS topics for each phenotype (i.e., ER + or basal) 
from sparsified bulk data, resulting in a 10-topic model. During the fine-tuning, all CTS 
topics corresponding to the patient’s phenotype are assigned a prior value of 0.9. Apply-
ing this approach to 798 sparsified samples from TCGA-BRCA, corresponding to basal 
(N1 = 140) and ER + (N2 = 658) led to a new genes-by-topic matrix φ∗ . First of all, the 
top genes for the topics corresponding to the same cell type are similar in both phe-
notypes, as they are expected to capture CTS signatures (Fig. 6a). However, differential 
analysis of genes between two phenotypes revealed upregulated genes in one phenotype 
being downregulated in the other (Fig. 6b). These differences between basal and ER + are 
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statistically significant across all genes for all the cell types based on paired Wilcoxon 
signed-rank tests. Next, we evaluated the ability of the fine-tuned GTM-decon to clas-
sify the held-out test set and observed a 97% classification accuracy (Fig. 6c, top panel). 
These higher-resolution deconvolved CTS breast cancer profiles reveal that ER + sam-
ples are enriched for Luminal-2 cell type, whereas the basal subtype is depleted for that 
cell type (Fig. 6c).

Fig. 6  Identification of cell-type-specific differentially expressed genes from bulk RNA-seq data for basal vs. 
ER + subtypes. a Top cell-type-specific gene signatures for basal and ER + . GTM-decon was pretrained on 
a scRNA-seq reference dataset from normal breast tissue to infer the expression distribution of 5 cell types, 
namely basal, basal myoepithelial, luminal 1–1, luminal 1–2, and luminal 2. The resulting genes-by-cell-type 
estimates were then used as the initial topic distributions for another GTM-decon, which is guided by the 
basal and ER + cancer subtypes in modeling the sparsified TCGA-BRCA bulk data. This led to a 10-topic 
distribution, each of which was specifically tailored for a combination of cell type and cancer subtype. 
The heatmap displays the probabilities of the top 20 genes for each topic. The left half displays the 
cell-type-specific topic distribution for basal and the right half for ER + . b Predicted differentially expressed 
(DE) genes for each cell type between basal and ER + . The top DE genes for basal in contrast to ER + were 
identified by subtracting the gene topic scores for ER + from the gene topic score for basal under the same 
cell type. The resulting DE scores were shown in the top half of the heatmap. The bottom half displays the DE 
scores of the top genes for ER + in contrast to basal. The pairwise Wilcox signed-rank tests were performed 
to compare the gene topic scores across all genes between the two subtypes for the same cell type. All tests 
yielded p-values lower than 2.2e−16. c Classification of basal and ER + based on the phenotype probabilities. 
As a validation for our nested phenotype-cell-type guided approach, we evaluated the classification accuracy 
on the 160 held-out sparsified breast tumor samples. For each subtype, we summed the cell-type-specific 
topic probabilities from bottom heatmap for each sample to obtain the phenotype scores, which are shown 
in the top heatmap. d Comparison of DE genes detected by our approach and by DESeq2. DESeq2 was 
applied to the bulk RNA-seq gene expression data to compare gene expression between ER + and basal 
samples. In total, 6815 DE genes were deemed significant by adjusted p-value < 0.05 (Wald test) with 2952 
upregulated and 3863 downregulated genes in ER + relative to basal. The grey bar and the heatmap on the 
left display the − log adjusted p-value for all of the upregulated genes (top half ) and the downregulated 
genes (bottom half ). Genes were ordered in decreasing order of the absolute test statistic for each half. The 
corresponding log2 fold-change of ER + over basal was also shown as heatmap. The heatmap on the right 
displays the change of gene topic score from basal subtype to ER + subtype. e Cell-type-specific DE genes 
identified by nested-guided topic approach. The top and bottom part of the heatmap displays the topic 
scores for the upregulated and downregulated genes in basal relative to ER + , respectively (p-value < 0.05; 
permutation test). Genes that were also detected by DESeq2 were labeled in the color bar. f ORA was applied 
to the differential topic scores of upregulated and downregulated genes in ER + relative to basal. MSigDb 
HALLMARK pathway gene sets were used in ORA. The − log p-values for the significant pathways were shown 
in the bar plot
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Next, we identified the DE genes per cell type by subtracting the genes-by-topic 
entries in the φ matrix for phenotype d (e.g., basal) from phenotype d′ (e.g., ER +) 
under the same cell type (e.g., Luminal 2). To evaluate the consistency of our DE genes, 
we compared them against the DE genes identified by DESeq2 (Fig.  6d). We observe 
that all upregulated and downregulated DE genes nominated by DESeq2 in ER + versus 
basal comparison were also deemed upregulated and downregulated by our approach, 
respectively. We visualize the expression of the 630 statistically significant DE genes 
(adjusted p-value < 0.05; permutation test) in the BRCA tumor samples (Fig.  6e). We 
found that most of our DE genes do not only agree with those by DESeq2 but also 
exhibit CTS patterns. Notably, the most DE genes correspond to the Luminal_2 cell 
type (Fig. 6e), which exhibit the larger difference between ER + and basal (Additional 
file  1: Fig. S26). Over representation analysis (ORA) of these CTS DE genes against 
Hallmark pathways from MSigDb revealed several meaningful pathways. As expected, 
estrogen response (early) and (late) pathways are highly upregulated in the ER + pheno-
type, mainly in the Luminal_2 cell type (Fig. 6f ). Similarly, most DE genes in the basal 
phenotype are upregulated for typical pathways involved in cancer, such as G2M check-
point, E2F targets, and mitotic spindle. This reflects the aggressive nature of basal cell 
type as the origin for the cancer subtype (Fig. 6f ). The contribution of sparse genes (i.e., 
genes with zero counts due to sparsification) to CTS topics and DE analysis is described 
in Additional file 1 Section S7 and illustrated in Additional file 1: Fig. S28. We obtained 
similar results comparing the 2 histological subtypes—ductal carcinoma and lobular 
carcinoma (Additional file 1: Fig. S29).

To further demonstrate the phenotype-guided and phenotype + cell-type-guided 
functionality, we applied GTM-decon to the same scRNA-seq data from breast cancer 
tumors using phenotypes (i.e., ER + and TNBC) and cell-type labels as the guides and 
then used the inferred topics to deconvolve the bulk TCGA breast tumor transcriptome 
data. Detailed analyses are presented in Additional file 1 Section S8 and Fig. S30. This 
was feasible because we have scRNA-seq references that were collected from similar tis-
sue sites from patients of the same disease phenotypes as the target bulk transcriptomes.

Discussion
In this study, we developed a Bayesian approach called GTM-decon to infer CTS gene 
topic distributions from scRNA-seq reference data. During the topic inference of each 
cell, we introduce the guidance by setting the topic hyperparameter for the cell type of 
that cell to be relatively larger than the hyperparameters for other topics. This enables us 
to anchor each topic to a specific cell type and subsequently guide the inference of the 
global topic distributions over genes to automatically prioritize cell-type marker genes. 
The resulting topic distributions can then be used to infer the relative cell-type propor-
tions from bulk RNA-seq datasets (i.e., cell-type deconvolution).

Through our analysis of the pancreatic and breast tissue datasets, we observe that 
for those cell types, where marker gene information is available, most of the top 
genes under the CTS topics correspond to known marker genes (Fig. 3a; Additional 
file  1: Fig. S24a). Because GTM-decon infers a distribution over all the genes under 
each cell-type-guided topic, it can be used to not only quantify the contribution of 
the known marker genes but also score novel marker genes. In terms of cell-type 
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deconvolution, GTM-decon confers comparable performance to the existing state-of-
the-art methods (Fig. 2; Additional file 1: Fig. S10-15). The deconvolved cell-type pro-
portions can be used to distinguish healthy and diseased samples as shown in the case 
of diabetic patients (Fig. 3c,e) as well as cancer subtypes from pancreatic and breast 
tumors (Fig.  4 and Additional file  1: Fig. S23). This enables investigation of molecu-
lar contribution to the phenotypic differences. Phenotypic differences between healthy 
and diabetic patients were captured even when the scRNA-seq reference datasets were 
generated from different platforms (e.g., Smart-seq and Drop-seq) (Fig. 3d, f ).

Using GTM-decon, we revisited two cancer datasets from TCGA, namely pancre-
atic adenocarcinoma (PAAD) and breast cancer (BRCA). To dissect the heterogene-
ous tumor microenvironment, we deconvolved these datasets based on scRNA-seq 
reference sets from pancreatic cancer and breast cancer, respectively. As a result, we 
identified the ductal and acinar origin of PAAD, the endocrine origin of pancreatic 
neuroendocrine tumors (PNET) (Fig. 4b), and enrichment of subtype-specific cells 
for the BRCA subtypes (Additional file 1: Fig. S23a). Interestingly, using scRNA-seq 
references from pancreatic and breast tissues of healthy individuals is also suffi-
cient to identify the cell type of origin for all subtypes in pancreatic cancer (Addi-
tional file  1: Fig. S22), as well as the basal origin of basal subtype and the luminal 
origin of ER + breast cancer (Additional file  1: Fig. S24). However, using a cancer-
specific scRNA-seq dataset improves the resolution of deconvolution in identifying 
more subtypes (Additional file 1: Fig. S23). By combining the de novo topics inferred 
directly from the bulk RNA-seq data with the scRNA-guided topics, we identified 
putative prognostic biomarkers that correlate with survival time (Fig. 4c; Additional 
file 1: Fig. S21, S22c).

We further extended GTM-decon by modeling the sparsified bulk RNA-seq data 
using the patient phenotype labels as the guide rather than cell types. In contrast to 
the traditional differential analysis approach, the phenotype-guided GTM-decon pro-
vides a different way to investigate gene signatures and molecular pathways under-
pinning the phenotypes of interest (Fig. 5). To leverage the scRNA-seq reference data, 
we further extended this framework to a nested-guided topic model by fine-tuning a 
dedicated set of CTS topic distributions for each phenotypic state (e.g., BRCA sub-
types) of the patients from the bulk RNA-seq data. This enables learning not only 
intra-phenotype changes of cell-type distributions but inter-phenotype changes of 
gene expression. The latter allowed us to identify CTS DE genes directly from bulk 
RNA-seq data (Fig. 6). We extended this approach to infer phenotype and cell-type 
guided topics from single-cell breast cancer RNA-seq data with cancer subtypes as 
the phenotype guide. This led to accurate deconvolution of cancer subtypes from 
bulk TCGA-BRCA data, as well as identification of phenotype-specific and CTS DE 
genes from the single-cell data (Additional file 1: Fig. S30). Only a few methods can 
perform both deconvolution and CTS DE analysis. For example, CIBERSORTx [18] 
uses a non-negative matrix factorization approach based on partial observations to 
identify CTS DE genes across phenotypes. Other methods such as TOAST [24] and 
bMIND [23] that can estimate CTS DE require precomputed cell-type proportions by 
an external deconvolution method.
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As future works, we can adapt GTM-decon to leverage other single-cell omic data 
such as scATAC-seq for reference and deconvolve the equivalent omic in bulk sam-
ples. It can also be extended to work with different cell states, like in BayesPrism [22], 
by modeling the topics based on cell states instead of cell types. Like all other decon-
volution approaches, GTM-decon alone is unable to identify novel cell types from 
bulk RNA-seq datasets (i.e., cell types that are not present in the reference scRNA-
seq data GTM-decon is trained on), while it is able to capture perturbed cell types 
based on the phenotypes (e.g., Fig. 6c). This can be addressed by training GTM-decon 
on an atlas-level scRNA-seq data such as the Human Cell Landscape [49] and Tabula 
Sapiens [50], which comprehensively covers most of the cell types in the primary tis-
sues. The resulting model can then be used to deconvolve bulk samples of any given 
target tissue. Lastly, cell types are not independent entities but rather form a lineage. 
One future direction is to exploit the relations among the cell types, which may bet-
ter capture the underlying phenotypic states of the subjects. A more recently devel-
oped method called CeDAR [51] uses known cell-type hierarchy as prior to infer 
CTS expression in bulk data as opposed to our de novo sub-cell-type inference and 
will leave a more detailed comparison as future work. Moreover, we can also extend 
GTM-decon to modeling multi-omic single-cell data to identify multi-omic CTS 
topic distributions and then use them to deconvolve multi-omic bulk data. To this 
end, while several multi-omic modeling methods have been developed [52–55], their 
benefits in deconvolution are not fully realized. Lasty, deep-learning-based methods 
such as Scaden [22] can train on simulated or real bulk RNA-seq datasets to pre-
dict cell-type proportions. While Scaden can confer accurate deconvolution results, 
it compromises interpretability because of its non-linear distributed representation 
of the gene expression features. Some recently developed variational autoencoder and 
embedded topic modeling frameworks [56, 57] may be extended to strike a balance 
between deconvolution accuracy and model interpretability.

Conclusions
Computational cell-type deconvolution of heterogeneous bulk transcriptome is 
highly cost-effective in revealing the underlying phenotypic states and identifying 
CTS differentially expressed genes. GTM-decon represents a significant advance in 
the deconvolution methods with 3 prominent contributions: (1) automatic infer-
ence of interpretable CTS topic distributions by directly modeling large single-cell 
RNA-seq reference data without using known marker genes, therefore providing a 
principled and amenable reference map for the subsequent deconvolution; (2) iden-
tifying sub-CTS gene expression distributions by inferring multiple topics anchored 
at the same cell type, leading to a finer resolution of the deconvolution results; (3) 
detecting CTS DE genes directly from bulk or single-cell samples via an extended 
nested-guided topic design leveraging both the phenotype states and cell-type label 
information. Our comprehensive experiments on pancreatic and breast datasets 
demonstrated the utilities of all 3 contributions. Together, GTM-decon is an efficient 
marker-free deconvolution method that takes the full advantage of the single-cell 
RNA-seq reference data for cell-type deconvolution.
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Methods
Modeling scRNA‑seq reference data via topic inference guided by cell‑type labels

We adapted GTM-decon from the MixEHR-Guided (Mixture of Electronic Health 
Records – Guided) [58] (which was in turn inspired by MixEHR (Mixture of Electronic 
Health Records) [59] and sureLDA (Surrogate-guided ensemble Latent Dirichlet Alloca-
tion) [60]) to model gene expression from scRNA-seq data. We assume that the scRNA-
seq data are generated from the following data generative process. Each cell indexed 
by m ∈ {1, …, M} is a mixture of the K cell types. The cell-type mixture θm is sampled 
from a K-dimensional Dirichlet distribution θm ∼ Dir(αm + 0.1) with the hyperparam-
eter αm being specific to the cell. The key assumption here that separates GTM-decon 
from the standard LDA [25] is the use of noisy cell-type label ym ∈ {1, ..,K } for the 
cell. The hyperparameter corresponding to the cell-type label ym = k has higher value 
( αm,k = 0.9 by default) in contrast to the rest of the hyperparameters αm,k′ for k′ �= k , 
which are randomly set to small values between 0.01 and 0.1. Note that having non-zero 
αm,k′ allows other cell types to be assigned to the cell (i.e., θm,k ′ ≥ 0 ) and therefore θm 
reflects the statistical uncertainty of the cell-type label ym , which can be error prone due 
to various technical and data preprocessing aspects of the scRNA-seq data. To not clut-
ter the notation, we omit the baseline value 0.1 in the following model description and 
use the more general form of θm ∼ Dir(αm) instead. Following the above default setting, 
this is equivalent to setting αm,k = 1 for the observed cell type and αm,k′ ∈ [0.11, 0.2] for 
other cell types. For each cell m , each scRNA-sequenced read i ∈ {1, . . . ,Nm} originates 
from one of the K  cell types with the probabilities dictated by its cell-type mixture ( θm ): 
zi,m ∼ Cat(θm) . Given the cell type zi,m = k , the ith read maps to a specific gene indexed 
by xi,m with the probabilities dictated by the CTS topic distribution over all genes ( φk ): 
xi,m ∼ Cat(φk) , where φk follows a G-dimensional Dirichlet distribution with a fixed 
hyperparameter β across all K dimensions: φk ∼ Dir(β) . Since the topic mixture θm are 
softly clamped to specific cell types via the K-dimensional hyperparameter αm , by fol-
lowing the above data generative process, it is straightforward to see that the K sets of 
topic distributions φk ‘s are also CTS.

The posterior distribution for the latent variables θm’s, zi,m ’s and φk ’s conditioned on 
the scRNA-seq reference data can be either approximated by Gibbs sampling [61] or by 
collapsed mean-field variational inference [62]. Specifically, for algorithmic convenience, 
we can leverage the conjugacy of the Dirichlet to categorical distribution by integrating 
out θm and φk resulting in two Dirichlet-Multinomial distributions [63]:

Note that we can recover the expected values for θm ’s and φk ’s given the posterior esti-
mates of zi,m′s as they are proportional to the unnormalized counts n.,m,k =

∑
i[zi,m = k] 

and ng ,.,k =
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The conditional distribution of the topic assignment for read i and cell m has a closed 
form expression:

where the second last equality exploits the property of the Gamma function, i.e., 
Ŵ(x + 1) = Ŵ(x)x . Here n(−i)

.,m,k is the total number of scRNA-seq reads allocated for topic 
k for cell m without counting the current ith read, and n−(i,m)

g ,.,k  is the total read counts for 
gene g under topic k across all of the M cells, without counting the current ith read in the 
mth cell:

From here, the topic inference can be done by collapsed Gibbs sampling from 
p
(
zi,m = k|z−(i,m), x

)
 , while fixing the topic assignments for all other reads [61]. For a 

large number of cells in the scRNA-seq data, the collapsed Gibbs sampling approach 
tends to be slow in reaching an equilibrium state. Therefore, we took a deterministic 
mean-field variational inference approach, known as the collapsed variational Bayes 
(CVB) [62]. Specifically, we approximate the posterior distribution of the cell-type 
assignment p(zi.m|x,αm) via the variational categorical distribution q

(
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Here in updating the global gene distribution in the second equation, we further 
make use of the CTS prior αm to obtain more interpretable results.

The above topic inference formulation operates at the level of read. For computa-
tional efficiency, our actual implementation of the topic inference was simplified to 
operate at the level of gene instead of the level of read:

Similar to the above sufficient statistics, n(−g)
.,m,k =

∑
g ′�=g γg ′,m,k is the total number of 

scRNA-seq reads allocated for topic k for cell m, and n(−m)

g ,.,k =
∑

m′�=m αm,kγ g ,m′,k is the 
total read counts for gene g under topic k across all of the M cells, without counting 
the gth gene for cell m. This is equivalent to a reasonable assumption that all the reads 
from the same gene for the same cell are originated from the same cell type, i.e., 
∀i,i′zi,m = zi′,m if xi,m = xi′,m.

Together, the inference algorithm alternates between two simple steps: (1) 
for each cell and each gene, perform coordinate ascent by computing γg ,m,k 
while fixing the variational parameters γg ′,m,k for other genes g ′ ; (2) update 
the sufficient statistics. This algorithm maximizes the evidence lower bound 
ELBO = Eq[logp(x|z)]+ Eq[logp(z|α)] − Eq[logq(z|γ )] [62]. The model is deemed 
converged when ELBO stops improving by a small threshold (1e−6 by default).

Upon convergence, the expected values for θm,k and φg ,k are:

where n.,m,k =
∑Nm

i=1γi,m,k and ng ,.,k =
∑M

m=1[xi,m = g]αm,kγi,m,k . Here {θ̂m,k}M×K = �̂ 
can be used to assess the “purity” of the single cells as a quality control step and 
{φ̂g,k}G×K

= �̂ probabilities are used as the CTS topics in the subsequent deconvolution 
step.

Inferring multiple topics per cell type

Suppose we use L topics per cell type for K  cell types, the hyperparameter αm for cell m 
can be formulated into a K × L matrix. Given that the cell-type label for cell m is ym = k , 
we set the kth row of αm to relatively high values and the rest of the K-1 rows to relatively 
low values. For example, suppose we have 5 cell types and 3 sub-topics per cell type. If 
cell m is labeled with cell type 2, then the topic prior hyperparameter matrix αm can be 
set to the following values: [0.01, 0.01, 0.01; 0.9, 0.9, 0.9; 0.01, 0.01, 0.01; 0.01, 0.01, 0.01; 
0.01, 0.01, 0.01], where comma separates the columns and semicolons separate the rows. 
Here, the 3 topic prior values in the second row corresponding to cell type 2 are set to 
0.9 and the values in the remaining rows are set to 0.01.

The data generative process is identical to the basic GTM-decon except having K × L 
topics instead of K  topics. Specifically, to sample the cell-type mixture θm , we flatten the 

n
−(i,m)

g ,.,k =
∑

m′ �=mori′ �=i

[
xi′,m′ = g

]
αm,kγi′,m′,k

γg ,m,k ∝

�
αm,k + n

(−g)
.,m,k

�



β + n

(−m)

g ,.,k

Gβ +
�

g n
(−m)

g ,.,k





Eq

[
θm,k

]
=

αm,k + n.,m,k∑
kαm,k + n.,m,k

≡ θ̂m,k;Eq

[
φg,k

]
=

β + ng ,.,k

Gβ +
∑

gng ,.,k
≡ φ̂g,k



Page 23 of 32Swapna et al. Genome Biology          (2023) 24:190 	

K × L matrix for αm to have a row vector of 1× (K × L) so that the θm will have rela-
tively high expected value for the ythm consecutive L values that correspond to the labeled 
cell type and relatively low expected value for the rest of the entries. We experimented 
modeling each cell type using L ∈ {2, 3, 4, 5} topics per cell type, with the hyperparam-
eters αm,k for each cell of cell type k set to 0.45, 0.3, 0.22, and 0.18, respectively. The prior 
values for the remaining topics were assigned with random values between 0.001 and 
0.01. These priors were heuristically chosen based on the hyperparameter of value 0.9 
for one topic divided by the number of topics per cell type.

Inferring mixing cell‑type proportions in bulk transcriptome

We assume a similar data generative process of the bulk transcriptome as the single-cell 
transcriptome described above. In particular, each bulk sample j ∈ {1, ..,D} is a mixture 
of K  cell types. Its cell-type mixture θj is sampled from a K-dimensional symmetric Dir-
ichlet distribution θj ∼ Dir(α) with the hyperparameter fixed at a constant value across 
all K cell types (default: αk = 0.1∀k ). The flat hyperparameter value is used here since we 
typically do not have any prior information about the cell-type mixtures in the bulk 
RNA-seq data. For Nj total RNA-seq reads of bulk sample j, each read i ∈ {1, . . . ,Nj} 
originates from one of the K  cell types with the categorical rates set to be θj : zi,j ∼ Cat(θj) , 
where zi,j ∈ {1, . . . ,K } , and maps to a specific gene indexed by xi,j ∈ {1, . . . ,G} with a 
known CTS categorical rates φ̂zi,j

 : xi,j ∼ Cat(φ̂zi,j
).

Performing deconvolution on a bulk transcriptome profile is equivalent to inferring 
the posterior distribution of the CTS topic mixture given its gene expression and the 
CTS topic distributions: p(θj|xj , �̂ ). To this end, we used the G× K  genes-by-CTS-topic 
estimates �̂ inferred from the scRNA-seq reference data (described in section “Modeling 
scRNA-seq reference data via topic inference guided by cell-type labels”) and perform 
variational inference to infer the cell-type mixture θj for the jth bulk RNA-seq profile. 
Implementation-wise, similar to the scRNA-seq topic modeling, we also use the simpli-
fied topic inference algorithm at the gene level g ∈ {1, . . . ,G} as opposed to at read level. 
This involves alternating between the topic assignment inference for γg ,j,k and comput-
ing the sufficient statistics n−(g).,j,k  while fixing �̂ . Algorithmically, for each gene, we infer 
the topic assignments:

where n(−g)
.,j,k =

∑
g ′�=g γg ′,j,k . Upon convergence, we compute the expected CTS-topic 

mixture:

The bulk sample is transformed in the same way as the scRNA-seq reference data as 
described in the “Preprocessing the reference scRNA-seq data” section.

We also show that although GTM-decon infers RNA fractions instead of cell-type 
fractions, the correlation between the RNA fractions and cell-fractions is strong 
across cell types in multiple datasets, suggesting that RNA fractions per cell type 
can serve as a good surrogate to the cell fraction per cell type despite the potential 
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differences in cell sizes among cell types (described in Additional file  1: Section S9 
and illustrated in Fig. S31).

Sparsification of the bulk data to directly infer topic distributions from them

In order to identify de novo topics that are not present in the reference scRNA-seq data, 
we applied standard LDA using the CVB implementation from MixEHR [59] to the 
sparsified bulk RNA-seq data. However, bulk RNA-seq data is a dense matrix with most 
genes having non-zero entries while topic models excel at modeling sparse matrices 
(e.g., scRNA-seq data). To make the bulk RNA-seq data amenable to our approach, we 
sparsified the dense matrix by setting all values below the 75th percentile to 0. This cut-
off was derived from scRNA-seq datasets, where on average 25% of genes in a cell have 
non-zero count values. While sparsifying works well in our applications, as a caveat, we 
acknowledge that it will lead to information loss. We also experimented with two other 
approaches to sparsify the matrix: (1) training GTM-decon only using HVG genes in 
bulk RNA-seq data; (2) training GTM-decon using differentially expressed genes identi-
fied between the phenotypes using DESeq2 [64].

Note that the sparsification procedure was done on the bulk data only when we 
directly inferred gene topic distributions from them, which pertains to the de novo topic 
inference from bulk samples, phenotype-guided topic inference from the bulk, and nest-
guided CTS-phenotype topic inference. All of the deconvolution experiments, where we 
first inferred topics from a single-cell reference dataset and then applied the inferred 
topics to deconvolve bulk data, does not involve the sparsification procedure (i.e., decon-
volving the original bulk transcriptomes as they are).

Identifying statistically significant marker genes per cell type

After GTM-decon topic inference, marker genes for each cell type were identified 
using permutation test. Specifically, for gene g under topic k, we computed the differ-
ence of its topic score φg ,k from the average topic score over the rest of the K-1 top-
ics φg ,k′�=k . For example, for 3 cell types, the test statistic for cell type 1 is calculated as 
φg ,1 −

(
φg ,2 + φg ,3

)
/2 . More generally, for K cell types and T topics per cell topic, the 

test statistic for cell type k and gene g is

The significance of the observed statistic is compared against the same statistic calcu-
lated from 100,000 permutations. The empirical p-value is computed as fraction of per-
mutations, where the test statistic is greater than the observed value.

Evaluation of deconvolution accuracy using simulated and real bulk data

We evaluated the deconvolution accuracy by comparing the inferred cell-type propor-
tions against the ground truth values for the datasets. First, we simulated bulk RNA-
seq data using the scRNA-seq dataset. We summed the gene expression counts of each 
sample from the scRNA-seq data to represent the bulk data of that sample (artificial bulk 
transcriptome). The ground-truth cell-type proportions are the fraction of cells for each 
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cell type. To avoid information bias in the evaluation, we performed leave-one-out cross-
validation (LOOCV) by inferring topics from scRNA-seq data for N − 1 subjects as the 
training examples and deconvolving the held-out subject as the validation example. The 
results are shown in Additional file 1: Fig. S10.

In addition, we also used real bulk data with known cell-type proportion to bench-
mark our methods. To conduct different benchmarking and qualitative experiments, 
we used scRNA-seq datasets from several tissues for training GTM-decon (Additional 
file  1: Table  S1): a human pancreas (E-MTAB-5061, GSE81433) (with 4 type 2 diabe-
tes and 3 healthy subjects) and mouse (GSE81433); b Peripheral blood mononucleo-
cytes (PBMC) of healthy human (GSE132044); c human blood cells (HBC) of healthy 
humans (GSE149938); d post-mortem brain tissue of frontal cortex from adult human 
(GSE97930); e Breast tissue from healthy individuals (GSE113197). Apart from healthy 
individuals, scRNA-seq references from patients with a pancreatic cancer (CRA001160) 
and b breast cancer (GSE176078) were used to deconvolve cancer bulk RNA-seq 
datasets.

Bulk RNA-seq datasets with known ground truth values were chosen for benchmark-
ing (Additional file  1: Table  S2). Datasets with known ground truth proportions from 
flow cytometry include a whole blood from 12 individuals (obtained from CIBERSORTx 
webpage), b PBMC from a cohort of 13 individuals (GSE107011), c PBMC from a cohort 
of 346 individuals (SDY67). For brain tissue, ground truth proportions from immuno-
histochemistry were available for a cohort of 41 individuals from the Religious Orders 
Study / Memory and Aging Project (ROSMAP) study (CortexCellDeconv). A unique 
dataset with both bulk RNA-seq data and scRNA-seq data from pancreas was accessed 
from E-MTAB-5060 and E-MTAB-5061, respectively, with the cell type proportions 
from scRNA-seq considered as ground truth values.

For the 3 immune (SDY67, whole blood, PBMC S13 cohort) and brain prefrontal cor-
tex (ROSMAP) bulk datasets, we used two independent single-cell references with the 
most closely matched tissues of origin (Additional file 1: Table S1). For the pancreatic 
dataset (Segerstolpe), paired single-cell and bulk data from the same individuals were 
used in the LOOCV manner, where we used the cell-type proportions from the single-
cell dataset to compare the estimated proportions from the paired bulk data in the same 
held-out subject.

To evaluate the concordance between the ground truth ym and our inferred cell-type 
mixture θm for each test sample m, we computed four common metric scores: (1) Pear-
son correlation coefficient (PCC), (2) Spearman correlation (SCC), (3) cross entropy 
(CE), and (4) residual mean squared error (RMSE) (Fig. 2a). Moreover, we also evaluated 
the deconvolution performance at each cell type using PCC and RMSE across samples 
(Fig. 2b; Additional file 1: Figs. S11-15).

For the qualitative analyses on the cancer datasets, the bulk RNA-seq datasets for pan-
creatic cancer (PAAD) and breast cancer (BRCA) datasets from TCGA were downloaded 
from the GDC data portal (https://​portal.​gdc.​cancer.​gov/). Similarly, bulk RNA-seq data 
from the pancreas of a cohort of 89 normal and diabetic individuals was obtained from 
GSE50244.

https://portal.gdc.cancer.gov/
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Implementation of the existing deconvolution methods

We compared GTM-decon with other state-of-the-art methods, including BSEQ-sc, 
BISQUE, MuSiC, CIBERSORTx, and BayesPrism. For BSEQ-sc, marker genes were 
selected from CellmarkerDB for the brain and immune datasets, while the built-in pan-
creatic marker genes were used for the Segerstolpe dataset. BISQUE requires at least 
two paired reference bulk and reference single-cell samples, which is the case for the 
Segerstolpe dataset. When using human blood cell (HBC) scRNA-seq data as a refer-
ence, in order to use BISQUE, artificial bulk samples were constructed using single-cell 
data. For the other 3 bulk datasets, since we used only one scRNA-seq reference, we 
left out BISQUE from the evaluation. For CIBERSORTx, all genes were provided to the 
web portal (https://​ciber​sortx.​stanf​ord.​edu/) for Signature Matrix generation and Cell 
Fraction imputation. For BayesPrism, all genes were provided to the web portal (https://​
www.​bayes​prism.​org/) for cell type composition estimation, with the metadata column 
for tumor status set to 0 for all cells.

Preprocessing the reference scRNA‑seq data

The gene expression profiles of scRNA-seq data were used as training data. Since the 
performance of GTM-decon may vary depending on how the scRNA-seq count data are 
processed, we explored different gene selection and transformations of the scRNA-seq 
data. Specifically, the following gene selection were considered:

	(i)	 all: all genes without removal of any gene;
	(ii)	 pp: preprocessed genes to remove uninformative genes (frequently expressed 

genes—found in ≥ 80% of cells, infrequently expressed genes—found in ≤ 5 cells);
	(iii)	 hvg: highly variable genes identified using the highly_variable_genes (HVG) func-

tion of scanpy [65].

Furthermore, for each of these gene sets, the following transformation were 
considered:

	(i)	 raw count (all / pp / hvg)—scRNA-seq read counts per gene;
	(ii)	 normr (all_normr / pp_normr / hvg_normr)—normalize counts (while excluding 

highly expressed genes for calculating the normalization factor) as counts divided 
by the sum of counts per cell multiplied by a scaling factor of 10,000 (a commonly 
used factor for scRNA-seq data [66]), and round the values to their nearest integer 
to make the input suitable for topic modeling;

	(iii)	 normr_log1p (all_normr_log1p / pp_normr_log1p / hvg_normr_log1p): log-trans-
form normalized counts in (ii), and round the values to their nearest integer to 
make the input suitable for topic modeling.

Gene set enrichment analysis (GSEA)

GSEA was performed using the fgsea package from R, on two different gene sets: (a) 
gene sets corresponding to specific cell types from CellMarkerDB [30]; (b) gene set cor-
responding to the HALLMARK pathways from MSigDb using msigdbr [67].

https://cibersortx.stanford.edu/
https://www.bayesprism.org/
https://www.bayesprism.org/
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Survival analysis

For TCGA datasets, after cell-type proportions are inferred using GTM-decon, survival 
analysis is performed using the survival and survminer R packages in order to assess if 
there is any correlation between survival probability of the cancer subjects and cell-type 
proportions for the cell types. Kaplan–Meier curves were generated for those cell types, 
where the association is deemed statistically significant at p-value < 0.05 based on log-
rank test.

Learning phenotype‑specific gene signatures from bulk RNA‑seq data

To identify phenotype-specific genes, we applied GTM-decon to directly infer pheno-
type-topics from the sparsified bulk RNA-seq data (Fig. 1b). To evaluate phenotype pre-
diction accuracy, we randomly split the bulk RNA-seq samples into training and test 
datasets in 80:20 ratio. The training dataset is guided in a manner similar to GTM-decon 
for the scRNA-seq datasets. Briefly, for each subject, the hyperparameter(s) for the 
topic(s) corresponding to the observed phenotype was (were) set to the prior value of 
0.9, and the hyperparameters for the rest of the topics were set to a small value between 
0.01 and 0.1. Since a model of 5 topics per cell type worked well for several scRNA-seq 
datasets, we opted to model each phenotype by 5 topics as well. For the subjects in the 
20% test data, we summed up the inferred phenotype mixture θd,k values for all topics 
corresponding to the same phenotype. The predicted phenotype was the one with the 
highest summed up topic score. As a comparison, we also evaluated two other common 
machine learning methods namely logistic regression and random forest. We used their 
scikit-learn implementations with the default settings [68].

Identifying CTS DE genes from bulk transcriptomes from nested‑guided topics

In identifying phenotype-specific differentially expressed genes, we developed a way to 
leverage the CTS topics inferred from the scRNA-seq reference data by fine-tuning the 
CTS topics based on gene expression from the sparsified bulk RNA-seq data for differ-
ent phenotypes (Fig.  1c). Specifically, we initialized the genes-by-topic matrix �d for 
each phenotype d. For example, for D = 3 phenotypes in a tissue with K = 5 cell types, 
we will have 15 topics, comprising of 3 sets of CTS �d matrices of 5 columns each. These 
matrices are guided by the phenotype labels during the variational inference.

For subject j, suppose his/her phenotype label is d d ∈ {1, ..,D} . The topic hyperparam-
eters αj,d,k ’s for all the K topics corresponding to the phenotype label d were set to 0.9, 
and the αj,d′,k for the other phenotypes were set to a small value between 0.01 and 0.1. 
These values were propagated throughout the variational inference, guiding the pheno-
typic inference appropriately. The inference algorithm is identical to the one described in 
“Modeling scRNA-seq reference data via topic inference guided by cell-type labels” sec-
tion for modeling the scRNA-seq data. This approach also works with single-cell tran-
scriptomes from a disease study such as the single-cell breast cancer study, where we not 
only have the cell type information but also phenotype states of the subjects (i.e., ER + vs 
TNBC) (Additional file 1: Section S8 and Fig. S30).

From the learned matrix, the test statistic of a DE candidate gene g between phe-
notypes d and d′ �= d per cell type k were identified by subtracting the φg ,d,k value for 
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phenotype d from the φg ,d′,k value for phenotype d′ . We identify statistically significant 
genes with a p-value < 0.05 by permutation test calculated from the 100,000 randomly 
shuffled �d matrices. The p-value is the fraction of times the null statistic from the per-
mutations is greater than the observed test statistic. As a reference, we compared our 
approach against the DE genes identified from the same samples using DESeq2 [64]. We 
identified hallmark pathways from MSigDb which were enriched for the DE genes by 
Over Representation Analysis (ORA) using the ClusterProfiler package from R [69].
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