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Abstract

Background: Cleavage Under Targets and Release Using Nuclease (CUT&RUN)

is an increasingly popular technique to map genome-wide binding profiles of histone
modifications, transcription factors, and co-factors. The ENCODE project and others
have compiled blacklists for ChIP-seq which have been widely adopted: these lists con-
tain regions of high and unstructured signal, regardless of cell type or protein target,
indicating that these are false positives. While CUT&RUN obtains similar results to ChlIP-
seq, its biochemistry and subsequent data analyses are different. We found that this
results in a CUT&RUN-specific set of undesired high-signal regions.

Results: We compile suspect lists based on CUT&RUN data for the human and mouse
genomes, identifying regions consistently called as peaks in negative controls. Using
published CUT&RUN data from our and other labs, we show that the CUT&RUN sus-
pect regions can persist even when peak calling is performed with SEACR or MACS2
against a negative control and after ENCODE blacklist removal. Moreover, we experi-
mentally validate the CUT&RUN suspect lists by performing reiterative negative control
experiments in which no specific protein is targeted, showing that they capture more
than 80% of the peaks identified.

Conclusions: We propose that removing these problematic regions can substantially
improve peak calling in CUT&RUN experiments, resulting in more reliable datasets.

Keywords: CUT&RUN, Chromatin, Bioinformatics, Peak calling, Blacklist, Suspect list

Background

Cleavage Under Targets and Release Using Nuclease (CUT&RUN, hereafter referred
to as C&R) is a technique developed to map the genome-wide binding profiles of
histone modifications, transcription factors and co-factors [1]. Like other genom-
ics techniques, C&R uses short-read next generation sequencing (NGS) to gener-
ate datasets and thus depends on reliable mapping and genome assemblies for their
accurate interpretation. Repetitive regions, assembly gaps, and other computational
challenges can lead to the rise of sequencing artifacts, resulting in areas of signifi-
cant signal enrichment that are not due to biological processes [2]. Additionally,
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high-signal regions can occur as consequence of several procedures, such as cell
fixation or PCR-based amplification after adaptor ligation of sequencing libraries
[3-5].

Sets of artifactual and high-signal regions that should be excluded from the analy-
sis, known typically as blacklists, have previously been generated by the ENCODE
consortium and others for chromatin immunoprecipitation followed by sequenc-
ing (ChIP-seq) [6, 7]. C&R and ChIP-seq obtain comparable results, and the
ENCODE blacklist have been used for both these assays. However, C&R and ChIP
rely on different biochemical procedures; for example, in ChIP-seq, the chromatin
is crosslinked, sonicated, and immunoprecipitated, while in C&R, no crosslinking
is applied and the target-associated DNA fragments are obtained by digestion with
the MNase-proteinA (pA-MNase) or proteinA/G (pA/G-MNase) fusion proteins [1].
The determination of signal enrichment, peak calling, can also be done differently
between the two techniques. While most ChIP-seq peak calling algorithms use local
signal to background ratios to determine significance, the low background typical
of C&R renders this difficult. This led to the development of the C&R specific peak
caller SEACR, which uses global background (as opposed to local background) to
determine a signal to noise threshold against which to call peaks [8]. Artifacts in
ChIP-seq have been shown to bias peak calling results [2]; we reasoned that, due
to its reliance on global background signal, SEACR may be even more sensitive to
unspecific signals.

To address these differences between C&R and other NGS-based techniques,
we compiled lists of suspect regions (suspect lists) for the hg38 human and mm10
mouse genomes built exclusively on C&R data. To determine regions that produce
detectable signals in negative controls, hence likely to be erroneously called as peaks
across experiments, we downloaded C&R negative control datasets (N=20 per
genome from 20 different cell types, from 40 different studies) and performed peak
calling on them to identify peaks consistently identified by SEACR. This allowed
us to establish a human and a mouse C&R suspect list of by-definition artifactual
peaks. Both human and mouse C&R suspect lists obtained in this manner show
high precision, as they encompass less than 0.2% of their respective genome yet suc-
ceed—when used to subtract the false peaks from C&R datasets—in increasing the
genome-wide variance between samples, indicating that the suspect list regions are
commonly enriched across C&R experiments, regardless of the target and the cell
type. This indicates that these regions ought to be removed.

To validate the C&R suspect lists generated, we performed reiterative negative
control experiments (N=8 per genome) using non-targeting IgG or anti-HA anti-
bodies. Both human and mouse blacklists show high concordance with these neg-
ative control experiments and identify>80% of the by-definition artifactual peaks
called. We tested the blacklists on published C&R datasets and show that they lead
to identification of false positive peaks that often escape elimination when peak call-
ing is performed against a negative control or when previous blacklists were applied.
Lastly, we show that subtracting the C&R-specific blacklists before peak calling can
improve the performance of both SEACR and MACS2 and the consequent reliability
of C&R peaks.
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Results

Generation of the suspect lists

We compiled human and mouse genomic C&R suspect lists by downloading publicly
available raw C&R data from the European Nucleotide Archive (https://www.ebi.ac.
uk/ena/browser/home) and processing them to identify high signal regions (Fig. 1A).
We included 40 negative controls (20 for human and 20 for mouse, all with unique
cell types) from 40 different studies to ensure diversity on the model systems used and
identify cell-type agnostic regions. These datasets were produced with varying condi-
tions, including different cell number, pA-MNase or pA/G-MNase, and control anti-
body type (full details in Additional file 1: Table S1). The criteria for inclusion were
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Fig. 1 Generation of the CUT&RUN suspect lists. A Schematic representation of suspect list generation
strategy. B Plots of Spearman’s correlation between negative control samples (N =20 each) in human and
mouse, showing genome-wide correlation and correlation within the C&R suspect list regions in hg38

and mm10 genomes. In both human and mouse, samples show dramatically increased correlation when
considering only the suspect list regions. The mouse dataset (15) that does not correlate well with the rest
can be explained by an unequal distribution of reads among the chromosomes, with high enrichment

for chromosome 1. C Signal enrichment plots of the hg38 suspect list regions for a representative human
negative control sample, after mapping with bowtie or bowtie2. More stringent mapping with bowtie

did not drastically change the enrichment in the suspect listed regions. D Chromosome map showing
genome wide locations of regions contained in the C&R hg38 suspect list (left) and corresponding genomic
annotations by HOMER (right). The hg38 suspect list is enriched for satellite and simple repeat regions. E
Chromosome map showing the genome wide location of regions contained in the C&R mm10 suspect list

(left) and corresponding genomic annotations (right). The mm10 suspect list contains many different types of

regions, the most represented being intergenic loci
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a clear labeling system as C&R negative controls (i.e., “no antibody,” “IgG,” etc.) and
the use of pair-end NGS technology. We performed trimming on the data to remove
adapters and then mapped to the human (hg38) or mouse (mm10) genomes with
bowtie2, using commonly recommended settings for C&R data [9, 10]. Once mapped,
we deduplicated the BAM files to stringently identify artifacts that occur regardless of
PCR duplication rates. We applied peak calling of these negative control samples with
SEACR on stringent mode, using a threshold of 0.001 to identify the highest 0.1% sig-
nals. We then extended the peak regions by 1000 bp in either direction, to ensure cap-
turing peaks that may be slightly shifted between datasets and overlapped the peak
sets resulting from each different individual sample to measure the reproducibility of
false positive signal. The suspect lists are compiled by peaks present in at least 30% of
the negative controls used: we consider this probability sufficiently high to indicate an
unacceptable chance of false positive hits. The suspect lists are provided in Additional
file 2. When peak numbers are plotted based on the number of datasets in which they
are found, 7 of 20 is located at the approximate “knee” of the curve, where the repro-
ducibility begins to stabilize (Additional file 1: Figure S1A).

Genome-wide, the datasets show very low correlation (Fig. 1B), which is expected
due to random distribution of MNase-based digestion when a non-targeting antibody
is used [9]. However, when considering only the suspect listed regions the correla-
tion is high (Fig. 1B), indicating that these regions are enriched across independent
negative control samples and ought to be considered as artifactual. To ensure that
the suspect lists are valid regardless of the data processing pipeline, we applied more
stringent mapping with bowtie—instead of bowtie2—allowing neither sequence mis-
matches nor multimapping. Though the fraction of reads within the suspect list peaks
(FRIP score; a typical measure of the efficiency of the experiment) typically decreased
with more stringent mapping (Additional file 1: Table S2), the average signal enrich-
ment profile across suspect list regions was comparable and still enriched compared
to background (Fig. 1C), demonstrating that a majority of these problematic regions
display real signal enrichment independently from mapping biases.

The suspect listed regions are scattered throughout the genome, both in human
and in mouse, and involve all chromosomes (Fig. 1D and E, respectively, left pan-
els). The C&R suspect lists also contain the mitochondrial genome, as well as regions
from unknown or random chromosomes which are mappable with bowtie2, as these
regions can contribute to noise in experiments. The regions in both lists have an aver-
age size around 5000 bp. We checked the mappability in the suspect listed regions
using UMAP [11] and found that 656/1049 regions in hg38 and 42/559 in mm10 are
considered lowly mappable by 36 bp reads. When annotating the suspect lists for
genomic regions, the hg38 suspect list is dominated by satellite and simple repeat
regions, though it also contains regions annotated in other categories like intergenic,
intronic, and promoter regions (Fig. 1D, right). The mm10 suspect list has a more
even distribution of region annotations, with the most falling in intergenic regions
(Fig. 1E, right). Fully annotated versions of the suspect lists, including the region
coordinates, annotation, gene annotation to the closest TSS, mappability, and overlap
with the ENCODE lists, are provided in Additional file 2.
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Comparison of the CUT&RUN suspect lists with the ENCODE blacklists

When compared with the latest version (v2) of the ENCODE blacklists [6], our C&R
suspect lists cover a smaller portion of the genome (Fig. 2A). For the comparison, we
manually added the mitochondrial genome to the ENCODE blacklists, as this is rec-
ommended to remove but not included in the list. Several ENCODE blacklist regions
are broader than the C&R suspect list regions; the ENCODE blacklisted regions were
in fact extended to encompass unmappable or neighboring high-signal regions, and
blacklist regions within a certain distance range were merged [6]. In contrast, we
chose not to manually curate or merge the identified regions, or extend them beyond
1000 bp in either direction, to provide the dual advantage of (i) increasing the spec-
ificity in identifying the high-signal C&R false peaks and (ii) removing as little of
the genome as possible. Therefore, one ENCODE blacklist peak may overlap with
multiple C&R suspect peaks. While due to their different biochemistries ChIP-seq
and C&R can produce different sets of false positives, we noticed that several false
peaks are shared between the ENCODE and C&R suspect lists (Fig. 2B). We inter-
pret that these artifacts could be caused either by undesired enrichment of prevalent
fragments in the genome, such as repeated sequences, or by genome assembly and
mapping biases [6]. Moreover, the overlap between the ENCODE and the C&R sus-
pect lists constitutes an important validation of our approach. On the other hand, as
expected, there are C&R specific regions absent in the ENCODE lists (Fig. 2C), and
many regions included in the ENCODE blacklists do not show any signal enrich-
ment in the C&R negative controls. Thus, employing the ENCODE blacklists to filter
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Fig. 2 Comparison of the CUT&RUN and ENCODE suspect lists. A Comparison of number of peaks, base
pairs suspect listed, and total genome coverage for C&R and ENCODE hg38 and mm10 suspect lists. The
C&R suspect lists cover less of the genome compared to their ENCODE counterparts. B Comparison of
overlapping suspect listed regions between C&R and ENCODE hg38 and mm10 suspect lists, showing both
considerable overlap and unigue regions. C Examples of coverage and fragment pileups for representative
negative controls tracks in human and mouse, showing both unique regions for the C&R suspect lists and
regions shared with ENCODE. C&R =CUT&RUN
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C&R data might lead to both the undesired consequences of unnecessarily removing
regions of true signal and failing to remove C&R-specific artifacts.

Improved assemblies have recently been released for human (telomere-to-tel-
omere, T2T) and mouse (mm39). In the future, researchers will likely move towards
mapping to these genomes instead of hg38 and mm10, so we compiled suspect lists
with the same method for these new assemblies and included them in Additional
file 2. While the mm39 suspect list contains a comparable number of regions to the
mml10 dedicated one, the T2T suspect list is made by 212 regions versus the 1049
for hg38. This likely represents the increased confidence of the more recent genome
assembly and indicates that some artifacts commonly found in C&R data are indeed
computational in nature.

Experimental validation of the CUT&RUN suspect lists

To validate the C&R suspect lists, we first turned to the negative controls they were
built on. Principal component analysis (PCA) plots of the genome-wide signal distri-
bution revealed a reduction in sample similarity after filtering with the suspect lists,
both for human and mouse C&R datasets (Fig. 3A, top panels). Scree plots for each
PCA show that subtracting the suspect lists decreases the Eigenvalue of principal
component 1 and increases the contribution of the other principal components on
the total variance observed (Fig. 3A, bottom panels). This indicated that the C&R sus-
pect lists successfully identify and subtract the commonalities across negative con-
trol sample, which by definition should be considered false positives. In addition, to
test our C&R suspect lists experimentally, we decided to carry out a series of new
experiments: we performed 8 C&R tests in HEK293T human cells and 8 in mouse
embryonic tissues from JAX Swiss mice by using either IgG or anti-HA antibodies.
To increase diversity in this test, we used both the original C&R protocol [1] and our
recently developed C&R-LoV-U version for non-DNA-binding transcriptional co-fac-
tors [12]. A full list of sample information is provided in Table 2. The obtained data-
sets were analyzed as shown in Fig. 1A to replicate the construction of the suspect
lists but solely built on these new data. The C&R suspect lists were able to increase
the variance in our internally generated negative controls (Fig. 3B). Most importantly,
our new datasets contained >80% of the regions identified by each C&R suspect list
(Fig. 3C), indicating that the C&R suspect lists (i) contain reproducibly enriched
regions, (ii) are generally applicable, and (iii) do not contain any obvious cell type-
specific bias. In our opinion, the additional peaks of our internally generated series of
negative controls not found by the suspect lists are likely due to HEK293- or mouse
strain-specific enrichment (Fig. 3D). This reinforces the need for performing negative
controls at each experiment, in addition to using our suspect lists.

We were curious as to whether identifiable factors, such as type of negative con-
trol, pA- or pA/G-MNase, or C&R protocol adopted could influence the pattern
of signal. To investigate this, we marked the samples in the PCA plots in different
colors based on these factors and followed their behavior before and after filter-
ing for the datasets used to build the suspect lists (Additional file 1: Figure S1B)
and our own in-house generated negative controls (Additional file 1: Figure S1C) to
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Fig. 3 Experimental validation of the CUT&RUN suspect lists. A Principal component analysis graphs (top
row) and Scree plots (bottom row) of human and mouse negative control samples, showing a decrease in
sample similarity after filtering with C&R suspect lists. The percentage of variance explained by each principal
component decreases, and the samples become more randomly distributed on the graphs, indicating more
variance in line with an expected random distribution of reads from a non-specific antibody in C&R. The Scree
plots show a decrease in the Eigenvalue and contribution of principal component 1 to the total observed
variance after filtering. B Principal component analysis (top row) and Scree plots (bottom row) on human and
mouse negative controls performed to validate the C&R suspect lists, showing increase variance after filtering.
C Comparison of C&R suspect lists with suspect lists built with the same method based on experiments
performed in HEK293T human cells and embryonic tissues from JAX Swiss mice. The suspect lists show high
concordance with over 80% of each C&R suspect list being identified by the cell or strain specific suspect lists.
D Examples of genome coverage of representative samples under unique regions of the C&R and cell/strain
specific suspect lists. C&R, CUT&RUN; PCA, principal component analysis

determine the existence of any clustering pattern. From this, confirming our experi-
ence, there does not seem to be discernible patterns in signal due to these factors.
Regardless of conditions, we noticed that when the data from the control is sparser
(datasets 4, 7, 13, and 20 in Fig. 1B which are less correlated with the rest), it ren-
ders it more difficult to identify artifacts. In these cases, suspect lists are particularly
well-suited to assist removing artifact regions that are not enriched in the negative

control due to low coverage.
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Filtering via CUT&RUN suspect lists improves peak signal intensity of published datasets
We set out to evaluate the performance of the C&R suspect list on published C&R
datasets. First, we performed PCA analysis before and after suspect list filtering on
human and mouse C&R-LoV-U datasets obtained across different types of targets,
histone modifications, transcription factors, and co-factors [12, 13]. This invariably
led to similar improvements: first, the genome-wide variance of the signal increased;
second, the samples clustered more, as expected, with their replicates or DNA bind-
ing partners. These indicate that the suspect list regions were falsely inflating the
similarities of the samples (Fig. 4A). This was confirmed by calculation of average
intra-target versus inter-target distances: intra-target distances decreased after fil-
tering (suggesting increased experimental/analytical precision), while inter-target
distances increased (indicating specificity, that is the identification of biologically
meaningful differences depending on the selected target). The ratio of the average
inter-target versus intra-target distance increased from 2.68:1 to 4.73:1 in HEK293T,
and from 2.18:1 to 8.53:1 in the hindlimb datasets upon suspect list filtering. We con-
sider these as quantitative measures of the improvement in the datasets. We noticed
that some of the suspect listed regions even appeared, in the published description
of this experiment, within the list of “high-confidence” peaks for B-catenin in both
human cells and mouse tissue, despite that these lists were curated by the subtraction
of regions enriched in the negative control and of the ENCODE blacklists, enforcing
the need for C&R specific suspect lists.

SEACR was benchmarked on datasets without removing high-signal regions and
often performs well as is on high-efficiency experiments. However, we hypothesized
that signal within suspect list regions could be affecting the peak calling algorithm,
both in the normalization of sample to control and in the later determination of sig-
nal thresholds. We tested SEACR on the B-catenin data with both relaxed and strin-
gent settings and show that removing all the reads mapping to the C&R suspect listed
regions before peak calling results in smaller, yet more reliable peak sets with fewer
false positives. We conclude this based on the measurement of two key parameters:
(i) a higher enrichment for the expected primary motif and (ii) an improved average
signal profile in the peaks (Fig. 4B, left and center). To test this further, we down-
loaded the raw data for MAX and MYC chromatin profiling performed in human
K562 cells, along with the no-antibody negative control, from the original C&R publi-
cation [1, 14]. First, we mapped these datasets with bowtie2 to the hg38 genome with
and without deduplication, then calculated FRIP scores for the C&R hg38 suspect list.
The MYC and no-antibody datasets displayed enrichment for the suspect list regions,
with FRIP scores ranging from 5 to 8%. The MAX dataset was especially affected by
the suspect list regions: it had 71.9% of fragments within the suspect list peaks before
deduplication, and 21.6% after duplicate removal. When called with SEACR against
the negative control, before and after suspect list filtering, we detected a reduction
in peak number for both MYC and MAX, an increased average signal-to-noise ratio
within the peaks (Fig. 4B, center and right) and an increased presence of the primary
motif. This difference is especially strong for MAX, which had the higher FRIP score,
and thus had likely a greater effect from signal within the suspect list regions. These
analyses indicate that suspect list filtering of bam files before peak calling has a larger
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Fig.4 Application of the CUT&RUN suspect lists on published datasets. A Principal component analysis on
published C&R datasets (top row) and Scree plots (bottom row) from [11], showing that suspect list filtering
reduces sample similarity and allows samples to clustering as expected based on the antibody used. This was
confirmed by calculation of the average ratio of inter-target versus intra-target distance, which increased with
filtering from 2.68:1 to 4.73:1 in HEK293T and from 2.18:1 to 8.53:1 in the mouse hindlimb. B Evaluation of
suspect list filtering on SEACR peak calling. Left: Comparison of peaks called using SEACR against a negative
control on relaxed and stringent modes for the 3-catenin A replicate, showing that suspect list filtering of
BAM files before peak calling leads to a smaller number of called peaks which have an increased average
signal profile within the peaks and an increased percentage of peaks which contain expected TCF/LEF motifs
(middle). The increase in background signal in the filtered and more stringent sets in the average profile

(left) is due to an increase in peaks called in high-signal regions, not suspect list filtering (see Supplementary
Fig. 1D). Right: Comparison of peaks called by SEACR on MYC and MAX datasets from [1] before and after
suspect list filtering, showing a decrease in peak number accompanied by an increase in average signal
within the peak regions. C Evaluation of suspect list filtering on MACS2 peak calling. Left: calling B-catenin
peaks with MACS?2 after filtering leads to peaks with a comparable but slightly higher average signal profile.
Center: Peak calling with MACS2 on MYC and MAX at two different stringencies before and after filtering
shows that suspect list regions are called as peaks in unfiltered sets and that filtered sets contain more peaks
at the same statistical stringency. Right: The average profiles of filtered MYC and MAX peak sets show a higher
signal to noise ratio than their unfiltered counterparts. C&R, CUT&RUN; PCA, principal component analysis
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impact on the final results when compared to filtering after peak calling with SEACR:
the number of regions removed was much higher than the number of suspect list
regions present in each unfiltered peak set (Fig. 4B, center), confirming that the per-
formance of SEACR is affected by the spurious signal in suspect list regions.
Interestingly, analogous suspect list filtering also affects peak calling executed with
MACS2. With MACS2, calling the unfiltered B-catenin dataset against the control resulted in
suspect list regions being called as peaks (Fig. 4C, center), showing that even though MACS2
uses local background, artifact peaks can still “slip through” Additionally, the filtered dataset
had slightly more peaks called at the same stringency once suspect list peaks were retrospec-
tively removed (294 versus 292). When compared with average profiles, the signal per mil-
lion reads was higher in the filtered set, likely because of reduced total signal after removal
of suspect list reads (Fig. 4C, left). Next, we tested MACS2 peak calling for the MYC and
MAX datasets and saw the same general pattern of suspect list regions being called in the
unfiltered datasets, at two stringencies, and more peaks with a stronger average profile in the
filtered datasets (Fig. 4C, middle and right). The presence of the primary motif was not con-
sistently affected by filtering, with the difference being less than 1% in all cases, sometimes
lower or higher after filtering (Fig. 4C, center). While these effects are not as drastic as we
observed with SEACR, these analyses show that suspect list filtering of C&R processed with
MACS?2 is advantageous, whether the filtering is performed before or after the peak calling.

Discussion

Proper controls are vital in any type of experiment, and C&R is no exception. In C&R,
the primary goal of a negative control is to identify regions which become enriched due
to factors other than the physical occupancy of a protein target (artifacts), so that they
may be removed and prevented from confounding any subsequent analyses on the pri-
mary target’s binding pattern. The nature of the signal enrichment in the artifact regions
and the mechanisms by which they appear are by no means solved by this analysis. The
existence of C&R specific artifacts, not found in ChIP-seq blacklists, and artifacts spe-
cific to a certain cell type or mouse strain, point towards a biological origin. On the other
hand, the lower number of regions in our C&R suspect list for the T2T assembly ver-
sus hg38 indicates that a majority of these could be computational, as they have been
resolved by a more complete reference genome sequence. Repeat regions are common in
the genome and thus could naturally be enriched in background DNA. Library prepara-
tion PCR could amplify them even further, and finally an imperfect genome assembly
could erroneously map them in one region, thereby creating an artifactual enrichment.
In these cases, the explanation for their existence would be a combination of multiple
factors. The differences between where suspect list regions are located in hg38 (primar-
ily satellite regions) versus mm10 (more equally distributed, many in intergenic and
intronic regions) are also interesting and make it difficult to generalize about the nature
of these regions and translate the findings to other organisms (as it could reflect species-
specific idiosyncrasies) or genome assemblies. Moreover, in both suspect lists generated,
there is an overlap with expected real biological signal regions, such as promoters or
intronic regions. This means there is the possibility that filtering could remove real sig-
nal; while this should be avoided, if possible, we generally feel it is best to err on the side
of caution and risk false negatives as a cost for reducing false positives.
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In addition to generating C&R specific suspect lists containing commonly enriched
artifact regions, we also tried to glean information about the best control design from
our analysis. From our search, the most commonly used type of negative control seems
to be IgG; other options include epitope-tag antibodies that model a knockout situa-
tion where the epitope is not present (e.g., anti-HA, anti-GFP) or no-antibody controls.
Interestingly, we did not detect major differences in the coverage or artifact recognition
by different types of antibodies nor did we see differences due to the protocol or type of
enzyme used. However, we did notice that negative controls do not always show enrich-
ment in all artifact regions and that this is more prone to happen on a larger scale when
the genome coverage is very sparse. This could be due to a lack of sequencing depth in
the negative control, or from an extremely “clean” experiment where very little DNA is
recovered, thus resulting in a low complexity library with a majority of reads filtered out
after deduplication. In these situations, the C&R suspect lists will be an especially useful
tool. However, we suggest that the suspect lists generated here should, when possible,
accompany rather than replace adequate negative controls performed in the same condi-
tions as the test samples; our internally generated suspect lists point to the existence of
cell-type specific artifacts which cannot be fully accounted for by a universal suspect list.

Even if all artifactual regions were to be equally present in a negative control, we show
that they can still be erroneously called as peaks and affect the peak calling algorithms
themselves. We tested on the most commonly used peak callers for C&R: SEACR and
MACS2, but this likely holds true for others. When SEACR is performing well and yields
results compatible with current knowledge of the specific factor, it may not be needed
to filter out suspect list regions before peak calling or it may increase stringency to the
point of excluding real peaks. However, when it calls very few or excessive numbers of
peaks, we find that filtering can significantly improve the final outcome. This implies that
SEACR, which is based on the detection of enrichment regions that stand out against
the global background, is particularly sensitive to spurious signal. MACS2 is often bet-
ter at not calling artifactual peaks due to using local versus global background; however,
we show that suspect list filtering prior to peak calling improves the performance of the
peak algorithm in the datasets tested and that filtering after peak calling does in almost all
cases remove artifactual peaks that slipped past the high-stringency standards of MACS2.
We submit that removal of the C&R suspect list, whether before or after peak calling and
regardless of the peak caller used, is a useful tool to increase reliability of peak sets.

To generate the suspect lists, we parsed through approximately 200 projects on the
ENA to find independent C&R datasets performed on human and mouse tissues and
used 20 each to assemble a C&R suspect list of problematic regions. In searching for
data to use, we came across many deposited experiments that either completely lacked
negative controls, or did not possess a clear sample labeling system, preventing us from
their inclusion. At this moment, these C&R suspect lists are built on comparably less
data than others previously published lists (e.g., the ENCODE Blacklist), and this might
limit its robustness and applicability. We submit that initiatives aimed at improving the
clarity of complete data deposition is an important step for the generation of future sus-
pect lists. However, with the diversity of data used to build the suspect lists and their
subsequent successful validation, we believe we have compiled a mature selection of arti-
fact regions that are a typical by-product of C&R experiments and are cell-type agnostic.
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We cannot conclusively exclude that our suspect lists contain some regions that could
be cell-type or strain specific or fail in identifying additional problematic regions that
would appear in other cell types. Nevertheless, in the light of the many publicly available
datasets lacking negative controls, we believe that our suspect list is an essential tool.

Conclusions

Using publicly available C&R negative control data, we have compiled suspect lists (for
the hg38 and T2T human genomes, and mm10 and mm39 mouse genomes) contain-
ing artifact regions that are consistently and spuriously enriched across experiments. We
have shown that some artifact regions are unique to C&R, indicating the need for tech-
nique-specific suspect lists and implying a partially biological origin to the signal enrich-
ment, while the reduction in number of regions for the improved genomic assemblies
implies a computational nature. We validated our suspect lists both by using reiterative
negative control experiments and by applying them to published datasets, showing that
suspect list filtering improves the confidence of peak datasets obtained with SEACR and
MACS2. Future work is needed to compile similar suspect lists for other model organ-
isms as C&R becomes more widely used in other fields of research.

Material and methods

Suspect list generation

Publicly available C&R data are as follows: 40 negative controls (20 for human and 20 for
mouse) were downloaded from the ENA archive; a full list of accession and references
are in Table 1. Read trimming was performed using bbmap bbduk [15] (version 38.18)
removing adapters, artifacts, and poly AT, TA, G and C repeats. Alignment was done to
the hg38 genome or mm10 genome using bowtie2 (version 2.4.5) [16], settings included
—local —very-sensitive-local —no-unal —no-mixed —no-discordant —dovetail —X 700. For
bowtie [17] (version 1.0.0), we used the options -v 0 -m 1 -X 500. Samtools [18] (version
1.11) was used to create bam files, mark and remove duplicates when applicable, and
sort bam files. Bedgraphs were created using bedtools [19] (version 2.23.0), genomecov
with pair-end settings. Peaks were called using SEACR [8] (version 1.3) for each bed-
graph using the settings norm and stringent with a threshold set to 0.001. Peak regions
were extended using bedtools slop to 1000 bp in either direction from the peak. Bedsect
[20] was used to overlap peak regions on default settings, and peaks called in greater
than 30% of negative controls (>="7 of 20) were kept. Bedtools merge and sort was used
to combine overlapping peaks to generate the final suspect list.

Graphs and analysis

deepTools [61] (version 3.5.1-0) multiBamSummary on bins mode for whole-genome,
and bed mode using the suspect list bed file, followed by plotCorrelation were used
to create correlation heatmaps with Spearman’s correlation. HOMER [62] annotate-
Peaks on default settings was used to determine genome annotation categories. FRIP
scores were calculated from total number of fragments mapping to suspect listed peaks,
divided by total number of mapped fragments. Signal intensity plots and average profiles
were created using ngsplot [63] (version 2.63) with the settings -G hg38 -R bed -N 2 -SC
global -IN 0. The UCSC genome browser was used to create the chromosome graph [64].
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Table 1 CUT&RUN public data

Human Mouse

Number Project Sample Reference Number Project Sample Reference
1 PRINA758691 SRR15663649 [21] 1 PRINA682243  SRR13188236 [22]
2 PRINA753322  SRR15403020 [23] 2 PRJEB41862 ERR4973502  [24]
3 PRINA699604 SRR13634070 [25] 3 PRINA777234 SRR16694279  [26]
4 PRINA655230 SRR12387746 [27] 4 PRINA744774  SRR15069561  [28]
5 PRINA427801 SRR6426139  [29] 5 PRINA719369 SRR14134905 [30]
6 PRINA776721 SRR16674836 [31] 6 PRJEB51482 ERR9130874  [32]
7 PRINA756549  SRR15539083  [33] 7 PRINA746301 SRR15123732  [34]
8 PRINA721947  SRR14238385 [35] 8 PRINA722185 SRR14243166 [36]
9 PRINA691366  SRR13586925  [37] 9 PRINA753786 SRR15414824 [38]
10 PRINA816825 SRR18337644  [39] 10 PRINA744230 SRR15054366 [40]
1 PRJEB55317 ERR10047705 [41] 1 PRINA786482 SRR17139040 [42]
12 PRINA836267 SRR19139489  [43] 12 PRINA860380  SRR20325067  [44]
13 PRINA798000 SRR17642967  [45] 13 PRINA656290 SRR12424468  [46]
14 PRINA717224  SRR14068376  [47] 14 PRINA862741  SRR20665931  [48]
15 PRINA704964 SRR13785931  [49] 15 PRINA658977  SRR12507586  [50]
16 PRINA682426  SRR13194196  [51] 16 PRINA678949  SRR13073031 [52]
17 PRINA888075 SRR21837879 [53] 17 PRINA527826  SRR8745654  [54]
18 PRINA413473  SRR6144305  [55] 18 PRINA682340 SRR13190129  [56]
19 PRINA647352  SRR12267593  [57] 19 PRINA864644 SRR20727958  [58]
20 PRINA562266  SRR10022374  [59] 20 PRINA493794  SRR7939979  [60]

Intervene [65] (version 0.6.4) was used to overlap peak sets and create Venn diagrams.
IGV [66] was used for bedgraph and bed file visualization. The ENCODE v2 blacklists
were downloaded from [6], and the mitochondrial genome was manually added for a fair

comparison.

Suspect list validation on published data

Datasets performed by [12] were downloaded from [13]. Human and mouse data from
Zambanini et al. [12] were processed as previously described in the paper. Raw data for
MAX, MYC, and no antibody negative control in K562 cells from [1] were downloaded
from [14] and were processed with bowtie2 as previously described, with or without
removal of duplicates. Genome wide PCA plots and accompanying Scree plots were
generated by first using deepTools multiBamSummary as described above on original
data and by using -bl to filter out the C&R suspect lists, and then the graphs made with
plotPCA with default settings. Suspect list filtering prior to peak calling was performed
on the BAM files with bedtools intersect -v. Peak calling was performed with SEACR
against the negative control with the settings norm and relaxed or norm and stringent.
With MACS2 [67] peak calling was performed against the negative control with option
-f BAMPE against the negative control. Signal profile graphs were created with ngsplots
with the settings -G hg38 -R bed -N 2 -SC global -IN 0. Motif analysis was done using
HOMER [62] (version 4.11) findMotifsGenome with the -size given option.
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Table 2 C&R experiment sample information

HEK293T JAX Swiss

Number Condition  Protocol Antibody Number Tissue Protocol Antibody
1 None C&R HA 1 Hindlimb C&R LoV-U  1gG

2 Chir4h C&R LoV-U  HA 2 Forelimb C&R I9G

3 Chir24h C&R LoV-U  1gG 3 Branchial arches  C&R I9G

4 LGK C&R HA 4 Heart C&R I9G

5 Chir24 h C&R HA 5 Hindlimb C&R [¢€]

6 Chir24 h C&R []€} 6 Forelimb C&R LoV-U  IgG

7 Chir24 h C&R LoV-U  1gG 7 Branchial arches  C&RLoV-U  IgG

8 Chir4h C&R LoV-U  1gG 8 Forelimb C&R HA

CUT&RUN experiments

Human negative control data was obtained from experiments on HEK293T cells. Cells
were cultured at 37 °C in a humidified incubator with 5% CO, in high glucose Dulbecco’s
Modified Eagle Medium (Cat. #41965039, Gibco) supplemented with 10% bovine calf
serum (Cat. #1233C, Sigma-Aldrich) and 1X Penicillin-Streptomycin (Cat. #15140148,
Gibco). Cells were stimulated with 10 pM CHIR99021 (Cat. #SML1046, Sigma Aldrich),
1 nM LGK (Cat. # S7143, Selleck Chemicals), or no stimulation. Mouse negative control
data was obtained from various tissues from JAX Swiss Outbred mice (strain #: 034608)
embryos at 11.5 dpc. Animal experimentation and housing conditions were accord-
ing to the Swedish laws and guidelines under and performed under the ethical animal
work license obtained by C.C. at Jordbruksverket (Dnr 2456-2019). Tissue dissocia-
tion, cell harvest, CUT&RUN or CUT&RUN LoV-U, and library preparation were per-
formed as described in [12], CUT&RUN based on the original method by [1]. Anti-IgG
(ABIN101961) or anti-HA (05-902R, Merck Millipore) antibodies were used. Samples
were sequenced 36 bp pair-end on the NextSeq 550 (Illumina) using the Illumina Next-
Seq 500/550 High Output Kit v2.5 (75 cycles) (Cat. #20024906, Illumina). Sample infor-
mation provided in Table 2.
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