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Abstract 

Dimensionality reduction summarizes the complex transcriptomic landscape of single-
cell datasets for downstream analyses. Current approaches favor large cellular popula-
tions defined by many genes, at the expense of smaller and more subtly defined popu-
lations. Here, we present surprisal component analysis (SCA), a technique that newly 
leverages the information-theoretic notion of surprisal for dimensionality reduction 
to promote more meaningful signal extraction. For example, SCA uncovers clinically 
important cytotoxic T-cell subpopulations that are indistinguishable using existing 
pipelines. We also demonstrate that SCA substantially improves downstream imputa-
tion. SCA’s efficient information-theoretic paradigm has broad applications to the study 
of complex biological tissues in health and disease.

Background
Single-cell RNA sequencing (scRNA-seq) produces transcript counts for individual cells, 
enabling fine-grained analyses of biological tissues. Single-cell datasets can uncover cel-
lular populations and gene-gene interactions that play critical roles in biological and 
pathological phenomena [1–3]. Identifying and characterizing this heterogeneity is a key 
motivator of many single-cell experiments.

However, the size, high dimensionality, and noisiness of single-cell data complicates 
this task. Modern experiments profile tens of thousands of genes per cell, often with 
high dropout levels (under-sampling of mRNA molecules) and technical noise. Dimen-
sionality reduction, whereby the data is represented in a lower-dimensional space with 
enriched signal, has become a cornerstone of modern scRNA-seq analysis pipelines. For 
example, principal component analysis (PCA) projects the data to a lower-dimensional 
linear subspace such that the total variance of the projected data is maximized. Inde-
pendent component analysis (ICA) instead aims to identify non-Gaussian combinations 
of features. Both have found widespread use in single-cell studies [4–7]. A more recent 
method, scVI [8], models transcript counts using a zero-inflated negative-binomial 
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distribution, and performs variational inference to non-linearly embed each cell into a 
low-dimensional parameter space. Graph-based dimensionality reduction methods such 
as PHATE [9] and diffusion maps [10] compute pairwise similarities between cells using 
diffusion on a k-nearest-neighbor network and create embeddings that preserve these 
similarities.

While these approaches are effective, they often fail to capture the full cellular diver-
sity of complex tissues for two reasons. First, rare cell types, by definition, account for 
a small fraction of the observations, and therefore contribute little to a dataset’s global 
structure. Second, many distinctions between cellular populations hinge on just a few of 
the thousands of genes measured; we call such populations subtly defined. For instance, 
gamma-delta T cells, which are known for their antigen recognition capacities [11], are 
distinguished from ordinary cytotoxic T cells by the presence of just a few gamma and 
delta T receptors. Whereas PCA and ICA both compute features that optimize objective 
functions over the entire dataset―total variance and non-Gaussianity―rare cell 
populations thwart both strategies, since the genes defining them may be noisy or unex-
pressed over much of the data. Similarly, scVI uses the evidence lower bound (ELBO) 
loss function to evaluate and refine its latent encoding. Since ELBO takes each recorded 
transcript into account, rare and subtly defined cell types may not impact it much, lead-
ing to underrepresentation. Other non-linear methods, like UMAP [12] and t-SNE [13], 
rely on a k-nearest-neighbor graph; however, constructing an accurate k-nearest-neigh-
bor graph requires an accurate notion of cell-cell similarity, which is nontrivial. The same 
can be said of network-based methods, like PHATE [9] and diffusion maps [10], which 
build reductions using diffusion over the k-nearest-neighbor graph. Real cellular popula-
tions may be both rare and subtly defined, so these challenges are significant roadblocks 
to realizing scRNA-seq’s full potential.

Here, we introduce SCA (surprisal component analysis), an information-theoretic 
dimensionality reduction method that identifies statistically informative signals in sin-
gle-cell transcriptional data to enable deeper insight into complex tissues (Fig. 1a). SCA 
newly leverages the notion of surprisal, whereby less probable events are more informa-
tive when they occur, to assign a surprisal score to each transcript in each cell. By iden-
tifying the set of axes which captures the most of this surprising variation, SCA enables 
dimensionality reduction that better preserves information from rare and subtly defined 
cell types, uncovering them where existing methods cannot.

To demonstrate the utility of our approach, we ran SCA on real and simulated data 
with rare and subtly defined cellular populations, and assessed our ability to recover 
these populations downstream. For comparison, we also tested PCA, ICA, scVI, diffu-
sion maps, PHATE, and six rare cell type discovery tools: RaceID [15], GiniClust [16], 
CellSIUS [17], FiRE [18], GeoSketch [19], and Hopper [20]. We show that SCA enables 
detection of small populations, such as gamma-delta T cells and mucosal-associated 
invariant T (MAIT) cells, which are invisible to existing pipelines and yet critical to 
the study of tumor immunology [1, 2]. At the same time, SCA reductions better cap-
ture larger-scale differences between more common cell types, enabling multi-resolution 
analysis without the need for re-clustering [21]. Beyond rare cell type recovery, we found 
that SCA more accurately recovers gene-gene relationships and restores dropouts when 
used as a basis for MAGIC imputation [3].
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SCA is highly efficient, requires no information aside from transcript counts, and gen-
eralizes to data comprised of discrete cell types or continuous trajectories. The output 
components have a clear linear relationship with the original transcripts, facilitating 
straightforward biological verification and interpretation. We believe that SCA’s infor-
mation-theoretic approach is a mathematically justified and empirically useful approach 
to signal extraction in any high-dimensional data modality, biological or otherwise.

Results
Overview of SCA

Like PCA and ICA, SCA projects the input data to a linear subspace spanned by a set 
of basis vectors, which we call surprisal components. SCA’s key conceptual advance is 

Fig. 1 a Illustration of SCA’s key conceptual advance. The vertical axis separates a small cellular population 
(top) from a larger one (bottom). The two horizontal axes have higher variance but cannot separate the two 
populations. The leading principal components align with the higher-variance horizontal axes and fail to 
separate the populations. The leading surprisal component aligns with the more informative vertical axis, 
allowing downstream separation. b Construction of surprisal scores from gene expression data. For each 
cell, we compare the gene’s expression in a local neighborhood of the cell to the gene’s global expression 
using the Wilcoxon rank-sum test. The resulting p-values are negative log-transformed to give the “surprisal” 
of the observed over- or under-expression, and given a positive sign for over-expression and a negative sign 
for under-expression. c Surprisal scores of the ITGAL gene over a set of 3000 PBMCs profiled via Smart-seq 3 
[14]. Scores are positive where the gene is locally enriched, near zero where it represents noise, and negative 
where it is conspicuously absent. d Construction of surprisal components. Surprisal scores undergo singular 
value decomposition (SVD) over all genes to yield D loading vectors that capture informative axes in the 
data. We then linearly project the input transcript count matrix to these axes, producing a D-dimensional 
representation of each cell for downstream analysis
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its novel approach for finding informative axes of variation, where an informative axis 
is one that separates cell types or captures biologically meaningful variation (Fig. 1a). 
Single-cell experiments have shown that the presence or absence of a small number of 
genes can determine a cell’s phenotype [6, 22, 23]. The key challenge, then, is to find 
and isolate these signals for each cell.

To this end, SCA first quantifies the importance of each transcript in each cell by 
converting transcript counts into surprisal scores (Fig.  1b; Additional File 1: Algo-
rithm 1). To determine the score of a given transcript in a given cell, we compare its 
expression distribution among the cell’s k nearest neighbors to its global expression 
(i.e., to the expected distribution of the transcript among a set of k cells randomly 
chosen from the entire dataset) for a user-specified neighborhood size k. A transcript 
whose local expression deviates strongly from its global expression is more likely to 
inform the cell’s location in relation to other cells, and therefore its identity. We quan-
tify this deviation through a Wilcoxon rank-sum test, which produces a p-value repre-
senting the probability of the observed deviation in a random set of k cells. Following 
Shannon’s definition [24], the surprisal or self-information of the observed deviation 
is then defined as the negative logarithm of its probability, i.e., as − log(p) . This is a 
positive number which measures how surprising the transcript’s local expression is, 
in units of nats when the logarithm is natural (changing the base scales the scores by a 
constant factor, which does not affect SCA’s output). To distinguish over- from under-
expression, we flip the sign for under-expressed transcripts (Methods). The resulting 
scores are compiled into a surprisal matrix with the same dimensionality as the input 
data.

This strategy gives genes high positive scores where they are markers (genes that 
distinguish a cell type from the rest), scores near zero where they represent noise, 
and low negative scores where they are conspicuously absent (Fig. 1c). For example, 
consider a marker gene for a rare population. The gene is unexpressed over much of 
the data but highly expressed in cells belonging to the population. Thus, for these rare 
cells, the local expression is far higher than would be expected by chance, so the gene 
receives a high score for these cells. Likewise, a gene expressed everywhere except in a 
rare population receives low scores on members of the population. On the other hand, 
a noisy gene with no bearing on cellular identity receives low scores everywhere, since 
its distribution on k-neighborhoods resembles that of random sets of k cells.

We next sought to distill the signal captured by the surprisal matrix into a low-
dimensional representation (Fig.  1d; Additional File 1: Algorithm  2). As shown in 
Methods and in Additional File 1: Supplementary Note 1, the right-eigenvectors of 
the surprisal matrix represent highly informative linear combinations of genes, which 
we call surprisal components (SCs). The first D right-eigenvectors, which we denote 
v1, ..., vD , then span a linear subspace onto which we project the input matrix X of N 
cells by M genes. The resulting N × D matrix is the output of SCA. We emphasize 
that while the construction of the surprisal matrix and of v1, ..., vD is nonlinear, SCA’s 
output is a linear projection of its input to their span. This places SCA in the category 
of linear dimensionality reduction methods, together with PCA and ICA. This means 
that each of the output features is a weighted sum of genes, enabling straightforward 
interpretation. Furthermore, it enables many convenient workflows, including elbow 
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plots (via the eigenvectors of the surprisal matrix, which we make readily available), 
and analysis of the gene loading vectors to interpret the components.

In summary, SCA accepts a transcript matrix and sets of k-nearest neighbors for each 
cell, finds transcripts that inform each cell’s locale, and distills this information into a 
smaller set of features. This process amplifies the locality signal of the input k-nearest 
neighbor data. For example, even if only 10% of a cell’s neighbors belong to the same 
population, this is still highly significant when the population comprises only 1% of the 
sample. SCA’s surprisal scores would reflect this, and the resulting components would 
better separate the rare cells, as we verify. The input neighborhoods can be speci-
fied arbitrarily, but by default SCA computes them via Euclidean distance on a PCA 
representation.

This signal-boosting step can be repeated: from an initial SCA reduction, we can com-
pute k-neighborhoods using the Euclidean metric, use these neighborhoods to compute 
a surprisal matrix, and perform singular value decomposition to compute another SCA 
reduction. As we show for both real and Splatter-simulated data [25], this often improves 
the representation of rare and subtly defined cell types (Figs. 2d and 3f ). Intuitively, we 
begin with a weak notion of locality (provided by PCA) and continually refine it. In our 
experiments, we have found that performance usually stabilizes after 3–5 iterations and 
remains stable thereafter (Fig. 3f, Additional file 1: Fig. S2). Note that regardless of the 

Fig. 2 Performance of SCA on data simulated with Splatter [25]. a Ability of PCA, ICA, and SCA to recover 
rare cell populations of different sizes and with varying numbers of marker genes (out of 1000 cells and 1000 
genes total). The population is considered “recovered” if the downstream Leiden clusters capture it with F1 
score greater than 0.9 (Methods). SCA detects smaller populations with few marker genes. b, c Performance 
of FiRE [18] and RaceID [15] on a simulated dataset where 3% of the cells are defined by 10 marker genes (out 
of 1000 cells and 1000 genes total). For easy comparison with (e), FiRE scores and cluster memberships are 
plotted in the UMAP embedding downstream of the SCA representation. d Performance of SCA on the same 
dataset with a variety of neighborhood sizes. With a neighborhood size of 20 or fewer, SCA captures the rare 
population with very high F1 score after 2 or more iterations. The F1 score decreases when the neighborhood 
size approaches the size of the rare population, though it remains higher than PCA’s score of 0.153. e Top: 
UMAP plots downstream of various dimensionality reduction strategies, as well as the PHATE embedding [9]. 
SCA alone separates the rare population. Bottom: Scatter plots of the first two components of each reduction. 
The leading surprisal component separates the rare population from the rest
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number of iterations, SCA’s output remains a linear projection of its input, since itera-
tion simply refines the subspace onto which SCA projects.

SCA recovers rare populations from noisy synthetic data

To test SCA’s power to uncover rare cell populations under a wide range of conditions, 
we used Splatter [25] to generate synthetic datasets with rare populations of various size 
and with varying numbers of marker genes. Each simulated dataset contains 1000 cells 
and 1000 genes, with 2–200 rare cells marked by 2–50 differentially expressed genes. The 
remaining simulation parameters, such as library size distribution, outlier gene probabil-
ity, and gene expression distribution, were estimated by fitting Splatter to a widely used 
dataset of 3000 peripheral blood monocytes profiled by 10X genomics [27] (Methods).

To test the ability of SCA, ICA, and PCA to recover rare populations, for each combi-
nation of marker gene count and rare population size, we examined 10 replicate Splat-
ter datasets generated with different random seeds. To assess population recovery, we 

Fig. 3 SCA recovers subtly defined cellular populations from a set of 307 cytotoxic T cells profiled using 
Smart-seq 3 [14]. a UMAP embedding computed from a 20-dimensional SCA representation using 
Euclidean nearest neighbors, with Leiden clusterings (left) and inferred cell types (right). Gamma-delta, 
MAIT, and T helper populations cleanly separate. b Dot plot of key marker gene groups in each SCA-derived 
Leiden cluster. Gamma-delta, MAIT, and T helper cells are clearly identifiable from their known marker 
genes. c Scatter plots of leading principal, independent, and surprisal components, colored by log-TPM 
(transcript per million) expression of key marker genes: the delta-receptor TRDV2 marks gamma-delta 
T cells [11], and SLC4A10 marks MAIT cells [26]. The leading surprisal components cleanly separate the 
gamma-delta and MAIT subpopulations, whereas the leading PCs and ICs blur these distinctions. d UMAP 
plots derived from 20-dimensional PCA, ICA, scVI, and SCA, and diffusion map embeddings of the data, as 
well as the PHATE embedding (Methods). CD8 T cells, CD4+ T helper cells, TRDV2+ gamma-delta T cells, 
and SLC4A10+ MAIT cells form distinct regions of the SCA-derived UMAP plot. e F1 scores for recovery of 
major T cell populations by various clustering schemes (Methods). For PCA, ICA, SCA, scVI, and diffusion 
maps, we assess Leiden clusters from the Euclidean 15-nearest neighbors graph with resolution 1. Leiden 
clusterings computed on the SCA representation consistently capture these cell types with highest accuracy. 
f Robustness analysis for cell type recovery with respect to the size of the neighborhoods used to compute 
SCA’s surprisal scores and the number of iterations. Performance improves with more iterations, and is stable 
across a wide range of neighborhood sizes
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computed Leiden clusterings from 20-dimensional embeddings using each method, 
chose the subset of Leiden clusters that best identified the rare population, and com-
puted the F1 score (Methods). We consider the rare population recovered if this F1 score 
is 0.9 or greater.

We found that on average, SCA requires 38% fewer marker genes than PCA and 39% 
fewer marker genes than ICA to recover a rare population of a given size (Fig. 2a). Simi-
larly, for a fixed number of marker genes, SCA can detect rare populations on average 
29% smaller than those of PCA, and 28% smaller than those of ICA. For example, when 
the rare population contains 100 cells, SCA requires an average of 6.4 marker genes to 
detect it, whereas PCA and ICA require on average 10.8 and 10.6 marker genes, respec-
tively. A t-test across the 10 replicates confirms that SCA consistently requires fewer 
marker genes than either PCA or ICA ( p < 0.001 ). Thus, SCA enables better recovery 
both of rare and of subtly defined populations.

To allow more comprehensive benchmarking and visualization, we used the same 
Splatter parameters to generate a dataset where each cell has a 2.5% chance of belonging 
to a rare population with 10 marker genes. Due to sampling noise, the resulting data-
set had 34 rare cells (3.4% of the total). We performed dimensionality reduction on this 
dataset using PCA, ICA, SCA, scVI, diffusion maps, and PHATE, as well as several tai-
lored methods for rare cell type discovery: CellSIUS ([17]), RaceID ([15]), GiniClust3 
([16]), and FiRE([18]) (Fig.  2b, c, e). To obtain an F1 score from FiRE, which assigns 
cells a continuous rarity score, we consider all sets containing the top n rarest cells for 
1 < n < 1000 and report the highest F1 score of any such set (Methods). As GiniClust3 
did not identify any of the marker genes as having significantly high Gini index, it com-
bined all cells into a single cluster. Similarly, CellSIUS did not identify any genes with a 
bimodal distribution and did not generate a clustering.

SCA cleanly separates the two populations (F1 score 0.971) whereas the other meth-
ods do not (F1 score < 0.3 ; Fig. 2e). In UMAP plots downstream of each reduction, only 
SCA shows a clear separation (Fig.  2e, top row). The first surprisal component (SC) 
distinguishes the rare population, whereas the leading principal, independent, or diffu-
sion components do not (Fig. 2e, bottom row). Thus, SCA better extracts features that 
recover rare populations, enabling more sensitive and specific detection.

We found that SCA’s performance improves with more iterations and is stable for 
neighborhood sizes ranging from 2 to 20 (Fig. 2d). At larger neighborhood sizes, the F1 
score is comparable to that achieved by other methods. This behavior is expected: since 
large neighborhoods cannot be contained in very small populations, SCA has limited 
ability to identify populations with similar or smaller size than the chosen neighborhood 
size. We therefore recommend choosing a neighborhood size smaller than the expected 
size of the rarest cellular population in the sample. Our simulations (Figs.  2d and 3f ) 
show strong cluster recovery even at neighborhood sizes smaller than 10, so this is not a 
substantial limitation. 

SCA reveals the landscape of cytotoxic T cell subtypes

Novel therapies increasingly leverage the immune system to fight disease, and the 
complexity and cellular diversity of immunological tissues make them ideal targets 
for scRNA-seq [6, 23, 28]. However, these tissues also challenge the technology in 
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a variety of ways: they contain diverse cell types with rare but clinically important 
sub-types, and the expression of individual surface receptors has outsize effects on 
phenotype, leading to many subtly defined cell types [23, 28]. We therefore examined 
whether SCA can find and distill these signals to reveal a richer landscape of immune 
cell types.

We obtained a collection of 307 cytotoxic T cells profiled using Smart-seq 3 (SS3) 
[14]. After standard log transcript per million pre-processing with a pseudocount of 1 
(Methods), we computed 20-dimensional reductions using PCA, ICA, SCA, scVI, and 
a diffusion map. We ran SCA with 1-5 iterations and the default neighborhood size of 
15. We followed each reduction with standard downstream steps: 15-nearest neigh-
bor graph construction using the Euclidean metric, UMAP embedding, and Leiden 
clustering. In addition, we computed a two-dimensional embedding using PHATE 
and a clustering using PHATE’s own clustering function based on internally com-
puted similarities.

The PCA, ICA, and scVI reductions suggest that the data is homogeneous: the 
UMAP visualizations are globular, with no distinct clusters, and there is no obvious 
structure in the leading components (Fig. 3c and d). On the other hand, SCA’s embed-
ding reveals several clearly separated populations, summarized by 9 Leiden clusters 
(Fig. 3a). Differential gene expression analysis shows that these correspond to known 
cell types (Fig.  3b). For example, clusters 1 and 2 contain Gamma-delta T cells, as 
indicated by expression of the gamma- and delta-receptors TRGV9 and TRDV2 [11]. 
Cluster 4 expresses SLC4A10, TRAV1-2, and LTK, strongly suggesting that this cluster 
contains MAIT cells [2, 26]. CD4+ T helper cells group neatly in cluster 9, whereas 
high TIGIT levels in cluster 7 suggest an inhibitory phenotype [29, 30]. Clusters 3 and 
8 express standard cytotoxic effector genes like granzymes and perforins, whereas 
clusters 5 and 6 express CD8 but have low granzyme expression, suggesting recently 
activated CD8 T cells.

We further tested the ability of each method to detect key immunological marker 
genes (Fig. 3d). The UMAP plots derived from the PCA, ICA, scVI, PHATE, and dif-
fusion map representations do not separate cells based on key immunological mark-
ers, whereas the SCA-derived UMAP plot does. To quantify this finding and see how 
it affects de novo population discovery, we assessed whether the Leiden clusters com-
puted downstream of each representation were concordant with a marker-based clas-
sification. We defined CD8+ T cells as those expressing CD8A; CD4+ T cells as those 
expressing CD4;  gamma-delta T cells as those expressing at least two of TRGV9, 
TRDV2, and TRDC; and MAIT cells as those expressing at least two of SLC4A10, 
TRAV1-2, and LTK. We computed F1 scores for the recovery of each of these types 
as described for synthetic data and in Methods. We did the same for clusterings out-
put by CellSIUS, RaceID, GiniClust, GeoSketch, and Hopper. To produce clusterings 
using Hopper, we performed Leiden-clustering on a 50-point Hopper sketch of the 
data, then assigned each cell the cluster label of its nearest sub-sampled cell. For Geo-
Sketch, we projected the data to 20-dimensional PCA coordinates computed from a 
50-point sketch, and then computed Leiden clusters. SCA consistently outperforms 
the other methods in identifying these immunological classes (Fig.  3e). As with the 
synthetic data, we found that the leading surprisal components distinguish cell types, 
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whereas leading independent and principal components do not (Fig. 3c). Thus, SCA is 
better-suited to detect subtly defined immune cell types.

We next performed robustness analysis to see how SCA’s performance varies under 
different choices of neighborhood size k  and different numbers of iterations (Fig.  3f ). 
As with the synthetic datasets, running more iterations often improves the representa-
tion; notably, the CD4+ sub-type is not consistently clearly captured until at least the 
third iteration. After 3, 4, or 5 iterations, SCA performs well on all sub-types over a wide 
range of neighborhood sizes (from 5 to at least 90). Very small neighborhood sizes ( < 5 ) 
do not perform as well, likely due to a lack of statistical power. On the other hand, results 
on simulated data suggest limited ability to recover cellular populations with size similar 
to or smaller than the neighborhood size (Fig. 2d). For most datasets, this leads to a wide 
span of acceptable choices of neighborhood size. We also found that SCA’s performance 
is robust to the number of components in the reduction, performing well when as few as 
5 and as many as 50 components are taken (Additional File 1: Fig. S6c).

While single-cell analysis pipelines frequently subset to highly variable genes (HVG) to 
remove noisy or lowly expressed transcripts, marker genes for small populations intrin-
sically have low variance. To ensure that these were not removed in the above experi-
ments, we did not perform highly variable gene (HVG) selection prior to dimensionality 
reduction. To test the effect of HVG subsetting, we repeated all of these experiments 
on the same dataset after filtering to the 1000 most variable genes and log transcript 
per million preprocessing (Additional File 1: Supplementary Note 6; Additional File 1: 
Fig. S6a,b). We found that SCA performs substantially better when all genes are kept, 
and outperforms the other tested methods regardless of whether gene filtering is 
performed.

SCA distinguishes known cell types profiled by CITE‑seq

To evaluate whether SCA’s reductions better detect known populations of cells in a 
larger-scale immmunological single-cell dataset, we obtained a CITE-seq dataset from 
Hao et al.  [6], in which hundreds of thousands of PBMCs from 8 human donors were 
subjected in parallel to transcriptomic profiling and to surface receptor profiling with a 
panel of 228 antibodies. The authors use both modalities, and input from human experts, 
to produce a cell type classification, which we take as a ground truth. We subsetted the 
data to T cells, yielding 73,000 cells across all donors, and assess performance in each 
donor individually. For each donor, we computed 50-dimensional representations using 
PCA, ICA, SCA, scVI, and a diffusion map. We also compute 2-dimensional PHATE 
embeddings, and clusterings using PHATE’s built-in function.

Compared to PCA and ICA, SCA consistently generates more structured UMAP 
plots downstream, with clearer visual separation between cell types. UMAP plots 
computed from PCA, ICA, and SCA are shown for patient 1 in Fig. 4a, and similar 
UMAP plots for the remaining patients and reductions are provided in Additional 
file 1: Fig. S4. We observe similar improvements when plotting the first two compo-
nents of each reduction against each other (Additional file 1: Fig. S5). We hypoth-
esized that this separation leads to more accurate clusterings downstream. To test 
this theory, we performed Leiden clustering [31] on each representation with resolu-
tion 1.0 and computed the adjusted mutual information (AMI) between the Leiden 
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clusters and the true cell labels [32]. For further comparison, we also computed 
AMIs for Leiden clusterings computed from GeoSketch and Hopper reductions, and 
clusterings returned by GiniClust3 [16], CellSIUS [17], and RaceID [15]. Across all 
patients, the SCA-derived Leiden clusterings achieved the highest AMI with the true 
cell labels (Fig.  4b). Thus, SCA representations enable more accurate downstream 
recovery of cellular populations in a sample.

To determine the accuracy with which SCA and other methods detect each of the 
known cellular populations, we used the F1 score measure (Methods). Across all 
donors, we found that SCA consistently ranks among the highest F1 scores, with 
some cell types recoverable only by SCA (Fig.  4c). For example, in patient 1, SCA 
recovers CD4 cytotoxic T lymphocytes (CD4 CTL), a subtly defined population dis-
tinguished from CD8 CTLs mainly by the presence of CD4, with F1 score 0.97. As 
notable exceptions, CellSIUS and GiniClust perform exceptionally well on the CD4 
proliferating population, with CellSIUS also outperforming other methods on the 
CD8 proliferating and double-negative T populations. We suspect that the Leiden 
clusterings under-perform here due to theoretical limitations of community-detec-
tion algorithms to detect very small populations, as discussed in Kumpula et al. [33].

Fig. 4 SCA outperforms many other methods, both general and problem-specific, at rare and subtly defined 
cell type discovery on a large PBMC dataset with ground-truth cell labels. a UMAP plots computed from PCA, 
ICA, and SCA reductions of T cell scRNA-seq data for patient 1 from the Hao et al. [6] dataset. Cell type labels 
were determined by the original authors via parallel screening of 228 antibodies using CITE-seq. b Adjusted 
mutual information (AMI) of true cell labels with clusters output by each of the 11 methods tested in each 
patient (FiRE does not output a clustering but a rareness score and thus is not amenable to AMI analysis). 
For PCA, ICA, SCA, and scVI, we perform Leiden clustering with resolution 1.0 after reduction. SCA-based 
clusterings consistently have higher AMI with the true labels. c F1 scores for recovery of all T cell subtypes 
across all 8 patients of the dataset from Hao et al., from PCA, ICA, and SCA followed by Leiden clustering 
with resolution 1.0, and from nine other methods. For each clustering and cell type, the set of clusters best 
identifying that cell type was selected, and the F1 score reported
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SCA improves graph‑based imputation

Dropouts and technical noise often obscure gene-gene relationships in single-cell 
data. Imputation aims to recover lost transcripts and restore these relationships. 
MAGIC [3] tackles imputation by constructing a diffusion operator to share informa-
tion across similar cells, achieving better recovery of gene-gene interactions than a 
variety of other methods, including simple k-NN imputation, low-rank approxima-
tion, and smoothing based on diffusion components [10, 34, 35]. By default, MAGIC 
computes cellular similarity using the Euclidean distance in PCA space. Since SCA 
better separates biological cell types, we pursued the intuition that using Euclidean 
distance in an SCA reduction would allow MAGIC to build a better diffusion opera-
tor, yielding more accurate imputation. We therefore formulated SCA-MAGIC, which 
performs diffusion over an SCA embedding instead of a PCA embedding (Methods).

To test the ability of each method to recover dropouts from the 1000-cell Splatter 
synthetic dataset analyzed in Fig. 2b–e, we performed imputation using MAGIC and 
SCA-MAGIC and measured the Pearson correlation between the imputed values of 
the marker genes and an artificial “ground-truth” marker gene expressing 1 transcript 
on each rare cell and 0 transcripts elsewhere (due to normalization, the number of 
transcripts expressed in the rare population does not affect the Pearson correlation). 
We also tested SAVER [36], another imputation approach that uses regression instead 
of diffusion. As shown in Fig.  5a, SCA-MAGIC achieves the highest correlation 
between imputed marker genes and the ground-truth marker gene (correlation ∼ 0.7).

To assess recovery of gene-gene relationships, we ran MAGIC and SCA-MAGIC on 
the cytotoxic T cells from [14]. We find that SCA-MAGIC best recovers the comple-
mentary relationship between CD8 expression and CD4 expression among alpha-beta 
T cells, with T helper cells having high CD4 levels and gamma-delta T cells express-
ing neither surface receptor, consistent with the literature [11, 37] (Fig. 5b, top). Both 
MAGIC and SCA-MAGIC report an inverse relationship between the expression lev-
els of granzyme B and granzyme K. However, SCA-based MAGIC assigns the T helper 
cells lower granzyme B levels than the other populations. This finding is concordant 
with flow-cytometry results, which indicate that CD8+ T cells are the primary secre-
tors of granzyme B [38]. SAVER-imputed data does not show smooth correlations and 
resembles the raw data.

To compare dropout recovery of MAGIC and SCA-MAGIC on real data, we cre-
ated low-coverage versions of the cytotoxic T cell dataset by setting 10%, 30%, 50%, 
or 90% of the nonzero transcript counts to zero and examined the values of these 
dropped-out transcripts after imputation. Higher imputed values indicate better 
transcript recovery. For most genes, SCA-MAGIC and MAGIC perform similarly 
(Fig. 5c). However, SCA-MAGIC outperforms MAGIC on a small set of key marker 
genes, including CD8A, CD8B, CD4, TIGIT, KLRC1, and the gamma-delta marker 
genes TRDV2 and TRGV9 (Fig.  5d). Since these genes define important T cell sub-
classes, this improvement is consequential.

The creation of false positive signals is a concern in imputation [39]. We found that 
SCA-MAGIC performed at least as well as MAGIC at avoiding creation of false posi-
tive gene counts and artificial marker genes (Additional File 1: Fig. S7).
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SCA scales to large datasets

As improving technologies generate ever larger datasets, the computational tools used 
to analyze these datasets must scale accordingly. SCA meets this need with fast runtimes 
and modest memory overhead. Asymptotically, SCA’s runtime and memory overhead 
are both linear in the size of the input dataset (Additional File 1: Supplementary Note 
2; Additional File 1: Fig.  S1). To test this empirically, we measured runtime and peak 
memory usage for one iteration of SCA on data of varying sizes (Fig. S1). We produced 
test datasets by taking random subsets of patient 1’s T cell data from Hao et al. [6] with 
varying numbers of cells and genes. For all tests, we used a neighborhood size of 15. As 
expected, we find SCA’s runtime and memory performance scale linearly with increasing 
numbers of cells. On a subset with 9000 cells and over 20,000 genes, SCA takes 3 min 
and 15 s to run with a peak allocation of 561 MB. This is only slightly slower than PCA, 
which finishes in 2 min and 10 s and allocates 179 MB (ICA is somewhat more com-
putationally demanding, requiring 266 s and allocating over 4GB). SCA’s linear scaling 

Fig. 5 Imputation performance using SAVER, MAGIC and our SCA-MAGIC. a Recovery of marker genes on the 
Splatter dataset analyzed in Fig. 2b–e. For each method, we measure the average correlation between the 
marker genes after imputation and an indicator vector for the rare cells. MAGIC achieves significantly higher 
correlation using SCA as a base embedding (SCA-MAGIC). b Visualizing gene-gene relationships in cytotoxic 
T cell data after imputation using SAVER, MAGIC or our SCA-MAGIC. SCA-MAGIC better recovers the inverse 
relationships between CD8 and CD4 and between granzyme B and granzyme K, with gamma-delta T cells 
expressing neither CD8 nor CD4 and lower granzyme expression for T helper cells. c Scatter plot showing 
dropout recovery in the cytotoxic T cell dataset at various dropout rates. A fixed percentage of nonzero 
transcript measurements were set to zero, and the mean imputed values of these removed transcripts 
were assessed for each gene. While MAGIC and SCA-MAGIC perform similarly on most genes, SCA-MAGIC 
consistently performs better on a subset of them, measured by dropout rate. d A closer look at the genes 
where SCA-MAGIC significantly outperforms MAGIC in recovering dropouts at the 90% dropout rate. They 
include many key marker genes such as CD8A, CD8B, CD4, emphTIGIT, and TRDV2 
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makes it tractable even on the very largest single-cell datasets; for example, on a mouse 
brain dataset from Saunders et al. with 939,489 cells and 20,658 genes [4], SCA runs in 
5.5 h and allocates a maximum of about 29 GB, well within the range of most modern 
day computers. Sub-sampling techniques that preserve rare cell types, such as Hopper 
[20] and Geosketch [19], may be combined with SCA to enable fine-grained analyses of 
these massive datasets even on a laptop. We can reduce the memory overhead further by 
processing the data in chunks containing a user-specified number of genes (Methods). 
Chunk size is implemented as a parameter in the core function of SCA’s Python package.

SCA performs well in the presence of batch effects

Single-cell experiments often include data from different samples, and sometimes dif-
ferent donors, introducing unwanted technical variation known as batch effects. While 
SCA is not designed to remove batch effects, we aimed to verify that its signal-boosting 
procedure does not emphasize them at the expense of true biological variation. To this 
end, we obtained scRNA-seq data comprising approximately 70,000 CD34+ cells from 3 
human donors [40], combined the data without performing batch correction, computed 
PCA and SCA reductions with 20 components each, and assessed the impact of donor 
on each reduction. UMAP plots downstream of SCA showed significantly more over-
lap between donors than those downstream of PCA, and performing more iterations of 
SCA increased the degree of overlap between donors while keeping biological cell type 
separate (Fig. 6a). To quantify this finding, we used the silhouette score [41] to measure 
separation between donors and between cell types. The donor silhouette score is lower 
when using SCA, and decreases with more iterations, indicating better batch integration 
(Fig. 6b). By contrast, the cell type silhouette score was higher for SCA than for PCA, 
consistent with our other results. Thus, SCA’s reductions emphasize cell type-related 
biological differences over technical batch effects.

Discussion
SCA offers an information-theoretic approach to measuring and extracting salient tran-
scriptional signals in single-cell data, enabling downstream analyses at unprecedented 
resolution. By iteratively boosting the locality-specific signal of individual transcripts, 

Fig. 6 a UMAP plots downstream of PCA and SCA on CD34+ immune cell data with 7 cell types and 3 
donors. With further iterations, batches appear more integrated (top) whereas cell types remain separate 
(bottom). b Silhouette scores of the donor and cell type groupings, using Euclidean distance downstream of 
PCA or SCA. The donor silhouette score decreases with further iterations of SCA (left), whereas the cell type 
silhouette score remains above that of PCA (right)
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SCA uncovers clinically relevant immunological populations that are invisible to existing 
approaches.

A variety of approaches have arisen that are specifically tailored to the problem of 
rare cell type recovery. However, we find that these methods have limiting assumptions 
[16, 18] or rely on potentially inaccurate or ill-defined clustering procedures [15, 17] 
that limit performance. GiniClust [16] assumes that genes with high Gini index are the 
most important; yet, we demonstrated that this is not always the case (e.g., the marker 
genes in the synthetic dataset were not marked as having high-Gini index by the algo-
rithm). RaceID and CellSIUS both compute initial clusterings which are then individu-
ally refined. However, an accurate initial clustering may be difficult to obtain when cell 
types of interest are rare or subtly defined, and cluster-based approaches are unsuitable 
when cells form more continuous transcriptional structures, such as developmental 
trajectories, which do not neatly partition [42]. On the other hand, FiRE [18] sidesteps 
the limitations of clustering by assigning each cell a rarity score according to its degree 
of isolation, but the notion of isolation in turn relies on a meaningful cell-to-cell dis-
tance metric, which is not readily derived. Hopper [20] reduces the data in the hopes of 
increasing the proportion of rare cells, but its approach requires a reliable distance met-
ric and requires discarding observations. For the latter two methods, one might improve 
performance by using Euclidean distance in an SCA representation as a distance metric. 
Our work suggests that the right dimensionality reduction can enable recovery of even 
rare and subtly defined populations.

SCA’s surprisal scores are similar in principle to the inverse document frequency (IDF) 
transform, a normalization approach widely used in text processing and in some single-
cell applications, whereby each feature (gene) is weighted by the logarithm of its inverse 
frequency [43]. Like SCA, IDF gives rarely seen features more weight; however, it does 
not consider the locality-specific context of each feature measurement, so it lacks the 
statistical power to detect locally enriched signals. By incorporating counts from local 
neighborhoods of each cell, SCA allows genes to have variable scores across the data-
set, achieving high-magnitude scores where they are discriminative and near-zero scores 
where they are noise (Fig. 1c). Our approach is designed to reflect true biology, where 
genes may be expressed sporadically across the entire dataset but mark informative dis-
tinctions only within a small subpopulation.

SCA is also conceptually similar to surprisal analysis [44], which compares observed 
data to a pre-computed balance state to identify meaningful deviations. Originally 
developed for thermodynamics, these methods have recently found use in bulk tran-
scriptomic analysis of biological systems in flux, such as cancer cells undergoing epi-
thelial-to-mesenchymal transition and carcinogenesis [45–48]. For example, Gross 
et al. [45] perform singular value decomposition on a surprisal matrix derived from 
time series micro-arrays to identify bulk transcriptomic signatures that predict even-
tual malignancy. In their work, the surprisal of a transcript is defined by the nega-
tive logarithmic fold change of the transcript from its value in the balance state. We 
attempted to generalize this idea to single-cell data by treating each cell as a separate 
time point, and computing surprisals as negative log-fold changes between observed 
transcript counts and transcript expression means across all cells. However, we show 
this extended notion of surprisal is under-powered and inaccurate for single-cell data 
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(Additional File 1: Supplementary Note 5; Additional File 1: Fig.  S6), because indi-
vidual transcript counts are themselves noisy. For example, on the cytotoxic T cell 
dataset, this approach fails to separate CD8 from CD4 T cells (Fig. S6). SCA’s novel 
approach of testing expression in neighborhoods of cells instead of individual cells 
lends statistical power and limits the impact of noise and dropouts, especially in com-
bination with the robust Wilcoxon test.

Data visualization, which features prominently in many single-cell pipelines [12, 
49], differs from dimensionality reduction, on which we focus. Whereas visualization 
aims to produce a two-dimensional rendering of the data, dimensionality reduction 
produces a smaller, but still many-dimensional representation which is then ana-
lyzed further downstream. Thus, data visualization tools complement dimensional-
ity reduction rather than substitute for it. Indeed, visualizations are often built on 
dimensionality-reduced data; for example, UMAP plots in existing literature are often 
computed on PCA or ICA reductions [4, 50]. SCA complements existing visualization 
tools to facilitate exploratory analysis (Figs. 4a, 3a, and Additional file 1: Fig. S4).

SCA also combines well with sketching techniques, such as Geosketch [19] and 
Hopper [20], which generate subsamples of cells that retain transcriptional diversity. 
In turn, these sketching techniques rely on a low-dimensional representation of cells, 
which SCA may provide. As motivation for the latter, we have shown that SCA is bet-
ter at identifying rare cell types than these sketching techniques.

Although the process that generates the surprisal components is nonlinear, requir-
ing nearest-neighbor graphs and Wilcoxon score computation, SCA’s output is a lin-
ear projection of its input. This places SCA firmly in the linear category, together with 
PCA and ICA; indeed, for fixed dimension D, the coordinate systems defined by SCA 
and by these methods are related by rotation in the original high-dimensional space. 
Intuitively, SCA changes the “perspective” from which the data is viewed. It is remark-
able, then, that SCA’s reductions look so different in downstream analyses from those 
of PCA and ICA (e.g., Fig. 3a). This observation is possibly because high-dimensional 
space offers a far wider variety of perspectives than the three-dimensional space we 
often think in, giving linear methods more richness than they are usually credited for.

Conclusion
Dimensionality reduction addresses the underlying goal of nearly all single-cell ana-
lytic pipelines―to determine which cells are phenotypically similar to one another 
or, in mathematical terms, to derive a biologically meaningful metric between cells. 
If we could meet this goal perfectly, we could immediately obtain perfect cluster-
ings of single-cell data (each cluster would be a connected component of the k-near-
est neighbor graph), perform perfect batch correction (by integrating cells based on 
phenotypic similarity), and substantially improve trajectory inference (by connecting 
similar cells along a continuous path). Dimensionality reduction represents single-cell 
data in a lower-dimensional Euclidean space, which inherits natural metrics (e.g., the 
standard Euclidean distance). Using information theory, SCA provides an embedding 
where Euclidean distance better captures biological similarity, causing cells with simi-
lar phenotypes to cluster together.
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Methods
Details of the SCA Algorithm

Surprisal matrix computation (Additional File 1: Algorithm 1).

Given the input data X with N cells and M genes, a target dimensionality D, and a neigh-
borhood size k, we first compute a D-dimensional PCA reduction of X. Using Euclidean 
distance in this PCA space, we compute for each cell c a neighborhood Nk(c) containing 
the k nearest cells. Alternatively, the user may specify neighborhoods manually as lists of 
indices.

For each gene g and cell c, we then assess the significance of g’s expression in Nk(c) 
as compared to its global expression. Under the null hypothesis, where g is randomly 
expressed, the local distribution Nk(c) should be similar to the global expression. Using 
a Wilcoxon rank-sum test, we obtain a two-sided p-value pc,g representing the probabil-
ity of the observed difference under this null hypothesis. We also offer two alternative 
p-values based on different models: a t-test, and a binomial test using only the binarized 
counts. We strongly recommend the Wilcoxon model for its flexibility to a wide range of 
data distributions, and robustness to different pre-processing protocols.

Small p-values indicate very unlikely events under the null hypothesis, leading to high 
surprisal. However, since tens of thousands of genes are often measured for each cell, we 
would expect pc,g to be very low for some cell-gene combinations even in the absence of 
true biological signal. We therefore adjust for multiple-testing within each cell using a 
family-wise error rate correction. If we assume that genes are uncorrelated, this correc-
tion takes the form

where M is the number of genes. The corrected value p̃c,g represents the probability 
that any gene has the observed deviation from the null distribution in c’s neighbor-
hood. However, in real single-cell data, genes are often highly correlated, so the effec-
tive number of independent features is far fewer than M. As detailed in Additional File 
1: Supplementary Note 4 and Additional File 1: Algorithm 3, we can identify a reason-
able exponent Nt by sampling many random sets of k cells from X, computing p-values 
from these random neighborhoods, and observing the distribution of these p-values. 
This provides a background model for contextualizing the pc,g values computed from the 
actual locally derived k-nearest neighborhoods and leads to the correction

where Nt is often far less than M. When Nt is computed as in Additional File 1: Supple-
mentary Note 4, SCA does not produce erroneous clusters on negative control datasets 
which lack intrinsic structure, and randomly generated neighborhoods yield scores clus-
tered around zero (Additional File 1: Supplementary Note 3; Additional File 1: Fig. S3). 
SCA computes Nt in this way by default; however, users may also manually define Nt to 
adjust the balance between sensitivity and specificity.

We next convert the corrected p-values p̃c,g into surprisal scores I(c,  g). Shannon [24] 
defines the surprisal or self-information of an event with probability p as − log(p) . Intui-
tively, less probable events are more informative when they occur. For a given cell c and 

p̃c,g = 1− (1− pc,g )
M

p̃c,g = 1− (1− pc,g )
Nt



Page 17 of 24DeMeo and Berger  Genome Biology          (2023) 24:195  

gene g, ˜pc,g is the probability of the event that that one of c’s genes has a local distribution 
at least as extreme as the observed distribution of g, under the null hypothesis of random 
gene expression. Thus, − log( ˜pc,g ) is the surprisal of this event and defines the magnitude 
of I(c, g).

To distinguish over-expression from under-expression, we give I(c,  g) a positive sign 
if g is over-expressed in c’s neighborhood and a negative sign if it is under-expressed. 
Under the Wilcoxon model, over- or under-expression is determined by the sum of the 
ranks of g’s values in the k-neighborhood of c among all values g takes, which we denote 
ranksum(g ,Nk(c)) . Under the null hypothesis, this quantity follows a normal distribution 
with mean k(N−k)

2  . Thus, we obtain

Computing surprisal components

From the surprisal scores I(c, g), SCA next seeks to generate an informative linear combina-
tion of genes. For a given combination defined by

we say that g̃ has loadings α1, ...,αn . For a fixed cell c, we formulate the surprisal score of 
g̃ as

We then define the overall overall surprisal score of g̃ by taking the norm over all cells:

or, in matrix notation,

where S denotes the surprisal matrix and α = �α1, ...,αM�.
We now seek the metagene g̃ , defined by the loadings α1, ...,αN , that maximizes I(g̃) . 

Since we can achieve arbitrarily large values of I(g̃) by scaling the coefficients, we constrain 
the loading coefficients to have norm 1, that is:

It is a standard linear algebra result that this maximum is realized by the leading right-
eigenvector of S (proof in Additional File 1: Supplementary Note 1 and [51]). Thus, the 
first surprisal component loading vector is simply the first right eigenvector of S , which we 
denote v1 . To obtain additional surprisal components, we repeat the optimization with the 
constraint

I(c, g) = −sgn ranksum(g ,Nk(c))−
k(N − k)

2
log(p̃c,g ).

g̃ = α1g1 + α2g2 + ...αMgM

I(c, g̃) = α1I(c, g1)+ α2I(c, g2)+ ...+ αMI(c, gM)

I(g̃) = ||�I(c1, g̃), I(c2, g̃), ..., I(cN , g̃)�||

I(g̃) = ||SαT ||

||�α1, ...,αM�|| = 1.

α ⊥ v1.
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It is straightforward to see (Additional File 1: Supplementary Note 1) that this yields the 
second principal component loading vector v2 of S . Continuing, we see that the loading 
vectors for surprisal components are simply the right eigenvectors of S.

SCA next computes the values of the first D surprisal components over the input 
data (not the surprisal scores). That is,

Note that the surprisal components are linear functions of the input data, despite the 
nonlinear construction of S . Although the loadings are computed on S , the values of the 
components are computed by applying these loadings to X.

If desired, we can now use the resulting D-dimensional representation of X to com-
pute a Euclidean k-nearest neighbor graph, compute a new surprisal matrix from 
these neighborhoods, and perform SVD on this new matrix to produce another 
D-dimensional representation of X. This can be repeated arbitrarily many times, and 
often improves performance up to 3–4 iterations (Fig. 3f, Additional file 1: Fig. S2).

Formal pseudocode for this algorithm is provided in Additional File 1: Algorithm 2.

Time and memory optimizations

Computing the surprisal scores I(c, g) for all cells c and genes g requires NM Wilcoxon 
rank-sum tests. However, we can rapidly produce all of the rank-sum statistics with 
minimal memory overhead as follows: 

1. Divide the genes into chunks of a user-specified size C, depending on memory con-
straints (default 1000). Let G1 = {g1, ..., gC},G2 = {gC+1, ...., g2C } , and so on.

2. For each gene chunk Gi : 

(a) Subset X to genes in Gi , obtaining a reduced dataset Xi

(b) rank each column of Xi to obtain a rank matrix Ri

(c) Multiply the neighborhood  adjacency matrix A with Ri , yielding a rank-sum 
matrix over neighborhoods, denoted Si , overwriting Ri

(d) Convert these rank-sums into p-values under to the null model, overwriting Si 
with a p-value matrix Pi

(e) Convert these p-values into surprisal scores, as described above and in Addi-
tional File 1: Algorithm 1, overwriting Pi with surprisal scores Si.

(f ) Sparsify Si and store it. ( Si is frequently quite sparse).

3. Concatenate the matrices Si horizontally to obtain the surprisal matrix S.

Using this approach, we only need to compute ranks for each gene once, and we avoid 
storing dense matrices of size larger than N × C . Since A has at most k nonzero ele-
ments per row, the sparse matrix multiplication in step 2c requires only O(kNC) time. 
The remaining steps are easily accomplished with vectorized functions from scipy 
[52] and numpy [53].

SCi(X) = Xv
T
i .
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With these improvements, SCA is nearly as fast as ICA and PCA, and uses signifi-
cantly less memory than ICA (Additional File 1; Fig. S1). We include more in-depth time 
and memory benchmarks in Additional File 1: Supplementary Note 2.

Generating F1 scores from clusterings

To assess the accuracy with which a set of T clusters c1, ..., cT recovers a known popula-
tion P, we used the following procedure: 

1. Rank all clusters by the degree of overlap with P, i.e., by |ci∩P|
|ci|

 . Ties may be handled 
arbitrarily. Assume without loss of generality that the indexing c1, ..., cT ranks the 
clusters in this way. Let S be an empty set.

2. for i in 1,2,...,T: 

(a) Measure the F1 score of S ∪ ci with respect to P.
(b) If this F1 score is higher than that of S, add ci to S. Otherwise, stop and return 

the current F1 score of S with respect to P.

3. Return the F1 score of S (if not already returned above).

If the target population is a union of clusters, this procedure is guaranteed to find it and 
return an F1 score of 1; otherwise, it finds a set of clusters whose union approximates P 
and returns the F1 score of their union with respect to P.

Synthetic data experiments using splatter

The synthetic dataset analyzed in Fig. 2 was generated using Splatter [25]. All but two 
parameters were determined by fitting the PBMC dataset from [27]. The fitted param-
eters are listed below:

• Mean rate parameter: 13.5
• Mean shape parameter: 0.583
• Library size location parameter: 7.69
• Library size scale parameter: 0.412
• Outlier probability: 0.025
• Outlier location parameter: 4.761
• Outlier scale parameter: 1.037
• Biological Coefficient of Variation dispersion: 0.2825
• Biological Coefficient of Variation degrees of freedom: 30.37

The two remaining parameters are (1)  the probability of a gene being differentially 
expressed between the two groups and (2)  the probability that a cell belongs to the 
smaller of the two groups (the “rare” population). We test all combinations of these two 
parameters for rare cell fractions ranging from 5 cells (0.5%) to 200 cells (20%) and for 
marker gene probabilities ranging from 0.2 to 5% in increments of 0.2%. For each com-
bination, we generate ten synthetic datasets with different random seeds and run PCA, 
ICA, and SCA to make 20-dimensional representations of each replicate, keeping up to 
5 iterations for SCA. We then compute Leiden clusterings on the 15-nearest Euclidean 
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neighbor graph of each representation, with the default resolution of 1.0. From these 
clusterings we compute F1 scores for recovery of the rare population as described just 
above.

To determine how many marker genes are required to recover a population of a spe-
cific size, we filtered to all trials with the given population size, and recorded the low-
est number of marker genes in any trial with F1 score greater than 0.9. We performed 
this analysis separately for each random seed used to generate replicates, resulting in 10 
marker gene percentage values for each combination of rare cell fraction and method. 
These values are plotted in Fig. 2a.

Cytotoxic T cell population discovery

We extracted all cytotoxic T cells from the dataset in [14] using the authors’ cell type 
annotations, obtaining 307 cells in total. For PCA, we used scanpy’s pca function with 
20 components. For ICA, we used the FastICA function of sklearn [54, 55], again 
with 20 components. For SCA, we ran five iterations with 20 components each, starting 
with the PCA representation. We ran scVI with default parameters on the top 4000 most 
variable genes (we observed little difference in performance when running on all genes). 
15-nearest neighbors graphs were computed in each representation using Euclidean dis-
tance, and the results were used to generate the UMAP plots in Fig. 3. We computed 
diffusion maps using the 15-nearest neighbor graph downstream of the PCA repre-
sentation, keeping 20 components (eigenvalue analysis confirms that this is a reason-
able number of components, with further components adding noise). We computed the 
PHATE representation using the default parameters of the package (100 PCs, 5-near-
est neighbors). Leiden clusters in each representation were computed downstream of 
Euclidean 15-nearest neighbor graphs, with the default resolution of 1.0. For PHATE, we 
use the built-in phate.cluster.kmeans with k=5. Dotplots to show expression of 
key marker genes were generated using scanpy’s dotplot function.

T cell data from Hao et al.

We obtained transcriptomic data from the authors’ website at https:// atlas. fredh utch. 
org/ nygc/ multi modal- pbmc/. The log-transformed count data was subset to T cells using 
the authors’ annotations, yielding 73,259 T cells and 20,729 genes across all 8 patients. 
We then split by patient into 8 donor-specific datasets. For each donor, we computed 
an SCA reduction using 50 components and 5 iterations, with a neighborhood size of 
100 (a larger neighborhood size is appropriate for larger datasets; neighborhood size 
did not greatly affect performance). Fifty principal components were computed using 
scanpy’s pca function, and 50 independent components were computed with the Fas-
tICA implementation provided by scikit-learn [54, 55]. To ensure convergence of 
FastICA, we raised the maximum number of iterations to 500 from the default of 200. 
We ran scVI with default parameters (learning rate 0.001, 400 warmup epochs for KL 
divergence term) and a 50-dimensional latent embedding space to match the dimension-
ality of the PCA, ICA, and SCA embeddings. Diffusion maps were likewise computed 
in 50 dimensions. We computed 15-nearest-neighbor graphs in each representation 
using the Euclidean distance metric, then ran UMAP [12] and Leiden clustering [31] 

https://atlas.fredhutch.org/nygc/multimodal-pbmc/
https://atlas.fredhutch.org/nygc/multimodal-pbmc/
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on the resulting neighborhood graphs. For Leiden clustering, we use the default resolu-
tion of 1.0. PHATE embedding and clustering was run with default parameters using the 
phate Python package [9].

Imputation using MAGIC

To create SCA-MAGIC, we used the graphtools package to build a diffusion opera-
tor based on a 20-dimensional SCA reduction, with default parameters inherited from 
MAGIC (knn = 5, knn_max = 15, decay = 1, thresh = 0.0001). We used the same 
parameters to construct an analogous operator from a 20-dimensional PCA embedding. 
We then build MAGIC instances from these two operators, with time parameter t = 5, 
and compare performance on various datasets.

To generate artificial dropouts in the cytotoxic T cell data, we replaced a random sub-
set of the pooled nonzero transcript measurements with zeros, comprising either 10%, 
30%, 50%, or 90% of the total nonzero measurements. After performing imputation, we 
re-examined the transcripts that had been eliminated and checked whether they had 
been restored. High imputed values indicate well-restored transcripts.

CD34+ immune cells for batch performance benchmarking

We downloaded the training data from the multimodal single-cell integration chal-
lenge [40], consisting of 70,988 cells from 3 donors. The data were pre-processed by the 
original authors using a log transcripts-per-million transformation; we applied no fur-
ther processing and used the cell types from the original authors to compute silhouette 
scores and visualize the data. We performed SCA with a wilcoxon scoring model and the 
default neighborhood size of 15, reducing to 20 components.
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