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Abstract 

We present a novel data structure for searching sequences in large databases: the 
Hierarchical Interleaved Bloom Filter (HIBF). It is extremely fast and space efficient, 
yet so general that it could serve as the underlying engine for many applications. We 
show that the HIBF is superior in build time, index size, and search time while achiev-
ing a comparable or better accuracy compared to other state-of-the-art tools. The HIBF 
builds an index up to 211 times faster, using up to 14 times less space, and can answer 
approximate membership queries faster by a factor of up to 129.
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Background
Following the sequencing of the human genome [1, 2], genomic analysis has come a long 
way. The recent improvements of sequencing technologies, commonly subsumed under 
the term NGS (Next-Generation Sequencing) or 3rd (and 4th) generation sequenc-
ing, have triggered incredible innovative diagnosis and treatments in biomedicine, but 
also tremendously increased the sequencing throughput. Within 10 years, the current 
throughput of standard Illumina machines rose from 21 billion base pairs [1, 2] collected 
over months to about 3000 billion base pairs per day.

As a result of this development, the number of new data submissions, generated by 
various biotechnological protocols (ChIP-Seq, RNA-Seq, genome assembly, etc.), has 
grown dramatically and is expected to continue to increase faster than the cost per 
capacity of storage devices will decrease. This poses challenges for the existing sequence 
analysis pipelines. They are usually designed to run on a few recent samples, but can-
not be used in reasonable time for thousands of samples, which makes it very costly to 
reanalyze existing data. Hence, we are collecting data that grows exponentially in size 
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and are unable to reuse it in its entirety. Searching an entire database for relevant sam-
ples enables researchers to increase their sample size, a frequently problematic factor, 
and might even identify new relationships yet unknown. Limiting analysis to recently 
published data sets is a tremendous waste of resources and a large bottleneck for bio-
medical research.

The most basic task of such pipelines is to (approximately) search sequencing reads or 
short sequence patterns like genes in large reference data sets. This has led researchers 
to develop novel indexing data structures ([3], and shortly afterwards [4–7]) to search 
massive collections of sequences such as RNA-Seq files, pangenomes, or the bacterial 
and viral metagenome consisting of tens of thousands of species (see [8] for an over-
view). Recent tools tackling this problem (which we will compare to in this paper) are 
SeqOthello [9] (2018), Bifrost [7] (2019), COBS [10] (2019), Mantis [11] (2020), Raptor 
[12] (2021), and Metagraph [13].

SeqOthello is based on the Othello data structure and applies a k-mer-frequency-
dependent storing scheme. Metagraph, Mantis, and Bifrost are based on de Bruijn 
graphs. While Bifrost additionally uses blocked Bloom filters, which are innately lossy, 
Mantis and Metagraph are exact methods. The former uses a counting quotient filter, 
and the latter stores a sequence index and annotation matrix. COBS and Raptor have 
a similar strategy, i.e., interleaving Bloom filters to gain efficient access to the k-mer 
occurrences per sample. Raptor uses the Interleaved Bloom Filter (IBF) as the main data 
structure. The IBF is a single, large bitvector taking advantage of the linearity regarding 
cache-access, whereas COBS stores a matrix of Bloom filters. COBS additionally applies 
a simple bin packing approach to reduce its index size.

In this work, we introduce a new data structure, the Hierarchical Interleaved Bloom 
Filter (HIBF) that overcomes major limitations of the IBF data structure. The HIBF suc-
cessfully decouples the user input from the internal representation, enabling it to handle 
unbalanced size distributions and millions of samples. In contrast to COBS, which just 
groups samples into subindices, we compute a hierarchical layout that splits large sam-
ples, groups small ones, and distributes them into subindices based on their sequence 
similarity.

The results prove that we achieve a similar compression compared to COBS, but are 
orders of magnitudes faster when querying our index. In fact, the HIBF is faster than any 
method compared to in this work and has the smallest memory footprint in RAM while 
querying.

Moreover, the number of samples that can be used is essentially arbitrarily large. We 
exemplified this by scaling up to one million samples. This will enable many applications 
to distribute approximate searches onto very large data sets that occur in metagenomics, 
pangenomics, or sequence archives.

Results
The data structures and tools mentioned in the introduction explicitly or implicitly 
address the following problem: Given a set of input sequences (samples), determine in 
which samples a query sequence can be found with up to a certain number of errors, also 
known as Approximate Membership Queries (AMQ). The most common approach is to 
store a representation of the samples’ sequence content in an index, which can answer 
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whether a query belongs to one of the input sequences based on sequence similarity. 
To give an example, consider an input of 25,000 sets of bacterial species, where each set 
contains the sequences of genomes of all strains of the respective species. An index over 
this input can answer whether a query likely originates from one of the 25,000 species. 
In recent research, each set is called a color [5] or bin, [12]. We will use the term bin.

For efficiency, the sequence content is often transformed into a set of representa-
tive k-mers. The term representative indicates that the original k-mer content might be 
transformed by a function that changes its size and distribution, for example, by using 
winnowing minimizers [14] on the sequence and its reverse complement, or by using 
gapped k-mers [15]. A winnowing minimizer, which we call (w, k)-minimizer, is the lexi-
cographically smallest k-mer of all k-mers and their reverse complements in a window 
of size w. When searching in an index, the same transformation is applied to the query.

The HIBF

The Interleaved Bloom Filter (IBF) data structure published in [12] is a building block in 
the proposed Hierarchical Interleaved Bloom Filter (HIBF). Its general idea is depicted 
in Fig. 1, further details can be found in [12].

The IBF data structure has two limitations. Firstly, due to the interleaved nature of 
the IBF, the individual Bloom filters must have the same size. Consequently, the largest 
Bloom filter determines the overall size of the IBF if we want to guarantee a maximal 
false-positive rate (Fig. 2a). Hence, for small-sized bins, the relatively large Bloom filters 
waste a lot of space. Secondly, although retrieving and combining sub-bitvectors is very 
efficient in practice, this only holds when the number of bins varies from a few hundreds 
to a few thousands. An increasing number of user bins will slow down the query speed.

The limitations of the IBF arise from the fact that the number of bins and their 
size directly determines its internal structure. To gain more independence from the 

Fig. 1 Example of an Interleaved Bloom Filter (IBF). Differently colored Bloom filters (BF) of length n for b bins 
(samples) are shown in the upper part. Interleaving the individual Bloom filters yields an IBF of size b× n . In 
the example, we use three different hash functions to query a k-mer (ACG TAC T) and retrieve 3 sub-bitvectors. 
By combining the sub-bitvectors with a bitwise &, we retrieve the binning bitvector, where a 1 indicates the 
presence of the k-mer in the respective bin
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input data, the Hierarchical Interleaved Bloom Filter (HIBF) explicitly distinguishes 
between user bins (UB) and technical bins (TB).

A user bin is equivalent to the former term bin, namely a set of sequences imbued 
with a semantic meaning by the user, e.g., all genomes of the species Escherichia coli 
could be in one user bin. Internally, the HIBF stores multiple IBFs on different levels. 
The bins of those IBFs are called technical bins. Technical bins may store parts of a 
user bin or contain the content of multiple user bins. In contrast, in the IBF, a user bin 
is also a technical bin, or simply a bin.

The main idea of the HIBF is to split large user bins into several technical bins and 
merge small user bins into a single technical bin to smooth the k-mer content distri-
bution of the technical bins and thereby optimize the space consumption in an IBF 
(Fig. 2b). This distribution of user bins cannot be solved by a simple bin packing algo-
rithm because of two reasons: (1) user bins can share k-mers, making the problem 
similar to the more complex VM packing [16] variant, and (2) splitting the content of 
user bins increases the complexity further and an applicable solution in the context 
of sequence analysis was not proposed as far as we know. Specifically, we will either: 

1 Split the k-mer content of a user bin and store it in several technical bins
2 Store the entire k-mer content of a user bin in a single technical bin
3 Store the k-mer content of a range of user bins in one, merged technical bin

Splitting large user bins allows us to lower the maximum technical bin size, while 
merging small user bins avoids wasting space. However, we cannot use merged bins 
without further effort because when a query is contained in a merged bin, we cannot 
directly determine in which of the individual user bins the query is. For this purpose, 
we recursively add a rearranged IBF for each merged bin, with the corresponding 
merged user bins as input.

Fig. 2 IBF vs. the HIBF. Given an input of eight user bins (UBs), subfigure a displays the layout of a normal 
IBF storing the content of the UBs, represented by the inner, lightly colored cylinders, in one technical bin 
(TB) each. The outer cylinders represent the size of the TBs and visualizes the wasted space. The horizontal 
rectangular bar represents the layout, indicating which UBs, identified by their ID (A-H), are stored in which 
TB. The same semantics hold for subfigure b which displays the corresponding HIBF with a maximum of 5 TBs 
on each level. In this example, UB A is split into the first two TBs in IBF-1, while UBs D-H are merged into the 
last TB. The merged bin requires a second lower-level IBF (IBF-2) storing the content of UB D-H in individual 
TBs. The size is given in exemplary numbers
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The resulting collection of IBFs and their interconnectivity is what we call the Hier-
archical Interleaved Bloom Filter, its detailed structure is stored in a layout (file). To 
compute a meaningful layout, we engineered a dynamic programming (DP) algorithm 
that optimizes the space consumption of the HIBF data structure given HyperLogLog 
size estimates of the input data (see the “ HyperLogLog estimates” section). From the 
layout, we can build the corresponding HIBF index, as exemplified in Fig. 3. Notably, 
every IBF in the HIBF except the top-level IBF stores redundant information. In the 
“Validation” section, we show that the space reduction on the top-level (Fig. 2 b IBF-
1) usually compensates the extra space needed for lower levels.

Fig. 3 Workflow with details on the HIBF Index structure. Using the HIBF is done in three steps. (1) 
Preprocessing: Based on the size (representative k-mer content) of the input sequences, a layout is computed 
with the tool Chopper (see the “Availability of data and materials” section). (2) Build: From a given layout, 
Raptor (see the “Availability of data and materials” section) builds an HIBF index depicted in the middle 
box. (3) Query: The HIBF index can then be used to query the membership of sequences inside the input 
samples. The exemplary HIBF with tmax = 5 on 11 user bins (UB-A to UB-K) has 3 levels. The first level (L1) is 
always a single IBF (IBF-1) with exactly tmax technical bins (TB). This IBF stores the full data set, structured in 
a way such that its size is significantly smaller than that of a normal IBF. The individual boxes inside an IBF 
represent its TBs, which store the k-mer content of the labeled user bin(s). For example, in IBF-1 the content 
of UB-A is stored in two TBs (split), UB-B is stored in one TB (single), and UB-C to UB-D as well as UB-E to UB-K 
are collected in one TB each (merged). Subsequent levels may have several IBFs. Specifically, they will have 
one IBF for each merged bin on the previous level. For example, on the second level (L2), IBF-2 and IBF-3 
correspond to the first and second merged bin of IBF-1, respectively. Note that the IBFs in the layout form a 
tree, where the root is the top-level IBF and the leaves are formed by IBFs without merged bins
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Since the number of technical bins in each IBF of the HIBF is now independent of 
the number of user bins, we can choose a relatively small, fixed maximum number of 
technical bins tmax which allows to efficiently query each IBF. We look up the k-mers of a 
query and apply a refined threshold on each level (see the “Querying an HIBF” section). 
Traversing lower levels is only required when a query is contained in a merged bin. In the 
“Validation” section we show that, on average, this seldom happens and that the posi-
tive impact of fixing the number of technical bins greatly outweighs the disadvantage of 
searching several levels.

Validation

The Hierarchical Interleaved Bloom Filter (HIBF) data structure is incorporated in the 
tool Raptor [12] that can now be used with either the original IBF or the HIBF. We first 
show the improvement of the HIBF over the IBF on the simulated data set from the IBF 
paper [12]. Next, we compare against the existing tools on a metagenomic real-world 
data set consisting of 25,321 genomic sequences from the RefSeq database [17]. We 
compare ourselves against COBS, Mantis, Bifrost, Metagraph, SeqOthello, and the origi-
nal IBF. HowDeSBT [18] could not handle this data set. In Additional file 1, we provide a 
third validation using a large RNA-Seq data set.

All benchmarks were performed on an Intel Xeon Gold 6248 CPU using 32 threads. 
We chose the parameters as proposed by the tutorials and help pages of all tools to 
the best of our knowledge, keeping equivalent parameters across tools consistent. The 
scripts can be found on our GitHub page1.

Simulated data

Following the approach in [12], we created a random DNA sequence of 4 GiB size and 
divided it into b = [1024, 2048, . . . , 1048576] user bins which would correspond to b dif-
ferent genomes, mimicking a metagenomic data set. Using the Mason genome variator 
[19], we then generated 16 similar genomes in each bin, which differ about 1% on aver-
age. This could be seen as bins containing the genomes of homologous species. The total 
data set size is hence 64 GiB. Finally, we uniformly sampled ten million reads of length 
250 bp from the genomes and introduced 2 errors in each read to simulate a sequencing 
experiment. This artificial data set is well-balanced, which is the ideal case for the IBF, 
since its overall size depends on the largest bin (Fig. 4).

We constructed the IBF and HIBF with canonical 32-mers and a false-positive rate 
of 5% . For the HIBF, tmax was set to the square root of the number of user bins for each 
data set (see the “The choice of tmax” section).

The results demonstrate that the HIBF successfully overcomes the limitations of the 
IBF during querying. While the IBF query time increases linearly with an increasing 
number of user bins, the HIBF is hardly affected. For a million user bins, the HIBF out-
performs the IBF by two orders of magnitudes (297 times faster). The index size and, 
accordingly, the RAM usage during querying is higher for the HIBF on this data set. 
However, this is expected because the data set is perfectly balanced, and the hierarchi-
cal structure causes some overhead. The index construction time is slightly lower for 

1 https:// github. com/ seqan/ raptor/ tree/ main/ util/ Genome_ Biolo gy

https://github.com/seqan/raptor/tree/main/util/Genome_Biology
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the HIBF, even though the HIBF depends on the computationally expensive layout algo-
rithm. Future versions of the layout computation will overcome this bottleneck.

Metagenomic data—RefSeq

This data set consists of 25,321 files containing the complete genomes of all Archaea 
and Bacteria in the RefSeq database [17] downloaded using the genome_updater (see 
the “Availability of data and materials” section) and has an uncompressed size of about 
98.8 GiB. Compared to RNA-Seq data sets, which are often heavily filtered in a preproc-
essing step, the RefSeq sequences are non-repetitive and likely dissimilar. Thus, the input 
size is proportional to the k-mer content that needs to be indexed. Contrary to the simu-
lated data set, this real-world data set is completely unbalanced. For example, the species 
Escherichia coli, represented by 634 assemblies, accounts for almost 7 % of all base pairs 
[20]. From the genomes, we simulated ten million queries. The number of queries per 
genome is proportional to its size, mimicking sequencing experiments. All tools were set 
up to compute canonical 32-mers, and we chose consistent parameters wherever possi-
ble. For the HIBF, tmax was set to 192 (see “The choice of tmax” section).

For this data set, the HIBF outperforms all other tools in query time by several orders 
of magnitudes, and it has the smallest RAM footprint while doing so (see Fig. 5).

Additionally, the build time is significantly smaller than that of most other tools. 
The HIBF index is built in about 40 min, taking only slightly longer than the original 
IBF (32 min) and COBS (34 min). The other tools need several hours (Bifrost) or days 
(SeqOthello, Mantis, Metagraph).

The resulting index size is merely 133 GiB, which is only matched by COBS (104 GiB) 
and Bifrost (68 GiB). However, while having smaller indices when stored on disk, COBS 
and Bifrost have a much higher peak RAM usage while querying compared to the HIBF.

Fig. 4 Simulated data set with increasing number of user bins. Each data point refers to one data set of 
64 GiB divided into the respective number of user bins. This means that the total size of the data to index 
does not increase with an increasing number of user bins; the data is merely split into smaller parts. a shows 
the query time for 10 million reads, b the peak RAM usage during querying, c the total index size stored on 
disk, d the build time for constructing the index, and e the peak RAM usage during building
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Most interestingly, regarding query times, the HIBF outperforms its closest con-
testant (Metagraph) by a factor of 24, requiring only 4 min for ten million queries. 
It improves on the original IBF by a factor of 3, while using a third of the RAM. The 
other tools need about 1.5− 2 h (Metagraph, COBS, Mantis, Bifrost). SeqOthello 
could not be run due to requiring more RAM than available on our system (1 TiB). 
The HIBF is the most efficient tool regarding the RAM usage while querying. It needs 
less than half the RAM of Metagraph, Bifrost, and COBS. COBS has a low RAM 
usage for few queries, but scales poorly with an increasing number of queries. While 
the same holds true for SeqOthello, all other tools have a steady RAM usage virtually 
independent of the number of queries.

Although not studied in other works so far, we would like to present the result file 
sizes of all tools. A small result file can speed up follow-up tasks in tool workflows. 
The (H)IBF result (10 million queries) is stored in merely 5 GiB, whereas COBS needs 
18 GiB, Metagraph 95 GiB, Mantis 397 GiB, and Bifrost 473 GiB.

Flexible compression using minimizers

In our tool Raptor, we furthermore provide the possibility of compressing the input data 
using minimizers. When computing minimizers instead of k-mers, only the smallest (by 
some measure, e.g., lexicographically) k-mer in a window is stored. Thus, the number 

Fig. 5 All complete genomes of Archaea and Bacteria in RefSeq. The uncompressed data set has a size of 
about 98.8 GiB. Ten million query reads of length 250 bp were simulated using the Mason simulator [19]. The 
parameters used for all tools (if applicable) were: canonical k-mers k = 32 , no k-mer filtering, false-positive 
rate 5% , 2 hash functions, 32 threads, query search threshold 0.7. a Query time for varying number of 
transcripts, the best time of three runs was used. b Index build time, including all preprocessing steps. c Peak 
in RAM usage during querying for varying number of transcripts. d Index size stored on disk. Numeric values 
can be found in Additional file 1
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of k-mers is reduced while still representing the data accurately. We define (w, k)-mini-
mizer as the set of all minimizers for a k-mer size k and a window length w.

We investigated the influence of varying values for k as well as (w, k) for the HIBF 
in terms of index size, query time, and accuracy (Fig. 6). Additionally, we included the 
accuracy of the other tools.

Choosing different values for k when using canonical k-mers did not significantly 
affect the index size, query time, or accuracy of the HIBF. In contrast, using minimiz-
ers could largely reduce the index size and query time.

A gentle compression with (24,  20)-minimizers already reduces the index size to 
a third of the 20-mer HIBF. A compression with (40, 32)-minimizer already reduces 
the size by a factor of 5 compared to a 32-mer HIBF. A small index using minimizers 
speeds up the query time (e.g., by a factor of 4 for (40, 32) minimizers) compared to 
the uncompressed HIBF. This further increases the advantage of the HIBF over other 
tools. The minimizer-compressed HIBF surpasses COBS, Mantis, and Bifrost by two 
orders of magnitudes (1 min vs. ≈ 2 h).

Using the minimizer compression has a small negative impact on the accuracy. The 
larger the difference between w and k, the better is the compression, which in turn 
lowers the threshold for the query membership. This results in an increasing number 
of false positives, thus decreasing the accuracy. False negatives were rare and only 
slightly affected by the choice of (w,  k). Other tools had a comparable accuracy to 
that of the HIBF using k-mers. None of the tools, except Mantis, had false negatives. 
While Mantis is an exact method for querying k-mers, its implementation makes 
it hard to apply the appropriate threshold for comparison with the HIBF, resulting 

Fig. 6 Additional experiments with varying k and (w, k) for the HIBF. The maximum false-positive rate for 
the (H)IBF was fixed to 1.5% , and we used tmax = 192 for the HIBF. a For an HIBF using canonical k-mers, 
the choice of k had little impact on index size as well as accuracy and achieved the best overall accuracy. 
Compressing the index with minimizers decreased the accuracy. Although generally all tools achieve 
excellent accuracy, with a minimum of 99.5% (Metagraph), it has to be noted that the accuracy is biased by a 
high number of true negatives. Thus, small differences in accuracy have a high impact on the actual numbers 
of false positives and negatives. b The index size in GiB. c The query time in seconds of the experiments on 
the RefSeq data set
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in false-negative answers (see Additional file  1). The unexpected lower accuracy of 
Metagraph, which is an exact method, is subject to further investigation.

Discussion
We presented the Hierarchical Interleaved Bloom Filter (HIBF), a novel data structure 
improving on its predecessor, the Interleaved Bloom Filter (IBF), by gaining flexibility 
over the input data, thereby optimizing the space consumption and markedly speed-
ing up the query times. In our experiments, we could index 98.8 GiB of RefSeq data 
[17] (Archaea and Bacteria complete genomes as of 28-01-2022) in less than 13 min 
using 34.4 GiB of disk space. Querying all 25,321 samples for 10 million transcripts 
only took between 1 and 4 min. All other tools, i.e., COBS [10], Bifrost [7], Mantis 
[5], and Metagraph [13], need hours. Our RAM usage while querying the HIBF built 
with all k-mers was less than half of that of other tools. When using minimizer-com-
pression, this memory footprint can be significantly lowered further, at the cost of a 
slightly lower accuracy. In summary, the HIBF enables indexing of large data sets on 
limited memory.

Moreover, the number of user bins (resp. colors) that can be used is virtually arbi-
trarily large. We exemplified this by using one million bins, improving over the query 
time of our original data structure by a factor of 300. While the layout computation 
in this scenario takes several hours, we are confident that we can devise special layout 
algorithms to speed up the layout computation and allow even more bins to be used 
with a reasonable layout time.

Since the build time of the HIBF is as low as that of COBS and about two orders of 
magnitude less than that of tools like Mantis, Bifrost, and Metagraph, the HIBF can 
be easily rebuilt even for very large data sets.

If we assume that a HIBF index needs about 40% of the input size, and that we can han-
dle millions of user bins, one can use the HIBF to index very large sequence repositories. 
For example, the European Nucleotide Archive (ENA) contains currently about 2.5 mil-
lion assembled/annotated sequences with a total of ≈ 11 Tbp [21]. Using the HIBF data 
structure, we could build 11 HIBF indices, each storing roughly 1 TiB of sequence con-
tent from about 250,000 user bins. We would expect each index to have a size of about 
400 GiB, which easily fits into the main memory of a server (see Additional file 1, where 
we index 4  TiB of RNA-Seq files). We further showed that hundreds of thousands of 
user bins can be readily handled by the HIBF. Subsequently, querying ten million reads 
could be done by querying 11 HIBFs on different machines in parallel in less than 2 min. 
A handful of queries would be answered in a fraction of a second. Hence, in this set-
ting, the archives could offer a portal for individual user queries, knowing that they can 
answer about 100,000 queries (of length 250) per second.

Conclusion
In this work, we presented a general data structure and method for storing a repre-
sentative set of k-mers of a data set that is partitioned into hundreds up to millions of 
user bins in such a way that very fast approximate membership queries are possible. 
Large sequence databases could now be indexed in a fraction of their original size 
and support sequence queries in a couple of minutes. The HIBF data structure has 
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enormous potential. It can be used on its own, like in the tool Raptor, or can serve as 
a prefilter to distribute more advanced analyses such as read mapping.

Methods
The following sections provide the details referred to in the “Results” section. We will 
use the following notation: 

k  k-mer size
w  window size for minimizers
h  number of hash functions
m  size (in bits) of an individual Bloom filter
n  number of values (k-mers) stored in an individual Bloom filter
pfpr  false-positive rate
b  number of (user) bins indexed in an (H)IBF
t  number of (technical) bins of the IBF data structure
tmax  maximum number of technical bins in each IBF of the HIBF
c(w, k)  expected decrease in the amount of representative k-mers when switching 

from k, k-minimizers to w, k-minimizers
x  number of minimizers in a query
a  number of false-positive answers
bp(x,a)  probability of returning a false-positive answers when querying x minimizers 

in a Bloom filter of a false-positive rate pfpr
t(x)  threshold for a given x
c  (constant) correction that is added to the threshold
pmax  threshold for correction term; i.e., increase c until bp(x, a+ c) < pmax

The HIBF

Computing an HIBF Layout—a DP algorithm

In this section, we explain how to compute a layout, i.e., how we decide which user 
bins to split and which to merge (Fig. 3). To this end, we engineered a dynamic pro-
gramming (DP) algorithm that heuristically optimizes the space consumption of a 
single IBF, while considering the space needed for lower level IBFs for merged bins. 
Thus, computing the layout on the first, main level IBF optimizes its layout while esti-
mating the size of the entire HIBF. As outlined in “The HIBF” section, we then recur-
sively apply the DP algorithm on each lower level IBF.

Assume that we have b user bins UB0, . . . , UBb−1 sorted in decreasing order of 
their size, |UB0| ≥ . . . ≥ |UBb−1| , which we want to distribute across t technical bins 
TB0, . . . , TBt−1 in a single IBF. While not strictly necessary, the order is chosen such 
that small user bins cluster next to each other because in our algorithm only contigu-
ous bins may be merged. We denote the union size estimate of a merged bin that stores 
the k-mer multiset UBi ∪ UBi+1 ∪ . . . ∪ UBj as Ui,j . We use HyperLogLog sketches [22] 
(see the  “Union estimation” section) to quickly estimate the size of the union when 
merging user bins. Since the IBF only stores a representative k-mer’s presence (k-mer 
content), not how often it was inserted, the size of the merged bin may be smaller 



Page 12 of 25Mehringer et al. Genome Biology          (2023) 24:131 

than the sum of sizes of the respective user bins. The effect is that merging user bins 
of similar sequence content results in smaller sized merged bins which is beneficial for 
the overall size of the IBF. We exploit this advantage by the optional step of rearrang-
ing the user bins based on their sequence similarity (see the “Rearrangement of user 
bins” section).

Further, the user needs to fix the number of hash functions h, the desired false-posi-
tive rate pfpr , and the maximum number tmax of technical bins to be used for each IBF 
of the HIBF. The former two parameters are needed to estimate the IBF size and must 
correspond to the parameters of building the index afterwards. The latter is critical 
for the HIBF layout. See the “Recommended choice of parameters” section for a dis-
cussion of sensible defaults.

Regarding the expected false-positive rate of the HIBF index, we point out that 
when splitting a user bin, we introduce a multiple testing problem. This happens 
because we query a k-mer for a split bin several times in several technical bins. We 
correct for this by increasing the size of the respective technical bins by a factor 
fcorr(s, pfpr) where s is the number of technical bins the user bin is split into and pfpr 
is the desired false-positive rate (see the “IBF size correction for split bins” section).

The general sketch of the algorithm is the following: The dynamic programming 
(DP) matrix M has t rows, representing TB0, . . . , TBt−1 and b columns, represent-
ing UB0, . . . , UBb−1 . When we move horizontally in the matrix, we consume multiple 
user bins while remaining in a single technical bin. This indicates a merged bin. When 
we move vertically, we consume multiple technical bins while remaining in a single 
user bin. This indicates a split bin. We treat a single bin, introduced for clarity in the 
“Methods” section, as a split bin of size 1. We do not move along the diagonal. The 
above semantics allow us to verbalize a structure that is then used to estimate the 
space consumption and compute a local optimum in each cell of the DP matrix. Spe-
cifically, the space consumption is tracked using two t × b matrices Mi,j and Li,j:

• Mi,j tracks the maximum technical bin size max
g∈0,...,i

(|TBg |) when the first j + 1 user 

bins are distributed to i + 1 technical bins. Minimizing the maximum technical 
bin size optimizes the IBF space consumption, since it directly correlates with the 
total IBF size (Fig. 2).

• Li,j tracks the space consumption estimate of all lower level IBFs that need to be 
created for each merged bin given the structure imposed by Mi,j.

Initialization For the first column, when j = 0 , there is only a single user bin UB0 
which can be split into t technical bins. Therefore, the maximum technical bin size 
stored in Mi,0 is the size of UB0 divided by the current number of technical bins i it is 
split into, corrected by fcorr (see the “IBF size correction for split bins” section). Since no 
merging is done, no lower level IBFs are needed and Li,0 is always 0.

(1)∀i ∈ {0, . . . , t − 1} : Mi,0 =
|UB0|

i + 1
· fcorr(i + 1, pfpr)
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For the first row, when i = 0 and j  = 0 , all user bins have to be merged into a sin-
gle technical bin. The size of the resulting merged bin is estimated using the precom-
puted unions U0,j (see the “Union estimation” section). Since we create a merged bin 
in each step, the resulting additional space consumption on lower level IBFs is esti-
mated by the sum of sizes of contained user bins times the maximal number of levels 
l = ⌈logtmax

(j + 1)⌉ . We use the sum instead of the union here because we do not yet 
know how the lower level IBFs are laid out, so we estimate the worst case of storing 
every k-mer again on each lower level.

Recursion We store the maximum technical bin size in Mi,j and the lower level costs in 
Li,j and we want to optimize the total HIBF space consumption. It is computed by Mi,j 
times the number of technical bins, which is the size of the first, main level IBF, plus the 
lower level costs Li,j:

The parameter α can be used to tweak the influence of lower levels on the space and 
query time of the HIBF. The query time increases when many lower levels are intro-
duced since we have to traverse and query a lot of IBFs, but the space consumption is 
often lower. When α = 1 , the space consumption is optimized by expecting our lower 
level space estimate to be exact. If we choose higher values for α , we artificially increase 
the costs of merged bins and their lower levels, thereby decreasing their occurrence in 
the layout. A sensible default that was experimentally derived to work well is α = 1.2.

In the recursion, we process each cell Mi,j , i  = 0 and j  = 0 , by deciding for the next 
user bin UBj whether to (1) split it into i − i′ , for some i′ < i , technical bins, or (2) merge 
it with all user bins starting at j′ , for some j′ < j.

In the first case, when splitting UBj and thereby moving vertically, we want to find 
the i′ < i that results in the smallest overall HIBF size vi,j (Fig.  7 c). Semantically, 
we originate from the layout Mi′,j−1 which already distributed UB0, . . . , UBj−1 into 
TB0, . . . , TBi′ , leaving the technical bins TBi′+1, . . . , TBi to store the split content of 
UBj . The new HIBF size is computed analogous to Eq. 5 with the new maximal techni-
cal bin size mv and the new lower level costs lv . Since we introduce no merged bin, lv is 
simply the former costs Li′,j−1 . mv is computed by taking the maximum of the former 
value Mi′,j−1 and the split bin size we obtain from equally dividing the k-mer content 
of UBj into i − i′ technical bins corrected by fcorr.

(2)∀i ∈ {0, . . . , t − 1} : Li,0 = 0

(3)∀j ∈ {1, . . . , b− 1} : M0,j = U0,j

(4)∀j ∈ {1, . . . , b− 1} : L0,j = l ·

j

g=0

|UBg |

(5)|HIBF | = Mi,j ∗ (i + 1)+ α ∗ Li,j
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In the second case, when merging UBj and thereby moving horizontally, we want to 
find the j′ < j − 1 that results in the smallest overall HIBF size hi,j (Fig. 7 b). Seman-
tically, we originate from the layout Mi−1,j′ which already distributed UB0, . . . , UBj′ 
into TB0, . . . , TBi−1 , leaving technical bin TBi to store the merged content of 
UBj′+1, . . . , UBj . The new HIBF size is computed analogous to Eq. 5 with the new max-
imal technical bin size mh and the new lower level costs lh . mh is computed by taking 
the maximum of the former value Mi−1,j′ and the merged bin size we obtain from the 
precomputed Union Uj′+1,j . Since we introduce a new merged bin, lh is computed by 
adding to the former costs Li−1,j′ , the space estimate of l expected lower levels times 
the sum of contained user bin sizes (see Eq. 4).

Given mv , lv , mh , and lh for which the minima in vi,j and hi,j are achieved, respec-
tively, the values of the cells Mi,j and Li,j are updated according to the minimum of vi,j 
and hi,j:

The above recurrence can be used to fill the two dynamic programming matrices 
row- or column-wise because the value of a cell depends entirely on cells with strictly 
smaller indices. The traceback can then be started from the cell Mt−1,b−1.

Since we use HyperLogLog sketches, the algorithm runs quite fast in practice. For 
example, it takes only 13 min to compute the layout with tmax = 192 of user bins for 

(6)vi,j = min
i′∈{0,...,i−1}







max

�

Mi′,j−1,
|UBj| · fcorr(i − i′, pfpr)

i − i′

�

� �� �
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·(i + 1)+ α · Li′,j−1
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


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hi,j = min
j′∈{0,...,j−2}


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
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
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Mi−1,j′ ,Uj′+1,j
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·(i + 1)+ α ·



Li−1,j′ + l ·
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g=j′+1
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


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


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
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

(8)Mi,j =

{
mv if vi,j ≤ hi,j
mh else

Li,j =

{
lv if vi,j ≤ hi,j
lh else

Fig. 7 DP algorithm traceback visualization. Matrices a, b, and c visualize the algorithm for a layout 
distributing b = 7 user bins (columns) to t = 5 technical bins (rows). a Shows the traceback of the 
initialization, all coming from the virtual starting point (−1,−1) . E.g., M4,0 represents the sub-layout of 
splitting UB0 into all available technical bins. b Shows which cells j′ < j − 1 = 3 are considered in the 
horizontal recursion. E.g., j′ = 2 would indicate to merge UB3 and UB4 into TB3 . c Shows which cells i′ < i = 3 
are considered in the vertical recursion. E.g., i′ = 1 would indicate to split UB4 into TB2 and TB3
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a data set consisting of all complete genomes of archaea and bacteria species in the 
NCBI RefSeq database [17] (about 25,000 genomes with total size of roughly 100 
GiB).

HyperLogLog estimates

The HyperLogLog (HLL) algorithm [22] approximates the number of distinct elements 
in the input data that were previously converted into a set of uniformly distributed, 
fixed-size hash values. It is based on the observation that a hash value of length q > p 
has a probability of 12

p of containing p leading zeros. When keeping track of the maxi-
mum number of leading zeros lz of the data’s hash values, one can estimate its size via 
2lz . Since this estimate has a very high variance, it is improved by splitting the data into 
m = 2b , b ∈ [4, q − 1] , subsets, and keeping track of lz for each subset. These m values 
are called a sketch of the input data. The size estimate of the original input is computed 
by using the harmonic mean and bias correction of the m values of the subsets (see [22] 
for details).

In our application, we convert the input sequences into 64-bit k-mers by arithmetic 
coding, hash them using the third-party function XXH3_64bits2, and then apply the 
HLL algorithm with q = 64 and b = 12 using our adjusted implementation of the Hyper-
Loglog library3.

Union estimation

Given two HyperLogLog sketches, e.g., created from two user bins, with the same num-
ber of values m, they can be merged by inspecting the m values of both sketches and 
simply storing the larger value (lz) of each. The resulting new sketch can estimate the 
size of the combined sketches, namely the number of distinct elements in the union 
of the two user bins. When merging several sketches, we merge the first two and then 
merge the rest iteratively into the new union sketch.

In our application, when iterating column-wise over the matrix of the DP algorithm, 
we precompute for each column j the j − 1 union estimates Uj′,j for j′ ∈ [0, ..., j − 1] with

Rearrangement of user bins

When merging two or more user bins, we unite their k-mer content by storing all unique 
k-mers present in each user bin. It follows that the size of the union is always smaller 
or equal to the sum of sizes of the united user bins. For a merged bin in the HIBF, this 
means that we can potentially save space by uniting user bins of similar k-mer content. 
To exploit this advantage, the user has the option to partially rearrange the sorted order 
of user bins based on their similarity.

We estimate the similarity of two user bins by computing the Jaccard distance based 
on HyperLogLog sketches. The Jaccard distance dJ (A,B) is defined as 1 minus the Jaccard 
index J(A, B) and can be rewritten in the following way:

(9)Ui,j = UBi ∪ UBi+1 ∪ . . . ∪ UBj .

2 https:// github. com/ Cyan4 973/ xxHash/ tree/ v0.7.3
3 https:// github. com/ hideo 55/ cpp- Hyper LogLog/ tree/ 51759 8b2

https://github.com/Cyan4973/xxHash/tree/v0.7.3
https://github.com/hideo55/cpp-HyperLogLog/tree/517598b2
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We use the rightmost term to compute the Jaccard distance using the union sketch 
of A and B to estimate |A ∪ B|.

When rearranging, we still want to partly maintain the initial order of user bin sizes 
for two reasons: (1) for the HIBF it is beneficial to merge small user bins (see Fig. 2), 
and (2) a limitation of the DP algorithm is that only user bins next to each other can 
be merged, so ordering them by size clusters small bins together. We therefore only 
rearrange user bins in non-overlapping intervals. The size of an interval is determined 
by the parameter rm , the maximum ratio of the largest to the smallest user bin within 
the interval.

Within an interval, we perform an agglomerative clustering on the range of user 
bins based on their Jaccard distances. The order of user bins is changed according to 
the resulting cluster tree, leaving similar user bins adjacent to each other (see Fig. 8).

IBF size correction for split bins

Recall that for a given false-positive rate pfpr , the size in bits m of an individual Bloom 
filter is proportional to the amount of k-mers n it is designed to store. If h is the num-
ber of hash functions, then it holds:

If we split a user bin into s technical bins and divide the k-mer content equally 
among them, we cannot simply use the above equation  11 on each technical bin to 
determine its size because we introduce a multiple testing problem. Specifically, the 
probability for obtaining a false-positive answer for the user bin when querying those 
s technical bins is 1− (1− pfpr)

s , since we only get no false-positive answer if all split 
bins have no false-positive answer. We can determine the required false-positive rate 
pcorr such that conducting multiple testing yields the desired false-positive rate pfpr:

(10)dJ (A,B) = 1− J (A,B) = 2−
|A| + |B|

|A ∪ B|

(11)m ≈ −

h · n

ln(1− p
1
h

fpr)

(12)pcorr = 1− (1− pfpr)
1
s

Fig. 8 Rearranging user bins by agglomerative clustering. Given eight user bins (UBs) as input, sorted by 
their size (left-hand side), the example shows how the order may change after applying an agglomerative 
clustering algorithm based on sequence similarity (right-hand side). The agglomerative clustering arranged 
UB-2 and UB-4 next to each other, as well as UB-5 and UB-7
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We use pcorr to determine a factor for increasing the size of split bins to mitigate the 
effect of multiple testing:

More details can be found in Additional file  1. For example, given h = 4 and 
pfpr = 0.01 , if we split a user bin into s = 5 technical bins, their size computed with 
equation  11 must be increased by the factor 1.598. If we split the same user bin into 
s = 20 technical bins, the size must be corrected by 2.344.

Building an HIBF index from a layout

The hierarchy in an HIBF layout forms a tree (Fig. 3). To avoid reading input files several 
times, we build the index using a bottom-up strategy implemented by a recursive con-
struction algorithm. The recursion anchor lies at IBFs without merged bins (leaves of 
the tree) and traverses the layout similar to a breadth-first search. At a leaf, we read the 
respective input samples and transform them into their representative k-mer content. 
Based on the k-mer contents, we can construct an IBF whose size fits the desired maxi-
mum false-positive rate. We then insert the k-mer contents into the IBF. Moving along 
the tree, we keep the k-mer contents of child nodes to insert them into the respective 
merged bins of parent IBFs. At a parent node, the input samples from split and single 
bins are read, processed and, together with the merged bin content from child nodes, 
used to construct the current IBF. The algorithm ends at the root IBF on level L1. We 
trivially parallelized the construction of independent lower levels.

Querying an HIBF

To query the HIBF for a sequence, we employ a top-down strategy. First, the query 
sequence is transformed into representative k-mers in the same way as it was done for 
the index construction. For each k-mer, we determine its membership in the first, main 
level IBF of the HIBF by counting the total number of k-mers that occur in each techni-
cal bin. Subsequently, we gather all technical bins whose count is equal to or exceeds a 
certain threshold. For split bins, the k-mer counts of all bins associated with the respec-
tive user bin need to be accumulated before thresholding. For split and single bins, we 
can directly obtain the corresponding user bins to answer the query. For merged bins 
that exceed the threshold, we need to apply the same procedure recursively on the asso-
ciated child IBF on a lower level. Notably, having a threshold allows us to skip traversal 
of lower level IBFs whose upper level merged bins do not exceed the threshold. In prac-
tice, this means that we only have to access a fraction of the HIBF. The final result is the 
set of all user bins that contain a query.

The threshold can be either user-defined or computed for a given amount of allowed 
errors e in the query. For the latter, we rely on the method introduced in [12]. Briefly, 
we utilize a well-known k-mer lemma [23]. However, when winnowing minimizers are 
used, we apply a probabilistic model that accounts for how errors might destroy relevant 
k-mers [12]. The model returns a threshold value given how many representative k-mers 
are in the query. In this work, we further refined the model to incorporate the effect of the 

(13)fcorr(s, pfpr) =
ln(1− p

1
h

fpr)

ln(1− p
1
h
corr)
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false-positive rate on the threshold (see the “Impact of the HIBF’s false-positive rate” sec-
tion). The thresholding step is a convenience for the user missing in tools like Mantis [5].

Validation

Key parameters

The HIBF has many parameters that influence the memory consumption and run time, 
and partially depend on each other. We acknowledge that this can be challenging for the 
user. To alleviate the problem, we will in the following sections (1) describe the impact 
of the key parameters on the performance of the HIBF and (2) give sensible defaults and 
describe how the HIBF can set them automatically given very few, easy to understand 
parameters.

The choice of tmax The choice of tmax , i.e., the maximum number of technical bins of the 
individual IBFs in an HIBF, influences the depth of the HIBF which impacts both total 
index size and query runtime. We show in the following that the optimal tmax is near the 
square root of the number of user bins b, i.e. sq = ⌈

√

b/64⌉ · 64.
If tmax is relatively small, the depth of the HIBF is large, but the individual IBFs will be 

small. In terms of query runtime, querying a small IBF is fast, but we potentially have 
to traverse many levels. In terms of space, a small tmax results in storing a lot of redun-
dant information and thus the space consumption increases. If we choose tmax relatively 
large, the depth of the HIBF and the number of IBFs will be low, but the individual IBF 
sizes will be large. In terms of query runtime, we then expect few queries on each level, 
but querying an IBF is more costly. In terms of space, the larger tmax , the more techni-
cal bins we have to cleverly distribute the content of the user bins to and thus lower the 
space consumption. For some values of tmax , the space consumption increases, although 
tmax is large. This happens because IBFs on the last level contain only a few UBs, which 
will lead to relatively high correction factors fh (see the  “IBF size correction for split 
bins” section).

With a simple experiment4, we validated one of the above observations, namely that 
the query runtime of a single IBF increases with the number of (technical) bins (see 
Table 1). The results show an increase in query runtime for each false-positive rate. 

Table 1 Runtime penalty for an increasing number of bins in an IBF. The values represent ratios by 
which the query run time increases when using an IBF with b bins compared to an IBF with 64 bins. 
We simulated b equally sized (user) bins for b ∈ {64, 256, 512, ..., 32768} of random sequence content 
(1 GiB in total) and sampled 1  million reads of length 250. We then constructed an IBF over these b 
bins using 32-mers and 2 hash functions. We conducted this experiment for different false-positive 
rates, including 0.0001, 0.0125, and 0.3125, which resulted in IBFs of different densities. Next, we 
measured the time required to count the k-mer occurrences in each of the b bins for all 1 million 
reads. The reported values are the average of five repetitions

b 64 128 256 512 1024 2048 4096 8192 16384 32768

pfpr = 0.0001 1.00 1.06 1.35 1.35 1.57 1.96 3.41 5.49 6.81 10.95

pfpr = 0.0125 1.00 1.01 1.17 1.34 1.83 2.70 5.39 8.62 15.05 28.33

pfpr = 0.3125 1.00 1.28 1.55 2.26 3.78 6.54 12.94 24.45 47.63 93.47

4 https:// github. com/ seqan/ chopp er/ tree/ 7837f1/ test/ bench mark/ bench mark_ data/ query_ cost

https://github.com/seqan/chopper/tree/7837f1/test/benchmark/benchmark_data/query_cost
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Additionally, we observe that the higher the false-positive rate, the greater the query 
runtime penalty with an increasing number of bins. We can use those results to opti-
mize the choice of tmax.

To investigate advantageous values of tmax for a given data set, the user of our 
tool has the possibility to compute statistics on their input data. They have to fix the 
following three parameters beforehand: (1) the k-mer size, (2) the number of hash 
functions, and (3) the maximum false-positive rate (see the  “Recommended choice 
of parameters” section). The statistics then give an estimation on the expected cost 
of the index size and query time of an HIBF for several values of tmax . As an exam-
ple, we computed the statistics for the real-world data of the RefSeq database from 
our experiments and validated them by actually building and querying a respec-
tive HIBF (Fig. 9). The results show an excellent correlation between our prediction 
and the actual product of run times and memory consumption, namely a correla-
tion of 0.95 for tmax ranging from 64 to 8192. We were able to estimate the index 
size very closely to the real size, while we slightly underestimated the query time for 
increasing values of tmax . In the combination of space and query time, we identified 
tmax = 192 as the optimal choice in both the expected total cost and real total cost, 
where 192 is a multiple of the word size 64 that is near the square root of the number 
of user bins b, i.e., sq = ⌈

√

b/64⌉ · 64 . In general, our tool computes the statistics for 
tmax = sq, 64, 128, 256, . . . until the product query time · space increases. For the above 
example (Fig. 9), we would stop at tmax = 256 since the product increases and choose 
tmax = 192 as the optimal value.

In summary, given input data, we can compute a tmax that minimizes the expected 
query time of the HIBF or the minimal expected run time weighted with memory 
consumption and free the user from choosing the parameter as long as the data in the 
UBs is not similar. We postulate that this strategy works well if a query is on average 
only contained in one (or a few) UBs.

Choice of w and k To lower the space consumption and accelerate queries, we support 
(w,  k)-minimizers. Other methods for shrinking the set of representative k-mers like 

Fig. 9 Expected cost versus real cost. The data are all complete genomes of archaea and bacteria from 
the RefSeq database. The relative expected cost was computed with our model, while the relative real cost 
was measured with a tmax-HIBF with pfpr = 0.015 , 4 hash functions and (24, 20)-minimizer. The cost is given 
as a ratio of expected cost to real cost for a 64-HIBF because measurements are platform-dependent. The 
correlation is > 0.9 , although we systematically overestimate the required time. Nevertheless, the three best 
tmax are in both cases 192, 256, and 512 with predicted values 0.53, 0.56, and 0.75 and real values 0.39, 0.42, 
and 0.40
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described in [24] or [25, 26] are also possible for the HIBF. For a detailed description 
of (w, k)-minimizers, see [12]. The authors showed that, for up to 2 errors, parameters 
w = 23 and k = 19 perform well. In general, the larger we make w compared to k, the 
fewer representative k-mers we have to store. However, the accuracy decreases, and we 
might increase the number of false positives and false negatives. In comparison, Kraken2 
[27] uses values of w = 35 and k = 31.

A k-mer is identified as a minimizer if it has the smallest value in any of the windows 
of length w which cover the k-mer. Following the argument of Edgar [26], we can define 
the compression factor c(w, k) to be the number of k-mers in a window divided by the 
number of minimizers. Hence, c(w, k) ≥ 1 and larger c(w, k) indicates a smaller set of 
representative k-mers. For (w, k)-minimizers, c(w, k) can be estimated as follows: Con-
sider a pair of adjacent windows of length w in a random sequence. Sliding one position 
to the right, two k-mers are discarded from the first window (the k-mer and its reverse 
complement) and two are added to the second. The minimizer in the second window is 
different from the one in the first window if one of the four affected minimizers has the 
smallest value over both windows; otherwise, the minimizer of both windows is found 
in their intersection and does not change. There are 2 · (w − k + 2) k-mers in the two 
windows combined, and the probability that a given one of these has the smallest value 
is p = 1/(2 · (w − k + 2)) . Thus, the probability that a new minimizer is introduced by 
sliding the window one position is 4 · p = 2/(w − k + 2) and hence

For (23,  19)-minimizers, we would expect a compression by a factor of 3. For 
(32,  18)-minimizers, we would expect a compression factor of 8. Using a larger w is 
beneficial for saving space. On the other hand, the threshold for determining a match 
becomes smaller (roughly by the compression factor, for details see [12]). We want to 
avoid having a threshold of only 1 or 2, since a few false-positive k-mer matches would 
then result in a false-positive answer.

Impact of the HIBF’s false-positive rate Recall that we ensure that the overall false-posi-
tive rate for querying an HIBF does not exceed a certain threshold. Note that, for a given 
false-positive rate pfpr , the size in bits m of an individual Bloom filter is proportional to 
the amount of k-mers n it is designed to store. If h is the number of hash functions, then 
it holds:

Since we aim at making each IBF in the HIBF as small as possible, we will have to 
accommodate a relatively high false-positive rate.

We use the counts of the (w, k)-minimizers and the probabilistic threshold derived 
in [12] to decide whether a query is in a bin. However, having a relatively high false-
positive rate pfpr will affect this thresholding. If a query has x minimizers, we can 
compute the probability that a of them return a false-positive answer in an IBF with 
false-positive rate p = pfpr as

c(w, k) ≈
w − k + 2

2

m ≈ −

h · n

ln(1− p
1
h )
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This can be quite significant. For example, for queries of length 250, we have the 
distribution of minimizers (computed for 1 million random reads) depicted in col-
umns 1 and 2 of Table 2.

The table shows that for a false-positive rate pfpr of 0.05, we encounter reads that 
have, e.g., 20 (38, 20)-minimizers. Those reads have a chance of almost 40 % to have 
one false-positive count and a chance of almost 19  % to have two. This has a small 
effect on completely random hits. However, hits that match the query with more 
than the allowed errors could reach the threshold due to one or two false-positive 
minimizers.

To counter this, we introduce a correction term for the thresholds. We add a con-
stant c to the threshold t(x), which is determined by increasing c until the probability 
bp(x, c) drops below a threshold pmax . For example, for p = 0.05 and pmax = 0.15 , we 
have a correction of +1 for 14 ≤ x ≤ 16 and a correction of +2 for 17 ≤ x ≤ 33 . For 
p = 0.02 , we have a correction of +1 for all x. The value for pmax was experimen-
tally determined using the benchmark from [12] such that the benchmark yielded no 
false positives and no false negatives. It is set to pmax = 0.15 . Those corrections are 
precomputed and incorporated into the thresholding.

bp(x, a) =

(
x
a

)

· pa · (1− p)(x−a)

Table 2 Exemplary threshold distribution. The values are for (38, 20)-minimizers, 2 errors, and 
1 million reads of length 250. Shown are the distribution #x ( %x ) of the number (percentage) of 
minimizers reaching from x = 14 to x = 35 and the threshold t(x) using the probabilistic model from 
[12]. The threshold t(x) incorporates the correction term cp . On the right, the probability bp(x , a) of 
having a false-positive answers from the IBF with p = 0.05 is shown

x #x %x t(x) c0.05 b0.05(x , 1) b0.05(x , 2) b0.05(x , 3)

14 6 <0.1 5 1 35.9 12.3 2.6

15 214 <0.1 6 1 36.6 13.5 3.1

16 2059 0.2 6 1 37.1 14.6 3.6

17 11,081 1.1 8 2 37.4 15.8 4.1

18 36,651 3.5 9 2 37.6 16.8 4.7

19 83,748 8.0 9 2 37.7 17.9 5.3

20 139,864 13.3 10 2 37.7 18.9 6.0

21 179,962 17.2 11 2 37.6 19.8 6.6

22 185,842 17.7 12 2 37.5 20.7 7.3

23 158,032 15.1 12 2 37.2 21.5 7.9

24 113,696 10.8 13 2 36.9 22.3 8.6

25 70,089 6.7 14 2 36.5 23.1 9.3

26 37,540 3.6 15 2 36.1 23.7 10.0

27 18,040 1.7 15 2 35.6 24.3 10.7

28 7535 0.7 16 2 35.0 24.9 11.4

29 2790 0.3 17 2 34.5 25.4 12.0

30 961 <0.1 18 2 33.9 25.9 12.7

31 343 <0.1 18 2 33.3 26.3 13.4

32 88 <0.1 19 2 32.6 26.6 14.0

33 28 <0.1 20 2 32.0 26.9 14.6

34 5 <0.1 22 3 31.3 27.2 15.3

35 2 <0.1 23 3 30.6 27.4 15.8
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Recommended choice of parameters

We want to free the user from setting internal parameters of the HIBF. Here, we describe 
how to set key parameters that are required. We assume that the user knows (1) how 
many user bins there are as input, (2) with how many errors or what kind of thresh-
old the queries shall be searched. Wherever possible, we use sensible defaults, or infer 
parameters. For example, for constructing the index, we need to know the Bloom filter 
size. However, we can compute this parameter using the false-positive rate, which is a 
much more tangible parameter. When querying, we need to know the length of the que-
ries. Likewise, we just compute this length if it is not provided. 

1. Choice of h and pfpr : Both the number of hash functions and the false-positive rate 
influence the allocated space for the HIBF. In our experiments, the values h = 2 and 
pfpr = 0.05 turned out to be suitable for all analyzed data sets and are also used as 
default in Raptor. A lower pfpr limits the number of false-positive results that have 
to be handled downstream, while a higher pfpr can help to reduce memory con-
sumption in cases where false-positive k-mers have little effect. For the inclined user, 
Thomas Hurst provides a website5 that visualizes the interaction of Bloom filter size, 
number of hash functions, and the false-positive rate.

2. Choice of tmax : In practice, the default of 
√

user bins works well and has a good 
space vs. query time tradeoff. It is also the default in Chopper. For more details, see 
the “The choice of tmax” section.

3. Choice of k: Depending on the number of errors, k has to be chosen such that the k-
mer lemma still has a positive threshold. For example, when querying reads of length 
100 and allowing 4 errors, k has to be at most 20 ( 100− 20+ 1− 4 · 20 = 1 ). Fur-
thermore, k shall be such that a random k-mer match in the database is unlikely. For 
example, we chose k = 32 for the RefSeq data set. In general, there is no drawback in 
choosing the (currently supported) maximum k of 32, as long as the aforementioned 
requirements are fulfilled.

4. Choice of w: In the case that minimizers should be used, w has to be bigger than k. 
Canonical k-mers are achieved with w = k . Depending on the choice of k, the choice of 
w has to be made such that we obtain positive thresholds with our probabilistic thresh-
old. In general, we aim at having a minimum threshold of 3 for the (w, k) minimizers. 
Hence, we choose w as large as possible, such that the minimum threshold is 3. For 
example, this is obtained for 2 errors and read length 150 for (29, 20) minimizers, for 
read length 100 for (24, 20)-minimizers and for read length 250 for (40, 20) minimizers, 
which in turn reduces the amount of k-mers by factors of 5.5, 3, and 11, respectively.

Table 3 Used data

Dataset Source Link

Simulated data and queries This paper, [29] https:// zenodo. org/ record/ 77571 10

RefSeq data This paper, [30] https:// zenodo. org/ record/ 77420 11

RefSeq queries This paper, [31] https:// zenodo. org/ record/ 77417 04

RefSeq result files This paper, [32] https:// zenodo. org/ record/ 77418 86

RNA-Seq data [33] https:// zenodo. org/ record/ 11863 93

RNA-Seq queries This paper, [34] https:// zenodo. org/ record/ 77523 63

5 https:// hur. st/ bloom filter/

https://zenodo.org/record/7757110
https://zenodo.org/record/7742011
https://zenodo.org/record/7741704
https://zenodo.org/record/7741886
https://zenodo.org/record/1186393
https://zenodo.org/record/7752363
https://hur.st/bloomfilter/
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