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Abstract 

Post hoc attribution methods can provide insights into the learned patterns from deep 
neural networks (DNNs) trained on high-throughput functional genomics data. How-
ever, in practice, their resultant attribution maps can be challenging to interpret due 
to spurious importance scores for seemingly arbitrary nucleotides. Here, we identify 
a previously overlooked attribution noise source that arises from how DNNs handle 
one-hot encoded DNA. We demonstrate this noise is pervasive across various genomic 
DNNs and introduce a statistical correction that effectively reduces it, leading to more 
reliable attribution maps. Our approach represents a promising step towards gaining 
meaningful insights from DNNs in regulatory genomics.

Keywords: Deep learning, Regulatory genomics, Model interpretability, Attribution 
methods, Explainable AI

Background
Deep neural networks (DNNs) have demonstrated impressive performance across a 
wide variety of sequence-based prediction tasks in genomics, taking DNA sequences 
as input and predicting experimentally measured regulatory functions [1–3]. To gain 
insights into the features learned by DNNs, post-hoc attribution methods provide an 
importance score for each nucleotide in a given sequence; they often reveal biologically 
meaningful patterns, such as transcription factor binding motifs that are essential for 
gene regulation [4, 5]. Attribution methods also provide a natural way of quantifying the 
effect size of single-nucleotide mutations, both observed and counterfactual, which can 
help to prioritize disease-associated variants [6, 7].

Some of the most popular attribution methods are gradient-based, where partial 
derivatives of the output with respect to the inputs are used, including saliency maps 
[8], integrated gradients [9], SmoothGrad [10], and expected gradients [11]. However, in 
practice, attribution methods often produce noisy feature importance maps with spuri-
ous importance scores [12, 13]. This makes it difficult to deduce hypotheses of which 
patterns drive model predictions, which can then be validated with carefully designed 
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in silico experiments [5, 14]. Many factors that influence the efficacy of attribution maps 
have been identified empirically, such as the smoothness properties of the learned func-
tion [10, 15, 16] and learning (non-)robust features [17–19]. However, the origins of all 
noise sources that afflict attribution maps are not yet fully understood.

Here, we identify a previously overlooked source of noise in input gradients when the 
input features are categorical variables. Then, we introduce a simple, but effective, statis-
tical correction and demonstrate that it improves attribution-based explanations across 
various DNNs that span a wide range of prediction tasks in regulatory genomics.

Results and discussions
Off‑simplex gradients introduce random noise

Even though DNNs can learn a function everywhere in Euclidean space, one-hot 
encoded DNA is a categorical variable that lives on a lower-dimensional simplex. A 
DNN can learn a meaningful predictive function near the data support, i.e., on the sim-
plex, but it has freedom to express any arbitrary function behavior off the simplex where 
no data exists. Since held-out test data also lives on this simplex, DNNs can still main-
tain good generalization performance. However, random off-simplex function behavior 
can introduce a random gradient component orthogonal to the simplex, which manifest 
as spurious noise in the input gradients (Fig. 1a). This, in turn, can make it more chal-
lenging to interpret learned motif patterns or trust variant effect predictions from gradi-
ent-based attribution analysis.

To minimize the impact of off-simplex gradient noise, we introduce a simple statistical 
correction based on removal of the random orthogonal gradient component. For a one-
hot sequence, x ∈ {A}L , with A categories (e.g., 4 for DNA) and length L, the gradient 
( G ∈ R

L×A ) of the model’s prediction with respect to the lth position along the sequence 
and nucleotide index a can be corrected according to: Gcorrected

l,a = Gl,a − µl , where 
µl = 1

A a Gl,a (see the “Methods” section for derivation). This proposed gradient cor-
rection—subtracting the original gradient components by the mean gradients across 
components for each position—is general for all data with categorical inputs, including 
DNA, RNA, and protein sequences.

Gradient correction improves attribution maps quantitatively

To demonstrate the efficacy of our proposed gradient correction, we systematically eval-
uated attribution maps before and after the correction for various convolutional neu-
ral networks (CNNs) trained on synthetic genomics data that recapitulates a billboard 
model of gene regulation (see the “Methods” section). We also performed a qualitative 
evaluation of the gradient correction on various CNNs trained on prominent types of 
regulatory genomic prediction tasks, including single-task and multi-task binary classifi-
cation and quantitative regression at various resolutions, using data from a diverse set of 
high-throughput functional genomics assays measured in vivo.

First, using synthetic data, which provides base-resolution knowledge of ground 
truth motif patterns, we quantitatively assessed the efficacy of various attribution maps, 
including saliency maps, integrated gradients, SmoothGrad, and expected gradients 
(see the “Methods”  section). Strikingly, we found that the gradient correction consist-
ently yields a substantial improvement in the quality of attribution maps across various 
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similarity metrics (see Fig. 1b for saliency maps and Additional file 1: Fig. S1 for other 
attribution methods).

Larger off‑simplex angles are associated with spurious noise

Next, we visualized the density of angles between the gradient and the simplex, which 
highlights the extent of the off-simplex random noise (see the “Methods” section). We 
found that the distribution of angles is mostly zero-centered but their width varies from 
model to model (Additional file 1: Fig. S2). Even with the enormous freedom to express 
arbitrary functions off the simplex, the function that is often learned largely aligns with 
the simplex.

By focusing on large angles, we found that each attribution map contains about 
5–15% of positions with a gradient angle larger than 60°; about 10–20% of positions 
have angles greater than 45°; and about 20–40% of positions have angles greater than 
30° (Fig.  1c, Additional file  1: Fig. S3). A similar observation was made for various 

Fig. 1 Gradient correction performance. a Toy diagram of geometric relationship between the input 
gradient and the simplex defined for 3-dimensional categorical data. Blue curves represent gradient lines 
of a hypothetical learned function. Gray plane represents the data simplex. The red vector represents the 
gradient pointing off of the simplex. b Performance comparison on synthetic data. (Top row) Scatter plot of 
interpretability performance measured by different similarity scores versus the classification performance 
(AUC) for saliency maps. (Bottom row) Interpretability improvement for saliency maps for different similarity 
metrics when using gradient correction. Improvement represents the change in similarity score after the 
gradient correction. Each point represents 1 of 50 trials with a different random initialization for each model. 
c Histogram of the percentage of positions in a sequence with a gradient angle larger than various thresholds 
for a deep CNN with ReLU activations (CNN-deep-relu) trained on synthetic data. d Scatter plot of the 
percentage of positions in a sequence with a gradient angle larger than various thresholds for CNN-deep-relu 
trained on ChIP-seq data. Each point represents the average percentage across all test sequences for each 
ChIP-seq dataset. For comparison, horizontal dashed lines indicate the mean value from the corresponding 
analysis using synthetic data in c 
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CNNs trained on ChIP-seq data (Fig. 1d and Additional file 1: Figs. S4). This suggests 
that large angles between the gradients and the simplex are pervasive in attribution 
maps.

To assess how well the gradient correction works as intended, we compared the 
improvement of the attribution maps upon correction as a function of the angle 
magnitude (see the “Methods”  section). Across both, CNNs trained on either syn-
thetic data or ChIP-seq data, we found that positions with larger angles indeed yield 
improved attribution scores in true-positive positions, while background positions 
led to a decrease in spurious attribution scores (Additional file 1: Figs. S2 and S5).

Gradient correction generates qualitatively more interpretable attribution maps

To assess whether gradient-corrected attribution maps better align with our notion of 
intepretability, we also performed a visual comparison. Interestingly, positions within 
and directly flanking the motif patterns exhibit a high degree of spurious noise in 
attribution maps without the gradient correction. Many of these seemingly “spurious” 
nucleotides are associated with gradients that exhibit large angular deviations from 
the simplex (Fig.  2a, Additional file  1: Fig. S6). Upon correction, attribution maps 
tend to visually yield cleaner motif definition.

Fig. 2 Visualizing the gradient correction. Sequence logo of the uncorrected saliency map (top row), 
gradient angles at each position (second row), and corrected saliency map (third row) for a patch from 
representative test sequences. a, b CNN-deep-relu trained to make binary predictions on a synthetic 
data and b ChIP-seq data for ATF2 protein in GM12878. The sequence logo of ground truth is shown for 
CNN-deep-exp for a synthetic data. b An ensemble average saliency map is shown in lieu of ground truth 
(bottom row). c–e A similar plot is made for a c DeepSTARR model trained to predict enhancer activity 
via STARR-seq data, d Basset model trained to make binary predictions of chromatin accessibility sites via 
DNase-seq data, and e CNN model trained to predict base-resolution read-coverage values from ATAC-seq 
data in PC-3 cell line. c–e A colored box and a corresponding sequence logo of a known motif from JASPAR 
[20] (with a corresponding ID) or Ref. [21] are shown for comparison
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This phenomenon was also observed across other CNNs trained on various high-
throughput functional assays measured in vivo, including CNNs trained to predict tran-
scription factor ChIP-seq peaks as a single-task binary classification (Fig. 2b, Additional 
file 1: Fig. S7), a DeepSTARR model trained to predict quantitative levels of enhancer 
activity measured via STARR-seq [5] (Fig.  2c, Additional file  1: Fig. S8), and a Basset 
model trained to predict chromatin accessibility sites across 161 cell-types/tissues as a 
multi-task binary classification [22] (Fig. 2d, Additional file 1: Fig. S9).

We also found that gradient correction worked well for various base-resolution CNNs 
trained to predict quantitative levels of normalized read-coverage of 15 ATAC-seq data-
sets [23] (Fig. 2e, Additional file 1: Fig. S10). Interestingly, the attribution maps of CNNs 
trained to predict read-coverage down-sampled at 32-bin resolution, on average, exhib-
ited more noticeable improvements with the gradient correction compared to base-
resolution CNNs. The initial attribution maps (before the correction) better captured 
known motifs for the base-resolution CNNs, especially when exponential activations 
was employed in the first layer [19] (Additional file 1: Fig. S10). Strikingly, the extent of 
off-simplex gradient angles, and hence the occurrence of random attribution noise, was 
observed consistently across all of the models and datasets that were investigated (Addi-
tional file 1: Figs. S7-S10).

Additional observations

Upon further investigation, we found that the magnitude of the random initialization 
plays a major role, with larger random values increasing the extent of off-simplex gra-
dients for both DNNs trained on synthetic and real data (Additional file  1: Note S1). 
In addition, the gradient correction can be utilized as a regularizer to guide function 
behavior to align with the simplex during training (Additional file 1: Note S2).

Conclusions
Attribution methods can provide insights into the cis-regulatory syntax learned by 
genomic DNNs and help to prioritize disease-associated variants. However, unregu-
lated off-simplex function behavior, which arises due to how DNNs fit one-hot DNA 
sequences, introduces noise in gradient-based attribution maps, which obfuscates bio-
logical signals from spurious noise. Our proposed gradient correction is an effective 
solution to address this issue and it is simple to implement with a single line of code.

Our proposed gradient correction is an effective statistical correction. However, in indi-
vidual cases, corrections can be subtle, even when a large off-simplex gradient is observed. 
In addition, many large angles can be associated with positions that have low attribution 
scores, and thus may not result in noticeable changes. Interestingly, we observed that the 
largest corrections occur when the attribution scores at a given position are either all posi-
tive or all negative (Additional file 1: Figs. S8-S10). In such cases, the gradient correction 
centers and reduces the attribution scores. On the other hand, attribution methods that are 
based only on forward propagation, such as in silico mutagenesis, do not require this cor-
rections as the DNN’s behavior off the simplex does not affect predictions; all data, includ-
ing test data, lives on the simplex. Moreover, while we demonstrate the gradient correction 
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on DNNs trained with DNA sequences, it should extend to other data types based on cat-
egorical input variables, such as protein and RNA sequences.

Moving forward, it would be beneficial to explore training strategies that can directly 
address the off-simplex function behavior of DNNs, such as mixup [24], manifold mixup 
[25], and randomized smoothing [26].

Importantly, the gradient correction only addresses noise associated with erratic func-
tion behavior off the simplex. This correction is not a “magic bullet”; it cannot correct 
other noise sources that afflict attribution analysis. Throughout this study, we rarely 
observed attribution maps appearing visually worse after the gradient correction. Hence, 
we recommend that it should always be applied for its benefit in improving the reliability 
of gradient-based attribution analysis.

Methods
Gradient correction for DNA sequences—derivation

Let us consider DNA sequences as inputs to DNNs, which are represented as one-hot 
encoded arrays of size L× 4 , having 4 nucleotide variants (i.e.,  { A, C, G, T } ) at each 
position of a sequence of length L. One-hot encoded data naturally lends itself to a prob-
abilistic interpretation, where each position corresponds to the probability of 4 nucleo-
tides for DNA or 20 amino acids for proteins. While the values here represent definite/
binary values, these one-hot representations can also be relaxed to represent real num-
bers—this is a standard view for probabilistic modeling of biological sequences, where 
the real numbers represent statistical quantities like nucleotide frequencies. Each posi-
tion is described by a vector of 4 real numbers, given by x, y, z , w. The probability axiom 
imposes that each variable is bound between 0 and 1 and their sum is constrained to 
equal 1, that is

This restricts the data to a simplex of allowed combinations of (x, y, z, w), and Eq. 1—
being an equation of a 3-dimensional (3D) plane in a 4D space—defines this simplex. 
Importantly, an issue arises with input gradients from how DNNs process this data.

The input gradients can be decomposed into two components: the component locally 
parallel to the simplex, which is supported by data, and the component locally orthogo-
nal to this simplex, which we surmise is unreliable as the function behavior off of the 
simplex is not supported by any data. Thus, we conjecture that removing the unreliable 
orthogonal component from the gradient via a directional derivative, leaving only the 
parallel component that is supported by data, will yield more reliable input gradients. 
Without loss of generality, we now illustrate this procedure and derive a formula for this 
gradient correction in the case of widely used one-hot encoded genomic sequence data 
where the simplex is a 3D plane within a 4D space, for each nucleotide.

Given −→n = 1√
4
(î + ĵ + k̂ + l̂) is a normal vector to the simplex plane (Eq. 1) and 

−→
G  is 

the gradient of function f,

we can correct 
−→
G  by removing the unreliable orthogonal component, according to:

(1)x + y+ z + w = 1.

(2)
−→
G = ∂f

∂x
î + ∂f

∂y
ĵ + ∂f

∂z
k̂ + ∂f

∂w
l̂ ,
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 where µ = 1
A

∑
i
∂f
∂xi

 and A is the dimensionality of the one-hot categories. For DNA, 
A = 4 . For proteins, A = 20 . Hence, our proposed gradient correction—subtracting the 
original gradient components by the mean gradients across components—is general for 
all data with categorical inputs.

To implement the gradient correction for an attribution map that has a shape (N, L, 
A), where N is the number of attribution maps, a correction using NumPy [27] can be 
achieved with: $ attr_map = attr_map - np.mean(attr_map, axis=2, keepdims=True).

Data

Synthetic data

The synthetic binary classification data from Ref. [19] reflects a simple billboard 
model of gene regulation. Briefly, 20,000 synthetic sequences, each 200 nucleotides 
(nt) long, were embedded with known motifs in specific combinations in an equiprob-
able sequence model. Positive class sequences were generated by sampling a sequence 
model embedded with 3 to 5 “core motifs,” randomly selected with replacement from 
a pool of 10 position frequency matrices, which include the forward and reverse-
complement motifs for CEBPB, Gabpa, MAX, SP1, and YY1 proteins from the JAS-
PAR database [20]. Negative class sequences were generated following the same steps 
with the exception that the pool of motifs include 100 non-overlapping “background 
motifs” from the JASPAR database. Background sequences can thus contain core 
motifs; however, it is unlikely to randomly draw motif combinations that resemble 
a positive regulatory code. The dataset is randomly split into training, validation and 
test sets with a 0.7, 0.1, and 0.2 split, respectively. The machine learning task is to pre-
dict class membership of one-hot sequences 200 nt in length.

ChIP‑seq data

Transcription factor (TF) chromatin immunoprecipitation sequencing (ChIP-seq 
[28]) data was processed and framed as a binary classification task. Similar to the syn-
thetic dataset, the input is 200 nt DNA sequences and the output is a single binary 
prediction of TF binding activity. Positive-label sequences represent the presence of 
a ChIP-seq peak and negative-label sequences represent peaks for non-overlapping 
DNase I hypersensitive sites from the same cell type that do not overlap with any 
ChIP-seq peaks. Ten representative TF ChIP-seq experiments in a GM12878 cell line 
and a DNase-seq experiment for the same cell line were downloaded from ENCODE 
[29], for details see Additional file  1: Table  S1. BEDTools [30] was used to identify 
non-overlapping DNase-seq peaks and the number of negative sequences were ran-
domly down-sampled to exactly match the number of positive sequences, keeping the 
classes balanced. The dataset was split randomly into training, validation, and test set 
according to the fraction 0.7, 0.1, and 0.2, respectively.

(3)

−→
G corrected =−→

G|| =
−→
G −−→

G⊥ = −→
G − (

−→
G · −→n )

−→n

=(
∂f

∂x
− µ)î + ...+ (

∂f

∂w
− µ)l̂
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Models

For the analysis of synthetic data and ChIP-seq data, we used two different base CNN 
architectures, namely CNN-shallow and CNN-deep, each with two variations—recti-
fied linear units (ReLU) or exponential activations for the first convolutional layer, 
while ReLU activations are used for other layers—resulting in 4 models in total. 
CNN-shallow is a network that is designed with an inductive bias to learn interpret-
able motifs in first layer filters with ReLU activations [31]; while CNN-deep has been 
empirically shown to learn distributed motif representations. Both networks learn 
robust motif representations in first layer filters when employing exponential activa-
tions [19].

All models take as input one-hot-encoded sequences (200 nucleotides) and have a 
fully-connected output layer with a single sigmoid output for this binary prediction task. 
The hidden layers for each model are: 

1. CNN-shallow

1. Convolution (24 filters, size 19, stride 1, activation)

 Max-pooling (size 50, stride 50)
2. Convolution (48 filters, size 3, stride 1, ReLU)
 Max-pooling (size 2, stride 2)
3. Fully-connected layer (96 units, stride 1, ReLU)

2. CNN-deep

1. Convolution (24 filters, size 19, stride 1, activation)
2. Convolution (32 filters, size 7, stride 1, ReLU)
 Max-pooling (size 4, stride 4)
3. Convolution (48 filters, size 7, stride 1, ReLU)
 Max-pooling (size 4, stride 4)
4. Convolution (64 filters, size 3, stride 1, ReLU)
 Max-pooling (size 3, stride 3)
5. Fully-connected layer (96 units, stride 1, ReLU)

We incorporate batch normalization [32] in each hidden layer prior to activations; 
dropout [33] with probabilities corresponding to CNN-shallow (layer1 0.1, layer2 0.2) 
and CNN-deep (layer1 0.1, layer2 0.2, layer3 0.3, layer4 0.4, layer5 0.5); and L2-regular-
ization on all parameters of hidden layers (except batch norm) with a strength equal to 
1e−6.

We uniformly trained each model by minimizing the binary cross-entropy loss func-
tion with mini-batch stochastic gradient descent (100 sequences) for 100 epochs with 
Adam updates using default parameters [34]. The learning rate was initialized to 0.001 
and was decayed by a factor of 0.2 when the validation area under the curve (AUC) of 
the receiver-operating characteristic curve did not improve for 3 epochs. All reported 
performance metrics are drawn from the test set using the model parameters from the 
epoch which yielded the highest AUC on the validation set. Each model was trained 
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50 times with different random initializations according to Ref. [35]. All models were 
trained using a single P100 GPU; each epoch takes less than 2 seconds.

Evaluating attribution methods

Attribution methods

To test the efficacy of attribution-based interpretations of the trained models, we gen-
erated attribution scores by employing saliency maps [8], integrated gradients [9], 
SmoothGrad [10], and expected gradients [11]. Saliency maps were calculated by com-
puting the gradient of the predictions with respect to the inputs. Integrated gradients 
were calculated by integrating the saliency maps generated from 20 linear interpolation 
points between a null reference sequence (i.e., all zeros) and a query sequence. Smooth-
Grad was employed by averaging the saliency maps of 25 variations of a query sequence, 
which were generated by adding Gaussian noise (zero-centered with a standard devia-
tion of 0.1) to all nucleotides—sampling and averaging gradients for data that lives off 
of the simplex. For expected gradients, we averaged the integrated gradients across 10 
different reference sequences, generated from random shuffles of the query sequence. 
Attribution maps were visualized as sequence logos with Logomaker [36].

Quantifying interpretability on synthetic data

Since synthetic data contains ground truth of embedded motif locations in each 
sequence, we can directly test the efficacy of the attribution scores. We calculated the 
similarity of the attribution scores with ground truth using 3 metrics: cosine similar-
ity, area under the receiver-operating characteristic curve (AUROC) and the area under 
the precision-recall curve (AUPR). Cosine similarity uses a normalized dot product 
between vector of positions in a given attribution map and the corresponding ground 
truth vector; the more similar the two maps are, the closer their cosine similarity is to 
1. This is done on a per sequence basis. We subtract 0.25 from the ground truth prob-
ability matrix to “zero out” non-informative positions and obtain ground truth “impor-
tance scores.” Thus, cosine similarity focuses on the positions where ground truth motifs 
are embedded. Interpretability AUROC and AUPR were calculated according to [19], 
by comparing the distribution of attribution scores in nucleotides belonging to motifs 
(positive class) and those not associated with any ground truth motifs (negative class). 
Briefly, we first multiply the attribution scores ( Sij ) and the input sequence ( Xij ) and 
reduce the dimensions to get a single score per position, according to Ci =

∑
j SijXij , 

where j is the alphabet and i is the position, a so-called grad-times-input. We then cal-
culate the information of the ground truth probabilities Mij at each position, according 
to Ii = log2 4 −

∑
j Mij log2Mij . Positions that are given a positive label are defined by 

Ii > 0.1 (i.e., 5% of maximum information content for DNA), while positions with an 
information content of zero are given a negative label. The AUROC and AUPR is then 
calculated for each sequence using the distribution of Ci at positive label positions 
against negative label positions.

Each metric captures different aspects of the quality of the attribution maps. For 
instance, cosine similarity focuses on true positive positions and uses the full gradient 
vector associated with each sequence. On the other hand, AUROC and AUPR use a sin-
gle component of the gradient, i.e., the observed nucleotide, due to the grad-times-input. 
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AUROC and AUPR also focus on a different balance between true positives with either 
false positives or recall, respectively. Unlike in computer vision, where important fea-
tures are hierarchical (i.e., edges, textures, and shapes) and extend across several cor-
related pixels, synthetic genomics data allows us to quantitatively assess the efficacy of 
attribution maps with “pixel-level” ground truth.

Quantifying interpretability on ChIP‑seq data

For ChIP-seq data, quantitative analysis of interpretability performance is challenging 
due to a lack of ground truth. We circumvent this by developing a plausible proxy that 
could serve as ground truth, i.e., ensemble-averaged saliency maps. For each base CNN 
model, we trained an ensemble of 50 models—each with a slightly different architecture 
and different random initializations. We achieved slight variations in the architecture by 
using a different numbers of convolutional filters in the first layer: we trained five mod-
els for each of the following ten choices for the number of filters: [12, 14, 16, 18, 20, 22, 
24, 26, 28, 30]. Additional variation was coming from initial weights that were randomly 
initialized according to Ref. [35]. After training and calculating saliency maps for each of 
these individual models, we then averaged the saliency maps across all 50 models.

For each position i in each sequence, we treated the saliency scores from an indi-
vidual model as a vector 

−→
Si  with 4 components. The ensemble-average saliency vec-

tor 
−→
Sensi  of the same dimension is used to calculate the difference: 

−→
�S = −→

Si −
−→
Sensi  . We 

then calculate the L2-norm of 
−→
�S , i.e., ||�S ||L2 . This score essentially captures how dif-

ferent a saliency map is to the ground truth proxy at the ith position in a sequence. 
To quantify the improvement in saliency maps after the gradient correction, we cal-
culate the percent decrease of ||�S ||L2 before and after the correction, according to: 
1− ||�S ||L2after/||�S ||L2before . We call this the ensemble difference reduction.

Calculating gradient angles

The sine of the angle between a gradient vector and the simplex plane is given by 
sin(α) = G⊥/||G||L2 , where ||G||L2 is the L2-norm of the vector 

−→
G  , and G⊥ is the orthog-

onal component of the same vector with respect to the simplex plane. Component G⊥ 
can be calculated according to: 

−→
G⊥ = −→

G • −→n  , where 
−→
G  is given in Eq. 2 and the normal 

vector for the simplex plane is given by −→n = 1
2 (î + ĵ + k̂ + l̂).

Additional analysis

DeepSTARR—enhancer function with STARR‑seq

We acquired the DeepSTARR dataset from Ref. [5]. This consists of a multi-task regres-
sion of enhancer activity for STARR-seq [37] data, with 2 tasks that correspond to 
developmental enhancers (Dev) and housekeeping enhancers (HK). We replicated the 
DeepSTARR model and trained it on this dataset, which consists of 402,296 training 
sequences each 249 base-pairs long. Adam optimizer was used with a learning rate of 
0.002, and we employed early stopping with a patience of 10 epochs and a learning rate 
decay that decreased the learning rate by a factor of 0.2 when the validation loss did not 
improve for 3 epochs. We recovered similar performance, i.e., Pearson’s r of 0.68 and 
0.75 and a Spearman rho of 0.65 and 0.57 for tasks Dev and HK, respectively. These val-
ues are close to the published values of the original DeepSTARR model. We also trained 
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a modified DeepSTARR where the first layer filter activations were set with exponential 
activations (DeepSTARR-exp). Training was less stable with the default DeepSTARR set-
tings, so we lowered the learning rate to 0.0003 and added a small dropout of 0.1 after 
the max-pooling layers in each convolutional block. DeepSTARR-exp achieved a com-
parable test performance of Pearson’s r of 0.68 and 0.76 and a Spearman rho of 0.66 and 
0.58 for tasks Dev and HK, respectively. For each model, saliency maps were generated 
for all test sequences by calculating the derivative of the prediction for a respective class 
with respect to the inputs. These saliency maps were used to generate the angle histo-
gram plot (Additional file 1: Fig. S8a) as well as sequence logos (Additional file 1: Fig. 
S8b-e). We sub-selected sequence logos based on sequences that contained high angles 
and demonstrated a compelling visualization of motifs (with low spurious noise) upon 
gradient correction.

Basset—chromatin accessibility classification with DNase‑seq

We acquired the Basset dataset from Ref. [22]. This consists of a multi-task classifica-
tion of chromatin accessibility sites across 161 cell types/tissues measured experimen-
tally via DNase-seq [38]. We acquired trained weights for a Basset model trained with 
ReLU activations and exponential activations in first layer filters in Ref. [19]. For each 
model, saliency maps were generated for the first 25,000 test sequences by calculating 
the derivative of the prediction for the highest predicted class with respect to the inputs. 
These were used to generate the angle histogram plot (Additional file 1: Fig. S9a) as well 
as sequence logos (Additional file 1: Fig. S9b-f ). We sub-selected sequence logos based 
on sequences that contained high angles and demonstrated a compelling visualization of 
motifs (with low spurious noise) upon gradient correction.

GOPHER—chromatin accessibility profile prediction with ATAC‑seq

We acquired the test data and the trained CNN-base and CNN-32 models with expo-
nential activations and ReLU activations from Ref. [23]; a total of 4 models. Each CNN 
takes as input 2kb length sequences and outputs a prediction of normalized read-cover-
age for 15 ATAC-seq bigWig tracks (i.e., log-fold over control). We calculated gradients 
of the mean predictions for the PC-3 cell line for sequences that are centered on an IDR 
peak called by ENCODE data processing pipeline [29]. These saliency maps were used to 
generate the angle histogram plot (Additional file 1: Fig. S10a) as well as sequence logos 
(Additional file 1: Fig. S10b-e). We sub-selected sequence logos based on sequences that 
contained high angles and demonstrated a compelling visualization of motifs (with low 
spurious noise) upon gradient correction.
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