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Abstract 

Group heteroscedasticity is commonly observed in pseudo-bulk single-cell RNA-seq 
datasets and its presence can hamper the detection of differentially expressed genes. 
Since most bulk RNA-seq methods assume equal group variances, we introduce two 
new approaches that account for heteroscedastic groups, namely voomByGroup and 
voomWithQualityWeights using a blocked design (voomQWB). Compared to current 
gold-standard methods that do not account for group heteroscedasticity, we show 
results from simulations and various experiments that demonstrate the superior per-
formance of voomByGroup and voomQWB in terms of error control and power when 
group variances in pseudo-bulk single-cell RNA-seq data are unequal.

Keywords: Pseudo-bulk scRNA-seq, Differential expression analysis, Group 
heteroscedasticity

Background
Single-cell RNA sequencing (scRNA-seq) allows the quantification of transcript pro-
files across individual cells and has become widely adopted over the past few years. A 
major advantage of scRNA-seq is the high resolution it offers, enabling researchers to 
study molecular responses to different biological perturbations at the cellular-level [1] 
rather than the population-level as surveyed by bulk RNA-seq approaches. Many statis-
tical tools and methods have been developed to make use of these high-resolution data, 
such as methods for trajectory analysis [2], cell-to-cell interactions [3], and differential 
expression (DE) analysis [4, 5].

Early DE analysis of this data type aimed to fully leverage information from individual 
cells, whereby each cell in comparison is treated as an independent biological unit (or 
“replicate”). To achieve this, a number of studies used established methods developed 
for bulk RNA-seq data [6]. However, due to the sparsity of the gene count matrix, which 
is a major point of difference between single-cell and bulk data [4, 5], other research-
ers modeled scRNA-seq data as either zero-inflated or multi-modal in distribution and 
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developed tailored DE analysis methods for scRNA-seq data (e.g., MAST [4], BPSC [7], 
and DEsingle [8]). To guide the analysts’ choice, various evaluation studies have assessed 
the performance of bulk and tailored scRNA-seq analysis methods, although their find-
ings have varied. Some showed that bulk methods are unsuitable when directly applied 
to scRNA-seq data [9, 10], while others found bulk methods were comparable to tailored 
scRNA-seq methods [11]. Another analysis strategy performs DE analysis on pseudo-
bulk samples that are created by cell aggregation [12]. This strategy was pointed out to 
perform better than single-cell methods that treat each cell as an independent replicate 
in the analysis in two independent studies [13, 14]. Through the use of an aggregation 
approach, dependencies between cells from the same sample are avoided [15] so that 
the intrinsic variability of biological replicates is well-estimated leading to fewer false 
discoveries compared to methods that fail to account for this [14]. Although a general-
ized linear mixed model with a random effect to take care of zeros and correlation struc-
ture within a sample provides slightly more power compared to pseudo-bulk aggregation 
methods [13, 16], it brings a much heavier computational burden [13, 14].

Most of the DE analysis methods applied on pseudo-bulk data in the literature are 
“gold-standard” bulk DE analysis methods, including limma-voom, limma-trend [17, 18], 
edgeR [19], and DESeq2 [20]. Limma was developed for microarray data, assumes the 
log-transformed expression values are normally distributed, and employs linear mod-
eling and empirical Bayes shrinkage to improve the stability and power of statistical 
tests. For RNA-seq data, voom and limma-trend were subsequently developed based on 
the assumption of normality of the log-transformed counts, using different strategies to 
address the dependence that is observed between the mean and the variance (referred 
to as heteroscedasticity) in this kind of data. Voom models the relationship between the 
mean and variance across all observations using a fitted LOWESS trend and calculates 
precision weights based on the estimated trend for use in linear modeling. On the other 
hand, edgeR employs empirical Bayes shrinkage and was developed assuming gene-level 
counts follow a negative binomial distribution.

Due to limited sample numbers, most bulk DE analysis methods including the afore-
mentioned gold-standard methods borrow information between genes to estimate 
the variance [19, 21–23] and assume equal variances between experimental groups 
(also referred to as “homoscedasticity”). However, there are cases where the variability 
observed is distinct for different groups (“heteroscedasticity”). Here we use “group” as 
a general term that covers common experimental variables or conditions such as treat-
ment (drug A, drug B, vehicle control), genotype (wild-type, knock-out), and sex (male, 
female). In scRNA-seq analysis, DE methods can be used to find marker genes as well 
[24], in which case, the concept of “group” can extend to different cell types or clusters.

Heteroscedasticity has been frequently observed in microarray gene expression data 
[25, 26], for instance, Demissie et al. showed that a moderated Welch test performs bet-
ter than the moderated t-test when group variances are unequal [26]. In large-scale bulk 
RNA-seq data, under the scenarios of heteroscedasticity, Ran et  al. pointed out that 
voom was unable to model the variability appropriately and they noted that the weight-
ing strategy used in voomWithQualityWeights (voomQW) may be more helpful [27] on 
account of its joint modeling of variability at the observational and sample-level. Chen 
et al. noted an unequal group variance in single-cell data as well, stating that unequal 
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variance tests are underused [28]. They made use of the large sample sizes available 
when each cell is considered as a replicate and estimated group-specific dispersions for 
each gene separately.

In this article, we examine whether group-specific variances are homoscedastic (equal) 
or heteroscedastic (unequal) in pseudo-bulk scRNA-seq data. We show that heterosce-
dastic groups are frequently observed in the data and that the application of current DE 
analysis methods has variable performance. Importantly, gold-standard methods that do 
not model group-level variability can both under- and over-estimate variances leading 
to poor error control or reduced power to detect DE genes. We demonstrate that meth-
ods that account for heteroscedastic groups, namely voomByGroup and voomQW using 
a blocked design, have superior performance in this regard when group variances are 
unequal.

Results
Observing heteroscedasticity in scRNA‑seq pseudo‑bulk data

To study whether group variances are equal or unequal in scRNA-seq pseudo-bulk data, 
we explored pseudo-bulk scRNA-seq datasets generated with cells from specific cell 
types obtained from various sample types ranging from experimental replicates of mice 
to human samples (see the  “Methods”  section). We examined three things: (1) multi-
dimensional scaling (MDS) plots, (2) common biological coefficient of variation (BCV) 
of groups, and (3) mean-variance trends derived from individual groups (we refer to 
these as “group-specific voom trends”). Larger distances between samples in a group on 
the MDS plots indicate more within-group variation. BCV is a measure of the biological 
variability in gene expression between biological replicates and is frequently used to esti-
mate the variance of gene expression in RNA-seq data [29]. Higher common BCV values 
correspond to increased biological variation between samples across genes based on the 
assumption of the negative binomial (NB) distribution in edgeR. For the group-specific 
voom trends, we are interested in observing where the curves sit relative to other groups 
in the same study, as well as the shape of the curve. The shape and “height” of the curves 
reflect the total variation within groups—both technical and biological.

In studies of mouse lung tissue [30] and Xenopus tail [31], we observed some minor 
differences in group-specific voom trends, with the curves sitting close together and 
mostly overlapping one another (Fig.  1a-b). Common BCV values for these studies 
ranged from 0.197 to 0.240 across 2 groups in mouse lungs, and 0.226 to 0.295 across 5 
groups in Xenopus tails.

In human datasets, the differences in group variances were greater. For human periph-
eral blood mononuclear cells (PBMCs) [32], healthy controls unsurprisingly exhibited 
lower variability than the 3 other patient groups to which they were compared (Fig. 1c). 
This was evident from group-specific voom trends—although the curves had similar 
shapes, the curve of the healthy controls sat distinctly below the curves of other groups. 
Common BCV values for the PBMCs ranged from 0.154 to 0.241, with the lowest for 
healthy controls and the highest for asymptomatic patients.

A separate study on human macrophages collected from lung tissues [33] showed even 
higher levels of heteroscedasticity, where common BCV values ranged from 0.338 to 
0.495 (Fig. 1d). Group-specific voom trends had distinct shapes and were well separated 
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from one another along the vertical axis (with the exception of IPF and control groups 
which were quite similar). Moreover, the plateauing of voom trends at higher expression 
values that are commonly observed in many datasets was not observed here. This might 
be on account of the complexity of regions in the lung where samples are collected, the 
diverse causes of lung fibrosis, and limited patient numbers for some groups. High levels 
of biological variation are reflected in the large BCV values in this dataset.

Fig. 1 Group variation in scRNA-seq pseudo-bulk datasets. Group variation in 4 publicly available scRNA-seq 
datasets with various experimental designs, with replicates samples from a mouse lungs, b Xenopus tails, 
c human PBMCs, and d human lungs, is summarized. For each scRNA-seq dataset, cells of one particular 
type were selected (see the “Methods” section), and the cells from each sample were aggregated to create 
pseudo-bulk counts. Multidimensional scaling plots of pseudo-bulk data were plotted in the left panel, with 
distances computed from the log-CPM values and samples colored by groups. Group-wise common BCVs are 
plotted in the middle panel. Group-wise mean-variance trends are plotted in the right panel. Colors denote 
groups
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While we have not commented specifically on MDS plots, these plots (or other similar 
plots e.g., principle components analysis) provide a useful first glance of the data and are 
already part of many analysis pipelines (Fig. 1). For example, in the study of mouse lung 
tissue, the 3-month (3m) samples are less spread out across dimensions 1 and 2 than the 
24-month (24m) samples, indicating that the 3m group has lower variability than the 
24m group. This is confirmed by the groups’ BCV values and voom trends.

In conclusion, we observe unequal group variability across multiple scRNA-seq 
pseudo-bulk datasets. At this stage, it is unclear whether gold-standard bulk DE anal-
ysis methods are robust against heteroscedasticity, and how different group variances 
need to be before it affects their performance. We test this in later sections of this article, 
using three gold-standard methods that do not account for heteroscedasticity and two 
novel methods that do.

Novel use of voomWithQualityWeights using a block design (voomQWB)

The first method that accounts for group-level variability makes novel use of the exist-
ing voomQW method. The standard use of voomQW assigns a different quality weight 
to each sample, which then adjusts the sample’s variance estimate—a strategy used to 
tackle individual outliers in the dataset. Rather than adjusting the variance of individual 
samples, we adjust the variance of whole groups by specifying sample group informa-
tion via the var.group argument in the voomWithQualityWeights function. This 
produces quality weights as “blocks” within groups (identical weights for samples in the 
same group) and adjusts each group’s variance estimate—we refer to this method as 
“voomQW using a block design,” or simply voomQWB.

Figure  2a shows the estimated group-specific weights from voomQWB for a study 
comparing healthy controls to COVID-19 patients that are moderately sick and those 
that are asymptomatic [32]. Samples of moderately sick and asymptomatic patients have 
similar weights, just under 1; while the weights for healthy controls are above 1 (1.27). 
The sample weights are combined with observation-level weights derived from the over-
all mean-variance trend from voom (Fig. 2b). What this achieves in practice is an up-
shift of the voom trend for groups with sample weights below 1 (Fig. 2c pink and green 
curves), resulting in a higher variance estimate and a smaller precision weight for sta-
tistical modeling (see the  “Methods” section). On the other hand, groups with sample 
weights that are greater than 1 have a down-shifted voom trend (purple curve), resulting 
in lower variance estimates and larger precision weights. There are a couple of things to 
note here: (1) the group-specific voom trends from voomQWB (Fig. 1c) are roughly par-
allel to the single voom trend (Fig. 1b), and 2) the group-specific trends shown here are 
created manually, not as an output of the voomWithQualityWeights function.

voomByGroup: modeling observation‑level variance in individual groups

As mentioned above, voomQWB models group-wise mean-variance relationships via 
roughly parallel trend-lines, which has the disadvantage of not being able to capture 
more complicated shapes observed in different datasets (Fig. 1). The second method we 
describe here, called voomByGroup, can account for such group-level variability with 
greater flexibility. voomByGroup achieves this by subsetting the data and estimating sep-
arate voom trends for each group. In other words, while voomQWB can shift the same 
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voom trend up and down for each group, voomByGroup estimates distinct group-specific 
trends that can also allow up- and down-shifts for different groups.

For example, on the PBMC1 dataset, the mean and variance are calculated for the 
 log2counts-per-million (log-CPM) of each gene in “Group 1 (Moderate symptoms)” and 
a curve, or trend, is fitted to these values from which precision weights are then calcu-
lated (Fig. 2d). Similarly, a curve is fitted separately to each of the other groups in the 
dataset (Fig. 2e and f ). This results in 3 non-parallel curves as shown in the summary 
plot (Fig.  2g) which includes all 3 trends. In theory, the voomByGroup method gives 
more robust estimates of variability since the trend for each group can take on a different 
“shape”—we test how this works in practice in the following sections.

Group variance methods provide a balance between power and error control

Using simulated data, we test the performance of 3 gold-standard methods against the 
2 new methods that account for heteroscedastic groups. The gold-standard methods 
are  voom, edgeR using a likelihood-ratio test (edgeR LRT), and edgeR quasi-likelihood 
(edgeR QL). The methods that account for group heteroscedasticity (“group variance 
methods”) are  voomQWB and voomByGroup. Using simulations of pseudo-bulk data, 
we can examine the effects of unequal group variation while controlling other factors. 

Fig. 2 An overview of the voom-based mean-variance modeling methods applied. On the PBMC1 
pseudo-bulk data, group-specific weights estimated using voomQWB by defining each block (group) as 
different levels of the symptom variable are plotted in (a). The equal weight ( = 1 ) level is plotted as a dashed 
line. Across all observations, gene-wise square-root residual standard deviations are plotted against average 
log-counts in gray in (b). voom applies a LOWESS trend (black curve) to capture the relationship between 
the gene-wise means and variances. Based on the final precision weights used in voomQWB, adjusted curves 
for each block are plotted in (c), where replicates in the same group share the same curve. Different colors 
and line types represent different groups (blocks). Dashed lines were used to avoid over-plotting. When 
voomByGroup is used, LOWESS trends are fitted separately to the data from individual groups to capture 
any distinct mean-variance trends that may be present (d–f). All group-specific trends from this dataset are 
plotted together in panel g, with different colors per group
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Specifically, group variation can be divided into biological variation between RNA sam-
ples and technical variation caused by sequencing technologies.

In the first scenario (scenario 1), we looked into unequal group variation as a result 
of biological variation. To obtain pseudo-bulk data, we simulated single-cell gene-wise 
read counts that followed a correlated negative binomial distribution and aggregated the 
reads from each sample (see the “Methods” section and Additional file 1: Fig. S1). Each 
simulation consists of 4 groups with 3 samples in each group—a total of 50 such simu-
lations were generated. We generated varying group-specific common BCVs for the 4 
groups that are well within the range of BCV values observed in experimental datasets 
(Figs. 1 and 3a)—the BCV values averaged over 50 simulations were 0.2, 0.22, 0.26, and 
0.28 (the values in Fig. 3a are for one such simulation).

The mean-variance trends generated for the different groups appear as expected, 
with a typical decreasing “voom-trend” with increasing gene expression and the curves 
ordered correctly from those with the most biological variation at the top of the plot 
(group 4 in Fig. 3a) to the group with the least biological variation at the bottom of the 
plot (group 1). The left-hand side of these mean-variance trends is primarily driven by 

Fig. 3 Group variance modeling methods provide good power while controlling the false discovery rate. a 
Mean-variance trends plotted for each group by the voomByGroup function on simulated scRNA-seq data 
with varying group-specific common BCV values, where colors represent different groups. In terms of the 
simulated variability-level, groups 1 and 2 represent Low variation, while 3 and 4 have High variation. Based 
on DE analysis results, FDR across methods in different comparisons (colors denote the 3 comparison types) 
are summarized in panel (b) at a cut-off of 0.05. The number of DE genes recovered by different methods 
for comparison between the two groups with higher variability (panel c) and the two groups with lower 
variability (panel d) at the same FDR cut-off are shown. For each bar in these plots, gray represents true 
positive genes, red represents false positive genes, and the FDR is labeled at the top of the bar
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technical variation—as expected, here they mostly overlap each other since groups were 
generated to have the same technical variation in these simulations. These group-spe-
cific mean-variance plots generated by the voomByGroup function provide a useful 
“first glance” of the data before any formal testing was carried out.

We then performed differential gene expression analysis for all pairwise group com-
parisons, which gave a total of 6 comparisons. In these simulations, 50 genes were gen-
erated to be upregulated in each group, such that 100 genes are differentially expressed 
in each pairwise comparison (see the “Methods” section). We noticed that the number 
of differentially expressed genes varied from method to method and calculated the false 
discovery rate (FDR) of each method which was averaged over the 50 simulations. The 
FDR, or type I error rate, is calculated as the number of genes that were incorrectly iden-
tified as differentially expressed out of the total number of genes that were identified as 
differentially expressed at a particular adjusted p-value cut-off. We observed that none 
of the methods controlled type I error for all comparisons across the 3 cut-offs we exam-
ined: adjusted p-value cut-off of 0.01, 0.05, and 0.10 (Fig. 3b, Additional file 1: Fig. S2); 
such that the methods detected false discoveries at a higher rate than expected. voomBy-
Group out-performed other methods by controlling type I error at the 0.01 and 0.10 cut-
offs, and only exceeding the threshold marginally for 2 out of 6 comparisons at the 0.05 
cut-off (FDR of 0.054 and 0.056).

A closer look at these plots revealed that the gold-standard methods had FDR values 
that spanned a broad range, with some comparisons having FDR values that were well 
under the threshold, and others that exceeded the threshold by 2- or 3-fold. This means 
that it could be difficult to gauge whether the DE results are too conservative, too liberal, 
or perhaps “just right” for a given comparison in real datasets when applying these meth-
ods to heteroscedastic groups. The range of FDR values is broadest for edgeR LRT, fol-
lowed by edgeR QL, then voom. In comparison, the group variance methods, though not 
perfect in terms of type I error control, had a substantially tighter range of FDR values, 
and the comparisons that exceeded the FDR threshold only exceed it by a small margin.

To understand how heteroscedasticity influences DE analysis in more detail, we 
focused on results obtained using a 0.05 adjusted p-value cut-off. Across the 6 compari-
sons, group variance methods tend to detect similar numbers of differentially expressed 
genes, the same goes for gold-standard methods (Fig.  3c-d, Additional file  1: Fig. S3). 
There is some variation between the gold-standard and group variance modeling meth-
ods, with some comparisons having quite similar results, while others produce results 
that are very different. A closer examination of the comparison between group 3 and 
group 4 (which we refer to as “High vs High” in terms of biological variation) and group 1 
and group 2 (“Low vs Low”) shows where the 2 classes of methods differ.

In the High vs High comparison, gold-standard methods detect more DE genes than 
group variance methods. However, the DE genes contain a much higher proportion of 
false discoveries than it was controlled for. It is not as though gold-standard methods 
were prioritizing false-positive genes in terms of significance—it had similar numbers 
of true- and false-positive genes when looking at top-ranked genes (Additional file  1: 
Fig. S4). Rather, gold-standard methods had smaller adjusted p-values than group 
variance methods, allowing more genes detected at a certain cut-off (Additional file 1: 
Fig. S5a). By pooling variance estimates across all 4 groups, gold-standard methods 
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under-estimate the variances for groups 3 and 4, when in fact those groups have rela-
tively high biological variation, resulting in poor type I error control. voomByGroup and 
voomQWB are more robust in their estimation of individual group variances, allowing 
them to maintain good type I error control.

In the Low vs Low comparison, all methods have good type I error control, with group 
variance methods detecting substantially more DE genes than gold-standard methods. 
Although top-ranked genes were yet again very similar (Additional file 1: Fig. S4), this 
time, gold-standard methods had larger adjusted p-values than group variance meth-
ods (Additional file 1: Fig. S5b), meaning that fewer genes were selected at given thresh-
old. Here, the pooled variance estimates used by gold-standard methods resulted in an 
overestimation of variances for the two groups with relatively low biological variation 
(groups 1 and 2). In consequence, gold-standard methods suffered from a loss of power.

In the Low vs High comparison, there were no significant benefits in applying the 
group variance methods even though these methods provide more accurate variance 
estimates than the standard methods. When using voom, the overall variance trend that 
is applied to all samples and groups would under-estimate the variability of high vari-
ance groups, and over-estimate this for low variance groups. When pairwise compar-
isons are made between High and Low groups, the over- and under-estimated values 
balance each other out, giving results that are similar to the more precise estimates from 
voomByGroup and voomQWB.

These simulations demonstrated that in the presence of group heteroscedasticity, 
group variance methods have a good balance between controlling type I error and the 
power to detect DE genes. To ensure that the superior performance of group variance 
methods was due to group heteroscedasticity in the data, we separately simulated 50 null 
simulations (scenario 2) where all groups had equal underlying biological variation (see 
the “Methods” section). We observed similar numbers of true positives and false discov-
eries between gold-standard and group variance methods (Additional file 1: Fig. S6).

voomByGroup captures both biological and technical variation well in individual groups

Systematic differences are commonly observed in the sequenced libraries of scRNA-seq 
data [34]. For example, gene counts vary between cells on account of limited starting 
material per cell and variations in technical efficiency. In addition, the number of cells 
detected in each sample is also variable. After aggregating cells, pseudo-bulk samples 
have library sizes that are more variable than that of bulk RNA-seq data—contributing 
to a major source of technical variation in pseudo-bulk data.

We explore the influence of unequal library sizes by varying the number of cells in 
each sample for a new set of simulations. Keeping the underlying biological variation 
constant between groups (homoscedasticity), we first vary the library sizes of samples. 
The provided number of cells are 250, 250, and 250 in group 1, 250, 200, and 200 in 
group 2, 250, 500, and 500 in group 3, and 250, 750, and 750 in group 4 (Fig. 4a). The 
expected library size for each cell remains constant (see the “Methods” section).

Under this scenario (scenario 3), the mean-variance trends generated appear to 
mostly overlap each other on the right-hand side as expected on account of equal 
group dispersions, while on the left-hand side, slight differences appear (Fig.  4b). 
DE analysis was then performed over 50 simulations and averaged FDR rates and 
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numbers of DE genes were compared. We observed much tighter ranges of FDR val-
ues compared to those from scenario 1 (Fig. 4c, where the same y-axis range from 
Fig. 3b was used) and a similar number of true positive genes compared to the null 
simulation (Additional file 1: Fig. S7). These suggest that simulated technical varia-
tion does not have a significant influence on the DE results. To compare the influ-
ence of technical and biological variation in the simulations, we carried out another 
separate 50 simulations (scenario 4) with both aspects of variation incorporated (see 
the “Methods” section). For these results, we observed expected location trends that 
differed on both the left and right sides (Additional file 1: Fig. S8a). FDR results were 
rather similar to what was observed in the scenario where biological variation was 
unequal (Additional file  1: Fig. S8b, Fig.  3b), indicating that biological variation is 
the major source of variation that influences the DE results.

However, closer inspection of the FDR plot from scenario 3 where only the num-
ber of cells differed between groups revealed that among those comparisons, voom 
and voomQWB performed similarly, as a result of the weighting strategy used in 
voomQWB only adjusting the group-wise weight in an overall manner. While voom-
ByGroup is more flexible, we observed that for group-wise mean-variance trends, 
regardless of the overlapping trends on the right-hand side, on the left-hand side, 
groups with fewer cells (group1 and group2) exhibit slightly more variation and sit 
at the top, while the group with the largest number of cells (group4) is at the bottom 
(Fig.  4b). Because of the well-captured mean-variance relationship, voomByGroup 
delivered well-controlled FDR compared to those from voom and voomQWB, espe-
cially when comparing between group1 versus group2 in scenario 3, where slightly 
higher technical variation is present (Fig. 4c).

Fig. 4 voomByGroup captures both biological and technical variation. a Summary of the simulation design 
with unequal numbers of cells per sample, with colors denoting the different groups in the dataset. In the 
scenario with technical variation only (unequal library sizes) across groups, mean-variance trends estimated 
by voomByGroup are plotted in panel (b), with group-wise common BCVs displayed in the top-right corner. 
Based on DE analysis results, FDRs across methods for different comparisons, denoted by distinct colors, are 
summarized in panel (c) at an FDR cut-off of 0.05
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Immune responses in asymptomatic COVID‑19 patients

While the simulations allowed us to assess the performance of gold standard methods 
and group variance methods based on known truth, these results have no biological 
interest. Moreover, no matter how carefully thought-out and well-designed our simula-
tions are, these data will inevitably miss some features from experimental data. Thus, we 
also examined the performance of methods on human scRNA-seq data.

Zhao et  al. [32] investigated PBMCs from COVID-19 patients of varying severity 
alongside healthy controls (HCs), with a focus on the comparison between asympto-
matic individuals and HCs. The study found that interferon-gamma played an important 
role in differentiating asymptomatic individuals and HCs, such that it was more highly 
expressed in natural killer (NK) cells of asymptomatic individuals [32]. In their data, the 
expression of IFNG was observed to be upregulated in asymptomatic individuals; how-
ever, the difference was not statistically significant when analyzed with edgeR QL. We 
reanalysed this dataset (PBMC1, see the “Methods” section) to see whether group vari-
ance methods could offer improved results.

We aggregated  CD56dim  CD16+ NK cells from each sample to create pseudo-bulk 
samples and then filtered out samples with fewer than 50 cells. A first glance at the data 
via MDS and group-specific mean-variance plots shows that HCs have a distinct mean-
variance trend and less biological variation (Fig. 1c). By accounting for the relatively low 
variance in the HC group, we found that group variance methods outperformed gold-
standard methods in terms of statistical power, such that they detected more DE genes 
for the comparison between HCs and asymptomatic individuals (Fig. 5a)—this is con-
sistent with our simulation results when comparing groups with low variance (Fig. 3b). 
voomByGroup detected the most DE genes, followed by voomQWB: 880 and 719 genes 
respectively. The gold-standard methods, edgeR LRT, voom, and edgeR QL, detected 664, 
453, and 403 DE genes respectively.

To understand our results further, we looked at the consistency at which genes were 
detected as DE between methods (Additional file 1: Fig. S9a). We excluded edgeR LRT 
from our Venn diagram since the inclusion of all 5 methods greatly increased the 
complexity of the plot, and edgeR LRT was of less interest to us since we previously 

Fig. 5 Genes differentially expressed between NK cells from asymptomatic COVID-19 patients and healthy 
controls. a The number of genes DE in the comparison between  CD56dim  CD16+ NK cells from asymptomatic 
patients and healthy controls. Up means upregulated and down means downregulated in asymptomatic 
patients. Enriched GO terms related to interferon using DE genes detected with voomByGroup are plotted in 
panel (b). The x-axis displays the -log10 transformed p-values for the different Gene Ontology terms, and the 
color-scale also varies by p-value
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demonstrated that it performed poorly in the control of type I error. Although group 
variance methods detected almost double the number of DE genes as compared to voom 
and edgeR QL, most genes were detected by all methods (356 genes). Both of the voom-
variants, voomQWB and voomByGroup, detected all of the genes that were also detected 
by voom. With the exception of 1 gene, voomByGroup also detected all of the genes that 
were detected by voomQWB. From voom to voomQWB then voomByGroup, the methods 
increase in their level of group-specific variance modeling. The overlap between these 
methods and the extra DE genes reflects the hierarchy in variance modeling for these 
methods and demonstrates the potential gain in statistical power when capturing group 
variance more accurately.

Next, we turned to Gene Ontology (GO) enrichment analysis to study the biological 
processes that play a role in COVID-19. We looked for any enrichment in GO terms for 
significantly upregulated genes in asymptomatic patients for each of the methods under 
examination. voomByGroup was the only method to detect the “interferon-gamma-
mediated signaling pathway” as significant using a p-value cut-off of 0.01 (Fig. 5b). None 
of the other methods found any of these 5 genes as significant—they had much higher 
p-values as compared to that of voomByGroup (Additional file 1: Fig. S9b). To confirm 
the role of interferon-gamma in asymptomatic patients, we analyzed data from a sep-
arate study also involving  CD56dim  CD16+ NK cells in COVID-19 patients of varying 
severity [35]. The original study did not look into the role of interferon-gamma. Reana-
lyzing these data (PBMC2, see the  “Methods” section), we found that in this second 
dataset the “interferon-gamma-mediated signaling pathway” was enriched using any 
of the DE methods under examination, and those group-specific variances were similar 
between all groups (Additional file 1: Fig. S10).

Taking the two COVID-19 datasets into consideration, we noticed a few things: (1) 
group variances can change between one dataset and another, even for studies on simi-
lar cell types and similar subjects—this perhaps has to do with how samples are pro-
cessed (technical variation) and/or the “grouping” criterion plus the individual subjects 
involved (biological variation); (2) when variance trends are not too distinct from one 
another, all methods perform similarly, as observed in the second dataset (PBMC2); (3) 
when variance trends are distinct, group variance methods may benefit from a gain in 
statistical power, as observed in the first dataset (PBMC1); and (4) by modeling group-
specific variances closely, voomByGroup was the only method that obtained statistically 
significant results for the biological process of interest in both datasets. These two data-
sets are used here to highlight how results of biological interest may be “missed” if het-
eroscedasticity is not carefully considered.

Discussion
We have shown that modeling the mean-variance relationship at the group-level and the 
use of group-wise precision weights enhances DE analysis results when there is group 
heteroscedasticity. Simulations demonstrated that voomQWB and voomByGroup have a 
good balance between controlling type I errors and the power to detect DE genes. Addi-
tionally, voomByGroup performs better at capturing technical variation in the mean-
variance trends. The analysis of PBMC data agreed with our simulation results whereby 
methods that model group-specific variation provide more DE genes when low-BCV 
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groups are included in the comparison, with statistically significant results obtained for 
key biological processes of interest with voomByGroup. Null simulations confirmed that 
established gold-standard methods and approaches that model group-specific varia-
tion performed similarly when there were no distinct differences in variability between 
groups. Consistent results were presented by Chen et al. on scRNA-seq data [28] where 
methods that accounted for heteroscedasticity performed as well as methods that do not 
account for heteroscedasticity when there is equal group variation, which indicates there 
is potential for group-variation methods to be more broadly used.

In this article, we demonstrate that group variance modeling methods outperform 
gold-standard methods for DE analysis of pseudo-bulk scRNA-seq data. Specifically, 
voomByGroup has the best performance in terms of balancing type I error control and 
power. This is because voomByGroup models the mean-variance relationships for differ-
ent groups more flexibly to better capture the distinct trends that may be present in the 
data. voomQWB also performs very well; with better results than gold-standard methods 
in the presence of group heteroscedasticity. Its performance is similar, and second only, 
to  voomByGroup. Relative to voomByGroup, voomQWB lacks the flexibility to capture 
the distinct shapes of group-specific mean-variance trends, which could explain some of 
the differences in performance.

We recommend the use of either voomByGroup or voomQWB over gold-standard 
methods in scRNA-seq pseudo-bulk analysis in datasets that exhibit heteroscedastic 
variation across different experimental groups. The voomByGroup software provides 
useful diagnostic plots that can help guide the choice of method, with code that is easy 
to run, taking similar inputs to the widely used and well-established voom approach 
(see the “Methods” section). Running voomByGroup first can allow the analyst to deter-
mine the level of heteroscedasticity in a given dataset. For example, if the mean-vari-
ance trends per group are mostly overlapping each other, then group variance methods 
are likely to offer very similar results to current gold-standard methods (Fig. 4b-c). In 
this case, method choice will not affect the results much, and one may prefer to choose 
a method that is simpler, based on fewer assumptions, such as voom. If voomByGroup 
mean-variance plots show distinct trends in one or more groups, then the variance 
for that group can be more closely modeled using voomByGroup or voomQWB (e.g., 
“ST40_3” in Fig. 1b, “HC” in Fig. 1c, and “NSIP” and “cHP” in Fig. 1d). In such cases, 
methods that explicitly model group-specific variability are highly recommended over 
standard methods that do not. Moreover, the common BCV values that are automati-
cally generated and displayed on these plots provide summary information about differ-
ences in mean dispersion for different groups calculated across all genes.

Between the two group variance methods, voomByGroup out-performs voomQWB 
slightly. It also provides group-specific mean-variance plots that are a useful diagnos-
tic in exploratory data analysis. voomByGroup, however, has some limitations related 
to its use of a subset of the design matrix and data—a necessary step to obtain distinct 
group-specific shapes for the mean-variance trends. This means that in practice, the 
use of voomByGroup is most suitable for simple block designs with a single group 
factor only [36]. When there are additional explanatory variables, voomByGroup may 
not estimate covariates accurately or may run out of degrees of freedom when esti-
mating coefficients for additional factors. For these complex experimental designs, 
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voomQWB is ideal since it can handle the same complexity as gold-standard meth-
ods such as voom, but with the additional safeguard against heteroscedastic groups. 
One such example of this includes datasets that are collected over several batches. 
voomQWB can properly accommodate biological groups of interest and batch infor-
mation into the linear modeling, while handling differences in group variability.

For experiments with very small group sizes, voomByGroup offers the option 
of applying the overall voom trend to specific groups rather than using the default 
group-specific trend—this is specified in the dynamic argument of the function. 
Since voomByGroup estimates group variances using only the relevant samples, 
group-specific mean-variance trends could be unstable when modeled using a lim-
ited number of samples. We recommend the application of an overall voom trend to 
groups of size 1 or 2.

In situations where there are individual samples with higher variability (outliers), 
the voomQWB and voomByGroup methods may work less well, with the inclusion of 
highly variable samples increases the estimated group variation, which may decrease 
power. In these situations, regular sample-specific modeling of variability (i.e., voom-
WithQualityWeights without specifying the var.group option) would be more 
appropriate. In our study, we did not explore datasets with outlier samples and leave 
such investigations as future work.

In this study, we also observed that edgeR-based methods returned relatively dif-
ferent results compared to voom-based methods (Fig. 5a). One major source of this 
is the different distributional assumptions between methods. Due to the mathemati-
cal intractability of the NB distribution (basic distribution in edgeR) compared to the 
normal distribution, methods were first developed for modeling group heterogene-
ity in limma (e.g.,  voomWithQualityWeights), which assumes normally distributed 
data. When modeling data using a NB-GLM, modeling group-wise variation is more 
challenging. An example of weighted regression in this context comes from Zhao 
et al. [37], who used observational weights to account for outlier observations.

In our article, we focus on DE analysis of scRNA-seq pseudo-bulk data because 
recent benchmark studies have shown that it gives better results relative to analyzing 
scRNA-seq data in its original non-aggregated form [13, 14, 38]. However, it is worth 
noting that by aggregating single-cell data to obtain pseudo-bulk samples, the vari-
ance between cells of the same sample is masked. Thus, it may be useful to check cell-
level gene expression and its variability, especially for any genes that are detected as 
significant. To account for this, Zimmerman et al. modeled the correlation structure 
between cells using a generalized mixed model where individuals were assigned as a 
random effect [16]. A similar approach was taken in Crowell et al. [13]. In a similar 
way, linear mixed modeling may also be accessible by using the voomQWB method 
together with the duplicateCorrelation function in the limma package.

Whilst we apply group variance methods on pseudo-bulk samples in this article, the 
idea of modeling group variances more closely can in theory be extended to DE analy-
sis of other data types such as bulk RNA-seq data, pseudo-bulk of spatial scRNA-
seq data, and surface protein data from CITE-seq. Moreover, the “groups” that are 
used by voomQWB or voomByGroup can be extended to cell types or clusters to find 
marker genes.
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Conclusion
In the presence of group heteroscedasticity, the voomQWB and voomByGroup meth-
ods have superior performance to approaches that do not account for distinct group-
specific variation. These methods offer a better balance between false discovery 
control and the power to detect DE genes on pseudo-bulk scRNA-seq datasets. We 
recommend both group variance modeling methods, with voomByGroup having accu-
rate variance estimation for simple designs, and voomQWB capable of modeling data 
with more complex study designs. To guide an analyst’s choice of the most appropri-
ate variance modeling method to apply to a given dataset, we recommend checking 
the relevant diagnostic plot to assess whether the model assumptions are met.

Methods
Revisiting variance modeling with voom

The group variance methods presented in this article, voomQWB and voomByGroup, 
are adaptations of voom method by Law et al. [18]. Briefly, the voom method fits a lin-
ear model to each gene using a design matrix with full column rank, X, such that

where yg is a vector of log-CPM values for gene g, and β is a vector of regression coef-
ficients for gene g. The fitted model allows us to calculate residual standard deviations 
sg . Square-root standard deviations √sg  are plotted against the average log count of 
each gene, and a LOWESS curve [39] is fitted to the points—this creates the voom-style 
mean-variance plots seen throughout this article (Fig. 2b). Precision weights wgi for gene 
g and sample i are then calculated as a function of the fitted counts �̂gi using the LOW-
ESS curve, such that wgi = lo(�̂gi)

−4 . The weights wgi are then associated with log-CPM 
values ygi in the standard limma pipeline, which uses these in weighted least squares 
regression.

Group variance modeling with voomQWB

Written with outlier sample detection in mind, Liu et  al. [40] combined sample-
specific weights with the voom precision weights in their voomWithQualityWeights 
method. The combined weights, denoted as w∗

gi , can be described as w∗
gi = wgi/expγ̂i , 

where 1/expγ̂i represents the sample-specific weights. The standard use of voomWith-
QualityWeights calculates sample-specific weights based on the similarity of gene 
expression profiles within groups, such that any sample that is dissimilar to the rest 
of the samples in the same group gets down-weighted. In other words, samples within 
the same group can be assigned varying weights.

Instead, we force samples within the same group to have the same weight by 
exploiting the var.group argument in the voomWithQualityWeights func-
tion. A factor representing the groups group is assigned to var.group to obtain 
“blocked” weights for the samples. Visually, what this achieves is an adjustment of the 
standard voom curve to separate curves for each of the groups, where the adjustment 
is based on the blocked sample-specific weights (Fig.  2c). In practice, the blocked 

E(yg ) = Xβg ,
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sample-specific weights are used to adjust the precision weights fed into the standard 
limma pipeline, such that w∗

gi rather than wgi is used.

Group variance modeling with voomByGroup

Our second group variance method, voomByGroup, tackles heteroscedastic groups from 
a different angle. voomByGroup subsets the gene expression data and design matrix X 
for each group, such that a LOWESS curve is created using only the data from specific 
samples. The LOWESS curve is then used to obtain precision weights wgic for gene g 
and sample i in a group (or condition) c. As a result, each group has its mean-variance 
curve and set of weights (Fig. 2d-g). The group-specific weights are combined across all 
groups, c = 1, 2, ...C , to get w#

gi which replaces wgi in the standard limma pipeline. Since 
voomByGroup subsets the data and the design matrix X to obtain precision weights, any 
additional covariates are estimated using only a subset of the data.

Additionally, voomByGroup offers an option to make the usage of overall voom trend 
instead of group-specific trends, which is specified in the argument dynamic with the 
input as a vector of BOOLEAN variables. The dynamic is recommended to be turned 
on for groups with small group sizes, e.g., 2 or fewer samples in a group. For groups 
with relatively more samples (3 or more than 3), the dynamic can remain FALSE, which 
means that to estimate the variance, the group-specific trends are still used.

Running variations of voom

The voom, voomByGroup, and voomQWB methods are run in R using the following 
functions:

voom(y, design=design, ...)
voomByGroup(y, design=design, group=group, ...)
voomWithQualityWeights(y, design=design, var.group=group, ...)
All functions are run similarly, with 2 common arguments and an additional argument 

for voomByGroup and voomWithQualityWeights. y represents pseudo-bulk count data 
with N samples and G genes. design is the design matrix with N rows matching the 
number of samples and P model parameters. group is a factor vector that is of length N.

Group-specific mean-variance plots are produced in the voomByGroup function, by 
specifying plot=“separate” to get individual mean-variance plots for each group (Fig. 2d-
f ) or plot=“combine” to show all mean-variance curves in a single plot (Fig. 2g) which 
makes relative differences between the curves easier to spot. The common BCV values 
calculated using estimateCommonDisp function in edgeR are automatically added to 
the plots.

DE analysis with edgeR

Besides the standard voom method, two further options for DE analysis using edgeR, 
namely edgeR LRT (likelihood-ratio test) [29] and edgeR QL (quasi-likelihood) [41], were 
also evaluated. To run edgeR LRT, glmFit was used with default settings, and only the 
count matrix and design matrix were provided, followed by glmLRT. To run edgeR QL, 
glmQLFit was used with default settings, and only the count matrix and design matrix 
were provided, followed by glmQLFTest. All genes with associated p-values from the 
DE test used were then extracted with the topTag function.
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Simulated scRNA‑seq data

Single-cell gene-wise read counts were generated to follow correlated negative bino-
mial distributions (Additional file  1: Fig. S2). Baseline expression frequencies were 
generated by the function edgeR::goodTuringProportions on reference 
data [42] (iTreg cells were used, and genes with UMI counts > 200 were kept). The 
expected library size for each cell is estimated using a log-normal distribution [43]. 
Parameters (location mu and scale sigma) are estimated based on the reference data 
as well, and they are then used to calculate expected library sizes. Then baseline pro-
portions were multiplied by expected library sizes to generate expected read counts.

Read counts from the same subject were generated to be correlated using a copula-
multivariate normal strategy. First, multivariate normal deviates were generated with 
the specified intra-subject correlation. Then, the normal deviates were transformed 
to gamma random variables by quantile-to-quantile transformations to represent the 
“true” expression levels of each gene in each cell. Then, Poisson counts were gener-
ated with expected values specified by the gamma variates. Here the gamma deviates 
represent biological variation between subjects and cells while the Poisson counts 
represent technical variation associated with sequencing [29]. This process ensured 
that the counts follow marginal negative binomial distributions and that counts for 
each subject are correlated. Importantly, the intra-subject correlation affects only the 
biological part of the variation whereas the technical variation remains independent.

The relationship of the dispersion of aggregated cells to the dispersion of single cells 
is approximate:

where φagg is the dispersion of aggregated pseudo-bulk data, correlation is the intra-sub-
ject correlation, and  φsc is the dispersion of single-cell data. N is calculated by 
N = ( Li)

2

L2i
 , where Li is the cell-wise library size. In the current study, intra-block corre-

lation is set as 0.1 for all simulations.

Simulation scenarios

In this study, we simulate data for 4 scenarios: (1) groups having different biologi-
cal variation, (2) no biological or technical variation between samples or groups, (3) 
samples having different cell numbers (this induces differences in technical variation 
by having unequal sample sizes), and (4) samples having different cell numbers and 
groups having different levels of biological variation. We generate 50 simulations for 
each scenario, with each simulation involving 12 samples (4 groups, with triplicate 
samples in each) and 10,000 genes. To induce differentially expressed genes in the 
datasets, 50 genes are randomly selected to be upregulated in each group with a true 
log2-fold-change of 2. This means that for every pairwise comparison, there are 100 
true DE genes. For each simulated dataset, genes with fewer than 30 reads across all 
pseudo-bulk samples were filtered out before DE analysis.

In the first scenario (scenario 1), we keep the expected library size of each sample 
consistent by generating 250 cells for each sample. By varying the dispersion in our 

φagg = correlation× φsc + (1− correlation)/N
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simulation, we obtain common BCV values that are variable between groups – 0.20, 
0.22, 0.26, and 0.28.

The second scenario (scenario 2) generates homoscedastic groups, such that there 
should be no true differences (biological or technical) in group variability. We use the 
data here to confirm whether the methods behave in the way we would expect—that 
voomQWB and voomByGroup perform similarly to voom if there are no group differ-
ences. Here, each sample contains 250 cells and groups have BCV values of ≈0.22.

In the third scenario (scenario 3), the biological variation is consistent between 
groups (common BCV=∼0.22), but the number of cells varies for each sample. With 
the baseline number of cells set as 250, the samples are adjusted by these proportions: 
1:1:1, 1:0.8,0.8, 1:2:2, and 1:3:3. The expected library for each cell remains constant, 
such that a sample with more cells is expected to have a library size that is propor-
tional to its cell number.

The fourth scenario (scenario 4) combines elements from the first and third scenar-
ios. Biological variation is adjusted such that group 1 and group 2 have less biological 
variation (common BCV=∼0.22), and group 3 and group 4 have relatively more bio-
logical variation (common BCV=∼0.24). Samples have variable cell numbers—gener-
ated using the same baseline cell number and proportions as for our third simulation.

scRNA‑seq datasets

Publicly available scRNA-seq datasets that were examined in this article in Fig.  1 
include:

• Whole lung tissue from 3-month and 24-month-old mice [30]. Pseudo-bulk data 
from type 2 pneumocytes were created. These data are available from GEO under 
accession number GSE124872.

• Xenopus tail from regeneration-competent and incompetent tadpoles, 1–3 days 
post-amputation [31]. Pseudo-bulk data from goblet cells were created. The data is 
available in the scRNAseq package [44].

• PBMCs from healthy controls and COVID-19 patients of varying severity (asymp-
tomatic, moderate, or severe) [32]. Pseudo-bulk data from  CD56dim  CD16+ NK 
cells were created. These data are available from the CNGB Nucleotide Sequence 
Archive (CNSA) under accession number CNP0001250.

• Human lung tissue from non-fibrotic and pulmonary fibrosis lungs [33]. Pseudo-
bulk data from macrophage cells were created. These data are available from GEO 
under accession number GSE135893.

COVID‑19 datasets: PBMC1 and PBMC2

We examined two separate scRNA-seq datasets that sequenced PBMCs from COVID-
19 patients with varying severity (asymptomatic, moderate, and severe) and healthy 
controls. We refer to the first dataset described above as “PBMC1”. The second data-
set, which we refer to as “PBMC2” [35], is available from https:// covid 19cel latlas. org/.

https://covid19cellatlas.org/
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Filtering, data normalization, and downstream analysis

Prior to creating pseudo-bulk samples, we performed filtering at the gene- and cell-level. 
We then selected one cell type per dataset to create pseudo-bulk samples. We filtered 
out pseudo-bulk samples with relatively fewer cells or smaller library sizes before per-
forming DE analysis (see Additional file 2: Table S1 for further details).

Normalization was then performed for each dataset using the trimmed mean of M val-
ues (TMM) method [45] using the calcNormFactors function.

The goana function in limma was used to carry out Gene Ontology (GO) analyses on 
DE results from the COVID-19 NK cells, using the org.Hs.eg.db annotation package 
(version 3.14.0) [46].

Software

Results were generated using R version 4.1.3 [47], and software packages limma version 
3.50.0, edgeR version 3.36.0, and ggplot version 3.3.5 [48].
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