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Abstract 

Understanding coding mutations is important for many applications in biology and 
medicine but the vast mutation space makes comprehensive experimental characteri-
sation impossible. Current predictors are often computationally intensive and difficult 
to scale, including recent deep learning models. We introduce Sequence UNET, a 
highly scalable deep learning architecture that classifies and predicts variant frequency 
from sequence alone using multi-scale representations from a fully convolutional 
compression/expansion architecture. It achieves comparable pathogenicity prediction 
to recent methods. We demonstrate scalability by analysing 8.3B variants in 904,134 
proteins detected through large-scale proteomics. Sequence UNET runs on modest 
hardware with a simple Python package.

Keywords: Variant effect prediction, Deep learning, Mutation, PSSM, Pathogenicity, 
Machine learning

Background
Proteins are integral to biology, driving all the molecular and cellular processes that cre-
ate life as we know it. The key to their success is the ability to create complex properties 
from limited amino acid types, which allows the many and varied processes required in 
living organisms to be heritably encoded. Thus, understanding the impact of genotypic 
changes on proteins and the phenotypes they create is a major question in biology and 
medicine. The number of potential coding mutations in even a single protein meant it 
was impossible to measure all their consequences until recent multiplexed deep muta-
tional scanning (DMS) assays [1], and the number of genes and species means it is still 
impractical to measure consequences for all of them. This makes it very important to be 
able to predict variant effects, both to prioritise variants for experiments and for direct 
use in analyses.

Most traditional variant effect predictors (VEPs) are based on sequence conservation, 
known features such as binding sites and structural models. Many prediction tools take 
advantage of the natural experiment performed by evolution, using multiple sequence 
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alignments (MSAs) to measure positional variation across species or individuals and 
estimate variant effects. For instance, SIFT4G [2], EVCouplings [3] and MutationAsses-
sor [4] are based entirely on conservation. Structure is also thought to be an important 
feature because structure determines protein function. Structure based models include 
FoldX [5] and RoseTTA [6], which use force field models to estimate variants’ impact 
on structural stability. These have previously been limited to proteins with high qual-
ity experimental or homology models, but recent developments in structure prediction, 
particularly AlphaFold2 [7], makes them more widely applicable [8]. Conservation and 
structure can also be combined by machine learning models, alongside other knowledge 
such as active sites, post-translational modifications and binding motifs. Machine learn-
ing predictors include PolyPhen2 [9], Envision [10] and Condel [11]. VEPs like these 
have been very impactful, allowing larger analyses and prioritising and interpreting 
experiments.

Neural networks have been successfully applied to protein sequence tasks, includ-
ing VEP. The lack of large scale labelled pathogenic variants makes directly training a 
deep learning VEP difficult, meaning they generally also use evolutionary conservation 
as a proxy for deleteriousness. For example, DeepSequence [12] learns a deep genera-
tive model for a sequence family that aims to capture the probability of observing each 
mutant sequence and whose posteriors can therefore be used to predict pathogenicity. 
It was consistently found among the top VEPs across a diverse set of DMS results [12, 
13]. It has been refined in the Bayesian Variational Autoencoder (VAE) EVE model [14], 
which outperformed previous methods on human DMS data and ClinVar variants. How-
ever, these models still require MSA based training for each protein of interest, making 
them very computationally demanding. Protein language models, for example UniRep 
[15], AminoBert [16] or ESM-1b [17], also use unsupervised learning to capture position 
specific representations, which relate to a range of properties, including conservation, 
structural stability and secondary structure. They are trained to predict the identity of 
masked amino acids across many different sequences, meaning they learn general pro-
tein sequence properties. These produce sequence representations in a single forward 
pass but are still computationally intensive and often require top models to be trained 
for downstream applications, which is time consuming due to the large model size.

An intermediate approach between capturing variation in a single protein family, as 
EVE does, and a general protein language model is to predict per position variant fre-
quencies for any sequence, using labelled MSA training data. This frequency defines 
the position’s position specific scoring matrix (PSSM), summarising the cross-species 
diversity and conservation of the sequence. This approach balances capturing addi-
tional information contained in specific MSAs with general applicability, being able to 
predict rapidly from any input sequence. The link with conservation means such pre-
dictions could be used to predict deleteriousness directly or the model can be further 
fine-tuned using smaller scale labelled pathogenicity data. We apply this approach, pre-
senting a fast, scalable deep learning predictor, Sequence UNET, and a corresponding 
python package. It uses a fully convolutional architecture to predict protein PSSMs from 
wild-type sequence with optional structural input. The model is trained to directly pre-
dict variant frequency or to classify low frequency variants, as a proxy for deleterious-
ness, and then fine-tuned for pathogenicity prediction. It outperforms previous de-novo 
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PSSM predictors, such as SPBuild, accurately classifies low frequency variants and 
achieves high VEP performance but with greater scalability. Further, our model has com-
parable performance on these tasks to models based on the much larger ESM-1b protein 
language model. These language models are much slower and require significantly more 
compute power as well as additional top model training time. We demonstrate the bene-
fits of performance and scalability by rapidly calculating all possible variants for 904,134 
proteins detected in a pan-genome proteomics analysis [18], something that would be 
impossible or prohibitively time consuming with previous VEPs.

Results
Sequence UNET model architecture

We have developed a highly scalable VEP, Sequence UNET (Fig. 1A), that uses a fully 
convolutional neural network (CNN) architecture to achieve computational efficiency 
and independence from length. Convolutional kernels also naturally integrate informa-
tion from nearby amino acids. Since long range interactions frequently generate pro-
tein properties, we also designed the model to integrate distant information using a 
U-shaped compression/expansion architecture inspired by the U-NET image segmenta-
tion network [19]. Max pooling creates successively smaller layers that draw informa-
tion from wide regions and the final classification is built up by processing features from 
each depth in turn, integrating information from a wide receptive field. Since protein 
structure contains information that is extremely difficult to extract from sequence alone 
the network supports an optional graph convolutional neural network [20] (GraphCNN) 
module to summarise positional structural features, which are then concatenated with 

Fig. 1 Model overview. A Sequence UNET model schematic. Blue rectangles represent intermediate layer 
output matrices and green the final prediction. B Bar chart showing the computation time taken to compute 
predictions for all variants in SARS-CoV-2 Spike protein by two commonly used tools, SIFT4G and FoldX, and 
Sequence UNET. These tools were chosen for a previous analysis, but broadly span the typical timescales of 
current tools
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the one hot encoding of the wild-type sequence. We provide a more detailed description 
of the model and its inputs and outputs in the “Methods” section.

The model outputs a matrix of per position features and can therefore be trained to 
predict various positional properties. We demonstrate two related VEP use cases: pre-
dicting a matrix of probabilities that each possible variant is rare, as a proxy for delete-
riousness; or directly predicting their frequency based on the input wild-type sequence. 
We trained using ProteinNet [21], which is a large collection of protein sequence and 
structure information, containing data from 104,059 PDB structures from a wide range 
of protein families and species alongside matching variant frequencies from large MSAs 
based on 332,283,871 sequences. It is designed for machine learning applications and 
includes in-built training/validation/testing data splits based on sequence similarity and 
the CASP competition [22]. However, the focus on proteins with structural information 
may also create a bias that reduces performance on protein types that are difficult to 
characterise structurally. The test set is drawn from CASP12 target proteins, which have 
few if any related sequences included in the training data, meaning it creates a challeng-
ing test of the models ability to generalise to unseen and often unusual sequence space. 
Training is very consistent, with a variance less than  10−5 in both validation loss and 
accuracy over 10 replicates.

The trained models are highly efficient, allowing faster and larger scale prediction than 
comparable tools (Fig. 1B). For example, SIFT4G took 22 min and FoldX 232 h to predict 
scores for all 24,187 possible variants of SARS-CoV-2 Spike protein [23]. The majority 
of VEPs fall within this range, with most requiring a computation intensive step such as 
structural sampling or MSA generation. The two most accurate neural network VEPs, 
EVE and DeepSequence, require both an MSA and training their latent variable model 
for each protein. In contrast, Sequence UNET took 420 ms to compute predictions after 
an 85  s initialisation time (only required once per session). This enables larger scale 
analyses on compute clusters and rapid analyses on desktop hardware, saving valuable 
researcher time and resources.

PSSM prediction and frequency classification

We trained two base Sequence UNET models, optimising performance for PSSM pre-
diction using a softmax output layer and Kullbeck-Leibler divergence loss and variant 
frequency classification using a sigmoid output and binary cross entropy. Hyperparam-
eters were tuned in both modes with the same results (selected parameters in Fig. 1A, 
Additional file  1: Fig. S1). The PSSMs predicted by the model closely resemble true 
results (Additional file 1: Fig. S2A-B) and the frequency classifier significantly separates 
rare and common variants (Additional file  1: Fig. S3A-B). We find our models PSSM 
results correlate more strongly to true values in the ProteinNet test set than SPBuild [24] 
(a state of the art de novo LSTM PSSM predictor), the amino acid propensities predicted 
by ESM-1b and the results from a top model using ESM-1b representations trained on 
ProteinNet CASP12 95% thinned data (Fig. 2A, Additional file 1: Fig. S2C-D). Interest-
ingly ESM-1b logits correlate much better with raw frequencies than normalised PSSMs, 
potentially because they are trained to identify the most likely amino acid at a position, 
not differentiate between the lower frequencies that are important for PSSMs. Includ-
ing structural features slightly increases performance ( ρ = 0.472 vs ρ = 0.451 ). Similar 
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results are found for frequency classification ( f < 0.01 ) over the ProteinNet CASP12 
test set, with Sequence UNET achieving top performance equalling a top model using 
ESM-1b representations (Fig.  2B). The performance of a single layer baseline CNN 
model compared to Sequence UNET and ESM-1b on both tasks shows that it is rela-
tively easy to get moderate performance on this task but much harder to push higher. We 
only compared to one VEP (SIFT4G) as deleteriousness is related to but not equivalent 
to frequency classification, instead comparing more widely on other datasets. Different 
frequency thresholds lead to different classification performance (Additional file 1: Fig. 
S3D), suggesting very rare or common variants are easy to classify but intermediates are 
more challenging. We use the f < 0.01 classifier and the PSSM predictor as the base for 
further comparisons and generalisation. f < 0.01 was the most challenging threshold 
and a common cutoff for deleteriousness, so it provides a lower bound for performance 
in a useful context. Further details on hyperparameter tuning and base model PSSM 
prediction and frequency classification performance are available in the Additional File 
1: Supplementary Information.

Fig. 2 Base model prediction performance. A Pearson correlation between predicted and true PSSM values 
comparison PSSM prediction performance for Sequence UNET, a single layer CNN, SPBuild, ESM-1b logits, 
an ESM-1b top model and BLOSUM62. B ROC and PR curve AUC values comparing frequency classification 
performance of Sequence UNET with and without structural features, ESM-1b logits, an ESM-1b top model, 
a baseline single layer CNN, SIFT4G and BLOSUM62. All comparisons were made over the ProteinNet CASP12 
test set, which contains 40 proteins with 12,094 total amino acids, giving 241,880 variant predictions with 
each tool
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Generalising sequence UNET

Having shown good PSSM prediction and classification performance, we next sought to 
show Sequence UNET generalises to predicting deleterious variants and compare per-
formance to other tools. We tested generalisation on three datasets: labelled human pro-
tein variants from ClinVar, standardised deep mutational scanning (DMS) data [25] and 
a set of gold standard S. cerevisiae variant classifications [26].

The model can also be fine-tuned to new tasks with additional training on external 
data, either refining the existing weights (fine-tuning) or replacing the final classification 
layer with a freshly initialised one (a top model). This creates a new model specialised 
to the new task while taking advantage of the general sequence features learnt in the 
original model and is particularly useful to transfer learning from a large general dataset 
to a smaller more specific one. We trained top models and fine-tuned models classifying 
the pathogenicity of all possible variants based on a wild-type sequence. Models were 
trained with and without structural features on top of the Sequence UNET frequency 
classification model. ClinVar was used as training data, with a random 95%/0.5%/4.5% 
training/validation/testing split across all pathogenic and neutral variants that occur in 
proteins in ProteinNet CASP12 training data. The weights of all but the top two model 
layers were frozen to prevent overfitting. We also trained simple single layer CNN mod-
els to predict ClinVar pathogenicity and frequency classification, to provide a lower 
bound for machine learning solutions to this problem. The fine-tuned models specifi-
cally predict pathogenicity probabilities for each variant at all positions (Fig. 3A). These 
predictions tend to be more similar for variants at a position, including the wild-type 
amino acid than the results of the frequency classification and PSSM models. This is par-
tially because pathogenicity is related to the position’s properties and importance but 
also suggests there might not be sufficient training data available to differentiate between 
different variants at one position beyond the average properties of that position.

UNET top models and fine-tuned models achieve comparable performance profiles 
to many state of the art predictors (Fig. 3B). Performance is significantly better when 
only proteins with structural information are considered, suggesting this bias from 
the ProteinNet training data has impacted what the model learnt. A training set that 
was not restricted to proteins from the PDB would likely help rectify this bias. The 
UNET top model performs slightly better than the fine-tuning approach on variants 
with structure but worse on those without it, independently of whether the network 
utilised that information. This is perhaps because the freshly initialised final weights 
allow the network to learn new relationships specific to the pathogenicity of struc-
tured human proteins in ClinVar whereas fine-tuning starts from weights which cap-
ture more general relationships and refines these rather than reaching highly specific 
minima. The fine-tuned UNET model only performs slightly worse than the much 
larger ESM-1v language model [27] across all variants and performs better on variants 
with structural data, despite being a much smaller and more manageable network. 
The models that performed better than ESM-1v are all directly trained on human 
pathogenic variation and many are ensemble models, meaning some of their fea-
tures are already trained on human variation. Consequently, their performance here 
is potentially inflated compared to truly novel data. Interestingly, actually utilising 
structural data slightly reduces the performance of the fine-tuned models, suggesting 
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it is less related to pathogenicity. The base Sequence UNET frequency classification 
models generalise less well to this task, although still with comparable performance 
to models such as FoldX. This suggests the frequency-based model does not fully cap-
ture deleteriousness without fine-tuning.

The frequency classification model was initially trained with a range of frequency 
thresholds and the resulting models have different ClinVar generalisation performance 
(AUC 0.1 = 0.67, AUC 0.01 = 0.73, AUC 0.001 = 0.65, AUC 0.0001 = 0.66). This shows that the 
chosen threshold does impact performance on a given task and suggests 0.01 is the best 
threshold for pathogenicity prediction, which aligns with the fact that the mean allele 
frequency for ClinVar benign variants is 0.112 and for pathogenic variants is 0.008 in the 
thousand genomes dataset [28].

Fig. 3 Generalising Sequence UNET. A Sequence UNET top model ClinVar pathogenicity predictions for the 
ProteinNet Casp12 test set record TBM#T0865. The wild-type amino acid at each position is outlined. B ROC 
AUC values comparing VEP performance over the ClinVar test set. Instances tested on the subset of ClinVar 
with structural data are marked with asterisks (*). C Mean and standard error of Spearman’s rank correlation 
coefficient between VEP predictions and standardised DMS data [25]. Sequence UNET, ESM-1v, SIFT4G and 
FoldX predictions were available across all proteins while other tools were only available for human proteins. 
D ROC AUC values comparing performance of VEPs at classifying known deleterious and neutral S. cerevisiae 
variants [26]. In B, C and D, the number of variants analysed by each tool is listed on the right
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Sequence UNET predictions would also be expected to relate to DMS results and 
confirmed neutral and deleterious S. cerevisiae variants. Comparing the distribution of 
Spearman’s rank correlation values across DMS datasets (Fig. 3C) shows the model gen-
eralises, although it performs slightly less well than top predictors on this task. Perfor-
mance is similar on datasets from different species, suggesting the model can be applied 
broadly (Additional file 1: Fig. S4). A similar result is found with a ROC analysis of S. 
cerevisiae variants (Fig.  3D), where Sequence UNET variations outperform FoldX but 
fall behind SIFT4G and ESM-1v. The model fine-tuned on ClinVar performs best in both 
cases, while the UNET top model performs relatively poorly, even falling behind sim-
ple CNN models in some cases. This further suggests that the UNET top model may be 
learning something more specific to ClinVar, which may be an artefact of the dataset but 
could also be a real biological feature of pathogenicity or human proteins. Together, this 
confirms that the models generalise well to other contexts, although their relative per-
formance compared to other tools varies.

High‑throughput proteome scale predictions

Modern high-throughput experimental approaches can generate very large quantities of 
data, requiring efficient computational approaches to process. For example, a recent pan-
proteome analysis by Muller et al. [18] collected protein abundance measurements from 
103 species, detecting a total of 904,134 distinct proteins (Fig. 4A). Analysing this many 
proteins with the most commonly used predictors is very computationally intensive and 
would be prohibitively time consuming for many tools and research groups. For exam-
ple, making predictions for 161,825 variants across just 30 proteins as part of a com-
bined deep mutational scanning analysis [25] took SIFT4G 14.1 h and FoldX 64.5 days 
of total compute time. To exemplify the scalability of Sequence UNET, we made pre-
dictions for all 8.3 billion possible variants in this proteomics dataset, which took 1.5 h 
on a GPU using a batch size of 100 (6.8 h without batching) and 50.9 h using only CPU 
(Fig. 4B). The additional padding required to batch different length proteins was found 
to have a negligible impact on predictions for an analysis of this scale, although it does 
impact a small number of individual results (Additional file 1: Fig. S5). This also com-
pares favourably with the ESM language model, even when using a single forward pass 
for all variants instead of independently masked passes for each variant as suggested 
[27]. ESM is both a much larger model and the attention mechanism scales quadrati-
cally with protein length, whereas the convolutional design of Sequence UNET scales 
linearly. This means Sequence UNET is significantly faster using CPU and for larger pro-
teins on GPU. Small proteins are predicted at a similar rate on GPU, suggesting at this 
point other factors dominate. Sequence UNET also requires much less (V)RAM in all 
cases, making it significantly easier to deploy at scale and allowing batches of proteins to 
be processed simultaneously to increase efficiency. In contrast, even a batch size of 2 was 
prohibitive for ESM. These performance increases, combined with the Sequence UNET 
python package, makes large scale analyses more accessible, especially for those without 
high performance compute facilities.

We used this large dataset of variant effect predictions for almost 1 M proteins to 
compare protein abundance and predicted tolerance for sequence variation. Proteins 
that are expressed at higher abundances are generally expected to have more strongly 
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constrained sequences than low abundance proteins [30]. This is thought to occur 
because highly expressed proteins need highly optimal sequences to avoid aggrega-
tion potentially driven by translation errors. However, most studies comparing abun-
dance with sequence constraints have relied on a small number of species. In our 

Fig. 4 High-throughput proteome analysis. A Number of proteins and species in the Muller et al. proteomics 
dataset. B Computation speed comparison between SIFT4G, FoldX, single-pass ESM-1b and Sequence UNET 
on CPU and GPU. Sequence UNET was also tested running on GPU in batches of 100. The SIFT4G and FoldX 
computations were performed as part of an independent deep mutational scanning analysis [25], ESM-1b 
was run on ProteinNet proteins and Sequence UNET computations are across this proteomics dataset. C 
Pearson correlation coefficient between predicted conservation and protein abundance in each species. The 
error bounds of Pearson’s ρ are calculated with Fisher’s Z transform. Predicted conservation is summarised as 
the mean number of variants predicted to be deleterious across positions. Results are shown for Sequence 
UNET frequency predictions across all species and SIFT4G for Mycoplasma and species with data available 
in Mutfunc [29]. The species’ phylogeny is also shown based on NCBI Taxonomy Common Tree. D Boxplot 
showing distribution of correlation coefficients for each domain, split between proteins in SwissProt and 
TrEMBL. The p-value comes from a two-sample unpaired T-test. E Relationship between Pearson correlation 
and standard deviation of raw protein abundance across species. F Relationship between Pearson correlation 
and standard deviation of protein length across species
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analysis, we found a significant correlation between protein abundance and predicted 
protein conservation in most of the 103 species in this dataset (Fig.  4C). Protein 
abundance is normalised against length and expressed as the  log2 fold change com-
pared to median abundance in that species. Conservation is summarised for a protein 
as the mean number of predicted deleterious variants across positions. A similar cor-
relation level is observed for Sequence UNET predictions, including PSSM prediction 
and frequency classification, and SIFT4G scores in H. sapiens, S. cerevisiae, E. coli and 
Mycoplasma proteins. The similarity between correlations based on SIFT4G scores 
and our predictions validates the use of Sequence UNET for such applications.

The strength of conservation-abundance correlation varies a lot between species, 
including diminishing to nothing in a few cases. Eukaryotes tend to have the highest 
overall correlations (t-test vs bacteria: p = 7.6× 10−6 , vs Archaea: p = 1× 10−5 ). How-
ever, looking more closely suggests this is partly caused by the fraction of TrEMBL pro-
teins, which may include spurious open reading frames and, in our analysis, tend to have 
weaker correlations in Archaea (Fig. 4D). Variation in protein abundance (Fig. 4E) also 
impacts the abundance correlation, suggesting that part of the difference may come from 
reduced overall variation in protein forms. Eukaryotic proteins also tend to be more 
variable in length and have more consistently high correlation with abundance (Fig. 4F), 
again suggesting more variability impacts correlation. Species with no significant corre-
lation tend to be unusual organisms, for example the intracellular parasite Mycoplasma 
or extremophile archaea such as P. furiosus or T. litoralis, which would be expected to 
have unusual properties based on their biology. They may also contain more proteins 
without similarities to those in our PDB based training data. There is also a stronger 
correlation in Mycoplasma when cultured intracellularly, suggesting it behaves more 
conventionally in that state and is more abnormal outside the cell. Finally, a similar cor-
relation between abundance and conservation determined by SIFT4G scores shows a 
similar pattern in Mycoplasma, although with lower intracellular correlation, suggesting 
the low correlations have biological rather than technical causes. This simple analysis 
demonstrates the utility of performant, scalable predictors for large analyses and work-
ing with high-throughput experimental results.

Discussion
Variant effect prediction (VEP) is a central part of many computational genetic analy-
ses, allowing researchers to assess new genomes or patient sequences, prioritise vari-
ants for follow up experiments and identify important functional and structural features 
of proteins. This has led to a range of VEP tools, using empirical and machine learn-
ing methods to predict deleteriousness from sequence and structure. However, most 
tools are restrictive to run, particularly for large scale analyses involving hundreds of 
proteins. They can be computationally expensive, often having slow multiple sequence 
alignments or more recently machine learning model training as a limiting step, and are 
often awkward to install correctly. Precomputed results are available for human proteins 
and model organisms, for example in the Mutfunc [23, 29] or dbNSFP [31, 32] databases 
and the webpages of many tools. However, it is still difficult for many scientists to gen-
erate predictions for the proteins they need, especially when analysing a large number 
of proteins or organisms without pre-computed results. In an attempt to fill this niche, 
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we developed a versatile neural network VEP that is fast, lightweight and easy to use, 
able to rapidly make exhaustive predictions about many proteins on a regular laptop and 
scale to multi-proteome analyses on compute clusters. Similar lightweight approaches 
would also be beneficial for tools assessing many genetic backgrounds or combinations 
of mutations, where exhaustive pre-calculation is impossible.

Neural networks provide a powerful approach to fast, high-quality predictions, utilis-
ing large datasets and a long, computationally intensive training process to distil com-
plex relationships into numerical weights matrices. This means predictions can be made 
efficiently as long as the network architecture uses optimised operations and does not 
require expensive external computations, for example multiple sequence alignment or 
structure relaxation. Neural network models have also shown very high performance 
in other sequence-based tasks [33–35] and variant effect prediction [12, 14], but there 
has not previously been a fully end-to-end neural network specialised VEP that oper-
ates directly on sequences. The Sequence UNET model architecture we arrived on takes 
inspiration from other CNN models, including from sequence, structure and image-
based tasks [19], and combines them into a novel model. The U-shaped compression/
expansion structure allows information to propagate across the protein, with the “recep-
tive field” of neurons in the lower layers covering large regions of the original sequence 
in the same way they integrate information across images in the original UNET. This 
allows performant CNN operations to be used for a sequence-based problem while 
allowing filters to learn sequence patterns at different detail levels. Similarly, GraphC-
NNs are performant and have been shown to perform on protein structure tasks [36–
38], and their position invariance makes them a natural approach to including structural 
features. We experimented with various other methods of including structure, including 
torsion angles and calculated feature profiles, but found GraphCNNs gave best perfor-
mance and efficiency.

The lack of labelled deleterious variant data at the scale required for deep learning led 
us to first capture general sequence and variant properties by training the model to pre-
dict variant frequencies, either as a PSSM predictor or a low frequency variant classifier, 
and then finetune for pathogenic variant classification using ClinVar data. This is similar 
to the protein language model paradigm, in which large models are first trained to pre-
dict amino acid sequences, capturing general properties, and the representation vectors 
they produce can be used as input into smaller downstream models. However, the size 
and design of the model makes it much more computationally efficient than most lan-
guage models.

The base Sequence UNET model achieves state of the art performance at de novo 
PSSM prediction and frequency classification, both independently useful tasks, and the 
fine-tuned models reach top level performance at pathogenicity prediction, although the 
base model only generalises moderately well. There are also potential questions about 
performance on unstructured proteins, which are missing from ProteinNet, but this 
could be addressed by expanding the training data beyond structured proteins.

Variant frequency can be measured analytically and other models can predict path-
ogenicity to a broadly similar accuracy, meaning the major strength of our model is 
computational efficiency. This enables analyses to be completed more rapidly and on 
weaker hardware and opens up potential large-scale analyses that would not be possible 
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for more computationally demanding tools. For example, the multi-proteome analysis 
we performed here would have been extremely computationally expensive with many 
tools. Other possible applications include metagenome and microbiome analysis, where 
large numbers of new sequences are determined and need to be understood. Develop-
ing efficient models for structure, function or localisation prediction would also enhance 
work where a great many protein sequences are generated or need to be compared. Such 
methods can also be combined with slower, more accurate or analytical methods, iden-
tifying the most important targets for detailed, computation intensive analysis. This gets 
the benefits of speed and performance by enabling accurate results from the important 
areas of a wide search space.

There are various routes available that could improve our model in future, while main-
taining computational efficiency. The role of protein structure is an obvious target for 
change, since it currently only adds a small performance boost despite structure being 
known to be critical for protein function. For example, a richer graph network section, 
graph attention mechanisms or pre-training the structural section to encode structural 
properties could all potentially improve performance. Removing the structure option 
altogether could also be beneficial because it would allow the model to be trained on a 
much larger sequence space, exposing it to more sequence variation and reducing the 
bias towards proteins with determined structures. The BFD used to train AlphaFold2 
would be an appropriate dataset because it has already been processed into ≈ 66 M 
unique sequence clusters with MSAs and minimal further processing would be required. 
It was derived from over 2.2B sequences taken from reference databases and collec-
tions and is over 600 times larger than ProteinNet. Large sequence datasets, and lots of 
training data in general, has been found to greatly improve performance in many other 
models [7, 17, 39]. Using sequences alone would make the model setup more similar 
to protein language models, which also train to predict amino acid propensity on large 
sequence databases. The UNET sequence CNN portion of the network could also be 
adjusted, either by tweaking the current connections and parameters or switching to an 
alternate sequence processing architecture. For instance, powerful attention and trans-
former architectures could be incorporated into the network or used as a basis for a new 
model that maintains computational efficiency as a goal, although it does come with 
an inherent computation cost compared to convolution. There are also alternate CNN 
architectures such as dilated convolutions [40], which can be combined with UNET 
designs [41]. These would also integrate information across the sequence but do not 
spread the receptive field as widely. However, they could also be added to the network 
and alternate approaches using them could also work for this problem.

Conclusions
We have demonstrated a highly efficient, performant model for variant frequency and 
effect prediction, which enables larger scale analyses than have previously been possible 
with VEP packages, demonstrated by our multi-proteome conservation analysis. This 
could be beneficial for a range of biological problems where current models are slow 
enough to be prohibitive, for example metagenomics, microbiome research and ana-
lysing the large quantities of genomic sequences from the Darwin Tree of Life project 
[42]. More generally, developing computationally efficient deep learning models that 
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maintain high performance has great potential in other problems, speeding up predic-
tions and providing approximate solutions where analytical approaches are prohibi-
tive. This could enable new questions to be answered as well as making current analyses 
more economical, reducing compute time and consequently saving money and natural 
resources, including carbon [43].

Methods
UNET model

The Sequence UNET model is implemented in TensorFlow [44] (version 2.5 +) using the 
Keras framework. It takes a 3-dimensional tensor ( N ×M × 20 ) representing one-hot 
encoded protein sequences as input, with the final dimension being the amino acid, the 
middle protein position and the first outer dimension batches. As shown in Fig. 1, this is 
fed through L compression CNN layers, where each layer contains two 1D CNN opera-
tions with f × 2l filters on layer l and width k kernels. 1D max pooling operations com-
press the output of higher layers in half to input into the next layer. The input must be 
0-padded in the second dimension so the length is divisible by 2 L− 1 times. The bottom 
layer contains a third CNN operation. L corresponding expansion layers form the oppo-
site side of the U structure, which each take input from a concatenation of the output 
from the corresponding compression layer and up-sampled output from the preceding 
expansion layer or the bottom layer. These also include 2 1D CNN operations. A final 
classification head processes the output of the final expansion layer, using an appropriate 
activation function for each task. Frequency classification uses a sigmoid function and 
frequency prediction the softmax function over the frequencies at each position. The 
final hyperparameters were L = 6, f = 64, k = 9 , with ReLu activation functions for the 
CNN layers. In total this leads to 128 M parameters. The Swish activation function [45] 
was found to have slightly higher performance but technical details of TensorFlow 2.5 
meant model gradients could not be loaded using Swish. In the future it could slightly 
improve performance but currently ReLU has been used to make distribution easier. 
Dropout at frequency 0.05 and batch normalisation were used in between each com-
pression/expansion layer.

Structural input

An optional simple GraphCNN [46] (Eq. (1)) is available to encode per position protein 
structure information, which is then concatenated with the one hot encoded sequence 
and fed into the main model. In this case, a weighted residue distance matrix (Eq. (2)) 
is required as an additional input. We tested various sizes, number of graph layers and 
residue distances weightings but found a single graph layer with 32 filters and ELu acti-
vation performed best.

A  is the n× n normalised edge matrix, which must be normalised to prevent the 
overall magnitude of features from changing and causing exploding or vanishing gra-
dients. H i is an n×m matrix of the hidden values in layer i , for a graph with n nodes 
with m features. W i is an m× l matrix of learnt weights for layer i , where l  is the 

(1)H
i+1

= σ AH
i
W

i
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number of features calculated for the next layer. This gives positional output that is a 
weighted sum of features from that and neighbouring amino acids, and operates inde-
pendently of the input protein size.

The contact graph considers all residues within 10  Å to be in contact and uses a 
similarity metric (Eq.  (3)) to weight closer residues more highly. A self-connection 
was used to pass information about the position itself and residues one or two posi-
tions away in sequence that were missing structural information were assumed to 
be 380  nm or 610  nm away, based on the average of non-masked positions. Other 
masked residues were assumed to not be in contact. This was one of the less explored 
areas of the network, so it is likely more complex structural features could improve 
performance.

where dij is the distance between residues i and j , cij is the closeness between residues 
and aij is the normalised residue contact matrix used in Eq. (1). Distances are measured 
in angstroms. The additional 3 Å means self-connections are weighted as roughly twice 
that of the nearest neighbour.

ProteinNet dataset

We train the model using the ProteinNet dataset [21], which contains training, vali-
dation and test sets based on the CASP competition [22], with test sets containing 
the proteins predicted for each round of CASP and training sets containing all struc-
tures available in the PDB at the time of each competition. This does potentially intro-
duce a slight bias into the test sets since only proteins with newly discovered crystal 
structures are included in CASP competitions, meaning they tend to be more unusual 
and less well studied proteins or those that are difficult to crystallise. However, the 
test sets still contain diverse proteins from a range of organisms, so any reduction in 
generalisation is likely to be small and predictions would generally be expected to be 
worse on these unusual proteins that cover novel sequence space. We use the CASP12 
95% thinned training set as a balance between including a large variety of slightly dif-
ferent sequences and moderating the dataset size for rapid training. CASP is designed 
to assess template-based structure prediction methods [47] so a minority of proteins 
in the test set (38 of 146 in CASP12) have some sequence similarity to proteins in the 
PDB, which could potentially artificially inflate test performance by a small amount. 
However, the size of the training dataset means the model is unable to memorise vari-
ant consequences and so having a minority of somewhat related sequences in the test 
set is very unlikely to significantly influence results. Together, this makes ProteinNet 
a convenient and appropriate dataset for predicting deleteriousness from sequence 
and structure, despite that not being its original purpose, and using it greatly sped up 

(2)aij =
cij

∑

k cik

(3)cij =

{
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, dij ≤ 10

0, dij > 10
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model development. We developed the ProteinNetPy package [48, 49] to help parse, 
process and manipulate data from ProteinNet. This makes it easier to use variants 
of the model that require structural data as well as helping use ProteinNet for other 
work.

Training and hyperparameter optimisation

The model was trained and assessed using 32 GB Nvidia Tesla V100 GPU nodes on a 
high-performance computer cluster. ProteinNetPy was used to generate the Tensor-
Flow datasets for training and validation, using custom map functions depending on the 
model configuration being trained. A progressive hyperparameter optimisation strategy 
was used, testing a range of values for each parameter and using the best results as the 
default value of that parameter for future tests. The tested parameters were number of 
UNET layers, number of filters, kernel width, presence of structure features, optimisa-
tion algorithm, deleteriousness threshold, activation function and regularisation regime 
(see Additional file  1: Fig. S1). These were tested for both PSSM prediction and fre-
quency classification modes of the model, with the same resulting parameters. When 
not testing optimisers or their settings, training was performed using the Adam opti-
miser [50] with a learning rate of 0.01 and early stopping based on validation accuracy 
with a memory of 20 epochs. Increasing model size tends to increase performance, so 
training speed and resource consumption is balanced directly against performance. We 
settled on 64 first layer filters, doubling in each layer; 9 wide kernels; and 6 layers to 
comfortably train on a single Nvidia Tesla V100 GPU; the size could be increased using 
more resources to incrementally improve performance. Increasing the number or size of 
GraphCNN layers did not improve performance, suggesting more advanced techniques 
[7, 36] might be required to fully harness structure. A single 32 filter GraphCNN layer 
was used to encode structural features.

We trained two versions of the model, optimising hyperparameters independently for 
each case. We first trained to predict the frequency of each possible mutation in a pro-
tein and therefore its PSSM. The Kullback–Leibler divergence between the vector of pre-
dicted and true frequencies of each position was used as the loss function, and a softmax 
activation function was used in the final layer. We next trained the model as a frequency 
classifier, predicting whether each possible variant occurs below a frequency threshold. 
This used a binary cross-entropy loss function and a sigmoid activation function in the 
final layer. We tested a range of frequency thresholds (Fig S3), settling on f = 0.01 . Fur-
ther details of the performance and characteristics of these networks can be found in 
Additional file 1: Supplementary Information. The training code [51] contains the exact 
specification of the training procedures used. Model predictions were generated for fasta 
and ProteinNet data using the sequence_unet python package, from the same GitHub 
repository.

Baseline CNNs

Three sizes of baseline convolutional model were also trained for comparison: a single 
layer network with 32 7 width filters, an equivalent double layer network and a larger 
network with 64 7 width filters in the second layer. Training was performed with the 
ProteinNet CASP12 dataset, using the 95% data split.
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SPBuild predictions

We generated SPBuild predictions for all proteins in the ProteinNet CASP 12 test set 
using the latest version of SPBuild (2020–01-07). Sequence UNET naturally outputs raw 
variant frequencies, whereas PSSMs are generally reported as log scores normalised 
against WT amino acid frequencies (Eq. (4)), as SPBuild reports. Therefore, the frequen-
cies output by Sequence UNET, the baseline CNN and ESM-1b models were trans-
formed into the standard PSSM format to compare them to BLOSUM62 and SPBuild.

where fpred is the predicted frequency and fAA the average frequency of that amino acid, 
based on Swiss-Prot summary statistics [52, 53].

ESM‑1b and ESM‑1v predictions and derived models

We used the pre-trained ESM-1b 650 M and ESM-1v 650 M models to generate logits 
and representations of protein positions for comparison to Sequence UNET. For more 
direct comparisons, we also trained single layer PSSM prediction (softmax activation) 
and frequency classifiers (sigmoid activation) on top of the ESM-1b representations 
using the ProteinNet CASP12 95% thinning data.

SIFT4G results

SIFT4G was run on all the proteins in the ProteinNet CASP12 testing and validation 
sets, using a modified version of SIFT4G that outputs 5 decimal places instead of 2.

Model generalisation

The 24/04/2021 ClinVar dataset was used for training and testing model generalisation. 
ClinVar classifications were simplified to pathogenic or benign, each category includ-
ing variants designated as likely or definitely benign/pathogenic. Fine-tuned models 
were trained to predict ClinVar pathogenicity, either by replacing the classification head 
layer (top model) or refining its weights (finetuning). In both cases, only the classifica-
tion head and the preceding layer are trainable with the rest of the model frozen, which 
means only a small number of weights are trained. The models take wild-type sequence 
or sequence and structure as input and the final fully connected layer outputs a matrix of 
pathogenicity scores for all possible variants using sigmoid activation. During training, 
variants which are not in the ClinVar training data are masked and do not contribute 
to training. Fine-tuned models in both styles were trained based on both PSSM predic-
tion and frequency classification models with 3 and 1 width convolution kernels. They 
were trained using binary cross entropy loss and the Adam optimiser for a maximum 
of 50 epochs with 10 epoch memory early stopping. In practice validation performance 
decreased after 10 to 15 epochs in each case, so weights from this stage were selected 
by the early stopping procedure. Three wide kernel models based on the classification 
model performed best and were used.

Additional generalisation comparison datasets were downloaded or computed using 
the relevant tool. A combined set of deep mutational scanning results was sourced from 
our previous work [25]. DMS ER scores less than -0.5 were classified as deleterious. A 

(4)log2
fpred + 10−5

fAA
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gold standard set of S. cerevisiae variants was downloaded from work by Jelier et al. [26]. 
SIFT4G and FoldX predictions for ClinVar variants were retrieved from Mutfunc [29], 
ESM-1v scores were calculated directly, EVE scores were downloaded from its website 
and all other tool results were retrieved from dbNSFP [31, 32].

Proteomic analysis

The sequences of proteins identified in the Muller et  al. pan-proteome analysis were 
downloaded from UniProt. The sequence_unet predict_from_fasta command was then 
used to generate Sequence UNET predictions using only sequence input for the PSSM 
prediction and frequency classification models. Prediction results for each protein were 
summarised as the mean number of predicted deleterious variants across positions. 
Protein abundance was normalised against length and expressed as the  log2 fold change 
compared to median abundance in that species. The phylogeny of these organisms was 
downloaded from NCBI taxonomy [54, 55]. SIFT4G scores for comparison were down-
loaded from Mutfunc [29] for H. sapiens, S. cerevisiae and E. coli and calculated using 
Uniref90 and default settings for Mycoplasma.
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