
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SHORT REPORT

Lee et al. Genome Biology (2023) 24:105
https://doi.org/10.1186/s13059-023-02941-w

Genome Biology

EvoAug: improving generalization
and interpretability of genomic deep neural
networks with evolution‑inspired data
augmentations
Nicholas Keone Lee1, Ziqi Tang1, Shushan Toneyan1 and Peter K. Koo1*    

Abstract 

Deep neural networks (DNNs) hold promise for functional genomics prediction, but
their generalization capability may be limited by the amount of available data. To
address this, we propose EvoAug, a suite of evolution-inspired augmentations that
enhance the training of genomic DNNs by increasing genetic variation. Random
transformation of DNA sequences can potentially alter their function in unknown ways,
so we employ a fine-tuning procedure using the original non-transformed data to pre-
serve functional integrity. Our results demonstrate that EvoAug substantially improves
the generalization and interpretability of established DNNs across prominent regula-
tory genomics prediction tasks, offering a robust solution for genomic DNNs.

Keywords:  Deep learning, Regulatory genomics, Data augmentations, Model
interpretability

Background
Uncovering cis-regulatory elements and their coordinated interactions is a major goal of
regulatory genomics. Deep neural networks (DNNs) offer a promising avenue to learn
these genomic features de novo through being trained to take DNA sequences as input
and predict their regulatory functions as output [1–3]. Following training, these DNNs
have been employed to score the functional effect of disease-associated variants [4, 5].
Moreover, post hoc model interpretability methods have revealed that DNNs base their
decisions on learning sequence motifs of transcription factor (TF) binding sites and
dependencies with other TFs and sequence context [6–10].

For DNNs, generalization typically improves with more training data. However, the
amount of data generated in a high-throughput functional genomics experiment is fun-
damentally limited by the underlying biology. For example, the extent to which certain

*Correspondence:
koo@cshl.edu

1 Simons Center for Quantitative
Biology, Cold Spring Harbor
Laboratory, 1 Bungtown Road,
Cold Spring Harbor, NY, USA

Page 2 of 14Lee et al. Genome Biology (2023) 24:105

TFs bind to DNA is constrained by the availability of high-affinity binding sites in acces-
sible chromatin.

To expand a finite dataset, data augmentations can provide additional variations on
existing training data [11, 12]. Data augmentations act as a form of regularization, guid-
ing the learned function to be invariant to symmetries created by the data transfor-
mations [13, 14]. This approach can help prevent a DNN from overfitting to spurious
features and improve generalization [15]. The main challenge with data augmentations
in genomics is quantifying how the regulatory function changes for a given transforma-
tion. With image data, basic affine transformations can translate, magnify, or rotate an
image without changing its label. However, in genomics, the available neutral augmenta-
tions are reverse-complement transformation [16] and small random translations of the
input sequence [17, 18]. With the finite size of experimental data and a paucity of aug-
mentation methods, strategies to promote generalization for genomic DNNs are limited.

Here, we introduce EvoAug, an open-source PyTorch package that provides a suite
of evolution-inspired data augmentations. We show that training DNNs with EvoAug
leads to better generalization performance and improves efficacy with standard post hoc
explanation methods, including filter interpretability and attribution analysis, across
prominent regulatory genomics prediction tasks for well-established DNNs.

Results and discussion
Evolution‑inspired data augmentations for sequence‑based genomic DNNs

To enhance the effectiveness of sequence-based models, data augmentations should aim
to increase genetic diversity while maintaining the same biological functionality. Evolu-
tion provides a natural process to generate genetic variability, including random muta-
tions, deletions, insertions, inversions, and translocations, among others [19]. However,
these genetic changes often have functional consequences that expand phenotypic diver-
sity and aid in natural selection. While the addition of homologous sequences to a data-
set could achieve the goal of increasing sequence diversity while preserving biological
function, identifying regulatory regions with similar functions throughout the genomes
across species is difficult. Alternatively, synthetic perturbations that do not alter the
function can be applied, but it is crucial to have prior knowledge to ensure that features
such as motifs and their dependencies are not affected. Therefore, formulating new data
augmentation strategies for genomics remains a significant challenge.

In this study, we present a suite of evolution-based data augmentations and a two-stage
training curriculum to preserve functional integrity (Fig. 1a). In the first stage, a DNN is
trained on sequences with EvoAug augmentations applied stochastically online during
training, using the same training labels as the wild-type sequence. The goal is to enhance
the model’s ability to learn robust representations of features, such as motifs, by expos-
ing it to expanded (albeit synthetically generated) genetic variation. While each augmen-
tation has the potential to disrupt core motifs in any given perturbation, we expect the
overall effect to preserve motifs on average. However, the specific data augmentations
employed may introduce a bias in how these motif grammars are structured. Thus, in
the second stage, the DNN is fine-tuned on the original, unperturbed data to refine these
features and guide the function towards the observed biology, thereby removing any bias
introduced by the data augmentations (see Methods).

Page 3 of 14Lee et al. Genome Biology (2023) 24:105 	

EvoAug data augmentations introduce a modeling bias to learn invariances of the (un)
natural symmetries generated by the augmentations. For instance, random insertions
and deletions assume that the distance between motifs is not critical, whereas random
inversions and translocations promote invariances to motif strand orientation and the
order of motifs, respectively. Nevertheless, the bias created by the augmentations can
lead to poor generalization when the introduced bias does not accurately reflect the
underlying biology. Therefore, the fine-tuning stage is critical as it provides an avenue to
unlearn any biases not supported by the observed data.

EvoAug improves generalization and interpretability of genomic DNNs

To demonstrate the utility of EvoAug, we analyzed several established DNNs across
three prominent types of regulatory genomic prediction tasks that span a range of
complexity.

First, we applied Evoaug to the Basset model and dataset [20], which consists of a
multi-task binary classification of chromatin accessibility sites across 161 cell types/tis-
sues. We trained the Basset model with each augmentation applied independently and

Fig. 1  EvoAug improves generalization and interpretability of Basset models. a Schematic of
evolution-inspired data augmentations (left) and the two-stage training curriculum (right). b Generalization
performance (area under the precision-recall curve) for Basset models pretrained with individual and
combinations of augmentations, i.e., Noise+Ins+RC (Gaussian noise, insertion, reverse-complement) and
all augmentations (Gaussian noise, reverse-complement, mutation, translocation, deletion, insertion), and
fine-tuned on Basset dataset. Standard represents no augmentations during training. c Comparison of the
average hit rate of first-layer filters to known motifs in the JASPAR database (top) and the average q-value
of the filters with matches (bottom). d Comparison of the average Pearson correlation between model
predictions and experimental data from CAGI5 Challenge. b–d Each box-plot represents 5 trials with random
initializations

Page 4 of 14Lee et al. Genome Biology (2023) 24:105

in various combinations. We conducted a hyperparameter sweep to determine the opti-
mal settings for each augmentation (Additional file 1: Figs. S1-S5). From hyperparameter
sweeps, we observed that the inversion augmentation improved performance up to the
sequence length, which is essentially a reverse-complement transformation (Additional
file 1: Figs. S1, S3, and S4). Hence, inversions were excluded to reduce redundancy.

Remarkably, EvoAug-trained DNNs outperformed standard training with no augmen-
tations (Fig. 1b). The best results were achieved when multiple augmentations were used
together. Additionally, we found that fine-tuning on the original data further improved
performance, even when augmentation hyperparameters were poorly specified (Addi-
tional file 1: Fig. S1). Notably, specific EvoAug augmentations, such as random muta-
tions and combinations of data augmentations, had a profound impact on improving the
motif representations learned by the first-layer convolutional filters (Fig. 1c). The con-
volutional filters capture a wider repertoire of motifs and their representations better
reflect known motifs, both quantitatively and qualitatively, when compared with con-
volutional filters of models trained without augmentations. This suggests that EvoAug
augmentations can help DNNs learn more accurate and informative representations of
the sequence motifs.

A major downstream application of genomic DNNs is to score the functional conse-
quences of non-coding mutations. By evaluating the zero-shot prediction capabilities
of each DNN on saturation mutagenesis data of 15 cis-regulatory elements from the
CAGI5 Challenge [21], we found that models trained with EvoAug outperformed their
standard training counterpart (Fig. 1d). Notably, Basset’s performance was compara-
ble to other DNNs based on binary predictions [17]; however, its overall performance
was lower than more sophisticated DNNs and top competitors in the CAGI5 challenge
[2]. Interestingly, we observed that DNNs pretrained with Gaussian noise or random
mutagenesis augmentations did not perform well. These augmentations impose flat-
ness locally in sequence-function space, effectively reducing the effect size of nucleotide
variants. However, fine-tuning these models improved their variant effect predictions
beyond what was achieved with standard training, thus demonstrating the effectiveness
of the two-stage training curriculum.

To further demonstrate the benefits of EvoAug, we trained DeepSTARR models as a
multi-task quantitative regression to predict enhancer activity from self-transcribing
active regulatory region sequencing (STARR-seq) data [9], where each task represents
a different promoter from a developmental or housekeeping gene in Drosophila S2 cells.
Most EvoAug augmentations resulted in improved performance, except for reverse-
complement and random mutations (Fig. 2a and Additional file 1: Figs. S3-S5). As before,
we observed additional performance gains when augmentations were used in combina-
tion. Furthermore, the attribution maps generated by EvoAug-trained models were more
interpretable, with identifiable motifs and less spurious noise (Additional file 1: Fig. S6).

In addition, we found that the EvoAug-trained DNNs consistently outperformed
DNNs with standard training on various single-task binary classification tasks for TF
binding across multiple chromatin immunoprecipitation sequencing (ChIP-seq) datasets
(Fig. 2b). Interestingly, we did not observe any significant improvement in performance
after fine-tuning, suggesting that the implicit prior imposed by EvoAug augmentations

Page 5 of 14Lee et al. Genome Biology (2023) 24:105 	

was appropriate for these tasks; the underlying regulatory grammars for these TFs are
not complex.

To further investigate the impact of EvoAug on small datasets, we retrained each DNN
on down-sampled versions of two abundant ChIP-seq datasets. We found that EvoAug-
trained DNNs exhibit a greater improvement in performance for smaller datasets com-
pared to standard training (Fig. 2c). This result suggests that EvoAug can be particularly
useful in scenarios where the available training data is limited.

Training with EvoAug adds a computational cost, depending on the augmentations
chosen and their settings (Additional file 1: Tables S2 and S3). Nevertheless, EvoAug
stabilized training (Additional file 1: Fig. S7), leading to smoother convergence and
improved generalization overall.

Conclusion
EvoAug greatly expands the set of available data augmentations for genomic DNNs. Our
study demonstrated that EvoAug’s two-stage training curriculum is effective in improv-
ing generalization performance. Moreover, EvoAug-trained models learned better rep-
resentations of consensus motifs, as evidenced by filter visualization and attribution
analysis.

Our findings support previous arguments for using evolution as a natural source of
data augmentation [22]. Interestingly, the impact of synthetic evolutionary perturbations
was not excessively disruptive, and performance even improved before fine-tuning in
most cases. This functional robustness appears to be a characteristic of the non-coding
genome [23].

Data augmentations are a commonly used technique to balance bias and variance in
machine learning models. However, their effectiveness is expected to decrease as the
dataset size increases. Nevertheless, EvoAug still improved performance on the already

Fig. 2  Generalization of EvoAug on additional models and datasets. a Box-plot of regression performance
for DeepSTARR models pretrained with individual or combination of augmentations (i.e., insertion +
translocation + deletion; all augmentations) and fine-tuned on original STARR-seq data for two promoters:
developmental (top) and housekeeping (bottom). Standard represents no augmentations during training.
b Box-plot of classification performance (area under the receiver-operating-characteristic curve) for DNNs
trained on ChIP-seq datas. c Average classification performance for ChIP-seq experiments downsampled
to different dataset sizes. Shaded region represents the standard deviation of the mean. a, b Each box-plot
represents 5 trials with random initializations

Page 6 of 14Lee et al. Genome Biology (2023) 24:105

large Basset dataset. Other methods that can enhance generalization include multitask
learning [24], contrastive learning [25, 26], and language modeling [27]. Even though
Basset and DeepSTARR are already trained in a multitask framework, EvoAug improved
their performance. Multitasking can introduce class imbalance, but EvoAug provides
additional examples with pseudo-positive labels, which can mitigate this issue. EvoAug
also provides different views of the data, which can be useful for contrastive learning.
Importantly, EvoAug is a lightweight and effective strategy that only requires the original
data.

The optimal combination of augmentations and their hyperparameter choices depends
on the model and dataset. While we performed hyperparameter grid searches in this
study, more advanced search strategies such as population-based training [28] using Ray
Tune [29] could improve efficiency. In the future, we plan to investigate EvoAug’s poten-
tial in cross-dataset generalization and variant effect predictions, including expression
quantitative trait loci.

EvoAug is a PyTorch package that is open-source [30], easy to use, extensible, and
accessible via pip (https://​pypi.​org/​proje​ct/​evoaug) and GitHub (https://​github.​com/p-​
koo/​evoaug), with full documentation provided on ReadtheDocs.org (https://​evoaug.​
readt​hedocs.​io). In time, we plan to extend EvoAug functionality to TensorFlow [30] and
JAX [31]. We anticipate that EvoAug will have broad utility in improving the efficacy of
sequence-based DNNs for regulatory genomics.

Methods
Models and datasets

Basset

The Basset dataset [20] consists of a multi-task binary classification of chromatin acces-
sibility sites across 161 cell types/tissues. The inputs are genomic sequences of length
600 nt and the output are binary labels (representing accessible or not accessible) for
161 cell types measured experimentally using DNase I hypersensitive sites sequencing
(DNase-seq). We filtered sequences that contained at least one N character and the data
splits (training; validation; test) reduced from (1,879,982; 70,000; 71,886) to (437,478;
16,410; 16,703). This “cleaned” dataset [32] was analyzed using a Basset-inspired model,
which is given according to:

•	 Input x ∈ {0, 1}600×4 (one-hot encoding of 600 nt sequence)
•	 1D convolution (300 filters, size 19, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 3, stride 3)
•	 1D convolution (200 filters, size 11, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 4, stride 4)
•	 1D convolution (200 filters, size 7, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 2, stride 2)
•	 Fully-connected (1000 units)
•	 BatchNorm + ReLU

https://pypi.org/project/evoaug
https://github.com/p-koo/evoaug
https://github.com/p-koo/evoaug
https://evoaug.readthedocs.io
https://evoaug.readthedocs.io

Page 7 of 14Lee et al. Genome Biology (2023) 24:105 	

•	 Dropout (0.3)
•	 Fully-connected (1000 units)
•	 BatchNorm + ReLU
•	 Dropout (0.3)
•	 Fully-connected output (161 units, sigmoid)

BatchNorm represents batch normalization [33], and dropout [34] rates set the prob-
ability that neurons in a given layer are temporarily removed during each mini-batch of
training.

DeepSTARR​

The DeepSTARR dataset [9] consists of a multi-task regression of enhancer activity for
two promoters, well-known developmental and housekeeping transcriptional programs
in D. melanogaster S2 cells. The inputs are genomic sequences of length 249 nt and
the output is 2 scalar values representing the activity of developmental enhancers and
housekeeping enhancers measured experimentally using STARR-seq. Sequences with N
characters were also removed, but this minimally affected the size of the dataset (i.e.,
reduced it by approximately 0.005%). This dataset [32] was analyzed using the original
DeepSTARR model, given according to:

•	 Input x ∈ {0, 1}249×4

•	 1D convolution (256 filters, size 7, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 2, stride 2)
•	 1D convolution (60 filters, size 3, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 2, stride 2)
•	 1D convolution (60 filters, size 5, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 2, stride 2)
•	 1D convolution (120 filters, size 3, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 2, stride 2)
•	 Fully-connected (256 units)
•	 BatchNorm + ReLU
•	 Dropout (0.4)
•	 Fully-connected (256 units)
•	 BatchNorm + ReLU
•	 Dropout (0.4)
•	 Fully-connected output (2 units, linear)

ChIP‑seq

Transcription factor (TF) chromatin immunoprecipitation sequencing (ChIP-seq)
data was processed and framed as a binary classification task. The inputs are genomic

Page 8 of 14Lee et al. Genome Biology (2023) 24:105

sequences of length 200 nt and the output is a single binary label representing TF bind-
ing activity, with positive-label sequences indicating the presence of a ChIP-seq peak
and negative-label sequences indicating a peak for a DNase I hypersensitive site from the
same cell type but one that does not overlap with any ChIP-seq peaks. Nine representa-
tive TF ChIP-seq experiments in a GM12878 cell line and a DNase-seq experiment for
the same cell line were downloaded from ENCODE [35]; for details, see Additional file 1:
Table S1. Negative sequences (i.e., DNase-seq peaks that do not overlap with any posi-
tive peaks) were randomly down-sampled to match the number of positive sequences,
keeping the classes balanced. The dataset was split randomly into training, validation,
and test set according to the fractions 0.7, 0.1, and 0.2, respectively [32].

A custom convolutional neural network was employed to analyze these datasets,
given according to:

•	 Input x ∈ {0, 1}200×4

•	 1D convolution (64 filters, size 7, stride 1)
•	 BatchNorm + ReLU
•	 Dropout (0.2)
•	 Max-pooling (size 4, stride 4)
•	 1D convolution (96 filters, size 5, stride 1)
•	 BatchNorm + ReLU
•	 Dropout (0.2)
•	 Max-pooling (size 4, stride 4)
•	 1D convolution (128 filters, size 5, stride 1)
•	 BatchNorm + ReLU
•	 Dropout (0.2)
•	 Max-pooling (size 2, stride 2)
•	 Fully-connected layer (256 units)
•	 BatchNorm + ReLU
•	 Dropout (0.5)
•	 Fully-connected output layer (1 unit, sigmoid)

Evolution‑inspired data augmentations

EvoAug is comprised of a set of data augmentations given by the following:

•	 Mutation: a transformation where single nucleotide mutations are randomly
applied to a given wild-type sequence. This is implemented as follows: (1) given
the hyperparameter of the fraction of nucleotides in each sequence to mutate
(mutate_frac), the number of mutations for a given sequence length is calcu-
lated; (2) a position along the sequence is randomly sampled (with replacement)
for each number of mutations; and (3) the selected positions are mutagenized to
a random nucleotide. Since our implementation does not guarantee that a nucle-
otide selected will be mutated to a different nucleotide than it originally was,
we take approximate account for silent mutations by dividing the user-defined

Page 9 of 14Lee et al. Genome Biology (2023) 24:105 	

mutate_frac by 0.75 so that on average the fraction of nucleotides in each
sequence mutated to a different nucleotide is equal to mutate_frac.

•	 Translocation: a transformation that randomly selects a break point in the
sequence (thereby creating two segments) and then swaps the order of the two
sequence segments. An equivalent statement of this transformation is a “roll”—
shifting the sequence forward along its length a randomly specified distance and
then reintroducing the part of the sequence shifted beyond the last position back
at the first position. This is implemented as follows: (1) given the hyperparam-
eters of the minimum distance (shift_min, default 0) and maximum distance
(shift_max) of the shift, the integer-valued shift length is chosen randomly
from the interval [−shift_max,−shift_min] ∪ [shift_min,shift_max] ,
where a negative value simply denotes a backward shift rather than a forward shift,
and (2) the shift is applied to the sequence with a roll() function in PyTorch.

•	 Insertion: a transformation where a random DNA sequence (of random length)
is inserted randomly into a wild-type sequence. This is implemented as follows:
(1) given the hyperparameters of the minimum length (insert_min, default 0)
and maximum length (insert_max) of the insertion, the integer-valued inser-
tion length is chosen randomly from the interval between insert_min and
insert_max (inclusive), and (2) the insertion is inserted at a random position
within the original sequence. Importantly, to maintain a constant input sequence
length to the model (i.e., original length plus insert_max), the remaining
amount of length between the insertion length and insert_max is split evenly
and placed on the 5’ and 3’ flanks of the sequence, with the remainder from odd
lengths going to the 3′ end. Whenever an insertion augmentation is employed in
combination with other augmentations, all sequences without an insertion are
padded with a stretch of random DNA of length insert_max at the 3′ end to
ensure that the model processes sequences with a constant length for both train-
ing and inference time.

•	 Deletion: a transformation where a random, contiguous segment of a wild-type
sequence is removed, and the shortened sequence is then padded with random
DNA sequence to maintain the same length as wild-type. This is implemented as
follows: (1) given the hyperparameters of the minimum length (delete_min,
default 0) and maximum length (delete_max) of the deletion, the integer-val-
ued deletion length is chosen randomly from the interval between delete_min
and delete_max (inclusive); (2) the starting position of the deletion is chosen
randomly from the valid positions in the sequence that can encapsulate the dele-
tion; (3) the deletion is performed on the designated stretch of the sequence; (4)
the remaining portions of the sequence are concatenated together; and (5) random
DNA is used to pad the 5′ and 3′ flanks to maintain a constant input sequence
length, similar to the procedure for insertions.

•	 Inversion: a transformation where a random subsequence is replaced by its
reverse-complement. This is implemented as follows: (1) given the hyperparam-
eters of the minimum length (invert_min, default 0) and maximum length
(invert_max) of the inversion, the integer-valued inversion length is chosen
randomly from the interval between invert_min and invert_max (inclu-

Page 10 of 14Lee et al. Genome Biology (2023) 24:105

sive); (2) the starting position of the inversion is chosen randomly from the valid
position indices in the sequence; and (3) the inversion (i.e., a reverse-complement
transformation) is performed on the designated subsequence while the remaining
portions of the sequence remain untouched.

•	 Reverse-complement: a transformation where a full sequence is replaced with some
probability rc_prob by its reverse-complement.

•	 Gaussian noise: a transformation where Gaussian noise (with distribution parame-
ters noise_mean = 0 and noise_std) is added to the input sequence; a random
value drawn independently and identically from the specified distribution is added to
each element of the one-hot input matrix.

Pretraining with data augmentations

Training with augmentations requires two main hyperparameters: first, a set of aug-
mentations to sample from; and second, the maximum number of augmentations to
be applied to a sequence. For each mini-batch during training, each sequence is ran-
domly augmented independently. The number of augmentations to be applied to a given
sequence has two possible settings in EvoAug: (1) hard, always equal to the maximum
number of augmentations, or (2) soft, randomly select the number of augmentations
for a sequence from 1 to the maximum number. Our experiments with Basset and Deep-
STARR use the former setting, while our experiments with ChIP-seq datasets use the
latter setting. Then, the subset of augmentations to be applied to the sequence is sam-
pled randomly without replacement from the user-defined set of augmentations. After
a subset of augmentations is chosen, the order in which multiple augmentations are
applied to a single sequence is given by the following priority: inversion, deletion, trans-
location, insertion, reverse-complement, mutation, noise addition. Each augmentation is
then applied stochastically for each sequence.

For the Basset and DeepSTARR models, each augmentation has an optimal setting
that was determined from a hyperparameter search independently using the validation
set (Additional file 1: Figs. S1, S3, and S4). For the Basset models, the hyperparameters
were set to:

•	 mutation: mutate_frac = 0.15
•	 translocation: shift_min = 0, shift_max = 30
•	 insertion: insert_min = 0, insert_max = 30
•	 deletion: delete_min = 0, delete_max = 30
•	 reverse-complement: rc_prob = 0.5
•	 noise: noise_mean = 0, noise_std (standard deviation) = 0.3

For the DeepSTARR models, the hyperparameters were set to:

•	 mutation: mutate_frac = 0.05
•	 translocation: shift_min = 0, shift_max = 20
•	 insertion: insert_min = 0, insert_max = 20
•	 deletion: delete_min = 0, delete_max = 30

Page 11 of 14Lee et al. Genome Biology (2023) 24:105 	

•	 reverse-complement: rc_prob = 0
•	 noise: noise_mean = 0, noise_std = 0.3

 When augmentations were used in combinations, the maximum number of augmen-
tations was set to 3 for Basset and 2 for DeepSTARR. The same hyperparameter set-
tings used in DeepSTARR analyses with all augmentations were used for the ChIP-seq
analysis. For models trained with combinations of augmentations, the hyperparameters
intrinsic to augmentations were set at the values identified above and the maximum
number of augmentations per sequence was also determined through a hyperparameter
sweep for each dataset (Additional file 1: Figs. S2 and S5).

Unless otherwise specified, all models were trained (with or without data augmen-
tations) for 100 epochs using the Adam optimizer [36] with an initial learning rate of
1× 10−3 and a weight decay ( L2 penalty) term of 1× 10−6 ; additionally, we employed
early stopping with a patience of 10 epochs and a learning rate decay that decreased the
learning rate by a factor of 0.1 when the validation loss did not improve for 5 epochs. For
each model trained, the version of the model with the highest-performing weights dur-
ing its training, as measured by validation loss, is the version of the model whose perfor-
mance is reported here.

Fine‑tuning

Models that completed training with data augmentations were subsequently fine-tuned
on the original dataset without augmentations. Fine-tuning employs the Adam opti-
mizer with a learning rate of 1× 10−4 and a weight decay ( L2 penalty) term of 1× 10−6
for 5 epochs. The model that yields the lowest validation loss was used for test time
evaluation.

Evaluation

When evaluating models on validation or test sets, no data augmentations were used on
input sequences. For models trained with an insertion augmentation (alone or in combi-
nation with other augmentations), each sequence is padded at the 3′ end with a stretch
of random DNA of length insert_max.

Interpretability analysis

Filter interpretability

We visualized the first-layer filters of various Basset models according to activation-
based alignments [37] and compared how well they match motifs in the 2022 JASPAR
nonredundant vertebrates database [38] using Tomtom [39], a motif search comparison
tool. Matrix profiles MA1929.1 and MA0615.1 were excluded from filter matching to
remove poor quality hits; low information content filters tend to have a high hit rate with
these two matrix profiles. Hit rate is calculated by measuring how many filters matched
to at least one JASPAR motif. Average q-value is calculated by taking the average of the
smallest q-values for each filter among its matches.

Page 12 of 14Lee et al. Genome Biology (2023) 24:105

Attribution analysis

SHAP-based [40] attribution maps (implemented with GradientShap from the Cap-
tum package [41]) were used to generate sequence logos (visualized by Logomaker
[42]) for sequences that exhibited high experimental enhancer activity for the Develop-
mental promoter (i.e., task 0 in the DeepSTARR dataset). One thousand random DNA
sequences were synthesized to serve as references for each GradientShap-based attribu-
tion map. A gradient correction [43] was applied to each attribution map. For compari-
son, this analysis was repeated for a DeepSTARR model that was trained without any
augmentations and a fine-tuned DeepSTARR model that was pretrained with all aug-
mentations (excluding inversions) with two augmentations per sequence.

CAGI5 challenge analysis

The CAGI5 challenge dataset [21] was used to benchmark model performance on vari-
ant effect predictions. This dataset contains massively parallel reporter assays (MPRAs)
that measure the effect size of single-nucleotide variants through saturation mutagenesis
of 15 different regulatory elements ranging from 187 nt to 600 nt in length. We extracted
600 nt sequences from the reference genome centered on each regulatory region of
interest and converted it into a one-hot representation. Alternative alleles were then
substituted correspondingly to construct the CAGI test sequences.

For a given Basset model, the output predictions of two input sequences, one with a
centered reference allele and the other with an alternative allele, are made. The cell type-
agnostic approach employed in this study uses the mean across these values to calculate
a single scalar value, functional activity across cell types. The effect size is then calcu-
lated with the log-ratio of this single value for the alternative allele and reference allele,
according to: log(alternative value/reference value).

To evaluate the variant effect prediction performance, Pearson correlation was cal-
culated within each CAGI5 experiment between the experimentally measured and
predicted effect sizes. The average of the Pearson correlation across all 15 experiments
represents the overall performance of the model.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​023-​02941-w.

Additional file 1. Supplementary Tables S1-S3 and Figures S1-S7.

Additional file 2. Review history.

Acknowledgements
This work was supported in part by funding from the NIH grant R01HG012131 and the Simons Center for Quantitative
Biology at Cold Spring Harbor Laboratory. This work was performed with assistance from the US National Institutes of
Health Grant S10OD028632-01.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora-
tion with the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
NKL and PKK conceived of the method, designed the experiments, and wrote the majority of the code base. NKL, ST,
and ZT conducted experiments and analyzed the data. PKK oversaw the project. All authors interpreted the results and
contributed to the manuscript. The authors read and approved the final manuscript.

https://doi.org/10.1186/s13059-023-02941-w

Page 13 of 14Lee et al. Genome Biology (2023) 24:105 	

Availability of data and materials
EvoAug Python package is deposited on the Python Package Index (PyPI) repository with documentation hosted on
https://​evoaug.​readt​hedocs.​io. The open-source project repository is available under the MIT license at GitHub [30]
(https://​github.​com/p-​koo/​evoaug). The code to reproduce analyses in this paper is available under the MIT license at
GitHub, https://​github.​com/p-​koo/​evoaug_​analy​sis. Processed data, including DeepSTARR [9], Basset [20] and ChIP-seq
analysis, are available at Zenodo [32] (doi.​org/​10.​5281/​zenodo.​72659​91). Model weights and code [44] are also available
at Zenodo (doi.​org/​10.​5281/​zenodo.​77673​25).

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 12 December 2022 Accepted: 17 April 2023

References
	1.	 Chen KM, Wong AK, Troyanskaya OG, Zhou J. A sequence-based global map of regulatory activity for deciphering

human genetics. Nat Genet. 2022;54:1–10.
	2.	 Avsec Ž, Agarwal V, Visentin D, Ledsam JR, Grabska-Barwinska A, Taylor KR, Assael Y, Jumper J, Kohli P, Kelley

DR. Effective gene expression prediction from sequence by integrating long-range interactions. Nat Methods.
2021;18(10):1196–203.

	3.	 Zhou J. Sequence-based modeling of three-dimensional genome architecture from kilobase to chromosome scale.
Nat Genet. 2022;54(5):725–34.

	4.	 Hoffman GE, Bendl J, Girdhar K, Schadt EE, Roussos P. Functional interpretation of genetic variants using deep learn-
ing predicts impact on chromatin accessibility and histone modification. Nucleic Acids Res. 2019;47(20):10597–611.

	5.	 Dey KK, Van de Geijn B, Kim SS, Hormozdiari F, Kelley DR, Price AL. Evaluating the informativeness of deep learning
annotations for human complex diseases. Nat Commun. 2020;11(1):1–9.

	6.	 Koo PK, Ploenzke M. Improving representations of genomic sequence motifs in convolutional networks with expo-
nential activations. Nat Mach Intell. 2021;3(3):258–66.

	7.	 Avsec Ž, Weilert M, Shrikumar A, Krueger S, Alexandari A, Dalal K, Fropf R, McAnany C, Gagneur J, Kundaje A, et al.
Base-resolution models of transcription-factor binding reveal soft motif syntax. Nat Genet. 2021;53(3):354–66.

	8.	 Koo PK, Majdandzic A, Ploenzke M, Anand P, Paul SB. Global importance analysis: an interpretability method to
quantify importance of genomic features in deep neural networks. PLoS Comput Biol. 2021;17(5):1008925.

	9.	 de Almeida BP, Reiter F, Pagani M, Stark A. Deepstarr predicts enhancer activity from DNA sequence and enables the
de novo design of synthetic enhancers. Nat Genet. 2022;54(5):613–24.

	10.	 Horton CA, Alexandari AM, Hayes MG, Schaepe JM, Marklund E, Shah N, Aditham AK, Shrikumar A, Afek A, Green-
leaf WJ, et al. Short tandem repeats recruit transcription factors to tune eukaryotic gene expression. Biophys J.
2022;121(3):287–8.

	11.	 Shorten C, Khoshgoftaar TM. A survey on image data augmentation for deep learning. J Big Data. 2019;6(1):1–48.
	12.	 Fort S, Brock A, Pascanu R, De S, Smith SL. Drawing multiple augmentation samples per image during training

efficiently decreases test error. 2021. arXiv preprint arXiv:​2105.​13343
	13.	 Zhu S, An B, Huang F. Understanding the generalization benefit of model invariance from a data perspective. Adv

Neural Inf Process Syst. 2021;34:4328–41.
	14.	 Geiping J, Goldblum M, Somepalli G, Shwartz-Ziv R, Goldstein T, Wilson AG. How much data are augmentations

worth? An investigation into scaling laws, invariance, and implicit regularization. 2022. arXiv preprint arXiv:​2210.​
06441

	15.	 Puli A, Zhang LH, Oermann EK, Ranganath R. Out-of-distribution generalization in the presence of nuisance-induced
spurious correlations. 2021. arXiv preprint arXiv:​2107.​00520

	16.	 Zhou H, Shrikumar A, Kundaje A. Towards a better understanding of reverse-complement equivariance for deep
learning models in genomics. In: Machine Learning in Computational Biology, PMLR; 2022. p. 1–33

	17.	 Toneyan S, Tang Z, Koo PK. Evaluating deep learning for predicting epigenomic profiles. Nat Mach Intell.
2022;4:1–13.

	18.	 Kelley DR. Cross-species regulatory sequence activity prediction. PLoS Comput Biol. 2020;16(7):1008050.
	19.	 Frazer KA, Murray SS, Schork NJ, Topol EJ. Human genetic variation and its contribution to complex traits. Nat Rev

Genet. 2009;10(4):241–51.
	20.	 Kelley DR, Snoek J, Rinn JL. Basset: learning the regulatory code of the accessible genome with deep convolutional

neural networks. Genome Res. 2016;26(7):990–9.
	21.	 Shigaki D, Adato O, Adhikari AN, Dong S, Hawkins-Hooker A, Inoue F, Juven-Gershon T, Kenlay H, Martin B, Patra A,

Penzar DD, Schubach M, Xiong C, Yan Z, Boyle AP, Kreimer A, Kulakovskiy IV, Reid J, Unger R, Yosef N, Shendure J,
Ahituv N, Kircher M, Beer MA. Integration of multiple epigenomic marks improves prediction of variant impact in
saturation mutagenesis reporter assay. Hum Mutat. 2019;40(9):1280–91.

	22.	 Lu, A.X, Lu, A.X, Moses, A. Evolution is all you need: phylogenetic augmentation for contrastive learning. 2020. arXiv
preprint arXiv:​2012.​13475

https://evoaug.readthedocs.io
https://github.com/p-koo/evoaug
https://github.com/p-koo/evoaug_analysis
https://doi.org/10.5281/zenodo.7265991
https://doi.org/10.5281/zenodo.7767325
http://arxiv.org/abs/2105.13343
http://arxiv.org/abs/2210.06441
http://arxiv.org/abs/2210.06441
http://arxiv.org/abs/2107.00520
http://arxiv.org/abs/2012.13475

Page 14 of 14Lee et al. Genome Biology (2023) 24:105

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	23.	 Kryukov GV, Schmidt S, Sunyaev S. Small fitness effect of mutations in highly conserved non-coding regions. Hum
Mol Genet. 2005;14(15):2221–9.

	24.	 Crawshaw, M. Multi-task learning with deep neural networks: a survey. 2020. arXiv preprint arXiv:​2009.​09796
	25.	 Zbontar J, Jing L, Misra I, LeCun Y, Deny S. Barlow twins: Self-supervised learning via redundancy reduction. In:

International Conference on Machine Learning, PMLR; 2021. p. 12310–12320
	26.	 Hjelm RD, Fedorov A, Lavoie-Marchildon S, Grewal K, Bachman P, Trischler A, Bengio Y. Learning deep representa-

tions by mutual information estimation and maximization. 2018. arXiv preprint arXiv:​1808.​06670
	27.	 Devlin J, Chang M-W, Lee K, Toutanova K. Bert: Pre-training of deep bidirectional transformers for language under-

standing. 2018. arXiv preprint arXiv:​1810.​04805
	28.	 Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A, Vinyals O, Green T, Dunning I, Simonyan K,

et al. Population based training of neural networks. 2017. arXiv preprint arXiv:​1711.​09846
	29.	 Liaw R, Liang E, Nishihara R, Moritz P, Gonzalez JE, Stoica I. Tune: a research platform for distributed model selection

and training. 2018. arXiv preprint arXiv:​1807.​05118.
	30.	 Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S,

Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore
S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas
F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X. TensorFlow: Large-scale machine learning on hetero-
geneous systems. 2015. https://​www.​tenso​rflow.​org/. Accessed 31 Oct 2022.

	31.	 Bradbury J, Frostig R, Hawkins P, Johnson MJ, Leary C, Maclaurin D, Necula G, Paszke A, VanderPlas J, Wanderman-
Milne S, Zhang Q. JAX: Composable transformations of Python+NumPy programs. http://​github.​com/​google/​
jax. Accessed 31 Oct 2022.

	32.	 Lee NK, Toneyan S, Tang Z, Koo PK. EvoAug Data [Data set]. Zenodo. 2022. https://​doi.​org/​10.​5281/​zenodo.​72659​91.
Accessed 31 Oct 2022.

	33.	 Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift.
International Conference on Machine Learning, PMLR; 2015. p. 448–456

	34.	 Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks
from overfitting. J Mach Learn Res. 2014;15(1):1929–58.

	35.	 Luo Y, Hitz BC, Gabdank I, Hilton JA, Kagda MS, Lam B, Myers Z, Sud P, Jou J, Lin K, et al. New developments on the
encyclopedia of DNA elements (encode) data portal. Nucleic Acids Res. 2020;48(D1):882–9.

	36.	 Kingma D, Ba J. Adam: A method for stochastic optimization. 2014. arXiv preprint arXiv:​1412.​6980
	37.	 Koo PK, Ploenzke M. Deep learning for inferring transcription factor binding sites. Curr Opin Syst Biol. 2020;19:16–23.
	38.	 Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Lemma RB, Turchi L, Blanc-Mathieu R, Lucas J, Boddie

P, Khan A, Pérez NM, Fornes O, Leung TY, Aguirre A, Hammal F, Schmelter D, Baranasic D, Ballester B, Sandelin A,
Lenhard B, Vandepoele K, Wasserman WW, Parcy F, Mathelier A. JASPAR 2022: the 9th release of the open-access
database of transcription factor binding profiles. Nucleic Acids Res. 2021;50(D1):165–73.

	39.	 Gupta S, Stamatoyannopoulos JA, Bailey TL, Noble WS. Quantifying similarity between motifs. Genome Biol.
2007;8(2):1–9.

	40.	 Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv Neural Inf Process Syst.
2017;30. https://​papers.​nips.​cc/​paper_​files/​paper/​2017/​hash/​8a20a​86219​78632​d76c4​3dfd2​8b677​67-​Abstr​act.​html.

	41.	 Kokhlikyan N, Miglani V, Martin M, Wang E, Alsallakh B, Reynolds J, Melnikov A, Kliushkina N, Araya C, Yan S, Reblitz-
Richardson O. Captum: a unified and generic model interpretability library for pytorch. 2020. arXiv preprint arXiv:​
2009.​07896

	42.	 Tareen A, Kinney JB. Logomaker: beautiful sequence logos in python. Bioinformatics. 2020;36(7):2272–4.
	43.	 Majdandzic A, Rajesh C, Koo PK. Statistical correction of input gradients for black box models trained with categori-

cal input features. 2022. bioRxiv preprint. biorx​iv.​org/​conte​nt/​10.​1101/​2022.​04.​29.​49010​2v2.
	44.	 Lee NK, Toneyan S, Tang Z, Koo PK. EvoAug reproducibility code. Github. 2022. https://​github.​com/p-​koo/​evoaug_​

analy​sis. Accessed 31 Oct 2022.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/2009.09796
http://arxiv.org/abs/1808.06670
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1711.09846
http://arxiv.org/abs/1807.05118
https://www.tensorflow.org/
https://github.com/google/jax
https://github.com/google/jax
https://doi.org/10.5281/zenodo.7265991
http://arxiv.org/abs/1412.6980
https://papers.nips.cc/paper_files/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
http://arxiv.org/abs/2009.07896
http://arxiv.org/abs/2009.07896
https://www.biorxiv.org/content/10.1101/2022.04.29.490102v2
https://github.com/p-koo/evoaug_analysis
https://github.com/p-koo/evoaug_analysis

