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Abstract 

Deep neural networks (DNNs) hold promise for functional genomics prediction, but 
their generalization capability may be limited by the amount of available data. To 
address this, we propose EvoAug, a suite of evolution-inspired augmentations that 
enhance the training of genomic DNNs by increasing genetic variation. Random 
transformation of DNA sequences can potentially alter their function in unknown ways, 
so we employ a fine-tuning procedure using the original non-transformed data to pre-
serve functional integrity. Our results demonstrate that EvoAug substantially improves 
the generalization and interpretability of established DNNs across prominent regula-
tory genomics prediction tasks, offering a robust solution for genomic DNNs.
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Background
Uncovering cis-regulatory elements and their coordinated interactions is a major goal of 
regulatory genomics. Deep neural networks (DNNs) offer a promising avenue to learn 
these genomic features de novo through being trained to take DNA sequences as input 
and predict their regulatory functions as output [1–3]. Following training, these DNNs 
have been employed to score the functional effect of disease-associated variants [4, 5]. 
Moreover, post hoc model interpretability methods have revealed that DNNs base their 
decisions on learning sequence motifs of transcription factor (TF) binding sites and 
dependencies with other TFs and sequence context [6–10].

For DNNs, generalization typically improves with more training data. However, the 
amount of data generated in a high-throughput functional genomics experiment is fun-
damentally limited by the underlying biology. For example, the extent to which certain 
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TFs bind to DNA is constrained by the availability of high-affinity binding sites in acces-
sible chromatin.

To expand a finite dataset, data augmentations can provide additional variations on 
existing training data [11, 12]. Data augmentations act as a form of regularization, guid-
ing the learned function to be invariant to symmetries created by the data transfor-
mations [13, 14]. This approach can help prevent a DNN from overfitting to spurious 
features and improve generalization [15]. The main challenge with data augmentations 
in genomics is quantifying how the regulatory function changes for a given transforma-
tion. With image data, basic affine transformations can translate, magnify, or rotate an 
image without changing its label. However, in genomics, the available neutral augmenta-
tions are reverse-complement transformation [16] and small random translations of the 
input sequence [17, 18]. With the finite size of experimental data and a paucity of aug-
mentation methods, strategies to promote generalization for genomic DNNs are limited.

Here, we introduce EvoAug, an open-source PyTorch package that provides a suite 
of evolution-inspired data augmentations. We show that training DNNs with EvoAug 
leads to better generalization performance and improves efficacy with standard post hoc 
explanation methods, including filter interpretability and attribution analysis, across 
prominent regulatory genomics prediction tasks for well-established DNNs.

Results and discussion
Evolution‑inspired data augmentations for sequence‑based genomic DNNs

To enhance the effectiveness of sequence-based models, data augmentations should aim 
to increase genetic diversity while maintaining the same biological functionality. Evolu-
tion provides a natural process to generate genetic variability, including random muta-
tions, deletions, insertions, inversions, and translocations, among others [19]. However, 
these genetic changes often have functional consequences that expand phenotypic diver-
sity and aid in natural selection. While the addition of homologous sequences to a data-
set could achieve the goal of increasing sequence diversity while preserving biological 
function, identifying regulatory regions with similar functions throughout the genomes 
across species is difficult. Alternatively, synthetic perturbations that do not alter the 
function can be applied, but it is crucial to have prior knowledge to ensure that features 
such as motifs and their dependencies are not affected. Therefore, formulating new data 
augmentation strategies for genomics remains a significant challenge.

In this study, we present a suite of evolution-based data augmentations and a two-stage 
training curriculum to preserve functional integrity (Fig. 1a). In the first stage, a DNN is 
trained on sequences with EvoAug augmentations applied stochastically online during 
training, using the same training labels as the wild-type sequence. The goal is to enhance 
the model’s ability to learn robust representations of features, such as motifs, by expos-
ing it to expanded (albeit synthetically generated) genetic variation. While each augmen-
tation has the potential to disrupt core motifs in any given perturbation, we expect the 
overall effect to preserve motifs on average. However, the specific data augmentations 
employed may introduce a bias in how these motif grammars are structured. Thus, in 
the second stage, the DNN is fine-tuned on the original, unperturbed data to refine these 
features and guide the function towards the observed biology, thereby removing any bias 
introduced by the data augmentations (see Methods).
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EvoAug data augmentations introduce a modeling bias to learn invariances of the (un)
natural symmetries generated by the augmentations. For instance, random insertions 
and deletions assume that the distance between motifs is not critical, whereas random 
inversions and translocations promote invariances to motif strand orientation and the 
order of motifs, respectively. Nevertheless, the bias created by the augmentations can 
lead to poor generalization when the introduced bias does not accurately reflect the 
underlying biology. Therefore, the fine-tuning stage is critical as it provides an avenue to 
unlearn any biases not supported by the observed data.

EvoAug improves generalization and interpretability of genomic DNNs

To demonstrate the utility of EvoAug, we analyzed several established DNNs across 
three prominent types of regulatory genomic prediction tasks that span a range of 
complexity.

First, we applied Evoaug to the Basset model and dataset [20], which consists of a 
multi-task binary classification of chromatin accessibility sites across 161 cell types/tis-
sues. We trained the Basset model with each augmentation applied independently and 

Fig. 1  EvoAug improves generalization and interpretability of Basset models. a Schematic of 
evolution-inspired data augmentations (left) and the two-stage training curriculum (right). b Generalization 
performance (area under the precision-recall curve) for Basset models pretrained with individual and 
combinations of augmentations, i.e., Noise+Ins+RC (Gaussian noise, insertion, reverse-complement) and 
all augmentations (Gaussian noise, reverse-complement, mutation, translocation, deletion, insertion), and 
fine-tuned on Basset dataset. Standard represents no augmentations during training. c Comparison of the 
average hit rate of first-layer filters to known motifs in the JASPAR database (top) and the average q-value 
of the filters with matches (bottom). d Comparison of the average Pearson correlation between model 
predictions and experimental data from CAGI5 Challenge. b–d Each box-plot represents 5 trials with random 
initializations
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in various combinations. We conducted a hyperparameter sweep to determine the opti-
mal settings for each augmentation (Additional file 1: Figs. S1-S5). From hyperparameter 
sweeps, we observed that the inversion augmentation improved performance up to the 
sequence length, which is essentially a reverse-complement transformation (Additional 
file 1: Figs. S1, S3, and S4). Hence, inversions were excluded to reduce redundancy.

Remarkably, EvoAug-trained DNNs outperformed standard training with no augmen-
tations (Fig. 1b). The best results were achieved when multiple augmentations were used 
together. Additionally, we found that fine-tuning on the original data further improved 
performance, even when augmentation hyperparameters were poorly specified (Addi-
tional file  1: Fig. S1). Notably, specific EvoAug augmentations, such as random muta-
tions and combinations of data augmentations, had a profound impact on improving the 
motif representations learned by the first-layer convolutional filters (Fig. 1c). The con-
volutional filters capture a wider repertoire of motifs and their representations better 
reflect known motifs, both quantitatively and qualitatively, when compared with con-
volutional filters of models trained without augmentations. This suggests that EvoAug 
augmentations can help DNNs learn more accurate and informative representations of 
the sequence motifs.

A major downstream application of genomic DNNs is to score the functional conse-
quences of non-coding mutations. By evaluating the zero-shot prediction capabilities 
of each DNN on saturation mutagenesis data of 15 cis-regulatory elements from the 
CAGI5 Challenge [21], we found that models trained with EvoAug outperformed their 
standard training counterpart (Fig.  1d). Notably, Basset’s performance was compara-
ble to other DNNs based on binary predictions [17]; however, its overall performance 
was lower than more sophisticated DNNs and top competitors in the CAGI5 challenge 
[2]. Interestingly, we observed that DNNs pretrained with Gaussian noise or random 
mutagenesis augmentations did not perform well. These augmentations impose flat-
ness locally in sequence-function space, effectively reducing the effect size of nucleotide 
variants. However, fine-tuning these models improved their variant effect predictions 
beyond what was achieved with standard training, thus demonstrating the effectiveness 
of the two-stage training curriculum.

To further demonstrate the benefits of EvoAug, we trained DeepSTARR models as a 
multi-task quantitative regression to predict enhancer activity from self-transcribing 
active regulatory region sequencing (STARR-seq) data [9], where each task represents 
a different promoter from a developmental or housekeeping gene in Drosophila S2 cells. 
Most EvoAug augmentations resulted in improved performance, except for reverse-
complement and random mutations (Fig. 2a and Additional file 1: Figs. S3-S5). As before, 
we observed additional performance gains when augmentations were used in combina-
tion. Furthermore, the attribution maps generated by EvoAug-trained models were more 
interpretable, with identifiable motifs and less spurious noise (Additional file 1: Fig. S6).

In addition, we found that the EvoAug-trained DNNs consistently outperformed 
DNNs with standard training on various single-task binary classification tasks for TF 
binding across multiple chromatin immunoprecipitation sequencing (ChIP-seq) datasets 
(Fig. 2b). Interestingly, we did not observe any significant improvement in performance 
after fine-tuning, suggesting that the implicit prior imposed by EvoAug augmentations 
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was appropriate for these tasks; the underlying regulatory grammars for these TFs are 
not complex.

To further investigate the impact of EvoAug on small datasets, we retrained each DNN 
on down-sampled versions of two abundant ChIP-seq datasets. We found that EvoAug-
trained DNNs exhibit a greater improvement in performance for smaller datasets com-
pared to standard training (Fig. 2c). This result suggests that EvoAug can be particularly 
useful in scenarios where the available training data is limited.

Training with EvoAug adds a computational cost, depending on the augmentations 
chosen and their settings (Additional file  1: Tables S2 and S3). Nevertheless, EvoAug 
stabilized training (Additional file  1: Fig. S7), leading to smoother convergence and 
improved generalization overall.

Conclusion
EvoAug greatly expands the set of available data augmentations for genomic DNNs. Our 
study demonstrated that EvoAug’s two-stage training curriculum is effective in improv-
ing generalization performance. Moreover, EvoAug-trained models learned better rep-
resentations of consensus motifs, as evidenced by filter visualization and attribution 
analysis.

Our findings support previous arguments for using evolution as a natural source of 
data augmentation [22]. Interestingly, the impact of synthetic evolutionary perturbations 
was not excessively disruptive, and performance even improved before fine-tuning in 
most cases. This functional robustness appears to be a characteristic of the non-coding 
genome [23].

Data augmentations are a commonly used technique to balance bias and variance in 
machine learning models. However, their effectiveness is expected to decrease as the 
dataset size increases. Nevertheless, EvoAug still improved performance on the already 

Fig. 2  Generalization of EvoAug on additional models and datasets. a Box-plot of regression performance 
for DeepSTARR models pretrained with individual or combination of augmentations (i.e., insertion + 
translocation + deletion; all augmentations) and fine-tuned on original STARR-seq data for two promoters: 
developmental (top) and housekeeping (bottom). Standard represents no augmentations during training. 
b Box-plot of classification performance (area under the receiver-operating-characteristic curve) for DNNs 
trained on ChIP-seq datas. c Average classification performance for ChIP-seq experiments downsampled 
to different dataset sizes. Shaded region represents the standard deviation of the mean. a, b Each box-plot 
represents 5 trials with random initializations
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large Basset dataset. Other methods that can enhance generalization include multitask 
learning [24], contrastive learning [25, 26], and language modeling [27]. Even though 
Basset and DeepSTARR are already trained in a multitask framework, EvoAug improved 
their performance. Multitasking can introduce class imbalance, but EvoAug provides 
additional examples with pseudo-positive labels, which can mitigate this issue. EvoAug 
also provides different views of the data, which can be useful for contrastive learning. 
Importantly, EvoAug is a lightweight and effective strategy that only requires the original 
data.

The optimal combination of augmentations and their hyperparameter choices depends 
on the model and dataset. While we performed hyperparameter grid searches in this 
study, more advanced search strategies such as population-based training [28] using Ray 
Tune [29] could improve efficiency. In the future, we plan to investigate EvoAug’s poten-
tial in cross-dataset generalization and variant effect predictions, including expression 
quantitative trait loci.

EvoAug is a PyTorch package that is open-source [30], easy to use, extensible, and 
accessible via pip (https://​pypi.​org/​proje​ct/​evoaug) and GitHub (https://​github.​com/p-​
koo/​evoaug), with full documentation provided on ReadtheDocs.org (https://​evoaug.​
readt​hedocs.​io). In time, we plan to extend EvoAug functionality to TensorFlow [30] and 
JAX [31]. We anticipate that EvoAug will have broad utility in improving the efficacy of 
sequence-based DNNs for regulatory genomics.

Methods
Models and datasets

Basset

The Basset dataset [20] consists of a multi-task binary classification of chromatin acces-
sibility sites across 161 cell types/tissues. The inputs are genomic sequences of length 
600 nt and the output are binary labels (representing accessible or not accessible) for 
161 cell types measured experimentally using DNase I hypersensitive sites sequencing 
(DNase-seq). We filtered sequences that contained at least one N character and the data 
splits (training; validation; test) reduced from (1,879,982; 70,000; 71,886) to (437,478; 
16,410; 16,703). This “cleaned” dataset [32] was analyzed using a Basset-inspired model, 
which is given according to:

•	 Input x ∈ {0, 1}600×4 (one-hot encoding of 600 nt sequence)
•	 1D convolution (300 filters, size 19, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 3, stride 3)
•	 1D convolution (200 filters, size 11, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 4, stride 4)
•	 1D convolution (200 filters, size 7, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 2, stride 2)
•	 Fully-connected (1000 units)
•	 BatchNorm + ReLU

https://pypi.org/project/evoaug
https://github.com/p-koo/evoaug
https://github.com/p-koo/evoaug
https://evoaug.readthedocs.io
https://evoaug.readthedocs.io
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•	 Dropout (0.3)
•	 Fully-connected (1000 units)
•	 BatchNorm + ReLU
•	 Dropout (0.3)
•	 Fully-connected output (161 units, sigmoid)

BatchNorm represents batch normalization [33], and dropout [34] rates set the prob-
ability that neurons in a given layer are temporarily removed during each mini-batch of 
training.

DeepSTARR​

The DeepSTARR dataset [9] consists of a multi-task regression of enhancer activity for 
two promoters, well-known developmental and housekeeping transcriptional programs 
in D. melanogaster S2 cells. The inputs are genomic sequences of length 249 nt and 
the output is 2 scalar values representing the activity of developmental enhancers and 
housekeeping enhancers measured experimentally using STARR-seq. Sequences with N 
characters were also removed, but this minimally affected the size of the dataset (i.e., 
reduced it by approximately 0.005%). This dataset [32] was analyzed using the original 
DeepSTARR model, given according to:

•	 Input x ∈ {0, 1}249×4

•	 1D convolution (256 filters, size 7, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 2, stride 2)
•	 1D convolution (60 filters, size 3, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 2, stride 2)
•	 1D convolution (60 filters, size 5, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 2, stride 2)
•	 1D convolution (120 filters, size 3, stride 1)
•	 BatchNorm + ReLU
•	 Max-pooling (size 2, stride 2)
•	 Fully-connected (256 units)
•	 BatchNorm + ReLU
•	 Dropout (0.4)
•	 Fully-connected (256 units)
•	 BatchNorm + ReLU
•	 Dropout (0.4)
•	 Fully-connected output (2 units, linear)

ChIP‑seq

Transcription factor (TF) chromatin immunoprecipitation sequencing (ChIP-seq) 
data was processed and framed as a binary classification task. The inputs are genomic 
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sequences of length 200 nt and the output is a single binary label representing TF bind-
ing activity, with positive-label sequences indicating the presence of a ChIP-seq peak 
and negative-label sequences indicating a peak for a DNase I hypersensitive site from the 
same cell type but one that does not overlap with any ChIP-seq peaks. Nine representa-
tive TF ChIP-seq experiments in a GM12878 cell line and a DNase-seq experiment for 
the same cell line were downloaded from ENCODE [35]; for details, see Additional file 1: 
Table S1. Negative sequences (i.e., DNase-seq peaks that do not overlap with any posi-
tive peaks) were randomly down-sampled to match the number of positive sequences, 
keeping the classes balanced. The dataset was split randomly into training, validation, 
and test set according to the fractions 0.7, 0.1, and 0.2, respectively [32].

A custom convolutional neural network was employed to analyze these datasets, 
given according to:

•	 Input x ∈ {0, 1}200×4

•	 1D convolution (64 filters, size 7, stride 1)
•	 BatchNorm + ReLU
•	 Dropout (0.2)
•	 Max-pooling (size 4, stride 4)
•	 1D convolution (96 filters, size 5, stride 1)
•	 BatchNorm + ReLU
•	 Dropout (0.2)
•	 Max-pooling (size 4, stride 4)
•	 1D convolution (128 filters, size 5, stride 1)
•	 BatchNorm + ReLU
•	 Dropout (0.2)
•	 Max-pooling (size 2, stride 2)
•	 Fully-connected layer (256 units)
•	 BatchNorm + ReLU
•	 Dropout (0.5)
•	 Fully-connected output layer (1 unit, sigmoid)

Evolution‑inspired data augmentations

EvoAug is comprised of a set of data augmentations given by the following:

•	 Mutation: a transformation where single nucleotide mutations are randomly 
applied to a given wild-type sequence. This is implemented as follows: (1) given 
the hyperparameter of the fraction of nucleotides in each sequence to mutate 
(mutate_frac), the number of mutations for a given sequence length is calcu-
lated; (2) a position along the sequence is randomly sampled (with replacement) 
for each number of mutations; and (3) the selected positions are mutagenized to 
a random nucleotide. Since our implementation does not guarantee that a nucle-
otide selected will be mutated to a different nucleotide than it originally was, 
we take approximate account for silent mutations by dividing the user-defined 
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mutate_frac by 0.75 so that on average the fraction of nucleotides in each 
sequence mutated to a different nucleotide is equal to mutate_frac.

•	 Translocation: a transformation that randomly selects a break point in the 
sequence (thereby creating two segments) and then swaps the order of the two 
sequence segments. An equivalent statement of this transformation is a “roll”—
shifting the sequence forward along its length a randomly specified distance and 
then reintroducing the part of the sequence shifted beyond the last position back 
at the first position. This is implemented as follows: (1) given the hyperparam-
eters of the minimum distance (shift_min, default 0) and maximum distance 
(shift_max) of the shift, the integer-valued shift length is chosen randomly 
from the interval [−shift_max,−shift_min] ∪ [shift_min,shift_max] , 
where a negative value simply denotes a backward shift rather than a forward shift, 
and (2) the shift is applied to the sequence with a roll() function in PyTorch.

•	 Insertion: a transformation where a random DNA sequence (of random length) 
is inserted randomly into a wild-type sequence. This is implemented as follows: 
(1) given the hyperparameters of the minimum length (insert_min, default 0) 
and maximum length (insert_max) of the insertion, the integer-valued inser-
tion length is chosen randomly from the interval between insert_min and 
insert_max (inclusive), and (2) the insertion is inserted at a random position 
within the original sequence. Importantly, to maintain a constant input sequence 
length to the model (i.e., original length plus insert_max), the remaining 
amount of length between the insertion length and insert_max is split evenly 
and placed on the 5’ and 3’ flanks of the sequence, with the remainder from odd 
lengths going to the 3′ end. Whenever an insertion augmentation is employed in 
combination with other augmentations, all sequences without an insertion are 
padded with a stretch of random DNA of length insert_max at the 3′ end to 
ensure that the model processes sequences with a constant length for both train-
ing and inference time.

•	 Deletion: a transformation where a random, contiguous segment of a wild-type 
sequence is removed, and the shortened sequence is then padded with random 
DNA sequence to maintain the same length as wild-type. This is implemented as 
follows: (1) given the hyperparameters of the minimum length (delete_min, 
default 0) and maximum length (delete_max) of the deletion, the integer-val-
ued deletion length is chosen randomly from the interval between delete_min 
and delete_max (inclusive); (2) the starting position of the deletion is chosen 
randomly from the valid positions in the sequence that can encapsulate the dele-
tion; (3) the deletion is performed on the designated stretch of the sequence; (4) 
the remaining portions of the sequence are concatenated together; and (5) random 
DNA is used to pad the 5′ and 3′ flanks to maintain a constant input sequence 
length, similar to the procedure for insertions.

•	 Inversion: a transformation where a random subsequence is replaced by its 
reverse-complement. This is implemented as follows: (1) given the hyperparam-
eters of the minimum length (invert_min, default 0) and maximum length 
(invert_max) of the inversion, the integer-valued inversion length is chosen 
randomly from the interval between invert_min and invert_max (inclu-
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sive); (2) the starting position of the inversion is chosen randomly from the valid 
position indices in the sequence; and (3) the inversion (i.e., a reverse-complement 
transformation) is performed on the designated subsequence while the remaining 
portions of the sequence remain untouched.

•	 Reverse-complement: a transformation where a full sequence is replaced with some 
probability rc_prob by its reverse-complement.

•	 Gaussian noise: a transformation where Gaussian noise (with distribution parame-
ters noise_mean = 0 and noise_std) is added to the input sequence; a random 
value drawn independently and identically from the specified distribution is added to 
each element of the one-hot input matrix.

Pretraining with data augmentations

Training with augmentations requires two main hyperparameters: first, a set of aug-
mentations to sample from; and second, the maximum number of augmentations to 
be applied to a sequence. For each mini-batch during training, each sequence is ran-
domly augmented independently. The number of augmentations to be applied to a given 
sequence has two possible settings in EvoAug: (1) hard, always equal to the maximum 
number of augmentations, or (2) soft, randomly select the number of augmentations 
for a sequence from 1 to the maximum number. Our experiments with Basset and Deep-
STARR use the former setting, while our experiments with ChIP-seq datasets use the 
latter setting. Then, the subset of augmentations to be applied to the sequence is sam-
pled randomly without replacement from the user-defined set of augmentations. After 
a subset of augmentations is chosen, the order in which multiple augmentations are 
applied to a single sequence is given by the following priority: inversion, deletion, trans-
location, insertion, reverse-complement, mutation, noise addition. Each augmentation is 
then applied stochastically for each sequence.

For the Basset and DeepSTARR models, each augmentation has an optimal setting 
that was determined from a hyperparameter search independently using the validation 
set (Additional file 1: Figs. S1, S3, and S4). For the Basset models, the hyperparameters 
were set to:

•	 mutation: mutate_frac = 0.15
•	 translocation: shift_min = 0, shift_max = 30
•	 insertion: insert_min = 0, insert_max = 30
•	 deletion: delete_min = 0, delete_max = 30
•	 reverse-complement: rc_prob = 0.5
•	 noise: noise_mean = 0, noise_std (standard deviation) = 0.3

For the DeepSTARR models, the hyperparameters were set to:

•	 mutation: mutate_frac = 0.05
•	 translocation: shift_min = 0, shift_max = 20
•	 insertion: insert_min = 0, insert_max = 20
•	 deletion: delete_min = 0, delete_max = 30
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•	 reverse-complement: rc_prob = 0
•	 noise: noise_mean = 0, noise_std = 0.3

 When augmentations were used in combinations, the maximum number of augmen-
tations was set to 3 for Basset and 2 for DeepSTARR. The same hyperparameter set-
tings used in DeepSTARR analyses with all augmentations were used for the ChIP-seq 
analysis. For models trained with combinations of augmentations, the hyperparameters 
intrinsic to augmentations were set at the values identified above and the maximum 
number of augmentations per sequence was also determined through a hyperparameter 
sweep for each dataset (Additional file 1: Figs. S2 and S5).

Unless otherwise specified, all models were trained (with or without data augmen-
tations) for 100 epochs using the Adam optimizer [36] with an initial learning rate of 
1× 10−3 and a weight decay ( L2 penalty) term of 1× 10−6 ; additionally, we employed 
early stopping with a patience of 10 epochs and a learning rate decay that decreased the 
learning rate by a factor of 0.1 when the validation loss did not improve for 5 epochs. For 
each model trained, the version of the model with the highest-performing weights dur-
ing its training, as measured by validation loss, is the version of the model whose perfor-
mance is reported here.

Fine‑tuning

Models that completed training with data augmentations were subsequently fine-tuned 
on the original dataset without augmentations. Fine-tuning employs the Adam opti-
mizer with a learning rate of 1× 10−4 and a weight decay ( L2 penalty) term of 1× 10−6 
for 5 epochs. The model that yields the lowest validation loss was used for test time 
evaluation.

Evaluation

When evaluating models on validation or test sets, no data augmentations were used on 
input sequences. For models trained with an insertion augmentation (alone or in combi-
nation with other augmentations), each sequence is padded at the 3′ end with a stretch 
of random DNA of length insert_max.

Interpretability analysis

Filter interpretability

We visualized the first-layer filters of various Basset models according to activation-
based alignments [37] and compared how well they match motifs in the 2022 JASPAR 
nonredundant vertebrates database [38] using Tomtom [39], a motif search comparison 
tool. Matrix profiles MA1929.1 and MA0615.1 were excluded from filter matching to 
remove poor quality hits; low information content filters tend to have a high hit rate with 
these two matrix profiles. Hit rate is calculated by measuring how many filters matched 
to at least one JASPAR motif. Average q-value is calculated by taking the average of the 
smallest q-values for each filter among its matches.
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Attribution analysis

SHAP-based [40] attribution maps (implemented with GradientShap from the Cap-
tum package [41]) were used to generate sequence logos (visualized by Logomaker 
[42]) for sequences that exhibited high experimental enhancer activity for the Develop-
mental promoter (i.e., task 0 in the DeepSTARR dataset). One thousand random DNA 
sequences were synthesized to serve as references for each GradientShap-based attribu-
tion map. A gradient correction [43] was applied to each attribution map. For compari-
son, this analysis was repeated for a DeepSTARR model that was trained without any 
augmentations and a fine-tuned DeepSTARR model that was pretrained with all aug-
mentations (excluding inversions) with two augmentations per sequence.

CAGI5 challenge analysis

The CAGI5 challenge dataset [21] was used to benchmark model performance on vari-
ant effect predictions. This dataset contains massively parallel reporter assays (MPRAs) 
that measure the effect size of single-nucleotide variants through saturation mutagenesis 
of 15 different regulatory elements ranging from 187 nt to 600 nt in length. We extracted 
600 nt sequences from the reference genome centered on each regulatory region of 
interest and converted it into a one-hot representation. Alternative alleles were then 
substituted correspondingly to construct the CAGI test sequences.

For a given Basset model, the output predictions of two input sequences, one with a 
centered reference allele and the other with an alternative allele, are made. The cell type-
agnostic approach employed in this study uses the mean across these values to calculate 
a single scalar value, functional activity across cell types. The effect size is then calcu-
lated with the log-ratio of this single value for the alternative allele and reference allele, 
according to: log(alternative value/reference value).

To evaluate the variant effect prediction performance, Pearson correlation was cal-
culated within each CAGI5 experiment between the experimentally measured and 
predicted effect sizes. The average of the Pearson correlation across all 15 experiments 
represents the overall performance of the model.
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