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Abstract 

Recent deep learning models that predict the Hi-C contact map from DNA sequence 
achieve promising accuracy but cannot generalize to new cell types and or even 
capture differences among training cell types. We propose Epiphany, a neural network 
to predict cell-type-specific Hi-C contact maps from widely available epigenomic 
tracks. Epiphany uses bidirectional long short-term memory layers to capture long-
range dependencies and optionally a generative adversarial network architecture to 
encourage contact map realism. Epiphany shows excellent generalization to held-out 
chromosomes within and across cell types, yields accurate TAD and interaction calls, 
and predicts structural changes caused by perturbations of epigenomic signals.
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Background
In vertebrate genomes, the three-dimensional (3D) hierarchical folding of chromatin in 
the nucleus plays a critical role in the regulation of gene expression, replication timing, 
and cellular differentiation [1, 2]. This 3D chromatin architecture has been elucidated 
through genome-wide chromosome conformation capture (3C) assays such as Hi-C, 
Micro-C, HiChIP, and ChIA-PET [3–6] followed by next generation sequencing, yielding 
a contact matrix representation of pairwise chromatin interactions. Early Hi-C analy-
ses revealed an organization of ∼1Mb self-interacting topologically associating domains 
(TADs) that may insulate within-TAD genes from enhancers outside of TAD boundaries 
[7]. High-resolution 3C-based studies have mapped regulatory interactions, often falling 
within TADs, that connect regulatory elements to target gene promoters [8, 9].

Over the past decade, large consortium projects as well as individual labs have exten-
sively used 1D epigenomic assays to map regulatory elements and chromatin states 
across numerous human and mouse cell types. These include methods to identify chro-
matin accessible regions (DNase I hypersensitive site mapping, ATAC-seq) as well as 
transcription factor occupancy and histone modifications (ChIP-seq, CUT&RUN). 
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While at least some of these 1D assays have become routine, mapping 3D interactions 
with Hi-C remains relatively difficult and prohibitively costly, and high-resolution con-
tact maps (5 kb resolution,  2 billion read pairs) are still only available for a small number 
of cell types. This raises the question of whether it is possible to train a model to accu-
rately predict the Hi-C contact matrix from more easily obtained 1D epigenomic data in 
a cell-type-specific fashion. Such a model could ultimately be used to predict how per-
turbations in the 1D epigenome—including deletion of TAD boundaries or inactivation 
of distal regulatory elements—would impact 3D organization.

Initial machine learning methods to predict Hi-C interactions from 1D epigenomic 
data or DNA sequence took a pairwise approach, treating each interacting or non-
interacting pair of genomic bins as an independent training example [10, 11]. For exam-
ple, HiC-Reg [10] used a random forest regression model to predict the Hi-C contact 
signal from epigenomic features of the pair of anchoring genomic intervals. Two more 
recent models, DeepC [12] and Akita [13], respectively predict ‘stripes’ or submatrices 
of the Hi-C contact matrix from DNA sequence, capturing the non-independence of 
interaction bins. Neither method uses epigenomic data as an input signal. DeepC [12] 
presented a transfer learning framework by pre-training a model to predict epigenomic 
marks from DNA sequence in order to learn useful local sequence representations, 
then fine-tuning the model to predict the Hi-C contact map. Akita [13] designed a deep 
convolutional neural network to predict the Hi-C contact maps of multiple cell types 
from DNA sequence. These prior studies represent a significant advance in predicting 
3D genomic structure, and the DeepC and Akita models demonstrated some success in 
predicting the impact of sequence perturbations like structural genetic variants on local 
chromatin folding. However, there are also clear limitations to these approaches. Mod-
els that start with DNA sequence need considerable computational resources to extract 
and propagate useful information from base-pair resolution to megabase scale. More 
importantly, by learning mappings from only DNA sequence to Hi-C contact map data 
in the training cell types—and therefore lacking any cell-type-specific feature inputs—
the resulting models cannot generalize to new cell types that are not seen in training. 
In fact, it has also been observed that sequence-based models capture very limited cell-
type-specific information about 3D genomic architecture even across the training data 
and instead predict similar structures in every cell type [13].

Here, we propose a novel neural network model called Epiphany to predict the cell-
type-specific Hi-C contact map from five commonly generated epigenomic tracks that 
are already available for a wide number of cell types and tissues: DNase I hypersensi-
tive sites and CTCF, H3K27ac, H3K27me3, and H3K4me3 ChIP-seq. Epiphany uses 
1D convolutional layers to learn local representations from the input tracks as well as 
bidirectional long short term memory (Bi-LSTM) layers to capture long term depend-
encies along the epigenome and, optionally, a generative adversarial network (GAN) 
architecture to encourage realism. One goal of our study is to predict contact maps 
that are usable for downstream computational analyses such as TAD and interaction 
calls. To this end, we assessed model performance using multiple normalization and 
matrix balancing techniques including Knight-Ruiz (KR) [14], iterative correction (ICE) 
[15], and HiC-DC+ [16] Z-score and observed-over-expected count ratio. Epiphany is 
trained with either MSE alone or with a combination of mean-squared error (MSE) and 
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adversarial loss to enhance its ability to produce realistic rather than highly smoothed 
Hi-C contact maps. Use of MSE+GAN loss enables improved biological interpretation 
with only a small trade-off in accuracy for downstream prediction tasks. The adversar-
ial loss is calculated using a simultaneously trained GAN-style discriminator network, 
which distinguishes real contact maps from predicted ones, and helps the model to 
improve its prediction quality. Epiphany shows robust performance and generalization 
abilities to held-out chromosomes within and across cell types and species, and its pre-
dicted contact matrices yield accurate TAD and significant interaction calls. At inference 
time, Epiphany can be used to study the contribution of specific epigenomic signals to 
3D architecture and to predict the structural changes caused by perturbations of epig-
enomic signals.

Results
Epiphany: A CNN‑LSTM trained with an adversarial loss accurately predicts Hi‑C contact 

maps

Epiphany uses epigenomic signals (DNaseI, CTCF, H3K27ac, H3K27me3, H3K4me3) to 
predict normalized Hi-C contact maps. Epigenomic signals are extracted at 100bp res-
olution from normalized .bigWig files without applying a peak calling step. Hi-C con-
tact maps were initially binned at 10 kb resolution and normalized using the HiC-DC+ 
package [16] to produce Z-scores and observed-over-expected (obs/exp)  count ratios, 
Juicer Tools [17] for KR normalization, and HiCExplorer [18] for ICE normalization. The 
normalization approaches provided by HiC-DC+ are derived from a negative binomial 
regression that is estimated directly from count data and adjusts for genomic distance 
and other covariates.

Epiphany can be trained with MSE alone or with a combination of MSE and GAN loss. 
In the latter case, the full model consists of two parts: a generator to extract information 
and make predictions, and a discriminator to introduce adversarial loss into the training 
process (Fig. 1A and in the “Methods” section). In the generator, we first used a series of 
convolution modules to featurize epigenomic information in a sliding window fashion. 
For one output vector, which covers a distance of 1Mb orthogonal to the diagonal, we 
used a window size of 1.4 Mb centered at the corresponding region as input (Fig. 1B). 
Then a Bi-LSTM layer was employed to capture the dependencies between output vec-
tors, so that a total of 3.4 Mb input were processed in one pass for prediction of 200 out-
put vectors. At the end, a fully connected layer was used to integrate signals and make 
the final prediction. We also introduced an adversarial loss and a discriminator, which 
consists of several convolution modules that are applied during training and pushes the 
generator to produce realistic samples (Fig. 1C).

Given the sequential nature of Hi-C contact maps, interactions on consecutive out-
put vectors are unlikely to be independent from one another. We found that Bi-LSTM 
layers introduce strong dependencies between the output vectors, which allows Epiph-
any to leverage structures that span multiple genomic positions in Hi-C maps (such as 
edges of TADs). Furthermore, Bi-LSTM layers overcome the limitation of convolutional 
neural networks (CNNs) by enabling each output vector to make use of important sig-
nals beyond the input window. This is conducive to studying the contribution of distal 
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regulatory elements towards 3D genome structures and reduces the sensitivity of model 
performance to the choice of window size.

Past approaches that predict the 3D genome structure from 1D inputs use pixel-wise 
MSE to quantify the similarity between predicted and ground truth Hi-C maps. How-
ever, pixel-wise losses for images have been shown by the computer vision community 
to be overly sensitive to noise [19] and to yield blurry results when used as objectives 
for image synthesis [20, 21]. In the context of predicting Hi-C maps, MSE loss can over-
penalize poor performance on featureless, noisy regions while giving perceptually incor-
rect regions of significant interactions. These issues can be mitigated with an adversarial 
loss, which enables the model to generate highly realistic samples while circumventing 
the need to explicitly define similarity metrics for complex modalities of data. Thus, 
Epiphany provides the option of training using a convex combination of MSE loss and 
adversarial loss. A parameter � was introduced to balance the proportion of MSE loss 
and adversarial loss, and the loss function was defined as

Fig. 1 Epiphany employs long short-term memory and adversarial loss to predict the Hi-C contact map. 
A Architecture of Epiphany. Epigenomic signal tracks are first presented to the model in a sliding window 
fashion, with window size of 1.4 Mb and step size of 10 kb. During training, we take a total length of 3.4 
Mb of the input (200 windows) in one pass. In the generator, the processed input data is first featurized by 
convolution modules, followed by a Bi-LSTM layer to capture the dependencies between nearby bins. After 
a fully connected layer, the predicted contact map is generated. An MSE loss between the predicted map 
and the ground truth is calculated in order to train the generator to predict correct structures. To mitigate the 
overly-smoothed predictions by the pixel-wise losses, we further introduced a discriminator and adversarial 
loss. The discriminator consists of several convolution modules, and an adversarial loss was calculated to 
enable the model to generate highly realistic samples. We trained Epiphany with a combined loss of these 
two components. B An illustration of prediction scheme. The first window of input data (blue horizontal 
line, 1.4 Mb) is used to predict a vector on the Hi-C contact map that is orthogonal to the diagonal (blue bin 
vector, covers 1 Mb from the diagonal). Note that an extra .2 Mb of input is added to either side of each input 
window (a total length of 1.4 Mb instead of 1 Mb) in order to provide the model with additional context. 
During training, 3.4-Mb input tracks are processed using sliding windows (200 windows) in one pass, and 200 
consecutive vectors are being predicted. C An example region of input epigenomic tracks (bottom), target 
Hi-C map (top row), and predicted Hi-C map (second row)
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where Ladv(θ
G , θD) is the adversarial loss, and LMSE(θ

G) is the MSE between the pre-
dicted contact map and ground truth. Intuitively, the MSE loss ensures that the Hi-C 
maps predicted by Epiphany are aligned with their corresponding epigenomic tracks, 
while the adversarial loss ensures that the predictions are realistic. We found that using 
this customized training objective yields realistic Hi-C maps—rather than the smooth 
and ‘idealized’ maps produced by MSE—that aid in biological interpretation, including 
after in silico epigenomic perturbation experiments. However, we found that both the 
MSE and MSE+GAN versions of Epiphany produced maps that can be directly pro-
cessed by commonly used downstream analysis tools for TAD and interaction calls.

Training with MSE alone leads to prediction of perceptually poor contact maps

To illustrate why MSE alone can be an inadequate metric for reconstructing and eval-
uating the quality of the predicted contact map, we conducted two analyses: first, we 
examined how synthetic contact maps could achieve good MSE while failing to cap-
ture features of true Hi-C maps; and second, we considered the spatial properties of 
predicted regions of significant interactions in the MSE-only and MSE+GAN models. 
Additional file 1: Fig. S1 shows true, predicted and synthetic Hi-C maps for three exam-
ple regions on chromosome 3. Each Hi-C map is rotated: the y-axis on the left shows the 
genomic coordinates, and the x-axis shows the distance from the diagonal. From left to 
right we plot: the ground truth Hi-C map, the prediction from MSE model, the predic-
tion from GAN model, synthetic Hi-C map 1 (local average of the Hi-C map), synthetic 
Hi-C map 2 (local average for each genomic distance on the Hi-C map), synthetic Hi-C 
map 3 (averaged value at each genomic distance). The MSE value compared with ground 
truth and the discriminator score calculated from the well-trained discriminator are 
shown in the subtitles. Although the synthetic maps look nothing like the real Hi-C map, 
they can still achieve a low MSE score compared to ground truth. For example, synthetic 
map 1 has equivalent MSE loss compared to the GAN prediction; synthetic map 2 has 
almost the same MSE loss as the blurry prediction. We conclude that MSE alone does 
not capture the quality of the contact map, and that optimizing MSE alone may not be 
enough to generate good predictions. We therefore added a GAN component to push 
the model to generate more realistic maps. The ‘Disc’ value indicates the score calculated 
from the well-trained discriminator, where a high score means the matrix is very Hi-C-
like, and a low score indicates the matrix is unlike true Hi-C. The discriminator can eas-
ily tell that the synthetic matrices are not Hi-C matrices.

To further explore the nature of the ‘blurry’ MSE-only model predictions, we examined 
the predicted regions of significant interactions in each case. In Additional file 1: Fig. S2, 
we extracted random regions from test chromosome 3 of GM12878 (size: 2Mb along the 
diagonal, 1Mb from the diagonal). In each case, the left column shows the Hi-C map of 
ground truth (top), prediction from the MSE-only trained model (middle), and predic-
tion from the MSE+GAN model (bottom), using O/E target values. The middle column 
shows the significant interactions called from each map, where interactions >= 2 are 
marked as 1 (“significant”), and interactions < 2 are marked as 0 (“not significant”). The 

(1)min
θG

max
θD

(1− �)Ladv(θ
G , θD)+ �LMSE(θ

G)
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right column shows the absolute difference of the significance plot (green = 0, no differ-
ence; yellow = 1, false negatives, purple = − 1, false positives). In each case, the MSE-
only blurry prediction gives slightly better accuracy than the GAN prediction. However, 
if we check the spatial distribution of the significant calls, the GAN model produces bet-
ter structure than the MSE-only model. We can see from the binarized interaction plot 
(middle column) that predictions from the MSE-only model give “blob-like” regions of 
significant interactions due to its blurriness, while the GAN model identifies edges and 
TAD-like structures. We also found that the false predictions from the GAN model were 
usually caused by a small pixel shift.

The observations above that the MSE relative to ground truth can be good even for a 
perceptually poor synthetic or predicted contact map (Additional file 1: Fig S1) and the 
perceptually apparent structural problems of the MSE-only binarized predictions (Addi-
tional file  1: Fig. S2) are related to the “perception-distortion trade-off” that has been 
described theoretically in the image reconstruction literature [22], where the model 
tries to reconstruct an image X̂ from a degraded version of the original image X. Briefly, 
the authors show that there is a trade-off between optimizing the distortion measure 
between the reconstructed image X̂ and original image X vs. improving the perceptual 
quality of X̂ , and a GAN provides a principled approach to navigate this trade-off.

When we train Epiphany with both MSE and adversarial loss, we can use the well-
trained discriminator from the model as a perceptual score to evaluate predictions. In 
Additional file 1: Fig. S3, we plot the perceptual score for all sub-regions (200×100, 2Mb 
along the diagonal, 1M from the diagonal) predicted on chr3. In Additional file 1: Fig. 
S3A, the x-axis shows the genomic location of each 2Mb×1Mb sub-region along the 
diagonal and the y-axis shows the perceptual score. Blue dots show the perceptual score 
for ground truth Hi-C, green dots for the GAN prediction, and orange for the MSE-only 
prediction. All contact maps predicted by the MSE-only model obtain very low percep-
tual scores. In Additional file 1: Fig. S3B, we show example regions with the highest per-
ceptual score in ground truth (a), MSE-only prediction (b), and GAN prediction (c); note 
that these examples correspond to different genomic locations.

Epiphany accurately predicts the Hi‑C contact map

We first benchmarked the model at 10 kb resolution to compare between two loss func-
tions: MSE only and the convex combination of MSE and adversarial loss. Both losses 
use the observed-over-expected count ratio normalization based on HiC-DC+. Models 
were trained on data from the GM12878 ENCODE cell line, with chr3, 11, and 17 as 
completely held-out chromosomes. Epiphany demonstrates good performance for both 
the Pearson and Spearman correlation metrics using the observed-over-expected count 
ratio (Table 1), while MSE produced higher correlations than the convex combination of 
MSE and adversarial loss. However, as discussed above, we observed that the high corre-
lations from MSE trained models were associated with blurriness and poorer perceptual 
quality in the predicted contact maps (Fig. 2A), whereas the correlations produced by 
the combined loss models may have been slightly diminished due to small deviations in 
the sharper predictions. Therefore, we reasoned that correlation may not be an appro-
priate evaluation metric and decided to use the combined loss (MSE+adversarial loss) 
for most of the downstream analyses below; however, users can choose between the 
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MSE-only and MSE+GAN training modes depending on the desired trade-off between 
higher correlation vs. better perceptual quality for their application.

We next tested the robustness of Epiphany with various normalization methods, 
including KR normalization, ICE normalization, and obs/exp values and Z-scores from 
HiC-DC+. All models were set up with the same training approach as before, where 
chr3, 11, and 17 were used as held-out chromosomes and models were trained with 
the combined loss. Epiphany shows robust performance in all normalization methods 
(Fig. 2B). ICE normalization obtained the highest correlations, with an average Pearson 
correlation of 0.7028 and Spearman correlation of 0.5303 on completely held-out chro-
mosomes (Table  1). We observed a correlation spike towards the end of the genomic 
distance range, apparently caused by an edge effect artifact in prediction of the contact 
map. In practice, we suggest that a smaller region (strictly smaller than 1Mb from the 
diagonal) of the predicted contact map should be used in downstream analyses to avoid 
this edge effect, or the model architecture should be slightly altered to predict a wider 
( > 1 Mb from the diagonal) region to push the edge beyond the desired field of view.

To explore the capacity of Epiphany to capture key structures in genome architecture, 
we next evaluated the ability of Epiphany predictions to recover TAD boundaries. For 
all normalization methods and their predictions, we called TAD boundaries using Top-
Dom [23] with window sizes ranging from 10 to 50 (corresponding to 100 kb to 500 
kb regions). Because TAD calls depend on the normalization method, we first used KR 
normalization as the gold standard and compared TAD insulation scores computed on 
ground truth data on the test chromosomes using different normalization methods. 
Note that we chose to compare insulation scores rather than TAD boundaries, since 
the latter relies on finding local extrema in the insulation score signal and therefore can 
be unstable. Among all these methods, ICE had the highest consistency with KR, fol-
lowed by Z-scores calculated from HiC-DC+. The observed-over-expected count ratios 
had the least consistency and showed large variation over the three test chromosomes 
(Fig. 2C, left). We then compared the insulation score calculated from the Epiphany-pre-
dicted contact maps trained with different normalization methods vs. the corresponding 
ground truth on the test chromosomes. ICE showed robust predictions on all test chro-
mosomes, whereas HiC-DC+ observed-over-expected count ratio normalization dis-
played strong mean performance but had larger variance, especially for larger window 
sizes. HiC-DC+ Z-scores and KR normalization showed lower consistency between 
predicted vs. ground truth insulation scores (Fig. 2C, right). From a visual comparison 
of ground truth and predicted contact maps with different normalization approaches, 

Table 1 Mean Pearson and Spearman correlation for different normalization methods

Normalization 
Method

� Pearson 
(all)

Pearson 
(train)

Pearson 
(test)

Spearman 
(all)

Spearman 
(train)

Spearman 
(test)

Obs/Exp 0.95 0.7408 0.7687 0.5636 0.6899 0.7191 0.5048

Obs/Exp 1 (MSE 
only)

0.7833 0.8045 0.6494 0.7381 0.7605 0.5963

Z-score 0.95 0.6881 0.7222 0.4722 0.6695 0.7034 0.4544

KR 0.35 0.7289 0.7510 0.5889 0.5909 0.6135 0.4477

ICE 0.35 0.8108 0.8288 0.7028 0.6631 0.6852 0.5303
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we can see Epiphany consistently predicts accurate TAD structures (Fig. 2D, epigenomic 
tracks for these loci at Additional file 1: Fig. S4). Overall, this analysis suggests that, for 
accurate prediction of TAD structure, Epiphany trained on ICE normalized contact 
maps gave the best performance, with HiC-DC+ observed-over-expected count ratio as 
runner-up.

One advantage of HiC-DC+ normalization is that it readily allows the comparison of 
significant interactions between predicted contact maps and ground truth. HiC-DC+ 

Fig. 2 Epiphany-predicted contact maps identify TADs and significant interactions. A A visual comparison 
of the ground truth contact map (chr17:70,670,000–73,880,000, top row), blurry prediction made by MSE 
trained model (middle row), and more realistic prediction by combined loss (bottom row). B Epiphany 
performance using correlation by genomic distance for different normalization approaches. From left to 
right: Pearson correlation on training chromosomes, on testing chromosomes (chr3, 11, 17), and Spearman 
correlation on training and on testing chromosomes. Dark blue shows the performance of HiC-DC+ 
observed-over-expected count ratio, light blue shows HiC-DC+ Z-score, pink shows KR normalization, and 
yellow shows ICE normalization. C Left: Agreement of insulation score between different normalization 
methods vs. KR normalization on test chromosomes. Insulation scores were calculated using TopDom with 
different window sizes (X-axis) on ground truth contact maps with different normalization methods. KR 
normalization was used as the gold standard, and a Pearson correlation (Y-axis) was calculated to measure 
the agreement between each normalization method vs. KR (red: ICE vs. KR, blue: HiC-DC+ Z-score vs. KR, 
green: HiC-DC+ obs/exp vs. KR). Right: Pearson correlation of insulation score between predicted contact 
map vs. corresponding ground truth of the same normalization (red: ICE, blue: HiC-DC+ Z-score, green: 
HiC-DC+ obs/exp, purple: KR). D Left: Ground truth contact maps of different normalization methods (from 
top to bottom: ICE, HiC-DC+ obs/exp, HiC-DC+ Z-score, KR). Blue dashed lines denotes the TAD calls with 
window size of 50 on each contact map, and black dashed lines are the TAD boundaries called from KR 
normalized contact map. Right: Predicted contact maps of different normalization. E ROC curve of significant 
interactions between prediction contact maps vs. ground truth for the three test chromosomes for HiC-DC+ 
obs/exp ratios (green) and for Z-scores (orange)
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[16] fits a negative binomial regression using genomic distance, GC content, mappa-
bility and effective bin size based on restriction enzyme sites to estimate the expected 
read count for each interaction bin, which allows an assessment of significance of the 
observed count. For convenience, we defined the significant interactions as ground truth 
Z-scores greater than 2. Significant interactions were called with various thresholds 
from test chromosomes on predicted contact maps using Z-scores and observed-over-
expected count ratio, yielding the ROC curves for each test chromosome (Fig. 2E). The 
average AUC is 0.7639 for the two models, suggesting solid performance at a difficult 
task.

We also compared the TAD insulation score and significant interactions between the 
MSE-only model and MSE+GAN model using the methods above, and the results are 
shown in Additional file 1: Fig. S5, S6. For the insulation score comparison, we found 
that both MSE-only and MSE+GAN perform similarly, since the insulation score used 
for TAD boundary detection is a sum of a large number of “pixels” from the contact 
map; however, the MSE-only model produced insulation scores with slightly higher 
correlation to ground truth (Additional file 1: Fig. S5). For the significant interactions, 
we defined true significance as ground HiC-DC+ Z-score >= 3 , and found that both 
models performed well at this task, with the MSE-only slightly outperforming the 
MSE+GAN model (Additional file 1: Fig. S6, auROC = 0.8858 vs. 0.8658, auPR = 0.4143 
vs. 0.3110). The overall advantage of the MSE-only model over the MSE+GAN model is 
due to somewhat superior performance for predicting interactions at greater genomic 
distances (over 250Kb), where true positives are sparse and the smoothed MSE-only 
predicted contact map has greater recall. Thus, the MSE+GAN model retains strong 
performance at downstream tasks such as significant interaction and TAD calling, only 
slightly underperforming the MSE-only model, while achieving perceptually much bet-
ter predicted contact maps.

Epiphany shows robust performance at finer resolution

Due to good overall performance and the ability to directly identify significant interac-
tions, we chose observed-over-expected count ratios rather than Z-scores from HiC-
DC+ for further analysis. We again trained Epiphany to predict interactions within 
1Mb from the diagonal at 5 kb resolution. Epiphany showed robust performance at 5 kb 
resolution, with an average Pearson correlation of 0.5625 and Spearman correlation of 
0.5270. In addition to the distance-dependent correlations, we also used both MSE loss 
and insulation scores calculated from HiCExplorer [18] to evaluate model performance. 
Since Epiphany jointly predicts multiple interaction vectors, the model can predict a 
submatrix of the contact map that covers a 2Mb distance along the diagonal (400 vectors 
for 5 kb resolution) and up to 1Mb from the diagonal. We calculated the average MSE 
loss between the predicted submatrix vs. ground truth as well as Pearson correlation 
between insulation scores calculated from the corresponding submatrices. Results for 
all 2Mb submatrices from the three held-out chromosomes (chr3, 11, 17, Fig. 3A) show 
that Epiphany displays consistent prediction performance across held-out chromosomes 
with diverse length and gene densities. In particular, 84.4% (173 out of 203) of submatri-
ces have insulation correlation higher than 0.50. Epiphany showed robust performance 
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in most regions along the genome but sometimes produced inaccurate predictions at 
regions without clear signals or in low mappability regions. (Fig. 3B).

We also compared Epiphany with Akita [13] on common test regions, restrict-
ing our evaluation to regions that were held out by Akita and overlap with our test 

Fig. 3 Epiphany achieves state-of-the-art performance at fine resolution. A Evaluation of predicted 
submatrices (2Mb along the diagonal by 1Mb from the diagonal). X-axis denotes the average MSE loss 
between predicted matrix and ground truth, and Y-axis shows the Pearson correlation of insulation score 
of the 2 Mb region. Dots are colored by chromosomes, and density plots for dot distribution are added on 
the side. B Epiphany performance evaluation at 5 kb resolution. Top: one of the best predicted submatrices 
(chr3:188,610,000–190,610,000) with ground truth matrix on the top, and predicted matrix on the bottom. 
Bottom: one of the problematic matrices (chr17:28,705,000–30,705,000) predicted by Epiphany. C Model 
performance comparison between Epiphany and Akita on 42 common regions between Akita held-out test 
regions and our test chromosomes (chr3, 11, 17). X-axis shows the Pearson correlation of Akita prediction 
vs. ground truth, and Y-axis shows the correlation of Epiphany. Epiphany was re-trained using data with the 
same normalization steps of Akita at 5 kb resolution, and Akita predictions were average-pooled into 4096 bp 
resolution for better comparison. Dots are colored by chromosomes. D Visual comparison of Akita prediction 
(2048 bp resolution, top row), ground truth matrices (2048 bp resolution, middle row), and Epiphany 
prediction (5 kb, bottom row)
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chromosomes. We binned the Hi-C contact map at 5 kb resolution and followed the 
normalization approaches suggested in the Akita study (Data sources and pre-pro-
cessing). Epiphany was re-trained using the training chromosomes as before (all chro-
mosomes except for chr3, 11, 17) and evaluated on the 42 test regions from Akita’s 
held-out set falling in our test chromosomes. Akita’s predictions at 2048 bp resolution 
were average-pooled to 4096 bp in order to obtain relatively consistent resolution. 
For each test region, we calculated the Pearson correlation between predicted contact 
matrices and ground truth for both Akita and Epiphany (Fig.  3C). We also visually 
compared the predictions of Akita and Epiphany with ground truth on the held-out 
examples (Fig.  3D). Quantitatively and qualitatively, both models showed similar 
performance.

Epiphany predicts cell‑type‑specific 3D structure

Since Epiphany uses epigenomic marks as input, it can potentially generalize to predict 
cell-type-specific 3D structures in a new cell type. We first compared Epiphany’s cell-
type-specific predictions with those of Akita, where five different cell types were simul-
taneously predicted in a multi-task framework  (Table 2 and 3). We selected H1-hESC 
and GM12878 from these five cell types for the comparison. Akita’s cell-type-specific 
predictions were directly obtained from its multi-task output. Epiphany was trained on 
GM12878 and evaluated on H1-hESC test chromosomes (chr3, 11, 17) at inference time. 
We checked the visual comparison of Akita and Epiphany cell-type-specific predictions 
relative to their respective ground truths and also calculated the absolute difference for 
ground truth and predictions between the two cell types (Fig. 4A). The results suggest 
that Epiphany, which was trained only on GM12878 data, can generalize to a new cell 
type and accurately predict the differential structure between cell types based on cell-
type-specific 1D epigenomic data. By contrast, the DNA-sequence-based Akita model, 
although trained on Hi-C/Micro-C data in these and other cell types, largely predicts the 
same 3D structure in GM12878 and H1-hESC.

We also conducted a systematic analyses across all the held-out test regions of the 
Akita model by performing a cell-type specific comparison with consistent targets (Aki-
ta’s normalization method). The results are shown in Additional file  1: Fig. S7, which 
provides the Pearson correlation of 42 test regions of GM12878 (left) and H1-hESC 
(right). A full table of Pearson correlation and p-values can be find in Additional file 2: 
Table S1. The x-axis shows the correlation between ground truth and prediction using 
the Akita model, and the y-axis shows the correlation using Epiphany. For H1-specific 

Table 2 Hi-C data source

Cell type Hi‑C link

GM12878 4DNFI 1UEG1 HD

H1-hESC 4DNFI QYQWP F5

K562 4DNFI TUOMF UQ

mESC 4DNFI 8KBXY NL

HCT116 4DNFI XTAS6 EE

HLV (HiCAR) ENCFF 294GFP

https://data.4dnucleome.org/files-processed/4DNFI1UEG1HD/
https://data.4dnucleome.org/files-processed/4DNFIQYQWPF5/
https://data.4dnucleome.org/files-processed/4DNFITUOMFUQ/
https://data.4dnucleome.org/files-processed/4DNFI8KBXYNL/
https://data.4dnucleome.org/files-processed/4DNFIXTAS6EE/
https://www.encodeproject.org/experiments/ENCSR385MKW/
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predictions—to provide a fair comparison with Akita—we retrained the Epiphany 
model using the training chromosomes in H1-hESC, so that the Epiphany predictions 
in both figures are cross-chromosomal but within cell type. (Due to the sparseness of 
the ground truth in H1-hESC data, the H1 model was trained with MSE-only loss; in 
general, we expect that the GAN component of the model is less useful when training on 
noisier Hi-C data). We found that Epiphany showed equivalent performance to Akita on 
GM12878 (p-value of 0.7279, Wilcoxon signed-rank test) and slightly better than Akita 
on H1-hESC (p-value of 0.0874).

In addition to the comparison with Akita with its pre-trained cell types, we also sys-
tematically evaluated Epiphany’s ability to make cell-type-specific prediction in K562. 
Here, Epiphany was trained on GM12878 and evaluated on the test chromosomes 
(chr 3, 11, 17) in K562. Similar to the experiment in Fig. 3A and B, the Pearson cor-
relation of insulation scores and average MSE loss were calculated for each 2Mb sub-
matrix. Epiphany showed robust prediction performance when generalizing to a new 
cell type (Additional file 1: Fig. S8). As a second example beyond cell line data, we also 
ran a similar analysis to test Epiphany’s ability to make cell-type-specific predictions 
in a tissue setting. Here Epiphany was trained on GM12878 and tested on left heart 
ventricle (69 year old male) using intact Hi-C from ENCODE. The results are shown 
in (Additional file 1: Fig. S9) and demonstrate similar generalization performance in 
this tissue context as in the cell line test data.

To evaluate Epiphany’s ability to generalize to unseen cell types against currently avail-
able methods, we again used Akita as a comparison. Since Akita has not been trained on 
K562, we averaged the predictions for five pre-trained cell types (GM12878, H1-hESC, 
HFF, IMR90, HCT116) and checked non-conserved examples from Akita’s 42 test 
regions. The results are shown in (Additional file 1: Fig. S10). For most of the non-con-
served regions, Epiphany can predict the unique structures of the unseen cell type.

Table 3 Epigenomic data source

Cell type Dnase I CTCF H3K27ac H3K27me3 H3K4me3

GM12878 ENCSR 000EMT ENCSR 000DRZ ENCSR 000DRY ENCSR 000DRX ENCSR 000AKC

H1-hESC ENCSR 000EMU ENCSR 000AMF ENCSR 000ANP ENCSR 216OGD ENCSR 019SQX

K562 ENCSR 000EOT ENCSR 000DWE ENCSR 000AKP ENCSR 000AKQ ENCSR 000DWD

HCT116 ENCSR 000ENM ENCSR 000DTO ENCSR 661KMA ENCSR 810BDB ENCSR 333OPW

HLV ENCSR 222CLC ENCSR 461HOC ENCSR 748OJA ENCSR 072GNA ENCSR 359HLC

Table 4 Hi-C data source

Track Cell type Days Accession Number Source

DNaseI Mouse limb buds E11.5 ENCSR 661HDP ENCODE

CTCF Mouse limb buds E11.5 SAMD0 00199 77 BioSa mples

H3K27ac Mouse limb buds E12.5 ENCSR 737QWV ENCODE

H3K27me3 Mouse limb buds E12.5 ENCSR 229LTY ENCODE

H3K4me3 Mouse limb buds E12.5 ENCSR 938MUD ENCODE

https://www.encodeproject.org/experiments/ENCSR000EMT/
https://www.encodeproject.org/experiments/ENCSR000DRZ/
https://www.encodeproject.org/experiments/ENCSR000DRY/
https://www.encodeproject.org/experiments/ENCSR000DRX/
https://www.encodeproject.org/experiments/ENCSR000AKC/
https://www.encodeproject.org/experiments/ENCSR000EMU/
https://www.encodeproject.org/experiments/ENCSR000AMF/
https://www.encodeproject.org/experiments/ENCSR000ANP/
https://www.encodeproject.org/experiments/ENCSR216OGD/
https://www.encodeproject.org/experiments/ENCSR019SQX/
https://www.encodeproject.org/experiments/ENCSR000EOT/
https://www.encodeproject.org/experiments/ENCSR000DWE/
https://www.encodeproject.org/experiments/ENCSR000AKP/
https://www.encodeproject.org/experiments/ENCSR000AKQ/
https://www.encodeproject.org/experiments/ENCSR000DWD/
https://www.encodeproject.org/experiments/ENCSR000ENM/
https://www.encodeproject.org/experiments/ENCSR000DTO/
https://www.encodeproject.org/experiments/ENCSR661KMA/
https://www.encodeproject.org/experiments/ENCSR810BDB/
https://www.encodeproject.org/experiments/ENCSR333OPW/
https://www.encodeproject.org/experiments/ENCSR222CLC/
https://www.encodeproject.org/experiments/ENCSR461HOC/
https://www.encodeproject.org/experiments/ENCSR748OJA/
https://www.encodeproject.org/experiments/ENCSR072GNA/
https://www.encodeproject.org/experiments/ENCSR359HLC/
https://www.encodeproject.org/experiments/ENCSR661HDP/
https://www.encodeproject.org/
https://www.ebi.ac.uk/biosamples/samples/SAMD00019977
http://www.ebi.ac.uk/biosamples
https://www.encodeproject.org/experiments/ENCSR737QWV/
https://www.encodeproject.org/
https://www.encodeproject.org/experiments/ENCSR229LTY/
https://www.encodeproject.org/
https://www.encodeproject.org/experiments/ENCSR938MUD/
https://www.encodeproject.org/
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We further compared Epiphany’s generalization performance and cell-type-specific-
ity on K562 and H1-hESC. We used the Epiphany model trained on GM12878 train-
ing chromosomes (all chromosomes except for 3, 11, 17) and compared its performance 
on H1-hESC and K562 chromosome 3. We again chopped the chromosome into 2Mb 

Fig. 4 Epiphany accurately predicts cell-type-specific 3D structures. A Two examples (chr3:188,727,296–
189,775,872) and (chr3:185,057,280–186,105,856) of cell-type specific predictions in H1-hESC and GM12878. 
Two regions are selected from the overlapped region of Akita held-out test set and Epiphany’s test 
chromosomes. Columns from left to right: contact map in H1ESc, same region in GM12878, and the absolute 
difference between the two cell types (H1-GM12878). Rows from top to bottom: Ground truth matrices 
with Akita normalization, Akita prediction, ground truth with HiC-DC+ observed-over-expected count 
ratio, Epiphany prediction of observed-over-expected count ratio. Akita predictions were obtained from the 
multi-task output, and Epiphany predictions were generated with model trained on GM12878. B Cell type 
specific prediction at a differential region between GM12878 and K562. On the left is the ground truth matrix 
(top) and predicted matrix (middle), followed by epigenomic input tracks (blue), Saliency score (green), and 
SHAP values (yellow) for feature attributions. On the right is the predictions for K562. Epiphany was trained in 
GM12878 in training chromosomes, and predicted both cell types for test chromosomes
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regions along the diagonal, and calculated the Pearson correlation of insulation scores 
between H1-hESC and K562 from ground truth contact maps for each cell type. We 
then calculated the Pearson correlation of insulation scores from the predicted maps of 
the two cell lines. The results are shown in Additional file 1: Fig. S11A, where we plot the 
Pearson correlation of insulation scores between H1-hESC vs. K562 based on ground 
truth contact maps (x-axis) vs. predicted contact maps (y-axis). We then ranked the 2Mb 
regions based on their insulation score correlation and checked several cell-type-specific 
predictions visually. Two cell-type-specific regions (top: chr3:78,705,000–80,705,000 
and bottom: chr3:705,000–2,705,000) are shown in Additional file  1: Fig. S11B and C: 
on the top are the ground truth contact maps for K562 and H1-hESC, and at the bottom 
are the predicted contact maps for the two cell lines. An additional comparison of a cell-
type-specific 3D structure region (chr3:188,250,000–190,250,000) in GM12878, K562 
and H1-hESC is shown in Additional file 1: Fig. S11D and E. Ground truth Hi-C maps 
are shown on the left, and Epiphany predictions are on the right.

We next found another example of a cell-type-specific region around the gene CPED1 
[24], and we tested whether Epiphany could predict the difference. The CPED1 locus is 
covered by an H3K27me3 rich region in GM12878 but overlaps with a super-enhancer 
in K562. Additional file 1: Fig. S11F demonstrates the cell-type-specific prediction per-
formance of Epiphany: (top to bottom) GM12878 ground truth structure; GM12878 
contact map predicted by Epiphany; K562 ground truth; K562 contact map predicted by 
Epiphany; gene annotations; and epigenomic tracks (H3K27ac, H3K27me3) for the two 
cell types.

We also examined cell-type-specific predictions between K562 and HCT116. The 
Epiphany model was trained on GM12878 and tested on both K562 and HCT116. 
We first used HiCExplorer [18] to identify differential TADs on test chromosome 11 
between the two cell types and compared predictions from the Epiphany model. Dif-
ferential regions were identified by Wilcoxon rank-sum test under the null hypothesis 
that the two cell types were identical, then ranked by the inter-TAD p-values. Full tables 
of conserved and non-conserved regions are attached as Additional file 3: Table S2 and 
Additional file 4: Table S3. Additional file 1: Fig. S12A shows the distribution of Pear-
son correlations between prediction vs. ground truth for the top 25 conserved regions 
(blue) and non-conserved regions (orange) for K562 (left) and HCT116 (right). Epiphany 
achieves similar performance for cell-type consistent and differential regions. Additional 
file 1: Fig. S12B shows visual examples of Epiphany’s prediction on the two cell types in 
the cell-type-specific regions, and Additional file 1: Fig. S12C shows conserved regions. 
In these examples, Epiphany accurately predicts both conserved and non-conserved 
structures between cell types.

Finally, we explored the ability of Epiphany to identify the contribution of cell-type-
specific epigenomic input features to differential 3D structures using feature attribution. 
In recent years, feature attribution has become a powerful tool to study the contribu-
tion of input features to prediction of a specific output. For each interaction bin in the 
predicted contact map, we first calculated the saliency score [25], which is a gradient-
based attribution on input values. We then calculated the SHAP value [26] with base-
line signals equal to zero, which highlights the contribution of epigenomic peaks to a 
specific output. We compared a region (chr17:70,500,000–73,500,000) with differential 
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interactions between GM12878 and K562 (Fig.  4B). Epigenomic signals between 
chr17:72,000,000–72,500,000 in GM12878 contributed to the prediction of the high-
lighted interaction, while the absence of signals in K562 input led to the correct predic-
tion of a weak interaction.

Ablation analyses suggests redundancies between 1D inputs

In the previous cell-type-specific analysis, distal H3K4me3 peaks gained importance in 
the K562 prediction when there were no signals at the anchors of the investigated inter-
action (Fig. 4B). We wondered whether features from different epigenomic tracks could 
compensate for each other in predicting interactions and more generally whether there 
exist redundancies between the input tracks.

We performed a feature ablation experiment to address these questions. Instead of 
including all five epigenomic tracks as input, we re-trained the model with one or several 
of the tracks completely masked as zero. We reasoned that re-training the model rather 
than masking a specific input region at test time could better serve our goal. For exam-
ple, using a model trained on all five input tracks, if we simply masked one important 
peak from DNaseI track during test time, we expected that the model would inevita-
bly fail to predict the corresponding interactions. However, if we re-trained the model 
with the entire DNaseI track masked, we expected the model to identify alternative sig-
nals from other tracks during training and potentially retain the ability to predict these 
interactions.

Indeed, this idea matched our observations from the ablation analysis. We re-trained 
Epiphany with (a) an additional SMC3 ChIP-seq track, (b) CTCF track masked as zero, 
(c) DNaseI track masked as zero, and (d) only CTCF and H3K27ac tracks as training 
inputs and compared their predictions with the results using all input (Fig.  5A). We 
found that by removing DNaseI, the model achieved similar performance as using all 
input tracks. Models with CTCF masked or using only two tracks (CTCF+H3K27ac) 
showed weaker performance.

As we have seen in previous example (Fig.  4B), DNaseI and H3K27ac contrib-
uted to the differential predictions between GM12878 and K562 at the region 
chr17:70,670,000–73,880,000. We therefore compared the prediction for this region 
using a model trained with all input tracks, without DNaseI, or with CTCF+H3K27ac 
only (Fig. 5B). Epiphany was still able to accurately predict interactions in this region 
after ablating DNaseI; feature attribution indicated that in place of the DNaseI signal 
(Fig. 5B, grey box), the model gave higher importance to H3K27me3 peaks (purple 
box) in order to predict the interaction. However, after ablating all signals except 
for CTCF and H3K27ac, the model failed to find alternative predictive signals and 
missed the boundary.

A recent manuscript named C.Origami [27] uses DNA sequence as well as ATAC-
seq and CTCF tracks for cell-type-specific predictions. From our experiments above, 
we suggest that there may be redundancies between the information from chroma-
tin accessibility and histone modifications. Therefore, we re-trained Epiphany with 
only DNaseI and CTCF tracks to test our hypothesis. Consistent with C.Origami, 
we observed fairly good performance of Epiphany using only DNaseI and CTCF 
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tracks. The predictions have an average Pearson correlation of 0.5789 on the train-
ing chromosomes, 0.4638 on the testing chromosomes, and Spearman correlation 
of 0.5292 and 0.4224 on the training and test chromosomes respectively. The dis-
tance-adjusted Pearson and Spearman correlation values are shown in Fig.  5A. A 
visual comparison of a random region on the test chromosome (chr3:123,675,000–
126,675,000) is shown in Additional file 1: Fig. S13.

Epiphany predicts perturbations in 3D architecture

Since Epiphany models the contribution of epigenomic signals to 3D structures, we 
explored whether Epiphany could predict 3D structural changes caused by perturba-
tions to the epigenome. In particular, we considered examples where structural varia-
tions eliminate important epigenomic features. Despang et  al. [28] studied the TAD 
fusion caused by deletion of CTCF sites in  vivo in the mouse embryonic limb bud at 
the Sox9-Kcnj2 locus. They used the promoter capture Hi-C data in the E12.5 mouse 
limb bud to show the structural changes after deleting major CTCF sites (mm9, GSE78 
109, GSE12 5294). In WT TAD structures, Kcnj2 and Sox9 are separated into two TADs. 
After deleting four consecutive CTCF sites within a 15 kb boundary region (C1 site 
mm9 chr11:111,384,818-111,385,832, C2-C4 site chr11:111,393,908–111,399,229), the 
TAD boundaries disappeared and the two TADs fused together. When all CTCF binding 
sites between Kcnj2 and Sox9 were deleted, they observed a more complete TAD fusion 
(Fig.  6A). These experiments revealed a TAD fusion caused by the deletion of major 
CTCF sites at the boundaries and within the TAD.

Fig. 5 Feature ablation and attribution identify the contribution of epigenomic marks to 3D structure. 
A Correlation by distance for feature ablation experiments. Left to right: Pearson correlation for training 
chromosomes, Pearson correlation for test chromosomes. Spearman correlation for training chromosomes, 
Spearman correlation for test chromosomes. Blue track for model performance using all 5 epigenomic input 
tracks; green for training with an additional track SMC3; pink for model trained without CTCF; yellow for 
without DNaseI, dark red for only CTCF and H3K27ac tracks, and gray for model trained with only DNaseI and 
CTCF. B Feature attribution for bin (chr17:57,140,000–57,750,000) with Epiphany with Bi-LSTM layer (left) vs. 
modified Epiphany with convolution layer (right)

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78109
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78109
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125294
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We then tested Epiphany’s ability to predict these structural changes after we per-
turbed the CTCF input track. Epiphany was trained on data from the human cell line 
GM12878 and used to make cross-species prediction in the mouse embryo. Epig-
enomic tracks were downloaded from ENCODE [29] and BioSamples [30] for mouse 
limb tissue aligned to the mm10 assembly  (Table  4). In the WT prediction, Epiphany 
predicted a strong boundary separating Kcnj2 and Sox9 into two TADs. Upon deleting 
the C1–4 CTCF peaks (mm10 chr11:111,520,000–111,540,000) at the boundary and fur-
ther masking all CTCF sites, Epiphany predicted behavior consistent with the ground 
truth experiments, where the two TADs gradually merged together (Fig.  6B, top). We 

Fig. 6 Epiphany predicts TAD boundary changes due to epigenomic perturbations. A Mouse ES E12.5 
Capture Hi-C data from Despang et al. [28] for WT (top), 4 CTCF sites depletion (middle), and the absolute 
difference between the two conditions (bottom). Data are publicly available at (GSE78 109, GSE12 5294). Four 
CTCF sites depleted in the middle figure were at region (C1 site(mm9 chr11:111,384,818–111,385,832), C2-C4 
site (chr11:111,393,908–111,399,229), marked with black dashed lines). Data are mapped relative to mm9. B 
Epiphany cross-species prediction of structural changes caused by CTCF perturbation. Epiphany was trained 
using human cell line GM12878, and predicted using mouse limb bud epigenomic data mapped relative to 
the mm10 assembly. The panel shows Epiphany prediction of WT mES Hi-C map with HiC-DC+ obs/exp ratio 
normalization (top row), the prediction of TAD fusion after masking CTCF sites at (mm10 chr11:111,520,000–
111,540,000) (middle row), and the absolute difference between the two predictions (bottom row). 
Epigenomic tracks at the bottom are showing feature attribution (SHAP value) for highlighted vertical 
vector in the Hi-C contact map. The upper two tracks are the original CTCF track and corresponding SHAP 
values. The lower two tracks are CTCF tracks with peaks in the vertical line deleted and the corresponding 
SHAP values. C Capture Hi-C maps from Wu et al. [31] experimented at the Sox17 locus before (top) and 
after (bottom) targeting the CTCF sites. Data are publicly available at (GSE12 7196). Data are mapped relative 
to hg19. D Epiphany cross-cell type prediction of structural changed caused by CTCF deletion. CTCF sites 
at hg38 (chr8:54,165,000–54,170,000, in the vertical lines) near Sox17 locus is deleted. Top row shows the 
Epiphany predicted Hi-C contact map before perturbation, and bottom row shows the predicted map after 
deletion. Vertical dashed line shows the location of the deleted CTCF site

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78109
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125294
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE127196
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further explored the relationship between the CTCF peaks and TAD formation using 
feature attribution methods (Fig. 6B, bottom). The SHAP values are calculated and aver-
aged for the bins in the vertical highlighted dashed lines. We can see that CTCF peaks 
at the boundary contribute to TAD separation in unperturbed prediction, while with the 
masked CTCF track, the feature attribution scores focus on more distal regions at the 
boundaries of the fused TAD.

We further used this example to compare the ability of the MSE-only and MSE+GAN 
models to make interpretable predictions of 3D structural changes under epigenomic 
perturbations, and the results are shown in Additional file  1: Fig. S14. In each panel, 
the top shows the contact map for WT, the middle shows the map after CTCF dele-
tion, and the bottom shows the absolute difference between the two conditions. We can 
see that the MSE+GAN prediction identifies a clear TAD boundary disappearance after 
CTCF deletion, but the prediction from the MSE-only model less precisely shows the 
difference.

We also evaluated Epiphany on another prediction task of structural changes caused 
by genomic deletions. Wu et  al. [31] experimented with CTCF perturbation at the 
SOX17 locus in human ES cells. Figure 6C shows Capture Hi-C maps at the SOX17 locus 
before (top) and after (bottom) targeting the CTCF site. The deleted region (marked in 
dashed vertical lines) is very close to the SOX17 distal regulatory element (DRE). The 
authors found that removing the CTCF peak at the boundary upstream of the SOX17 
locus leads to decreased interaction of SOX17 and its DRE, and increased interaction 
with the upstream boundary near the RGS20 locus. Figure 6D shows the Epiphany pre-
diction at the SOX17 region before (top) and after (bottom) CTCF deletion.

Discussion
In this study, we developed Epiphany, a neural network model to predict the cell-type-
specific Hi-C contact map for entire chromosomes up to a fixed genomic distance using 
commonly generated epigenomic tracks that are already available for diverse cell types 
and tissues. We showed that Epiphany accurately predicts cell-type-specific 3D genome 
architecture and shows robust performance for Hi-C different normalization procedures 
and at different resolutions. Epiphany was able to accurately predict cross-chromosome, 
cross-cell type and even cross-species 3D genomic structures. From feature ablation and 
attribution experiments, we showed that Epiphany could be used to interpret the con-
tribution of specific epigenomic signals to local 3D structures. Through in silico per-
turbations of epigenomic tracks followed by contact map prediction with Epiphany, we 
were able to accurately predict the cell-type-specific impact of epigenetic alterations and 
structural variants on TAD organization in previously studied loci.

Epiphany’s ability to predict 3D structural changes given perturbations in epigenomic 
signals enables many interesting biological applications, such as assessing the 3D impact 
of germline or somatic structural variants or of inactivation of epigenomic elements. 
However, we would caution that Epiphany is only designed to predict the consequences 
of local epigenomic perturbations and has only been evaluated in this context. Massive 
global changes in histone marks—for example, through knockout or inhibition of epi-
genetic regulators like EZH2 or HDAC, or through loss-of-function or gain-of-function 
mutations in genes encoding epigenetic regulators—might in fact change the rules that 
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govern the relationship between 1D and 3D chromatin organization. In future work, and 
as suitable datasets emerge, we hope to explore how the Epiphany model changes under 
global epigenetic perturbations.

Although we used five specific epigenomic tracks (DNase I, CTCF, H3K27ac, 
H3K27me3, H3K4me3) and Hi-C data in this study, Epiphany provides a general frame-
work to link cell-type-specific epigenomic signals to 3D genomic structures. In the 
future, we plan to explore different combinations of the epigenomic input tracks to 
assess their biological and statistical relevance for prediction of 3D structure. In addition 
to using epigenomic information, we also tried to incorporate DNA information into the 
model. Previous models have used a one-hot encoding of long genomic DNA sequences 
( ∼ 1Mb ), incurring significant computational costs [12, 13]. We therefore tried an 
alternative strategy of extracting DNA representations from a pre-trained DNABERT 
model [32], a new method that adapts the state-of-the-art natural language processing 
model BERT [33] to the setting of genomic DNA. During the pre-training phase, DNA 
sequences were first truncated to 512 bp length sequences as the “sentences” and further 
divided into k-mers as the “words” of the vocabulary. The model learns the basic syntax 
and grammar of DNA sequences by self-supervised training to predict randomly masked 
k-mers within each sentence. After pre-training, each 512 bp sequence was represented 
by a 768-length numerical vector. However, since Epiphany covers a 3.4-Mb region as 
input during training, it was still extremely computationally intensive to directly incor-
porate the pre-trained representations from DNABERT. We therefore excluded the 
DNABERT component in order to keep the model relatively light-weight and concise, 
although we do not rule out its utility in the future.

Beyond these computational issues, a more conceptual modeling challenge is retain-
ing the ability to generalize to new cell types while also incorporating DNA sequence 
information. In principle, training on genomic sequence may learn DNA sequence fea-
tures that are specific to the training cell types and do not generalize to other cell types. 
Epiphany learns a general model for predicting the Hi-C contact map in a cell type of 
interest from cell-type-specific 1D epigenomic data, giving state-of-the-art prediction 
accuracy while allowing generalization across cell types and across species.

Many architectural changes and extensions could be investigated in future to build 
upon Epiphany. While we used a Bi-LSTM architecture to capture long-range depend-
encies in 1D epigenomic tracks that are useful for contact map prediction, other strate-
gies such as dilated convolutional neural networks or transformers are possible. In the 
current Epiphany model, we provide the option of training with a GAN component and 
adversarial loss to help the model learn perceptually correct structures. In future work, 
we also hope to explore likelihood based generative models such as diffusion probabilis-
tic models for Hi-C structural predictions.

Conclusion
We present Epiphany, a neural network to predict cell-type-specific Hi-C contact maps 
from commonly generated epigenomic tracks. Epiphany employs 1D convolutional lay-
ers to learn the local representations from the input tracks, bidirectional long short-term 
memory (Bi-LSTM) layers to capture long term dependencies along the epigenome, as 
well as an optional generative adversarial network (GAN) architecture to encourage 
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contact map realism. To improve the usability of predicted contact matrices, we trained 
and evaluated models using multiple normalization and matrix balancing techniques 
including KR, ICE, and HiC-DC+ Z-score and observed-over-expected count ratio. 
Epiphany is trained either with MSE alone or with a combination of MSE and adver-
sarial (i.e., a GAN) loss to enhance its ability to produce realistic Hi-C contact maps for 
downstream analysis. Epiphany shows robust performance at different resolutions and 
among multiple normalization methods, and can generalize to held-out chromosomes 
within and across cell types and species. The predicted contact maps yield accurate TAD 
and significant interaction calls. Epiphany can be trained with different combinations of 
epigenomic signals, and study the contribution of specific epigenomic peaks to 3D archi-
tecture. At inference time, Epiphany can also be used to predict the structural changes 
caused by perturbations of epigenomic signals.

Methods
Data sources and pre‑processing

Training and test sets

We used three human cell lines (GM12878, H1-hESC, K562) and one mouse cell line 
(mESC) for training and testing the model. All human data (Hi-C, ChIP-seq) were pro-
cessed using the hg38 assembly and mouse data with mm10. For all experiments, chro-
mosomes 3, 11, 17 were used as completely held-out data for testing.

Epigenomic data

All input epigenomic tracks including DNaseI, CTCF, H3K4me3, H3K27ac, H3K27me3 
for genome assembly hg38 were downloaded from the ENCODE data portal [29]. Data 
were downloaded as bam files, and the replicates for each epigenomic track were merged 
using the pysam (https:// github. com/ pysam- devel opers/ pysam) python module. We 
then converted merged bam files into bigWig files with deepTools [34] bamCoverage 
(binSize 10, RPGC normalization, other parameters as default). Genome-wide coverage 
bigWig tracks were later binned into 100-bp bins, and bin-level signals for the 5 epig-
enomic tracks were extracted as input data for the model.

Dissecting epigenomic data for input

For each 1Mb stripe that is orthogonal to the diagonal on the Hi-C map, we take in a 1.4-
Mb window of epigenomic signal centered at this stripe as input (1 Mb covers the cor-
responding interaction bins of the stripe, with an additional 400 Kb on both sides of the 
input). Since we are predicting 200 consecutive stripes simultaneously, the total input 
region is 3.4Mb using an overlapping sliding window approach, where the window size is 
1.4Mb for a single stripe and the step size is 10 kb. Therefore, for each 200 stripe predic-
tion, we will have our input as a 3D tensor with size (5 tracks × 3.4 Mb × 200 windows).

Hi‑C data

High quality and deeply sequenced Hi-C data as .hic format for all human and mouse 
cell lines were downloaded from 4DN data portal [1]. Data were binned at 5 kb and 10 
kb resolution and normalized using multiple approaches. KR normalization was cal-
culated by Juicer tools [17] and ICE normalization by the HiCExplorer package [18]. 

https://github.com/pysam-developers/pysam
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Observed-over-expected count ratio and Z-score normalizations were calculated by 
HiC-DC+ [16]. ICE normalization for 5 kb resolution was calculated using Cooler 
[35], and all additional matrix balancing steps followed the Akita pipeline [13]. For the 
observed-over-expected count ratios from HiC-DC+, raw counts for interaction bins 
are modeled using negative binomial regression to estimate a background model, giv-
ing an expected count value based on the genomic distance and other covariates asso-
ciated with the anchor bins (GC content, mappability, effective size due to restriction 
enzyme site distribution). The observed-over-expected count ratio is then calculated 
using observed raw counts divided by the expected counts from the HiC-DC+ model.

Biological validation data

Capture Hi-C and corresponding CTCF tracks from Despang et  al. [28] were down-
loaded from (GSE78 109, GSE12 5294). Data were visualized using Coolbox [36].

Model and training

CNN layers

The input epigenomic tracks were divided into overlapping windows, with a window 
length of m = 14, 000 bins (1.4 Mb) and a stride of 1000 bins (100 kb). We refer to the 
windowed inputs as X = {x1, ..., xn} , where xi ∈ R

c×m corresponds to window i, n is the 
total number of windows, and c is the number of epigenomic tracks. A series of four 
convolution modules were used to featurize each window into a vector of dimension 
d = 900 (after flattening), where each convolution module consists of a convolutional 
layer with ReLU activation, max pooling, and dropout. We define Z = {z1, ..., zn} as the 
flattened output of the final convolution module where zi ∈ R

d is the representation for 
window xi.

Bi‑LSTM layers

The Bi-LSTM layers receive sequence Z = {z1, ..., zn} as an input and generate a new 
sequence Z̃ = {z̃1, ..., z̃n} , where z̃i ∈ R

2d . To produce the final output, every ele-
ment of Z̃ is passed through a fully connected layer yielding the output sequence 
Ŷ = {ŷ1, ..., ŷn} . Each ŷi ∈ R

d′ is a vector of dimension d′ = 100 (or d′ = 200 if predict-
ing 5 kb resolution Hi-C) and corresponds to a zig-zag stripe in a Hi-C matrix, similar 
to DeepC (shown in Fig. 1). Epiphany uses multiple Bi-LSTM layers, with skip con-
nections between successive layers.

Adversarial loss

Generative adversarial networks (GAN) consist of two networks, a generator G with 
parameters θG and a discriminator D with parameters θD , that are adversarially 
trained in a zero-sum game [21, 37]. During training, the generator learns to fool the 
discriminator by synthesizing realistic samples from a given input, while the discrimi-
nator learns to distinguish real samples from synthetic samples. To train Epiphany 
in the MSE+GAN mode, we employed a convex combination of pixel-wise MSE and 
adversarial loss. Given a dataset D and a trade-off parameter � , the MSE+GAN ver-
sion of Epiphany solves the following optimization problem during training:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78109
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE125294
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where X corresponds to epigenomic tracks and Y the corresponding Hi-C matrix.
In our framework, G is the CNN-LSTM architecture described in the previous 

sections while D is a simple four layer 2D CNN. Note that in practice, many tricks 
and heuristics are used in order to speed up convergence when training GANs, as 
described below.

Training

In Algorithm  1, we show the specific procedure used to approximately solve the 
optimization problem described above. Note that rather than setting LD to −LG , we 
employ the target flipping heuristic outlined in [21] (Section 3.2.3) for faster conver-
gence. The parameter updates (lines 6 and 9) are computed via the Adam optimizer 
[38]. During training, we randomly sample a Hi-C region consisting of 200 consecu-
tive bins as the target, and use a 3.4Mb subsequence of the epigenetic tracks as an 
input for each gradient computation. We determine when to conclude training based 
on when LG ceases to decrease.

Algorithm 1 Epiphany TrainingPerformance evaluation and application

Model performance

We evaluated the model performance using Pearson and Spearman correlation of the 
predicted contact map vs. ground truth, computed as a function of genomic distance 
from the diagonal. Predicted contact maps were saved as .hic files for downstream 

(2)min
θG

max
θD

�Ladv(θ
G , θD)+ (1− �)LMSE(θ

G)

(3)Ladv(θ
G , θD) = E(X ,Y )∼D[log(D(Y ))+ log(1−D(G(X)))]

(4)LMSE(θ
G) = E(X ,Y )∼D

i∈[n] j∈[d′]

Yij − [G(X)]ij
2

,
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analysis. We visualized Hi-C matrices and epigenomic tracks using CoolBox [36]. The 
insulation score was calculated using the TAD-separation score from HiCExplorer [39]. 
Then a correlation of these scores between ground truth vs. predicted contact maps was 
calculated. For each 2 Mb length submatrix (200 bin matrix), we calculated MSE loss 
and insulation score correlation between the predicted and true maps.

TAD boundaries and significant interactions

We identified TAD structures and significant interactions in the predicted contact maps 
vs. ground truth. TAD structures were identified using TopDom [23], with various win-
dow sizes of 10, 20, 30, 40, 50. Since the binary TAD boundaries would be less robust 
towards hyper-parameter selection and small value perturbations on the contact maps, 
we used insulation score for the comparisons. In this evaluation, we first ran TopDom on 
all ground truth contact maps with different normalization methods, and used KR nor-
malization as the gold standard, to compare the agreement between these normalization 
approaches (e.g., ICE vs. KR, Z-score vs. KR). We then compared TopDom results called 
from predicted contact map vs. the ground truth with their corresponding normaliza-
tion approach (e.g., predicted Z-score vs. ground truth Z-score), to evaluate Epiphany’s 
ability to predict key structures. These experiments were all run on test chromosomes 3, 
11, 17.

HiC-DC+ [16] used interaction bin counts to fit a negative binomial regression with 
genomic distance, GC content, mappability and effective bin size based on restriction 
enzyme sites, providing an estimated expected read count for each interaction bins. 
Z-scores and observed-over-expected count ratios are then computed to evaluate the 
significance of the observed counts. We defined significant interactions as ground truth 
Z-score greater than or equal to 2. For test chromosomes 3, 11, 17 with Z-score and 
observed-over-expected count ratio normalization, we called significant interactions 
with various cut-off thresholds ranging from 0.5 to 3.5 and plotted the ROC curve.

Comparison with Akita

We followed provided tutorials and extracted the pre-trained Akita model from 
(Akita  repos itory). Hi-C contact maps were first balanced using ICE normalization, 
followed by additional steps including adaptive coarse-grain, distance adjustment, 
rescaling and 2D Gaussian filter suggested by Akita. Test matrices were extracted 
from Akita held-out test regions that overlapped with Epiphany’s test chromosomes 
(42 regions in total). For calculating the Pearson correlation between the predicted 
contact map vs. ground truth, we average-pooled Akita matrices from 2048 bp into 
4096 bp, in order to keep relative consistency with our 5 kb resolution. For extract-
ing cell-type-specific predictions, we extracted the multi-task output from Akita for 
H1-hESC and GM12878.

Prediction of cell‑type‑specific structures

In these experiments, Epiphany was trained on the training chromosomes in 
GM12878, and tested on test chromosomes chr 3, 11, 17 on H1-hESC and K562. 

https://github.com/calico/basenji/tree/master/manuscripts/akita
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Therefore, the predictions were cross-chromosome and cross-cell-type. Feature attri-
butions were calculated using Captum [40], with saliency score to show the gradient 
attribution on input regions and SHAP values to calculate the contribution of specific 
epigenomic peaks for predicting 3D structure. The baseline was set to zero when cal-
culating SHAP values.

Feature ablation models

Feature ablation experiments were performed by re-training the model with one or 
several input epigenomic tracks completely masked as zero. We tested three abla-
tion models: CTCF masked; DNaseI masked; only CTCF and H3K27ac not masked. 
In addition, we also re-trained Epiphany with an additional SMC3 ChIP-seq track to 
include cohesin occupancy information. Whole chromosome predictions were gener-
ated with trained models and compared to ground truth using Pearson and Spearman 
correlations as a function of genomic distance. Feature attributions were calculated as 
described above.

Biological application on mouse data

Epigenomic tracks for mouse limb bud tissue using genome assembly mm10 were down-
loaded from the ENCODE portal. In the CTCF deletion experiments, CTCF peaks were 
masked with the average value for the entire CTCF track (masked with the background). 
Epiphany was trained on the human cell line GM12878 and tested on mouse limb bud 
data (E11.5 for DNaseI and CTCF tracks, and E12.5 for H3K27ac, H3K27me3 and 
H3K4me3). Data were visualized using CoolBox [36].
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