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Abstract 

With the number of cells measured in single-cell RNA sequencing (scRNA-seq) datasets 
increasing exponentially and concurrent increased sparsity due to more zero counts 
being measured for many genes, we demonstrate here that downstream analyses on 
binary-based gene expression give similar results as count-based analyses. Moreover, a 
binary representation scales up to ~ 50-fold more cells that can be analyzed using the 
same computational resources. We also highlight the possibilities provided by bina-
rized scRNA-seq data. Development of specialized tools for bit-aware implementations 
of downstream analytical tasks will enable a more fine-grained resolution of biological 
heterogeneity.

Background
Since its introduction, single-cell RNA sequencing (scRNA-seq) has been vital in investi-
gating biological questions that were previously impossible to answer [1–4]. Continuous 
technological innovations are resulting in a consistent increase in the number of cells 
and molecules being measured in a single experiment. However, at the same time, data-
sets appear to become sparser, i.e., more zero measurements across the whole dataset. 
The sparsity has generally been seen as a problem, especially since standard count distri-
bution models (e.g., Poisson) do not account for the excess of zeros [5–8]. This sparked 
discussions about whether the excess of zeros can be explained by mainly technological 
or biological factors [5, 8–10]. Jiang et al. [8] discuss the “zero-inflation controversy,” in 
which a distinction is made between a biological zero, indicating the true absence of a 
transcript, and a non-biological zero, indicating failure of measuring a transcript that 
was present in the cell. Similarly, Sarkar and Stephens [11] make a distinction between 
measurement and expression. They proposed a model that is a combination of an expres-
sion model that encodes the true absence of a transcript, i.e., a (biological) zero, with a 
measurement model, for which they use a Poisson model (which can result in non-bio-
logical zeros due to limited sequencing depth). Consequently, even non-biological zeros 
encode useful biological information as then the gene is unlikely to be highly expressed. 
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Or, in other words: all zeros in scRNA-seq datasets have biological significance. Aligned 
with this, Qui et  al. [12] proposed to “embrace” all zeros as useful signal and devel-
oped a clustering algorithm requiring only binarized scRNA-seq data (a zero repre-
senting a zero count and a one for non-zero counts). Using binarized scRNA-seq data, 
Qui et al. identified clusters similar to clusters identified using a count-based approach. 
Although this was the first paper explicitly embracing zeros as useful signal, binariza-
tion of scRNA-seq was already used to infer gene regulatory networks [13]. Since then, 
several methods have employed binarized scRNA-seq data. For instance, scBFA [14], a 
dimensionality reduction method for binarized scRNA-seq data, showed improved visu-
alization and classification of cell identity and trajectory inference when compared to 
methods that use count data. Likewise, we introduced binary differential analysis (BDA) 
[15], a differential expression analysis method relying on binarized scRNA-seq data. We 
showed that differential expression analysis on binary representations of scRNA-seq 
data faithfully captures biological variation across cell types and conditions.

Provided that a binarized data representation has the potential to reduce required 
computational resources considerably, and as scRNA-seq datasets are becoming increas-
ingly bigger and sparser, we wondered if binary should be the preferred data representa-
tion for other tasks. In this work, we explore the consequences of sparser datasets and 
the applicability of binarized scRNA-seq data for various single-cell analysis tasks.

Results and discussion
We downloaded 56 datasets published between 2015 and 2021. Based on these data-
sets, a clear association between the year of publication and the number of cells can be 
observed (Pearson’s correlation coefficient of r = 0.46, Fig. 1a). For instance, the average 
dataset in 2015 (n = 7) had 704 cells while the average dataset in 2020 (n = 7) had 58,654 
cells. Another clear trend that can be seen is that an increasing number of cells is highly 
correlated with decreasing detection rates (fraction of non-zero values) (Pearson’s corre-
lation coefficient of r = − 0.47, Fig. 1b). Note that this trend of measuring more cells per 
dataset outweighs improved chemistry over time and thus still results in sparser data-
sets. It is likely that this trend will continue over the next years as, for many biological 
questions, shallow sequencing of many cells is more cost effective than deep sequenc-
ing of a few cells [16]. Moreover, by measuring more cells, we can better estimate the 
probability whether a gene is expressed, and the overall power to detect differentially 
expressed genes in a given dataset increases [17]. This trend will be amplified, as more 
population scale and multi-condition scRNA-seq datasets are emerging [17, 18], for 
which a low coverage sequencing is sufficient to capture cell type specific gene expres-
sion (given enough cells are measured per individual and per cell type) [19]. Altogether, 
these developments will result in sparser scRNA-seq datasets with larger numbers of 
cells.

As zeros become more abundant, a binarized expression might be as informative 
as counts. Using ~ 1.5 million cells from 56 datasets, we observed on average a strong 
point-biserial correlation (Pearson correlation coefficient p = 0.93) between the nor-
malized expression counts of a cell and its respective binarized variant, although differ-
ences between datasets exist (Additional file 1: Fig. S1). This strong correlation implies 
that the binarized signal already captures most of the signal present in the normalized 
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count data. This strong correlation is primarily explained by the detection rate (Addi-
tional file 1: Fig. S2a) and the variance of the non-zero counts of a cell (Additional file 1: 
Fig. S2b). In cells where the detection rate is low (many zeros) and the variance of the 
non-zero counts is small, the correlation between the normalized expression values and 
their binary representation is high (Fig. 1c). Across all datasets, the detection rate and 
variance of measured expressions were good predictors for the correlation between the 
binary representation and the normalized representation, although differences between 
technologies exist (Fig.  1d). This indicates that as datasets become sparser, counts 
become less informative with respect to binarized expression.

To assess whether counts can actually be discarded in practice, we assessed whether 
binarized data can give comparable results to counts in four common single-cell anal-
ysis tasks: (1) dimensionality reduction for visualization, (2) data integration, (3) cell 
type identification, and (4) differential expression analysis using pseudobulk. First, for 
dimensionality reduction, we used three different dimensionality reduction approaches 
on binarized scRNA-seq data; (i) scBFA [14], (ii) PCA (Fig.  2a), and (iii) eigenvectors 
of the Jaccard cell–cell similarity matrix (see Additional file  2). All three approaches 
were compared to the standard approach of applying PCA to the normalized counts 
(Fig. 2b, Additional file 1: Fig. S3). Further, for all four methods, the first ten components 
were used to generate a non-linear embedding using UMAP (Additional file 1: Fig. S4). 
Qualitatively, we observed that the results of binary-based dimensionality reduction are 

Fig. 1 More cells, more zeros. Binarized scRNA-seq datasets were generated by binarizing the raw count 
matrix, where zero remains zero and every non-zero value is assigned a one. A Association between year 
of publication, total number of cells. Scatterplot of the number of cells (log scale) against the date of 
publication. B Scatterplot of the detection rate (y-axis) against the number of cells (log scale, x-axis). C On the 
x-axis the Pearson’s correlation coefficient (p) of every cell from the PaulHSC dataset between the binarized 
and normalized expressions. On the y-axis the product of the detection rate and the variance of the non-zero 
values (q). α is the Pearson’s correlation coefficient between these values p and q across all cells. D Boxplots 
of the α-values for all 56 datasets grouped by technology. One dataset (LawlorPancreasData) was excluded as 
α-value (α = 0.42) for this dataset was a clear outlier
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comparable to standard count-based methods. This was confirmed quantitatively, as the 
pairwise distances between cells based on the binary-based UMAPs were highly cor-
related with the pairwise distances from the count-based UMAP (r ≥ 0.73, Additional 
file 1: Fig. S5). Especially the UMAP generated with the binary-based PCs was visually 
very similar to the UMAP generated with the count-based PCs (Fig. 2c, d). Calculating 
the silhouette score (SS) for each cell type with the reduced dimensions (n = 10) resulted 
in slightly lower scores for scBFA (SS = 0.32) and binary-based PCA (SS = 0.39) com-
pared to the count-based PCA (SS = 0.44) (Additional file  1: Fig. S6). However, in the 
UMAP space (2-dimensional), silhouette scores for scBFA (SS = 0.43) and binary-based 
PCA (SS = 0.42) were higher than count-based PCA (SS = 0.35).

Second, we integrated three scRNA-seq datasets [20, 24, 25] with Harmony [26], 
using count- and binary-based PCA. Both, visually and quantitatively, we observed an 
improved mixing of cells for the binary representation (LISI = 1.18) as compared to 
counts (LISI = 1.12) (Additional file  1: Figs. S7 and S8). Third, we evaluated the effect 

Fig. 2 A, B Cells plotted against the first two principle components of the AD dataset [20]. A PCA based on 
binary representation, and B PCA based on count representation. UMAP generated from data presented with 
C the binary-based PCs and D the count-based PCs. Colors indicate annotated cell type. E, H UMAP based on 
the count based PCs, in which cells are colored according to the binary representation of the marker genes 
AQP4 (E) and TNR (H) which are known markers for astrocytes and OPCs respectively [21]. F, G Similar as E 
and H but showing the normalized expression of the marker gene. I The performance (median F1-score) of 
cell type identification by SingleR [22] and scPred [23] when applied to binary (binarized data), normalized 
(normalized expression), and shuffled (shuffled normalized expression) for 22 datasets
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of binarization on cell annotation using (i) marker genes and (ii) classification methods. 
Using a set of known brain cell type markers [21], we annotated the binarized AD dataset 
[20] based on solely the detection of respective cell type markers (see Additional file 2). 
The annotations were compared to cell type labels that were originally assigned based 
on the markers’ expression level (i.e., counts). We observed a high level of concord-
ance between annotations as quantified by a median F1-score of 0.93. (Additional file 1: 
Fig. S9). Additionally, we found that the visualization of the binarized expression of cell 
type markers to be highly similar to the visualization of their normalized expression in 
UMAP plots (Fig. 2e–h, Additional file 1: Fig. S10). Next, we compared the performance 
of automatic cell type identification using scPred and SingleR [22, 23] on 22 datasets for 
which cell type annotations were available. The median F1-scores were highly similar 
between cell type identifications based on the binarized and the normalized count data, 
despite large variation of sparseness between these datasets. This finding implies that 
counts do not add information for cell type identification. This conclusion was further 
supported by randomly shuffling the non-zero counts, which resulted in a comparable 
performance (Fig. 2I, Additional file 1: Fig. S11).

Forth, we evaluated whether counts can also be discarded when pseudobulk data is 
used for differential expression analysis [18]. In a dataset containing scRNA-seq data of 
the prefrontal cortex of 34 individuals [27], we generated pseudobulk data by either tak-
ing the mean expression of each gene across all cells, or the fraction of non-zero val-
ues across all cells (detection rate), per individual. Spearman’s rank correlation between 
the binarized profile and the mean counts (across all genes) was ≥ 0.99 (Additional 
file  1: Fig. S12) for every individual, implying that pseudobulk aggregation with bina-
rized expression faithfully represents counts. To quantify this further, we generated 960 
datasets using muscat [18] with 96 unique simulation settings (see Additional file 2). In 
each dataset, pseudobulk data for each individual was generated and we identified dif-
ferential expressed genes using Limma trend [28] for the mean gene expression and a 
t-test for the detection rate. In general, the F1-scores for the count and binary represen-
tations were very similar across the different settings; however, with small sample sizes 
and fewer cells, analyses based on a count representation performed better, while analy-
ses based on a binarized expression performed better with larger sample sizes and more 
cells (Additional file  1: Fig. S13). Additionally, count-based analyses resulted in more 
false positives (Additional file  1: Fig. S14), while binarized-based analyses resulted in 
more false negatives (Additional file 1: Fig. S15). The false negatives were primarily due 
to highly expressed genes that show no differences in the detection rate. At larger sample 
sizes and with more cells, the false negatives diminished (Additional file 1: Fig. S16). All 
together, these result show that most of the information is indeed captured in the binary 
representation, only when genes have a high detection rate (> 0.9), or when the number 
of cells per sample becomes low, then, changes in expression are not reflected in the 
binary representation and, consequently, information from counts is needed.

Whether zero-inflation associates with technical or biological origins is heavily 
debated [8]. One compelling reason for this debate is the fact that within a single dataset 
some genes are zero-inflated, while others are not [5, 8]. We argue that this observa-
tion is mostly related to whether a gene is only expressed in a subpopulation of cells 
(e.g., marker genes) or whether a gene has a stable expression (e.g., housekeeping genes). 
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To substantiate our claim, we used BDA [15] to identify the top 100 most differentially 
expressed genes between two cell populations and the top 100 most stable expressed 
genes in a 10X dataset [24] as well as a Smart-Seq dataset [29]. Next, we applied scRATE 
[5] to identify the best distribution model for the observed expression of the identified 
genes, being either a Poisson, a negative binomial, or their zero-inflated counterparts. A 
Fisher exact test showed that a zero-inflated model was enriched in the top 100 differen-
tially expressed genes, and a non-zero inflated model was enriched in the top 100 stable 
expressed genes (Table 1). Hence, like earlier work [5], we conclude biological heteroge-
neity to be the main driver of zero-inflation.

Increasingly larger datasets require increasingly more computational resources. The 
storage required for all 56 datasets used in this study was 764 gigabytes after normaliza-
tion using sctransform [30] or 276 gigabytes when log-normalized and stored as sparse 
matrices. In contrast, binarizing the same datasets and storing them as bits required only 
73 gigabytes, which is an ~ 11-fold and ~ fourfold reduction in storage requirements, 
respectively (Additional file  1: Fig. S17). Yet, there are big differences across datasets. 
For example, a reduction of ~ 50-fold and ~ 20-fold, respectively, was acquired for the 
BuettnerESC dataset [31]. The amount of storage that can be saved is highly correlated 
with the detection rate (Additional file  1: Fig. S18), with the highest gain for datasets 
with a high detection rate. The considerable storage reduction of the binary representa-
tion gives the potential to boost downstream analyses to larger numbers of cells, open-
ing possibilities to get a more fine-grained resolution of biological heterogeneity [32].

We showed that analyses based on a binary representation of scRNA-seq data perform 
on par with count-based analyses. Working with binarized scRNA-seq data has clear 
additional advantages. The first is simplicity. For the various tasks that we explored, such 
as dimensionality reduction, data integration, cell type prediction, differential expres-
sion analysis [15], and clustering [12], the binary representations required no normali-
zation. Hence, various subjective choices on the normalization could be avoided, which 
improves reproducibility of these tasks. However, as sequencing depth has an effect on 
the detection rate of a cell, it is likely this is not the case for all downstream tasks. Sec-
ond, binarization reduces the amount of required storage significantly and allows the 
analysis of significantly larger datasets. For example, binary-based data allow for a bit 
implementation of clustering as has been done before in the field of molecular dynam-
ics resulting in a significant reduction of run time and peak memory usage compared to 
existing methods [33]. It has also been suggested that binarization alleviates noise [14] 
as it is insensitive to count errors. However, binarization remains sensitive to detection 
errors caused by, e.g., the presence of ambient RNA. Consequently, detection of ambient 

Table 1 Enrichment of zero-inflated distributions for the top100 differential expressed genes and 
the enrichment of non-zero inflated distributions for the top100 stable genes

Platform Top 100 Zero-inflated Not zero-
inflated

logOR 95% CI P-value

10x Differentially expressed genes 99 1 5.19 3.36, 8.87 3.03 ×  10−25

Stable genes 35 65

Smart-seq Differentially expressed genes 97 3 3.70 2.50, 5.36 5.46 ×  10−18

Stable genes 44 56
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RNA [34] poses a challenge for binary representations when studying individual cells 
and thus might require specialized methods to be developed.

At first glance, binarizing scRNA-seq data seems to remove signal. However, genes 
that are highly expressed across cells will not have a lot of zeros, whereas genes that are 
lowly expressed across cells will have many. This implies we might be able to infer the 
relative expression of a gene within an individual cell by exploiting the detection pat-
tern of similar other cells. Using this reasoning, we indeed were able to reconstruct the 
expression levels of genes from the detection pattern using neighboring cells (Additional 
file 1: Fig. S19, Additional file 2). Hence, we conclude that the detection rate of a gene in 
a group of cells, such as a cell type, do faithfully represents the (mean) expression levels 
of that gene in that group of cells, underpinning why binarization for most of the down-
stream tasks apparently does not have lost signal.

We have shown that sparsity is inversely correlated with the amount of additional sig-
nal that is captured with counts. Consequently, binarization will not be useful for all 
scRNA-seq datasets. Previous work suggested that when the detection rate is > 90%, vis-
ualizations based on the binary representation do not perform on par with count-based 
representation [14]. With our simulation experiments, we have shown a similar trend 
when considering the task of detecting differential expressed genes based on pseudobulk 
values.

Conclusions
Concluding, our results support existing literature in showing that binarized scRNA-seq 
data can be used for the following: dimensionality reduction, data integration, visuali-
zation, clustering, trajectory inference, batch correction, differential expression analy-
sis, and cell type prediction. We believe scRNA-seq tool developers should be aware of 
the possibility of using a binary representation of the scRNA-seq data instead of count-
based data, as it gives opportunities to develop computational- and time-efficient tools.

Methods
Detailed methods are available in Additional file 2.
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