
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://
creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco mmons. org/ publi
cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Snajder et al. Genome Biology (2023) 24:83
https://doi.org/10.1186/s13059-023-02917-w

Genome Biology

pycoMeth: a toolbox for differential
methylation testing from Nanopore methylation
calls
Rene Snajder1,2,3* , Adrien Leger4,5, Oliver Stegle1,6,7 and Marc Jan Bonder1,6

Abstract

We present pycoMeth, a toolbox to store, manage and analyze DNA methylation calls
from long-read sequencing data obtained using the Oxford Nanopore Technologies
sequencing platform. Building on a novel, rapid-access, read-level and reference-
anchored methylation storage format MetH5, we propose efficient algorithms for
haplotype aware, multi-sample consensus segmentation and differential methylation
testing. We show that MetH5 is more efficient than existing solutions for storing Oxford
Nanopore Technologies methylation calls, and carry out benchmarking for pycoMeth
segmentation and differential methylation testing, demonstrating increased perfor-
mance and sensitivity compared to existing solutions designed for short-read methyla-
tion data.

Keywords: Nanopore, Methylation, meth5, pycometh

Background
High-throughput technologies for profiling of DNA base modifications have become
established tools to study epigenetic regulation. In mammalian cells, the predominant
and most studied type of base modification is the methylation of cytosine in the 5′CpG3′
context (often abbreviated 5mC or simply CpG-methylation). Genomic regions enriched
with this CpG motif (often referred to as CpG-islands, CGI) are found to be less tightly
associated with nucleosomes, hence more accessible to DNA-binding proteins such
as transcription factors [1]. Methylation of CpG in regulatory regions can affect gene
expression in a variety of ways, including via direct interference with transcription fac-
tor binding or via recruitment of binding proteins attracted to methylated CpGs [1, 2].
Other, arguably less well studied, types of DNA base modifications include the methyla-
tion of adenine in 5′GATC3′ (6mA) context or any of the oxidative derivatives of 5mC
(5hmC, 5fC, and 5caC) [3].

*Correspondence:
rene.snajder@gmail.com

1 Division of Computational
Genomics and Systems Genetics,
German Cancer Research Center
(DKFZ), Heidelberg, Germany
2 Faculty for Biosciences,
Heidelberg University,
Heidelberg, Germany
3 HIDSS4Health, Helmholtz
Information and Data Science
School for Health, Heidelberg,
Germany
4 European Bioinformatics
Institute, European Molecular
Biology Laboratory (EMBL),
Hinxton, Cambridge, UK
5 Current affiliation: Oxford
Nanopore Technologies, Gosling
Building, Oxford Science Park,
Oxford, UK
6 Genome Biology Unit,
European Molecular Biology
Laboratory (EMBL), Heidelberg,
Germany
7 Wellcome Sanger Institute,
Wellcome Trust Genome
Campus, Cambridge, UK

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-023-02917-w&domain=pdf
http://orcid.org/0000-0002-7318-976X

Page 2 of 19Snajder et al. Genome Biology (2023) 24:83

There exists a growing repertoire of high-throughput assays for the profiling of CpG-
methylation states. Aside from targeted approaches like bead array based methods, the
most commonly used techniques are based on short read sequencing and offer single-
base resolution and genome-wide coverage [4]. These include whole genome bisulfite
sequencing (WGBS), and more recently an enzymatic methylation sequencing protocol,
promising lower DNA degradation and more balanced base representation [5]. Both of
these methods have been applied in bulk and single cell setting.

Our increased understanding on genetic variation has created demand for longer
reads, and has therefore given rise to long-read sequencing technologies such as those
developed by Pacific Biosciences (PacBio) as well as Oxford Nanopore Technologies
(ONT), which can directly sequence native DNA molecules. Sequencing long single
molecules can aide in problems that are difficult to resolve with short-read sequenc-
ing, such as the reliable detection of structural variations [6], phasing of variants into
paternal and maternal haplotype [7], as well as the assembly of an entire human genome
including low-complexity regions [8]. Additionally, ONT sequencing datasets can be
(re)processed to obtain measurements of base modification states [9]. This allows for
a host of applications through profiling the epigenome in a haplotype-resolved, whole-
genome, single-molecule setting [10], including in regions which are poorly studied and
annotated.

These new opportunities come with new challenges that need to be addressed in
downstream analysis software. In the initial step, the modification state of a base needs
to be determined. For this, a number of methylation callers have already been published,
including Nanopolish [10], DeepSignal [11], and ONT’s own Megalodon [12]. These
methods have been compared and benchmarked elsewhere [13]. The first pivotal chal-
lenge which arises from this new data type, and one which we address, is the need to
efficiently store and retrieve base-level information with read association. We focus spe-
cifically on methylation calls from Nanopolish, a Bayesian methylation prediction tool
emitting log-likelihood ratios (LLRs) of methylation [10]. The large number of methyla-
tion calls (up to 850 million CpG-methylation calls in a 30× coverage sequencing experi-
ment of the human genome [14]) need to be stored and made accessible in an efficient
manner. HTSLib [15] recently implemented two new tags (MM and ML) to store base
modification probabilities together with the read alignments in the SAM format, storing
methylation calls efficiently but at the cost of access speed (Fig. 2C). Here, we propose
MetH5, an open standard storage format optimized for rapid random access, scalability,
and parallel computing, storing individual methylation calls at read and base level.

Furthermore, standard downstream analysis tasks such as discovery of differential
methylation require software tools supporting methylation data from ONT sequencing.
While existing methods designed for methylation frequency analysis measured using
bisulfite sequencing can be appropriated, this approach ignores read information and
requires binarizing methylation probabilities to discrete methylation calls. Downstream
analysis software which takes full advantage of the probabilistic nature of ONT meth-
ylation calls as well as the molecule-level information, such as haplotype assignment, is
currently lacking. To close this gap, we provide pycoMeth, a software suite for de novo
methylation segmentation and differential methylation testing. To shed dependence
on reliable genome annotation and to identify methylation patterns de novo, pycoMeth

Page 3 of 19Snajder et al. Genome Biology (2023) 24:83

implements a Bayesian changepoint detection framework as a methylome segmenta-
tion tool. This method takes into account read-level information, as well as methylation
call uncertainties, and produces a consensus segmentation over multiple read-groups
(e.g., multiple samples, haplotypes, or sample/haplotype combinations). Furthermore,
pycoMeth’s differential methylation testing module offers a variety of testing options for
the discovery of differentially methylated regions (DMRs) in two or more samples, as
well as a reporting function generating HTML reports for discovered DMRs.

Together, in this work, we present a software toolbox that represents an accessible,
integrated solution, addressing the unique challenges of methylation analysis from
ONT sequencing, encompassing efficient storage, segmentation, and differential meth-
ylation testing (Fig. 1). To showcase our software, we also perform an extensive bench-
mark on simulated and real data, demonstrating the efficiency, flexibility, and versatility
of pycoMeth and the MetH5 format compared to existing tools for ONT and bisulfite
sequencing.

Results
MetH5 — an efficient read‑level base modification container

Data storage and retrieval in pycoMeth is handled by MetH5 — a file format specifi-
cally designed for base methylation call storage from long read data with uncertain-
ties (such as ONT). MetH5 enables rapid random access and is optimized for parallel
computing, while retaining access to all long-read specific information such as meth-
ylation call uncertainties and molecule-level information. The MetH5 format (Fig. 2A)
is built on the Hierarchical Data Format (HDF) version 5 [16], and we consider the

Fig. 1 Overview of differential methylation analysis on ONT data using MetH5 and pycoMeth. Here, three
biological samples are ONT-sequenced, base- and methylation-called, and haplotyped. The methylation caller
output is stored in MetH5 format. Sample name and haplotype assignment for each read are stored as read
groups in the MetH5 file (Fig. 2). PycoMeth methylome segmentation is performed, producing a consensus
segmentation over all read-groups. Each segment is then tested for differential methylation or allele-specific
methylation (in this example between-sample differences, ignoring haplotypes). Finally, pycoMeth generates
a summary HTML report as well as detailed reports for all DMRs (Fig. 3)

Page 4 of 19Snajder et al. Genome Biology (2023) 24:83

following guiding principles for its design. Read-level storage: All base modification
calls are stored together with the read they originated from, in order to allow read-
level and read-group-level analyses. Base-level uncertainty estimates: MetH5 is not
limited to binary calls, but can natively store the confidence values output by the base
modification caller. Rapid random access: Base modification calls are stored in order
of their genomic coordinate and indexed such that they can be retrieved with mini-
mum disk I/O (Fig. 2B, C). Parallel processing: Chunked storage and accessor meth-
ods facilitate even load distribution when used in parallel systems (Additional file 1:
Fig. S1). Efficient storage: Using efficient data types, data compression, and avoiding
data duplication (such as read names or chromosome names). Flexible annotations:
Reads can be annotated with arbitrary read-group qualifiers (e.g., sample, haplotype
group, haplotype id). We evaluate the runtime performance and storage efficiency of
the MetH5 format in Fig. 2C.

MetH5 comes with a python API to abstract the architecture and provide develop-
ers with a coherent software interface. In addition to the python API, the meth5 pack-
age also comes with a command line user interface (CLI), which allows the creation,
merging, and annotation of MetH5 files. The software also supports the extraction of
key data quality statistics, such as base modification rates and coverage, for visualiza-
tion in external software such as the integrative genomics viewer (IGV) [17, 18].

Fig. 2 The MetH5 file format. A Structure of the HDF5 container including dataset types and shapes. Nx refers
to the number of methylation calls per chromosome x. R refers to the total number of reads in the entire
container. Methylation calls are stored together with their genomic coordinate on the chromosome (range),
the log-likelihood ratio (LLR) of methylation, and a numeric read ID (unique to this container). Read names
are optionally stored, mapping each of the MetH5 numeric read IDs to the original read name. An arbitrary
number of read groupings can be stored, assigning each read to exactly one read group per grouping. B
Schematic representation of random access in the MetH5 format. An index per chromosome allows direct
access to the required chunk. The range dataset can then be searched for the start and end index. Once these
indices have been acquired, LLRs and read IDs can be read directly and optionally. If globally unique read
names are required, they can be looked up directly using the read ID, and the same holds for read groups
such as haplotype assignments. C Performance comparison between MetH5 and BAM/CRAM format with
MM tag (Materials and methods). In the file size comparison, bars represent only the extra space occupied by
MM and ML tags, and native BAM size is annotated next to the bar

Page 5 of 19Snajder et al. Genome Biology (2023) 24:83

pycoMeth Meth_Seg — Bayesian methylome segmentation for haplotype‑aware

multi‑sample changepoint discovery

The ability to measure methylation on haplotyped long reads offers a unique opportu-
nity for discovery of methylation patterns in a de novo fashion, independent of pre-made
functional annotations or CGIs. Utilizing the efficient access to read-level methylation
information offered by the MetH5 format, we implement pycoMeth Meth_Seg, a Bayes-
ian changepoint detection algorithm (Fig. 3A) for multi-read-group segmentation of
methylation profiles, designed for the de novo discovery of methylation patterns from
multiple (haplotyped) ONT sequenced samples. In contrast to previous segmentation
methods, which either segment a single methylation profile [19], or derive a segmenta-
tion from differential methylation between two samples [20], pycoMeth Meth_Seg takes
into account an arbitrary number of read groups (e.g., biological samples, haplotypes, or
individual molecules/reads) to detect a dynamic set of methylation patterns from which

Fig. 3 Example pycoMeth workflow for differential methylation analysis. A Methylome segmentation
using a sBayesian changepoint detection model. Segmentation can be computed on a read-group (e.g.,
haplotype) level. Emission likelihood in the HMM models methylation call uncertainties as well as an
optional methylation rate prior. B Differential methylation testing allows for a number of test choices. The
LLR difference hypothesis compares methylation call LLRs within a segment between two samples directly.
Selecting the count dependency hypothesis or the β-score difference hypothesis (default) both result in
binarization of methylation calls based on a defined LLR threshold. The count dependency hypothesis leads
to a test on contingency tables, testing dependency between methylation count and read group, whereas
the β-score difference hypothesis results in a test comparing, for each segment, the read methylation
rates between read groups. Regardless of test hypothesis, p-values are then subjected to multiple testing
correction. C The reporting module generates an overview HTML report, as well as individual interval reports

Page 6 of 19Snajder et al. Genome Biology (2023) 24:83

it then derives a single consensus segmentation. To do so, the read-group annotation
stored in the MetH5 container can be used to inform pycoMeth Meth_Seg about cat-
egorical methylation confounders such as biological sample or haplotype, which are then
considered equally in the segmentation, allowing for for haplotype aware multi-sample
methylome segmentation.

The pycoMeth Meth_Seg model directly models methylation calls as uncertain
observations, based on the LLRs stored in the MetH5 container. Methylation rates per
segment per read group are then estimated as the parameters of the model, while simul-
taneously the segmentation is optimized to maximize the likelihood of observations
(Materials and methods). Default hyperparameters are set to maximize sensitivity such
that typically an oversegmentation is achieved. This results in a segmentation that is
unbiased towards between-sample differential methylation, as it is designed to compute
a segmentation even in the absence of DMRs.

Segmentation can be performed either via a python API, or using a CLI which takes
one or more MetH5 files as the input. PycoMeth can take advantage of MetH5’s chunked
data storage, allowing chunked operations in order to allow efficient load distribution on
parallel systems (Additional file 1: Fig. S1).

pycoMeth Meth_Comp — versatile differential methylation testing suite

Once the methylome has been segmented, pycoMeth can be used to test segments for
differential methylation between two or more samples, implemented in pycoMeth’s
Meth_Comp subcommand. Methylation calls can either be provided as one MetH5 file
per sample, or a single MetH5 file containing read-group annotations, such as when test-
ing for allele specific methylation (ASM) within a single sample using read groups to tag
haplotypes. PycoMeth Meth_Comp accepts any region information, provided in bed-
format, for differential methylation testing (Fig. 3B), and also implements a heuristic
CGI detector (pycoMeth CGI_Finder) for the study of CGI methylation.

A variety of differential methylation test options are provided by pycoMeth Meth_
Comp. The user can define a test hypothesis, and pycoMeth chooses a test depending
on the number of samples, the test hypothesis, and other parameters (Materials and
methods). For multiple testing correction, pycoMeth implements a number of options
for p-value adjustment, including an optional independent hypothesis weighting (IHW)
scheme [21] that uses standard deviation of methylation rates as a weight in order to
draw more power from a large number of tests. If more than two samples are provided,
the matching 2-sample test will be performed as a post-hoc test in a one-vs-all setting for
each interval where the null hypothesis had been rejected in the n-sample test. DMRs
are reported as a tab-separated file. The optional Comp_Report subcommand provides
additional functionality to generate easily accessible HTML reports, including visualiza-
tions in the context of user provided gene annotations (Fig. 3C).

Benchmarking pycoMeth

In order to evaluate performance of the different tools in the pycoMeth suite, we applied
pycoMeth to two datasets. The first is a simulated Nanopolish dataset of methylation
calls on chromosome 1(hg19) on two samples with differential methylation between
them. We started by simulating methylation patterns organized in segments with either

Page 7 of 19Snajder et al. Genome Biology (2023) 24:83

high, low, or intermittent methylation rate, with about 8% of the segments differentially
methylated between the two samples with a variety of effect sizes (from 0.15 to 0.6 differ-
ence). This information was used to generate a low-coverage (15×) and a high-coverage
(30×) dataset by simulating reads and LLRs, approximating the uncertainty distribution
of Nanopolish methylation calls (Materials and methods). The second dataset is a real
ONT sequencing dataset from a father-mother-son trio sequenced by the Genome in
a Bottle (GIAB) consortium [22] (information on alignment and data processing can
be found in the methods). Here as well, we investigated the effects of a high-coverage
(30× per sample) and low-coverage (15× per sample) setting. This synergy between the
simulated and the real datasets allows us to draw conclusions about the accuracy of our
methods in the real data.

MetH5 facilitates rapid random access to methylation calls

To show the benefits of the MetH5 container format, we compared our format with the
current definition and implementation of modification scores in hts-specs (MM and ML
tag) [23]. Here, we focused only on the data from one of the GIAB samples (HG003,
Materials and methods), either using BAM files combined with the MM tag or stored
using the MetH5 format (Materials and methods). Methylation calls were stored in
MetH5 as well as BAM and CRAM format. Assessing the advantages of the MetH5 file
format, Fig. 2D compares random access and sequential access times of methylation
scores stored in MetH5 versus CRAM and compressed BAM format, as well as storage
space required. While BAM/CRAM files make more efficient use of storage, between
165 and 1400 MB (11 to 64% of that used by MetH5) depending on compression, they
are significantly more expensive to read (about 5 to 90 times slower depending on
compression).

pycoMeth changepoint detection on simulated data outperforms existing tools

Next, we assessed the performance of the segmentation. Due to the lack of tools designed
for segmentation and differential methylation analysis in single-molecule sequencing
data, we instead compare our segmentation with two commonly used methods designed
for segmentation of methylation rates from bisulfite sequencing data, methylKit [19] and
MethCP [20]. MethCP performs segmentation of a differential methylation profile in a
two-sample setting, which is why it is naturally biased towards DMRs. In order to also
compare with an impartial segmentation, we use methylKit’s single-sample segmenta-
tion on the summed methylation profile of the two samples which are compared.

We created two segmentations using pycoMeth Meth_Seg, one with a maximum of
16 segments per 300 CpG sites and one with the same maximum per 600 CpG sites
(which we refer to as “pycoMeth coarse”). Additionally, we evaluated the performance
of pycoMeth Meth_Comp when matching the settings to those used by methylKit and
MethCP, in order to investigate the impact of the segmentation and DMR testing meth-
ods independently.

To evaluate the segmentation quality, we counted the number of ground-truth seg-
ments whose changepoints (segment boundaries) are represented in the segmentation
in the high-coverage example (Fig. 4A) and the low-coverage example (Additional file 1:
Fig. S2A). As an accuracy threshold, we define that a changepoint has been correctly

Page 8 of 19Snajder et al. Genome Biology (2023) 24:83

identified if the nearest predicted changepoint is no further away than 5% of the contain-
ing segment’s width. The pycoMeth segmentation identified 72.2% of all DMR segments
and 72.9% of non-DMR segments (full match). For 24.1% of DMR segments and 23.5%
of non-DMR segments, one side of the segment (start or endpoint) could be accurately
detected (partial match). Only 3.6% of DMR segments and 3.6% of non-DMR segments
could not be accurately detected on either side. However, the segmentation also pre-
dicted 33,100 additional changepoints which do not correspond to ground-truth seg-
ments (485% oversegmentation). Reducing the segmentation granularity (pycoMeth
coarse) reduced the oversegmentation to 18,276 (268%) additional changepoints while
reducing detection power by about 4%. The methylKit segmentation, which resulted in

Fig. 4 Benchmark on simulated data and GIAB dataset. A Number of segments identified as full match,
meaning that both the true start and end changepoint have been accurately identified, partial match,
meaning that one of either the true start- or end-changepoint has been accurately identified, or no
match, meaning that neither the true start nor end changepoint have been accurately identified, in the
high-coverage simulated dataset. For the purpose of this graphic, a changepoint is considered accurately
identified if a predicted segment breakpoint is no more than 5% of its containing segment’s length
away from the true (ground truth) changepoint. Additional changepoints are the number of predicted
changepoints not counting towards a partial or full match (oversegmentation). B Performance of DMR
calling on simulated data using the pycoMeth coarse segmentation and varying DMR tests. Each bar group
corresponds to the respective interpretation of the y-axis: recall as a measure of test power, precision as a
measure of false discovery, and F1-score (harmonic mean of recall and precision). C DMR calling performance
on simulated data for varying segmentations. All settings use a Fisher’s exact test for DMR testing.
MethCP-pycoMeth and methylKit settings use pycoMeth for DMR testing. D Allele-specific methylation called
on HG002. PycoMeth calls were performed using the Fisher exact test with IHW. Colors represent the effect
size of the containing segment (absolute differential methylation rate). E DMRs identified between HG003
and HG004

Page 9 of 19Snajder et al. Genome Biology (2023) 24:83

the least number of segments (only 35% oversegmentation), still captured a fair number
of DMR (33.5% found, 32.2% partially found) and non-DMR (50.7% found, 30.4% par-
tially found) segments, whereas MethCP showed good performance on DMR segments
(63.4% found, 22.4% partially found), but failed to capture non-DMR segment bounda-
ries (15.4% found, 28.7% partially found) despite producing a large number of segments
(667% oversegmentation). Since detection power naturally also increases with segmen-
tation granularity, we performed a randomization test in which predicted segments are
shuffled and compared to the original segmentations, confirming that all segmentation
methods perform vastly better than random (Additional file 1: Fig. S3).

After segment identification, we performed DMR testing using pycoMeth Meth_
Comp on all four segmentations. First, we assessed the impact of different statistical
tests on DMR identification in the high-coverage example, comparing the options imple-
mented in pycoMeth with MethCP (Fig. 4B). We observe that in this setting, the test
method used in pycoMeth Meth_Comp does not strongly impact the outcome, with the
improved precision of the most conservative test (β-score difference) leading to the best
overall performance (F1 score 0.868, used to represent the compromise between preci-
sion and recall) compared to the LLR difference test and Fisher exact test (both with an
F1 score of 0.866). Next we tested the impact of the segmentation on DMR identifica-
tion (Fig. 4C) fixing the test to Fisher exact (count dependency hypothesis) — as this is
the same test used in MethCP — with IHW. We find that both pycoMeth options have
higher recall than the other tools. While MethCP shows best precision, pycoMeth coarse
has the highest F1-score. In summary, of all configurations, pycoMeth coarse with β-
score difference test yielded the best performance in terms of F1-score and has been set
as the default parameters when using pycoMeth.

In the low-coverage (15×) example with the same test settings (Additional file 1: Fig.
S2B–C), we found that reduced coverage led to a slight reduction in performance in all
methods. Most affected was methylKit, with an F1 score reduction of 0.036, compared
to MethCP (0.016 reduction) and pycoMeth coarse segmentation (0.013 reduction).
Next, we investigated the agreement of changepoint predictions across low- and high-
coverage examples. The Jaccard index of changepoints found is 0.83 in the pycoMeth
segmentation, 0.82 in pycoMeth coarse, 0.85 in MethCP and 0.76 in methylKit, indicat-
ing good stability in all methods.

pycoMeth shows high power at detecting low‑effect DMRs in real ONT data

Besides simulations, we also assessed pycoMeth Meth_Seg performance in a real-world
setting, by generating a methylome segmentation on the GIAB data, and test both for
DMRs between HG003 and HG004 (parental samples), as well as trying to identify ASM
in HG002 (son) (Fig. 4D, E). For the between-sample DMR test, coverage was 30× per
sample, and in the ASM test ∼15× coverage per haplotype, analogous to the high- and
the low-coverage simulation examples, respectively. We find that pycoMeth identifies
a much larger number of CpGs in DMRs, particularly in DMRs with low effect sizes.
Examining chromosome 20 as a benchmark, pycoMeth coarse with the Fisher exact test
and IHW identifies 77,054 DMR CpGs in the ASM scenario, where 66,307 (86.1%) were
of low effect size (0.1 to 0.3) and 10,747 (13.9%) of high effect size (> 0.3). Using the
same settings, in the parent comparison, pycoMeth identified 156,584 CpGs in DMRs, of

Page 10 of 19Snajder et al. Genome Biology (2023) 24:83

which 153,839 (98.2%) were of low effect size and 2746 (1.8%) of high effect size. Compa-
rable figures for MethCP show lower numbers overall, but with more CpGs from high-
effect-size DMRs: in ASM, 42,936 CpGs total with 29,450 (68.6%) of low effect size and
13,486 (31.4%) of high effect-size, and in the parent comparison, 92,435 total with 87,586
(94.8%) of low effect size and 4849 (5.2%) of high effect-size. Using pycoMeth’s Fisher’s
exact IHW test on the methylKit segmentation shows lower counts overall, with very
few CpGs in high-effect-size regions: in ASM, 33,826 CpGs total with 31,591 (93.4%) of
low effect size and 2235 (6.6%) of high effect size, and in the parent comparison, 110,975
total with 110,853 (99.9%) of low effect size and 112 (0.1%) of high effect size.

Surprisingly we find that the tool used for segmentation has a great impact on the
segment discovery, implying that the methods are complementary. High agreement in
the segmentation performed by pycoMeth coarse and pycoMeth show that increasing
segmentation granularity in pycoMeth still finds most of the same changepoints, but
increases how segments are further broken down (Additional file 1: Fig. S4).

Comparing agreement of differential methylation calling, we find that in the real data
(GIAB parent comparison, chromosome 20) only 14.8% of CpGs in DMRs identified are
found using all segmentations, much lower than the 52.6% observed on the simulated
data. Between pycoMeth and pycoMeth coarse, the percent positive agreement (PPA,
Materials and methods) in the real data was 66.5% (79.3% in simulated data, Additional
file 1: Fig. S5). Note that PPA of 66.5% is higher than expected (46.4%) at the observed
DMR distribution (Materials and methods).

While percent negative agreement is over 90% between the two pycoMeth segmenta-
tions (Additional file 1: Fig. S6), lower PPA on real data can likely be explained by over-
abundance of low effect size DMRs. Comparing different tests on the same pycoMeth
segmentation, 79.5% of sites are called by all tests (96% on simulated data), with the
more conservative β-score difference method standing out, not calling 12.2% of sites
which are called by the other two methods (Additional file 1: Fig. S7).

Finally, seeing how pycoMeth has high power in low-effect-size settings, we evaluated
overcalling of low-effect-size DMRs in both simulated and real data. On GIAB data, a
randomization test was performed, in which LLRs in the MetH5 containers of HG003
and HG004 were randomized within each chromosome, such that methylation becomes
fully independent of read, read group, and genomic location. A segmentation and DMR
testing run between randomized HG003 and randomized HG004 was then performed
to estimate a false discovery rate (FDR). We find this FDR is in the range of 0.07–2.2
for effect-size thresholds up to 0.1. For thresholds of 0.1 or higher, FDR ranges (mostly)
from 0.04 to 0.23 for LLR-Diff and the Fisher exact test, and consistently stays below 0.05
for the BS-Diff test (Additional file 1: Fig. S8). Furthermore, we find that the majority of
false-positive segments are long (> 3000 methylation calls per segment) low-effect-size
DMRs which are effectively filtered out by the effect-size filter of 0.1. Computing preci-
sion and recall on simulated data at different effect-size thresholds also shows that seg-
mentations with higher granularity suffer from reduced precision, with pycoMeth coarse
segmentation resulting in the best precision and recall (Additional file 1: Fig. S9). Tak-
ing everything together, pycoMeth coarse segmentation with the BS-Diff test hypothesis
and IHW presents a good configuration for further studies of all ranges of methylation
effects.

Page 11 of 19Snajder et al. Genome Biology (2023) 24:83

Discussion
In this work, we presented pycoMeth and MetH5, a toolbox for the analysis of ONT-
derived methylation data, encompassing storage, segmentation, and differential meth-
ylation analysis. We provided a benchmark on simulated and real sequencing data, each
in a low- and high-coverage setting, comparing MetH5 and pycoMeth with existing
solutions.

We observed that using MetH5 as a file storage showed a marked performance increase
as compared to current BAM-based file formats for downstream methylation analyses,
such as our segmentation. While we are aware of the advantages of having methylation
calls stored in a well-supported file format, we believe MetH5 to be a complementary
solution used during analysis and visualization, offering boosted performance, paral-
lel computing capabilities and an intuitive interface. MetH5 allows for easier sharing of
methylation information due to being a compact specialized storage container, whereas
BAM are large and monolithic, containing many different data modalities.

On top of that, in our experiments, we currently observe compatibility issues between
(mod)BAM files generated by Nanopolish and the modbampy and pysam libraries for
downstream analysis, both with read-anchored as well as reference-anchored calls, but
we expect that future improvements will solve this and potentially increase methylation
accession speeds in BAM files. The use of the modification tags (MM and ML), is still
new, and therefore support in downstream software is either not optimal or not exist-
ing, even though development is picking up speed rapidly. With MetH5, we provide a
specialized file format allowing for extraction and storage of methylation data with
the intent to simplify and speed up methylation-related analyses and methylation data
sharing.

We have shown that the segmentation method used to determine segments for DMR
testing has a great impact on the number of DMRs found in native data, particularly on
DMRs with low effect sizes. Compared to existing DMR calling workflows, pycoMeth
shows improved performance (F1 score) on simulated data, and identifies more DMR
segments in real data. Furthermore, we show that the segmentation approach imple-
mented in pycoMeth allows for the discovery of methylation changepoints, both in
regions with and without DMRs, and demonstrates the potential for further study of de
novo methylation pattern discovery from long-read sequencing in a multi-sample set-
ting. The high complementarity between changepoints placed by pycoMeth and MethCP
(Additional file 1: Fig. S4) suggest that a combined approach may be beneficial for DMR
discovery. However, this does require great care in the design of the differential methyla-
tion test on which MethCP segments, and the integration of the segment boundaries,
before DMR testing and multiple testing correction. Therefore we would not recom-
mend this combination in a general use case, and would suggest to use only pycoMeth
coarse, which finds most DMR and non-DMR segments in the simulated data, as a start-
ing point for analyses.

MetH5 and pycoMeth have been developed and tested with methylation calls from
Nanopolish [9] in mind, as Nanopolish is easy to run on CPU-based hardware, has
benefited from long-term maintenance and updates and has therefore become very
robust and popular in the community. Furthermore, with Nanopolish being a Bayesian
method, LLRs reported by it are well-suited for the uncertainty propagation method as

Page 12 of 19Snajder et al. Genome Biology (2023) 24:83

implemented in pycoMeth Meth_Seg. However, newer base modification callers have
shown higher methylation calling accuracy [13], and more recently, remora-based meth-
ylation calling has been integrated in the ONT basecallers guppy [24] and bonito [25],
which store methylation calls as tags in BAM format. Future development of pycoMeth
and the meth5 API will aim to support methylation calls in BAM format as the file
standard and implementations stabilize, thus improving support for these methylation
calling tools. Doing so will also enable us to investigate potential applications to meth-
ylation calls from PacBio sequencing, another avenue we intend to pursue in the future.
Also, while mainly developed for the evaluation of CpG-methylation, all methods (aside
from the CGI-finder) are also applicable to other types of epigenetic marks, such as
adenine methylation, or cytosine methylation in GpC context. Although this is not cur-
rently implemented, the relational design of MetH5 also makes it an excellent choice for
storing multiple nucleotide (or base) modification calls on the same data, such as for
different oxidative derivatives of 5mC (5hmC, 5fC, and 5caC), by linking multiple LLR
datasets to the same coordinates and read IDs.

Conclusions
Here, we presented a toolkit and efficient file format for epigenetic analyses on ONT
reads. Due to the novelty of single-molecule methylation calling, there are no gold
standards yet for storage and analysis. With the MetH5 format, we attempt to provide an
efficient method of storing reference-anchored methylation calls without compromising
on read-level information or methylation call uncertainty information. The pycoMeth
Bayesian segmentation method and differential methylation testing take advantage of
read-level or read-group-level information, which tools designed for bisulfite sequencing
typically do not consider. This new approach performs comparably to or better than pre-
vious tools in terms of segmentation accuracy and balance between DMR testing recall
and precision (F1-score). Especially in a low-coverage setting and for the detection of
methylation changes with low effect sizes, pycoMeth excels compared to the other tools
tested.

Materials and methods
GIAB benchmark data preparation

GIAB raw fast5 files were downloaded from the Human Pangenome Project’s S3 bucket.
In order to reach approximately 20× to 30× coverage, we use four flowcells from HG002
and three flowcells from HG003 and HG004, respectively (Additional file 2). Phased SVs
produced by [26] were downloaded from the NCBI ftp server (Additional file 2). Reads
have been re-basecalled using guppy (version 5.0.11) with the high-accuracy model with
modbases. Alignment to reference genome GRCh38 was performed using minimap2
(version 2.17) [27] with the map-ont preset and otherwise default settings. Reads were
haplotagged using whatshap [7] (version 1.1). To produce Nanopolish [9] methylation
calls in MetH5 format, we run Nanopolish call-methylation with Nanopolish (version
0.13.3) and then use the python meth5 API to convert the Nanopolish output to the
MetH5 format. In order to generate BAM files with MM tags, the “methylation_bam”
branch (commit 9B01ad7) of Nanopolish has been used. BAM files were compressed
to create CRAM files using samtools (version 1.5) [15] with the command samtools

Page 13 of 19Snajder et al. Genome Biology (2023) 24:83

view -C and both BAM and CRAM were indexed using samtools index. Perfor-
mance comparisons between MetH5 and BAM/CRAM files were performed using the
meth5 (version 0.8.0) and modbampy (version 0.4.1) [28].

Simulation of methylation profile and Nanopolish methylation calls

We use the tool OmicsSIMLA (version 0.6) [29] with the parameter --WGBS to first
generate a methylation profile based on human liver tissue for chromosome 1 (hg19)
and simulate a control sample and a perturbed sample. We run OmicsSIMLA multiple
times, with the methy_theta parameter (which indicates the effect size of DMRs) set
to 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, and 0.6, each time with parameters -p_
diff_phase_meth 0.01-p_diff_phase_unmeth 0.01-p_diff_phase_fuzzy

0.01. We combine the profile from these simulation runs, such that up to 10% of seg-
ments are DMRs. Segments which are highly methylated in control and up-methylated
in the perturbed sample as well as segments which are unmethylated in control and de-
methylated in the perturbed sample were treated these as non-DMR segments.

In order to then simulate Nanopolish methylation calls for these methylation profiles,
we first estimate the distribution of read-lengths in a real ONT sequencing run as well
as the distribution of LLRs in Nanopolish calls, based on the GIAB sample HG002. We
model log10 read-lengths as a Gaussian mixture model with three kernels. Methylation
call uncertainty encoded in LLRs from Nanopolish are modeled as a beta distribution.

Note that p(M|X) , the probability of methylation given the observed raw sig-
nal X equals σ(LLR) . We define certainty of a methylation call c(LLR) ∈ [0, 1] as
c(LLR) = |σ(LLR) ∗ 2− 1| , making it so that an LLR of 0 leads to c = 0 , complete uncer-
tainty of the methylation call, and c(LLR) = c(−LLR) . We collect all certainties for chro-
mosome 21 of HG002 and estimate their distribution as a beta distribution B(α,β) . The
resulting parameters of the distribution were α = 0.640308 and β = 0.208756.

Methylation rate µ per CpG-site per sample were taken from the OmicsSIMLA simu-
lations. We draw a random methylation status x ∼ B(µ) where x is either 0 or 1. Fur-
thermore, we draw a methylation call certainty c ∼ B(α,β) . The simulated LLR is then
computed as LLR = σ−1(0.5+ (x − 0.5)c).

Nanopolish methylation calls were then simulated by randomly drawing read position
and read length, followed by sampling methylation states for each CpG site covered by
the read using the methylation rates simulated by OmicsSIMLA. Then the uncertainty
distribution is used to sample an LLR for the methylation call. Both the high coverage
and the low coverage dataset are drawn from the same methylation profile simulated by
OmicsSIMLA, but reads were independently simulated. We simulate a total of 500,000
reads per sample for the high coverage dataset (corresponding to roughly 30× coverage)
and 250,000 for the low coverage dataset (corresponding to roughly 15× coverage), and
store the methylation calls in a MetH5 container using the meth5 python API.

DMR calling agreement

For the purpose of segmentation and DMR calling consistency, PPA was computed
based on individual CpG sites within a DMR.

Page 14 of 19Snajder et al. Genome Biology (2023) 24:83

For comparison, we compute expected PPA, which depends on the label distribution
(true DMRs / true non-DMRs).

where p refers to the fraction of ground truth positive DMRs. Since p is unknown in real
data, we estimate p based on predictions of both DMR callers, substituting p with pre-
dicted positive (Additional file 1: Fig. S10).

Implementation

All tools have been implemented in python and require python version 3.7. The MetH5
format implements an HDF version 5 [16] container which is accessed using the h5py
[30] library. Other open source software libraries used in this work include NumPy [31],
SciPy [32], pandas [33], pyfaidx [34], statsmodels [35], and plotly [36].

Implementation of MetH5

The MetH5 format (Fig. 2A), an HDF version 5 container, contains two top-level groups:
chromosomes and reads. The chromosomes group contains one group named for each
chromosome or contig, which in turn contain four datasets. The first three datasets,
llr, read_id, and range, are all of length n and chunked using a chunk size defined upon
container creation. They store the methylation call uncertainties (as a floating point
number), locally unique read identifier (int) and genomic range (start and end integer
coordinate on the chromosome, thus facilitating grouped methylation calls), respec-
tively. Finally, upon indexing, another dataset chunk_ranges of dimension (c, 2), where
c = ⌈ n

chunk size
⌉ the number of chunks, is created. This dataset serves as an index for rapid

random access of genomic coordinates. The second top-level group “reads” is entirely
optional and stores read annotations. It contains the dataset read_name_mapping, a
string dataset of shape r, where r is the total number of unique reads. This dataset stores
read names and can be directly indexed using the local read identifiers stored in the
read_id dataset. Additionally, the group “read_groups” can contain a variable number of
datasets of shape r which can be used for read-group annotation, such as sample assign-
ment or haplotype assignment. Users can define dataset compression options upon crea-
tion. As a default, lzf compression is enabled.

The meth5 python API and CLI implements creation of a meth5 file from Nanopolish
result files. Random access to a genomic range is implemented by first identifying the
required chunks inside a chromosome, using the chunk_ranges dataset, and then per-
forming a binary search for the start and end index within the required chunk of the
ranges dataset. These indexes can then be used to directly access the corresponding val-
ues in the read_id and llr datasets. Alternatively, chunk-based accessor functions allow
direct access to the llr, read_id, and range datasets within a given chunk, and optionally
also allow for inclusion of data from neighboring chunks whenever the methylation calls
for a coordinate are split by the chunk boundary.

PPA = 100
#DMR CpGs in both callers

#DMR CpGs in one or both callers

E[PPA] = 100
p · TPR2 + (1− p) · FPR2

1− p · (1− TPR)2 − (1− p) · (1− FPR)2

Page 15 of 19Snajder et al. Genome Biology (2023) 24:83

Implementation of Bayesian changepoint detection

PycoMeth Meth_Seg implements a Bayesian changepoint detection algorithm modeled
as an HMM, based on the segment based model defined in [37] and modified to account
for variable number of segments by introducing a transition from any state to the end
state, multiple read groups, and uncertainty propagation from methylation inference.

The number of states S is a hyperparameter and represents the maximum number of
segments. Transition probabilities are defined as:

where tstay = 0.1 , tmove = 0.8 , and tend = 0.1 are priors controlling the granularity of the
segmentation and their default parameters respectively.

Each segment is parameterized with µs,g ∈ [0, 1] the methylation rate of segment s in
read-group g. If each read is represented as its own read-group, we refer to this as a read-
level segmentation and g refers to the read. Emission likelihoods for each methylation
call from segment s and read-group g given raw Nanopore signal X are derived as fol-
lows. Let p(U|X) and p(M|X) be the probability of a base being unmethylated or methyl-
ated respectively, given observed raw signal X.

where σ refers to the sigmoid function σ = 1
1+e−x and p(M) = 1− p(U) is the prior

methylation probability.

A segmentation is then computed using the Baum-Welch algorithm. Let ψ be the map-
ping between CpG sites and segments. In the expectation step we compute the posterior
p(ψ(i) = s|X ,µ) for all i, s using the forward-backward algorithm. In the maximization
step, we then update the segment methylation rate parameter µ to the maximum likeli-
hood estimator. Let r(g) be the set of all reads in read-group g.

The expectation and maximization steps are repeated until all parameters µs,g have
reached convergence with a tolerance of 1e − 4 . Finally, a cleanup step is performed in
which segments shorter than 5 CpG sites are merged with the next segment. To miti-
gate oversegmentation, neighboring segments whose methylation rate parameters dif-
fer less than 0.2 in all read-groups are then merged in a post-processing step. Since the
memory requirement of the Baum-Welch algorithm scales O(NSG) where N is the num-
ber of CpG sites, S is the number of segments, and G is the number of read-groups, we

ti,j =

tstay ifj = i,
tmove ifj = i + 1,
tend ifj = S,
0 otherwise

LLR = log
p(X |M)

p(X |U)

p(M|X) = σ(LLR+ σ−1(p(M))

p(X |µs,g) = p(X |U)p(U|µs,g)+ p(X |M)p(M|µs,g)

= const

(

p(U|X)(1− µs,g)

p(U)
+

p(M|X)µs,g

p(M)

)

µ̂s,g = arg min
∑

i,r∈r(g)

− log p(Xi,r |µs,g)p(ψ(i) = g)

Page 16 of 19Snajder et al. Genome Biology (2023) 24:83

perform the segmentation in a windowed fashion, on 300 or 600 CpG-sites per window
by setting the corresponding parameter of pycoMeth Meth_Seg. This leads to artificial
breakpoints between windows, causing some over-segmentation.

Implementation of differential methylation testing

DMR testing implements a number of different statistical tests depending on the test
hypothesis, number of samples, and other parameters. Currently, three test hypotheses
are implemented, named llr_diff, bs_diff, and count_dependency (Additional file 1: Fig.
S11). The test hypothesis llr_diff tests whether there is a significant difference in mean
LLR between samples by computing a ranked test. This mode assumes all LLRs are inde-
pendent and draws statistical power from both segment size, read-depth, and considers
methylation call uncertainty. The count_dependency hypothesis setting will in a two-
sample setting perform a Fisher exact test on binarized methylation call count, or with
more samples, a χ2-test on the full contingency table. Most conservatively, the hypoth-
esis bs_diff tests for a difference between mean read methylation rate between samples.
Therefore, a methylation rate (β = n_met

n_met+n_unmet) per read is computed on binarized
methylation calls, and then a ranked test on methylation β-scores is performed. Thus,
this test draws statistical power only from read-depth. Both the llr_diff and the bs_diff
hypotheses perform a two-sided Mann-Whitney-U test in the two-sample case, and a
two-sided Kruskal-Wallis test in the n > 2 sample case. Alternatively, if the parameter
–paired is provided in a 2-sample setting, pycoMeth will instead compute β-scores for
each genomic site observed in both samples and perform a two-sided Wilcoxon signed
rank sum test on site-level β-scores.

As multiple testing correction on top of filtered results can introduce biases [38],
pycoMeth Meth_Comp does not filter segments before p-value calculation safe for seg-
ments with insufficient data-points to compute the selected test. Multiple testing cor-
rection is thus performed across p-values from all segments with sufficient data, which
leads to a large number of tests that need to be corrected for. Optionally, independent
hypothesis weighting (IHW) [21] can be enabled to mitigate the problem of inflated
p-values when testing a large number of segments for DMRs with p-value adjustment.
When enabled, the scaled 1-centered standard deviation of methylation rates is used as
a weight and multiplied with raw p-values. In any case, p-value adjustment is computed
on raw or weighted p-values, and a large number of p-value adjustment methods are
provided to users as implemented by the statsmodels python package [35].

Methylome segmentation benchmark setup

The pycometh methylome segmentation was compared to two existing tools designed
for WGBS, methylKit (version 1.18.0) [19] and MethCP (version 1.6.0) [20]. MethylKit
was used to perform a single-sample segmentation independent of differential methyla-
tion, wheres MethCP supports a 2-sample segmentation based on differential methyl-
ation. In order to evaluate the effect of segmentation granularity on DMR calling, we
created a coarser segmentations with parameters –window_size 600 –max_seg-
ments_per_window 16 (a maximum of 16 segments per 600 CpG calls) and a more
fine-grained segmentation with parameters –window_size 300 –max_segments_
per_window 16 (a maximum of 16 segments per 300 CpG calls). No methylation

Page 17 of 19Snajder et al. Genome Biology (2023) 24:83

rate prior was provided and haplotype information was provided as read-groups in the
MetH5 format. For the segmentation using methylKit and MethCP, binarized metyla-
tion counts (LLR threshold 2.0) were created from the Nanopore methylation calls such
as produced in a WGBS experiment. The methylKit segmentations were created based
on total methylation rate of the compared samples/haplotypes. For MethCP methyla-
tion rates per sample/haplotype were computed. MethylKit segmentations were created
using the function methSeg with parameters maxInt=100 and minSeg=10 as suggested
in the methylKit documentation. MethCP was run with default parameters.

Differential methylation testing setup

PycoMeth Meth_Comp was run in all of the three hypothesis options (bs_diff, llr_diff,
count_dependency), with and without independent hypothesis weighing, and with
p-value adjustment using the Benjamini-Hochberg method [39]. MethCP differential
methylation testing was run with Fisher’s combined probability test. P-values reported
by MethCP are already reported as adjusted by methylKit’s implementation of SLIM [40].

Intervals called by MethCP which were based on a single call were removed, since
these obtained false significance from grouped Nanopolish calls being duplicated in the
pseudo-bulk generation (Additional file 1: Fig. S11).

Supplementary information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 023- 02917-w.

Additional file 1: Supplementary figures S1-S11.

Additional file 2. Benchmark data. Spreadsheet containing sample names, cell line, and download links for raw data
(ONT fast5 files) and for VCF files containing SNVs.

Additional file 3. Review history.

Acknowledgements
The present contribution is supported by the Helmholtz Association under the joint research school “HIDSS4Health -
Helmholtz Information and Data Science School for Health”.

Review history
The review history is available as Additional file 3.

Peer review information
Wenjing She was the primary editor of this article and managed its editorial process and peer review in collaboration
with the rest of the editorial team.

Authors’ contributions
R.S. with guidance by M.B. and O.S. designed and developed the MetH5 format and Bayesian methylation segmentation
method. A.L. and R.S. designed and implemented pycoMeth. R.S. prepared the figures and wrote the manuscript with
input from M.B. and O.S. The author(s) read and approved the final manuscript.

Authors’ Twitter handles
Twitter handles: @Adrienleger2 (Adrien Leger), @OliverStegle (Oliver Stegle), @mjbonder (Marc Jan Bonder).

Funding
Open Access funding enabled and organized by Projekt DEAL.

Data availability
Sequencing raw data and variant calls were downloaded from the Genome in a Bottle (GIAB) consortium [22]. Download
links are provided in Additional file 2.

Code availability
pycoMeth:
 • GitHub: https:// github. com/ PMBio/ pycom eth [41]
 • Zenodo: https:// doi. org/ 10. 5281/ zenodo. 47720 50 [42]
 • License: GPL-3
 meth5:
 • GitHub: https:// github. com/ PMBio/ MetH5 Format [43]

https://doi.org/10.1186/s13059-023-02917-w
https://github.com/PMBio/pycometh
https://doi.org/10.5281/zenodo.4772050
https://github.com/PMBio/MetH5Format

Page 18 of 19Snajder et al. Genome Biology (2023) 24:83

 • Zenodo: https:// doi. org/ 10. 5281/ zenodo. 47723 16 [44]
 • License: MIT
 Benchmark scripts:
 • GitHub: https:// github. com/ snajd er-r/ bench mark_ meth5 [45]
 • Zenodo: https:// doi. org/ 10. 5281/ zenodo. 73805 56 [46]
 • License: MIT

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
A.L. has received financial support from ONT. for consumables during the course of the project and is currently an
employee of Oxford Nanopore Technologies (ONT). The remaining authors declare no competing interests.

Received: 26 August 2022 Accepted: 30 March 2023

References
 1. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38(1):23–38.
 2. Li E, Zhang Y. DNA methylation in mammals. Cold Spring Harb Perspect Biol. 2014;6(5):a019133.
 3. Kumar S, Chinnusamy V, Mohapatra T. Epigenetics of Modified DNA Bases: 5-Methylcytosine and Beyond. Front

Genet. 2018;9:640.
 4. Kurdyukov S, Bullock M. DNA methylation analysis:choosing the right method. Biology. 2016;5(1):3.
 5. Feng S, Zhong Z, Wang M, Jacobsen SE. Efficient and accurate determination of genome-wide DNA methylation

patterns in Arabidopsis thaliana with enzymatic methyl sequencing. Epigenetics Chromatin. 2020;13(1):42.
 6. Mahmoud M, Gobet N, Cruz-Dávalos DI, Mounier N, Dessimoz C, Sedlazeck FJ. Structural variant calling: the long

and the short of it. Genome Biol. 2019;20(1):246.
 7. Patterson M, Marschall T, Pisanti N, van Iersel L, Stougie L, Klau GW, et al. WhatsHap: Weighted Haplotype Assembly

for Future-Generation Sequencing Reads. J Comput Biol. 2015;22(6):498–509.
 8. Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, et al. The complete sequence of a human genome.

Science. 2022;376:44–53.
 9. Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. Detecting DNA cytosine methylation using nanop-

ore sequencing. Nat Methods. 2017;14(4):407–10.
 10. Xie S, Leung AWS, Zheng Z, Zhang D, Xiao C, Luo R, et al. Applications and potentials of nanopore sequencing in the

(epi)genome and (epi)transcriptome era. Innovation (N Y). 2021;2(4):100153.
 11. Ni P, Huang N, Zhang Z, Wang DP, Liang F, Miao Y, et al. DeepSignal: detecting DNA methylation state from nanop-

ore sequencing reads using deep-learning. Bioinformatics. 2019;35(22):4586–95.
 12. nanoporetech/megalodon. GitHub. 2022. https:// github. com/ nanop orete ch/ megal odon.
 13. Yuen ZWS, Srivastava A, Daniel R, McNevin D, Jack C, Eyras E. Systematic benchmarking of tools for CpG methylation

detection from nanopore sequencing. Nat Commun. 2021;12(1):3438.
 14. Babenko VN, Chadaeva IV, Orlov YL. Genomic landscape of CpG rich elements in human. BMC Evol Biol.

2017;17(Suppl 1):19.
 15. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigas-

cience. 2021;10(2):giab008.
 16. Koziol Q, Robinson D. HDF5. 2018. https:// doi. org/ 10. 11578/ dc. 20180 330.1.
 17. Thorvaldsdóttir H, Robinson JT, Mesirov JP. Integrative Genomics Viewer (IGV): high-performance genomics data

visualization and exploration. Brief Bioinform. 2013;14(2):178–92.
 18. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat

Biotechnol. 2011;29(1):24–6.
 19. Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methylKit: a comprehensive R

package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13(10):R87.
 20. Gong B, Purdom E. MethCP: Differentially Methylated Region Detection with Change Point Models. J Comput Biol.

2020;27(4):458–71.
 21. Ignatiadis N, Klaus B, Zaugg JB, Huber W. Data-driven hypothesis weighting increases detection power in genome-

scale multiple testing. Nat Methods. 2016;13(7):577–80.
 22. Zook JM, Catoe D, McDaniel J, Vang L, Spies N, Sidow A, et al. Extensive sequencing of seven human genomes to

characterize benchmark reference materials. Sci Data. 2016;3:160025.
 23. hts-specs version 4f57d6a0e4c030202a07a60bc1bb1ed1544bf679. GitHub repository. https:// github. com/ samto

ols/ hts- specs/ tree/ df69c 359fb 37bc2 809d9 98231 51911 7f1d4 23017. Accessed 14 Dec 2022.
 24. Nanopore Community. https:// nanop orete ch. com/ commu nity. Accessed 16 Feb 2022.
 25. bonito: A PyTorch Basecaller for Oxford Nanopore Reads. https:// github. com/ nanop orete ch/ bonito. Accessed 16

Feb 2022.

https://doi.org/10.5281/zenodo.4772316
https://github.com/snajder-r/benchmark_meth5
https://doi.org/10.5281/zenodo.7380556
https://github.com/nanoporetech/megalodon
https://doi.org/10.11578/dc.20180330.1
https://github.com/samtools/hts-specs/tree/df69c359fb37bc2809d998231519117f1d423017
https://github.com/samtools/hts-specs/tree/df69c359fb37bc2809d998231519117f1d423017
https://nanoporetech.com/community
https://github.com/nanoporetech/bonito

Page 19 of 19Snajder et al. Genome Biology (2023) 24:83

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

 26. Zook JM, McDaniel J, Olson ND, Wagner J, Parikh H, Heaton H, et al. An open resource for accurately benchmarking
small variant and reference calls. Nat Biotechnol. 2019;37(5):561–6.

 27. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
 28. modbampy. https:// pypi. org/ proje ct/ modba mpy/. Accessed 13 Feb 2022.
 29. Chung RH, Kang CY. A multi-omics data simulator for complex disease studies and its application to evaluate multi-

omics data analysis methods for disease classification. Gigascience. 2019;8(5):giz045.
 30. Collette A. Python and HDF5. Sebastopol: O’Reilly Media; 2013.
 31. Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array programming with NumPy.

Nature. 2020;585(7825):357–62.
 32. Virtanen P, Gommers R, Oliphant TE, Haberland M, et al. SciPy 1.0: fundamental algorithms for scientific computing

in Python. Nat Methods. 2020;17(3):261–72.
 33. McKinney W. Data structures for statistical computing in python. Austin, TX: Proceedings of the 9th Python in Sci-

ence Conference. 2010;445:56–10.
 34. Shirley MD, Ma Z, Pedersen B, Wheelan S. Efficient, “pythonic” access to FASTA files using pyfaidx. PeerJ PrePrints.

2015;3:e1196.
 35. Seabold S, Perktold J. Statsmodels: Econometric and statistical modeling with python. Austin, TX: Proceedings of the

9th Python in Science Conference. SciPy. 2010;445:92–6.
 36. Inc PT. Collaborative data science. Montreal: Plotly Technologies Inc Montral; 2015.
 37. Luong TM, Perduca V, Nuel G. Hidden Markov Model Applications in Change-Point Analysis. arXiv. 2012.https:// doi.

org/ 10. 48550/ arXiv. 1212. 1778.
 38. van Iterson M, Boer JM, Menezes RX. Filtering, FDR and power. BMC Bioinformatics. 2010;11:450.
 39. Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Test-

ing. J R Stat Soc Series B Stat Methodol. 1995;57(1):289–300.
 40. Wang HQ, Tuominen LK, Tsai CJ. SLIM: a sliding linear model for estimating the proportion of true null hypotheses in

datasets with dependence structures. Bioinformatics. 2011;27(2):225–31.
 41. Snajder R, Leger A. PMBio/pycoMeth. GitHub. 2022. https:// github. com/ PMBio/ pycom eth. Accessed 20 Feb 2023.
 42. Snajder R, Leger A. PMBio/pycoMeth. Zenodo. 2022. https:// doi. org/ 10. 5281/ zenodo. 47720 50. Accessed 20 Feb

2023.
 43. Snajder R. PMBio/MetH5Format. GitHub. 2022. https:// github. com/ PMBio/ MetH5 Format. Accessed 20 Feb 2023.
 44. Snajder R. PMBio/MetH5Format. Zenodo. 2022. https:// doi. org/ 10. 5281/ zenodo. 47723 16. Accessed 20 Feb 2023.
 45. Snajder R. snajder-r/benchmark_meth5. GitHub. 2022. https:// github. com/ snajd er-r/ bench mark_ meth5. Accessed

20 Feb 2023.
 46. Snajder R. snajder-r/benchmark_meth5. Zenodo. 2022. https:// doi. org/ 10. 5281/ zenodo. 73805 56. Accessed 20 Feb

2023.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://pypi.org/project/modbampy/
https://doi.org/10.48550/arXiv.1212.1778
https://doi.org/10.48550/arXiv.1212.1778
https://github.com/PMBio/pycometh
https://doi.org/10.5281/zenodo.4772050
https://github.com/PMBio/MetH5Format
https://doi.org/10.5281/zenodo.4772316
https://github.com/snajder-r/benchmark_meth5
https://doi.org/10.5281/zenodo.7380556

	pycoMeth: a toolbox for differential methylation testing from Nanopore methylation calls
	Abstract
	Background
	Results
	MetH5 — an efficient read-level base modification container
	pycoMeth Meth_Seg — Bayesian methylome segmentation for haplotype-aware multi-sample changepoint discovery
	pycoMeth Meth_Comp — versatile differential methylation testing suite
	Benchmarking pycoMeth
	MetH5 facilitates rapid random access to methylation calls
	pycoMeth changepoint detection on simulated data outperforms existing tools
	pycoMeth shows high power at detecting low-effect DMRs in real ONT data

	Discussion
	Conclusions
	Materials and methods
	GIAB benchmark data preparation
	Simulation of methylation profile and Nanopolish methylation calls
	DMR calling agreement
	Implementation
	Implementation of MetH5
	Implementation of Bayesian changepoint detection
	Implementation of differential methylation testing
	Methylome segmentation benchmark setup
	Differential methylation testing setup

	Anchor 24
	Acknowledgements
	References

