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Abstract 

We present RCRUNCH, an end-to-end solution to CLIP data analysis for identification of 
binding sites and sequence specificity of RNA-binding proteins. RCRUNCH can analyze 
not only reads that map uniquely to the genome but also those that map to multiple 
genome locations or across splice boundaries and can consider various types of back-
ground in the estimation of read enrichment. By applying RCRUNCH to the eCLIP data 
from the ENCODE project, we have constructed a comprehensive and homogeneous 
resource of in-vivo-bound RBP sequence motifs. RCRUNCH automates the reproduc-
ible analysis of CLIP data, enabling studies of post-transcriptional control of gene 
expression.

Keywords: RNA-binding protein, RBP, CLIP, HNRNPC, RBFOX2, PUM2, PTBP1, 
Sequence specificity, RNA regulation, Reproducible research, Computational workflow, 
Bioinformatics

Background
Throughout their life cycle, from transcription to maturation, function, and decay, 
RNAs associate with RNA-binding proteins (RBPs) to form ribonucleoprotein com-
plexes (RNPs) or higher-order RNA granules (e.g., paraspeckles, Cajal bodies) [1]. RBPs 
are abundant in prokaryotes as well as eukaryotes, and methods such as RNA interac-
tome capture (RIC) [2, 3] revealed that over a thousand human and mouse proteins have 
RNA-binding activity. An RBP is typically composed of multiple RNA-binding domains 
(RBDs) coming from a limited repertoire [4] and binds to a specific sequence motif and/
or secondary structure element. The functional diversity of RBPs rests on the number 
and arrangement of RBDs that they contain [5], though methods like RIC have uncov-
ered many proteins that have RNA-binding activity, despite lacking a known RBD [2].

As RBPs participate in all steps of RNA metabolism, it is not surprising that they 
have been implicated in many diseases [6, 7]. However, the critical targets in a par-
ticular context are often unknown. The method of choice for mapping the binding 

*Correspondence:   
maria.katsantoni@unibas.ch; 
mihaela.zavolan@unibas.ch

1 Biozentrum, University of Basel, 
4056 Basel, Switzerland
2 Swiss Institute of Bioinformatics, 
1015 Lausanne, Switzerland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-023-02913-0&domain=pdf
http://orcid.org/0000-0002-8832-2041


Page 2 of 25Katsantoni et al. Genome Biology           (2023) 24:77 

sites of an RBP in vivo and transcriptome-wide is crosslinking and immunoprecipi-
tation (CLIP). Introduced in the early 2000s [8], CLIP has a number of variants, all 
exploiting the photoreactivity of nucleic acids and proteins. Briefly, ultraviolet light 
is used to crosslink RBPs to RNAs, the regions of the RNAs that are not protected 
by RBPs are enzymatically digested, the RBP of interest is purified along with the 
crosslinked RNAs, and finally, the purified RNA fragments are reverse-transcribed 
and sequenced. One of the main differences between CLIP variants is in the nature 
of the cDNAs that end up being sequenced. These can either be the result of aborted 
reverse transcription at the crosslinked site [9], where a bulky adduct remains after 
protein digestion, or the result of reverse transcription through the site of crosslink, 
which often results in characteristic mutations in the cDNAs [10, 11]. Although the 
general expectation is that extensive purification leads to a relatively pure population 
of target sites for a given protein, inspection of the genome coverage by sequenced 
reads indicates substantial non-specific background. Various approaches have 
been proposed for background correction, but a systematic benchmarking of these 
approaches is still lacking (discussed in [12]).

CLIP is analogous to chromatin immunoprecipitation (ChIP), a technique that has 
been used for many years to determine binding sites of DNA-binding factors. To dis-
tinguish protein-specific interactions from various types of background, ChIP includes 
control samples consisting either of the chromatin input or the material resulting from 
non-specific binding of antibodies to chromatin. Many computational methods have 
been developed to identify “peaks” from such data sets [13]. A previous study of peak 
finding methods developed for ChIP data has underscored the importance of the model 
describing the obtained data [14].

However, there are also differences. In contrast to ChIP, background samples are 
not always generated in CLIP experiments, largely because at the time when the field 
started, it was unclear what an appropriate background should be. While at the DNA 
level, genes are generally represented in two copies per cell, the relative abundance of 
different RNAs in the cell varies over many orders of magnitude. Thus, abundant RNAs 
are likely to contaminate CLIP samples, leading to false-positive sites, while binding sites 
in low-abundance RNAs may be completely missed. An approach to deal with this issue 
is to take advantage of crosslinking-induced mutations, identifying regions where such 
mutations have a higher than expected frequency [10, 11, 15, 16]. This is not unproblem-
atic because mutations are introduced stochastically and the mutation-containing reads 
could also come from fragments crosslinked to proteins other than the one of interest 
in the experiment [17]. Another approach is to correct for the abundance of the RNAs 
based on RNA-seq data [18]. This is also not ideal, first because differences in sample 
preparation may lead to RNA-seq data not containing all the potential targets of the RBP 
and second because the RNA-seq read coverage profile is not uniform, which will influ-
ence the quantification of the local background and consequently the identification of 
CLIP sites. Finally, in the eCLIP variant of CLIP, the background coverage of transcripts 
by reads is inferred from a parallel sample that is prepared from the band correspond-
ing roughly to the size of the protein of interest, obtained by omitting the immunopre-
cipitation step of sample preparation. This approach has the caveat that the size of the 
targeted protein varies from experiment to experiment and so will the proteins that are 



Page 3 of 25Katsantoni et al. Genome Biology           (2023) 24:77  

contained in the isolated band. This makes it unclear whether the results obtained for 
different RBPs are of comparable accuracy.

As mentioned above, most RBPs bind their targets in a sequence-dependent man-
ner and sometimes in the context of specific structure elements [1, 19]. For many RBPs, 
binding motifs have been inferred with both low- and high-throughput approaches, 
and at least in some of these cases, there is good agreement between the RBP-binding 
motifs inferred from in  vitro [20, 21] and in  vivo data [16, 22]. However, in the most 
comprehensive database to date, ATtRACT [23], there typically are many motifs for an 
RBP, of widely variable information content and sometimes unrelated. A comprehensive 
database of RBP binding motifs determined from a consistent in vivo dataset, similar to 
those available for transcription factors [24, 25], is still lacking.

A number of methods have been proposed for the identification of RBP binding 
peaks from CLIP data. Benchmarking of various subsets of these methods has revealed 
a few good performers, such as CLIPper, the tool developed for the analysis of above-
mentioned eCLIP data, omniCLIP and pureCLIP, two recently published tools that 
use complex models to take advantage not only of the CLIP read coverage but also of 
crosslinking-induced events (truncations or mutations) [15, 18, 22, 26]. However, none 
of these tools provides an easy and robust end-to-end solution to the identification of 
binding sites and sequence motifs from CLIP data, and it has remained unclear how 
their accuracies compare.

To fill these gaps, we have developed RCRUNCH, a method that further aims to treat 
appropriately not only reads that map uniquely and contiguously to the genome but 
also reads that map across splice junctions in mature mRNAs, as well as multi-mapping 
reads. The de novo motif discovery component of RCRUNCH, based on the well-estab-
lished MotEvo tool [27], allows an immediate assessment of the quality of the results, 
including for the comparison of its genome/transcriptome or unique/multi-mapper 
based approaches. Using data for proteins with well-characterized sequence specificity, 
we demonstrate that RCRUNCH enables the reproducible extraction of binding sites, 
with higher enrichment in the expected motifs compared to the other tools. Application 
of RCRUNCH to the extensive eCLIP datasets generated in the ENCODE project [22], 
covering 149 RBPs, led to the construction of a comprehensive resource of in vivo bind-
ing sites and binding motifs of RBPs. RCRUNCH is available as an entirely automated 
tool from github (see “Availability of data and materials”).

Results
Automated CLIP data analysis with RCRUNCH

RCRUNCH is a workflow (Fig. 1a) for the automated and reproducible analysis of CLIP 
data, from reads to binding sites and motifs. It is written in the Snakemake language [28], 
observing the FAIR (findable, accessible, interoperable, and reusable) principles [29]. 
The peak-calling module at the core of the workflow builds on the CRUNCH model [14] 
that was extensively validated on ChIP data. Along with the genome sequence and anno-
tation files, the input to RCRUNCH consists of CLIP (foreground) sequencing reads, 
obtained from immunoprecipitation of a specific RBP, and background reads, which 
in most of the analyses reported here come from a size-matched input (SMI) control 
sample as in eCLIP. RCRUNCH’s default analysis mode uses reads that map uniquely to 
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the genome, but multi-mappers and/or reads that map across splice junctions of mature 
mRNAs can also be included. For the latter case, RCRUNCH constructs a representative 
transcriptome composed of the isoform of each gene that has the highest abundance in 
the foreground sample. In a first step of its peak finding module, RCRUNCH identifies 
broad genomic regions whose coverage by reads is significantly higher in the foreground 
compared to the background sample (Fig.  1b, see “Methods”). A Gaussian mixture 
model is then applied to each of these regions to identify individual peaks and compute 
associated read enrichment scores (Fig. 1c). Peaks sorted by the significance of their read 
enrichment are then used in various analyses, including for the identification of enriched 
sequence motifs. The workflow provides extensive outputs such as the coordinates of 
the peaks, their enrichment scores and associated significance measure, enrichment val-
ues of known and de novo identified sequence motifs represented as positional weight 
matrices (PWM).

Comparative evaluation of CLIP peak finding methods

By automating the analysis of CLIP data from reads to binding sites and motifs, 
RCRUNCH facilitates studies that rely on such data to a much larger extent than it was 

Fig. 1 Schematic representation of RCRUNCH. a Overview of the workflow. b Scatterplot of the proportion 
of reads  (log2) in individual genomic regions in a foreground (IP) sample generated by eCLIP for the PUM2 
protein (replicate 2 of dataset ENCSR661ICQ from the ENCODE project, see “Methods”) and a corresponding 
background sample (SMI). Each dot corresponds to a 300-nucleotide-long genomic region. Marked in color 
are regions that are enriched in reads in the foreground relative to the background sample (FDR < 0.1, see 
color legend). Three genomic regions (zoom-ins in c) with various enrichment scores are marked with stars. 
c Coverage of three overlapping genomic regions (highlighted in b and indicated at the top of the panel) 
by reads from the IP (light gray) and SMI (yellow) samples (RPM—reads per million). The significant peaks 
identified in the genomic region spanned by the three windows are shown in red. The blue line shows the 
number of read starts (5’ end of mate 2 reads) from the IP sample in the genomic region. Read starts indicate 
crosslinked nucleotides, where the reverse transcriptase falls off during sample preparation
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possible so far. To demonstrate its performance, we compared RCRUNCH with a few 
recently published and more broadly used tools for CLIP site identification. These were 
CLIPper, the method used in the ENCODE project that generated the eCLIP data [22], 
already shown to supersede a few other methods [26], PureClip [18], and omniCLIP [15]. 
The latter two can use both the CLIP read density as well as the type and frequency of 
crosslinking-induced events in cDNAs to identify binding sites. As peak calling is not 
fully automated in CLIPper, for this tool, we used the peaks provided by the ENCODE 
consortium [30]. The other tools were provided with genome-mapped reads obtained 
with the pre-processing module of RCRUNCH. As done in previous studies [15, 18], 
in the comparative evaluation, we used proteins for which the binding patterns and 
motifs have been extensively studied and are thus well understood [15, 18, 22]. These 
are hnRNPC, a splicing regulator that binds (U)5 sequences [31], PTBP1, another splic-
ing regulator with a CU-rich binding motif [32], PUM2, a post-transcriptional regulator 
binding to UGUANAUA sequence elements [33, 34], and RBFOX2, a splicing regulator 
known to recognize the sequence (U)GCAUG(U) [35]. For each of these proteins, we 
applied RCRUNCH to the corresponding eCLIP samples in ENCODE, typically 2 rep-
licates in each of two cell lines, and extracted the 1000 highest scoring sites from each 
sample (Tables S1, S2 and S3).

The reproducibility of results obtained from replicate experiments is an important 
indicator of a method’s accuracy [12]. To estimate the agreement between sets of peaks, 
obtained from either replicate experiments or by different methods applied to the same 
dataset, we used the Jaccard similarity index (see “Methods”). The agreement of the top 
1000 peaks inferred from two replicate experiments for the same RBP in a given cell line 
(Fig. 2a) was ~ 20–40%, in the range reported for CLIP samples before [10]. RCRUNCH 
consistently provided values at the top of this range: for 5 of the 7 datasets RCRUNCH 
gave the highest agreement, and in the 2 cases when it did not, it was still a close second 
performer. Consistent with these numbers, most of the top 1000 sites from one replicate 
do not overlap with the top 1000 sites from the second replicate, though RCRUNCH 
consistently extracts a higher proportion of sites with high Jaccard index (Fig. 2b). We 
also asked how large is the overlap between the peaks reported by different methods. 
Although these numbers were generally lower than the overlap of peaks identified by 
one method from replicate experiments, RCRUNCH had the overall highest agreement 
with the other methods (Fig. 2c). The overlaps of RCRUNCH peaks from each sample 
with the peaks reported by the other methods for the corresponding protein are shown 
in Table S3. Finally, as the computational cost incurred by a tool is also an important fac-
tor in its adoption, we recorded the clock time for the peak calling step of all methods 
on the benchmarking data sets. For RCRUNCH, the clock time was up to 3 h (Fig. 2d), 
while PureClip needed up to 6 h and omniCLIP up to 9 h for an individual dataset/RBP.

Thus, RCRUNCH outperforms currently used methods both in terms of peak repro-
ducibility between replicate experiments and in terms of running time. Moreover, 
RCRUNCH has, on average, the highest agreement with other peak finding methods, 
indicating that it capitalizes on some of the same information, while diminishing some 
of the biases of these other methods.

To further evaluate the quality of the detected peaks, we determined their enrich-
ment in the motif known to be bound by the RBP targeted in each CLIP experiment. 
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We extracted the literature-supported motifs for each RBP from the ATtRACT data-
base [23] and calculated their enrichment in the 1000 top peaks (Tables S1, S2 and 
S3) predicted by each method, relative to random genomic regions unlikely to be 
bound by the RBP (see “Methods”). As shown in Fig.  3a, the known motifs were 
indeed enriched in the peaks relative to background sequences, up to ~ five fold, as 
observed before [22, 36]. RCRUNCH peaks showed enrichment values at the high 
end of the achieved range (Fig. 3a) for all proteins/samples except hnRNPC. To ver-
ify that the peaks were indeed most enriched in the motifs known to be bound by the 
RBP (as opposed to any other motif ), we further applied the Phylogibbs algorithm 
[37], to discover de novo the motif that is most overrepresented in the top peaks. 
Some of the de novo motifs were indeed similar to the expected ones, but they 
tended to be less polarized and more enriched (Fig.  3b–d). Strikingly, while Phy-
logibbs identified de novo motifs that were very strongly enriched in the hnRNPC 
peaks, these motifs did not have any resemblance to the expected (U)5 motif. To 

Fig. 2 Comparison of CLIP peak calling methods. a Barplot showing the Jaccard similarity index of the peaks 
identified by each computational method (shown in the legend) from replicate experiments. For all RBPs, 
except PUM2, data were available from two distinct cell lines, HepG2 and K562. b Distribution of Jaccard 
indices of peak overlaps extracted by individual tools (color code as in a) from replicate samples. c Heatmap 
showing the Jaccard similarity index of the peaks identified by two distinct methods for a given protein 
in a given cell line (in percentages, averaged over two replicate experiments). The methods are shown in 
order in the x-axis and the same order (RCRUNCH, CLIPper, omniCLIP, and PureCLIP) is used in each block 
(corresponding to one protein and cell line) on the y-axis. The average similarity of a method with any other 
method on all datasets is shown at the bottom. d Barplot showing the running times of peak calling steps for 
RCRUNCH, omniCLIP, and PureCLIP. Error bars show the standard deviations from the 2 replicate runs
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determine whether “truncated” reads, resulting from the reverse transcriptase fall-
ing off at the crosslinked nucleotide, allow a more accurate identification of RBP-
binding motifs than the peaks in read coverage, we implemented the “RCRUNCH 
crosslink” variant, in which RBP binding sites are extracted from around the most 
crosslinked position within each peak (position where most reads start), in contrast 
to the “RCRUNCH peak center” discussed so far, in which sites are extracted relative 
to coverage peak centers. RCRUNCH crosslink clearly recovered the hnRNPC-spe-
cific (U)5 motif (Fig.  4d) and further improved the identification of the RBFOX2-
specific UGC AUG  motif, while the recovery of the PUM2 and PTBP1-specific 
motifs was unaffected.

These results demonstrate that the peaks predicted by different methods are 
enriched to fairly similar extents in the expected motifs, though RCRUNCH has 
the most reliable high enrichments. Furthermore, the de novo motifs identified by 
RCRUNCH are more enriched in the peaks than the known motifs, even when they 
appear quite similar. For some proteins, specifically hnRNPC and RBFOX2, the read 
starts enable a more precise identification of RBP-specific binding motifs, while for 
others, like PTBP1 and PUM2, the coverage peak centers are equally informative.

Fig. 3 Enrichment of known and de novo sequence motifs in the eCLIP data of individual RBPs. a Enrichment 
scores computed by comparing the frequency of known motifs among the top CLIP peaks identified by the 
indicated method with the frequency in background regions (random subsets of regions that were least 
enriched in CLIP reads, see “Methods”). Each peak finder is shown in a different color. The enrichments of the 
de novo motifs are indicated by stars, red for RCRUNCH peak center, and blue for RCRUNCH crosslink. b The 
known RBP-specific motifs from ATtRACT [23] that were used in the analysis. c Most significantly enriched 
de novo motif predicted by Phylogibbs [37] in the “RCRUNCH peak center” sites from each sample. d Most 
significantly enriched de novo motif predicted by Phylogibbs in the “RCRUNCH crosslink” sites from each 
sample
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RCRUNCH helps elucidate how RBPs interact with and crosslink to RNAs

To better understand why the sites extracted from around coverage peak centers 
contain the RBP-binding motif for some proteins but not for others, we carried out 
the following analysis. Within each of the 1000 most significant peaks based on the 
enrichment in reads, we identified both the location of the highest-scoring match to 
the RBP-specific motif and the crosslink position, where most reads started (Tables 
S1, S2 and S3). Then, we anchored the peaks on the center of the motif match (posi-
tion 0) and constructed the histograms of distances between the crosslinks and motifs, 
and between coverage peak centers and motifs. As already suggested by the obser-
vations from the previous section, the relationship between these two histograms is 
highly dependent on the studied RBP (Fig. 4a–d). For PUM2, RBFOX2, and hnRNPC, 
crosslink positions strongly co-localize with the RBP-binding motif, while for PTBP1, 
this is not the case. In contrast, the peak centers show weak co-localization with the 

Fig. 4 Different configuration of binding and crosslinking across RBPs. a–d Histograms of distances between 
the cognate motifs of RBPs and the centers of the read coverage peaks (RCRUNCH peak center, in red) or 
between the motifs and the most frequent read start position in a given peak (RCRUNCH crosslink, in blue). 
The top 1000 peaks (in the order of their z-score) from one of the available samples for PUM2 (a), PTBP1 
(b), RBFOX2 (c), and hnRNPC (d) were extracted. The cognate motif with the highest posterior probability 
given the RBP’s PWM was determined and the peak was retained only when the posterior was at least 0.3. 
e For hnRNPC, we carried out the same analysis relative to the Alu-related motif. f Example of two hnRNPC 
binding peaks located on Alu antisense elements. The library-size-normalized read coverage in the eCLIP IP 
sample is shown in gray, while the coverage in the corresponding SMI sample is shown in yellow. The fitted 
Gaussian peaks predicted by RCRUNCH are shown in red, while the distribution of reads starts in this region 
is depicted with the blue line. The most frequent read start within a coverage peak is chosen by RCRUNCH 
crosslink as the crosslink position and the corresponding nucleotide is indicated here by the blue arrow. 
The red arrow links the peak center to the corresponding nucleotide within the Alu antisense element. 
RPM—reads per million. g Results of CLIP experiment simulations, showing the read coverage profile (full 
red line), corresponding Gaussian fit (dashed red line), and frequency of crosslinks (blue) with respect to the 
RBP-specific motif (black, centered on position 0), for low (0.1, left), and high (0.9, right) probability of reverse 
transcriptase readthrough ( ρ)
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binding motif of PUM2 and PTBP1, but occur clearly downstream of the binding 
motifs for RBFOX2 and hnRNPC.

In the case of hnRNPC, highly enriched motifs were recovered around peak centers 
as well, and these motifs were very different from the expected (U)5 (Fig. 3c). A litera-
ture search revealed that these motifs correspond to the Alu antisense element (AAE) 
[38], consistent with the reported function of hnRNPC in suppressing the exonization of 
these repetitive elements [39]. Computing the histograms of distances from peak center 
and crosslink  to the AAE  motif showed that hnRNPC binding sites containing AAEs 
have a very specific configuration, crosslinking occurring upstream of the AAE, within 
the U-rich motif, leading to CLIP read starts in this region, while the peak in read cov-
erage is on the AAE (Fig. 4e, f ). To better understand how these patterns relate to the 
specific interaction of an RBP with RNAs, we carried out a simulation of an RBP binding 
to its cognate motif, crosslinking to the RNA and protecting an extended region of the 
target from RNase digestion. As the efficiency of crosslinking depends on the identity 
of both the nucleotides and the amino acids that participate in the RNA–RBP interac-
tion [40], we simulated three scenarios, corresponding to the nucleotide with the highest 
efficiency of crosslinking being located upstream, within or downstream of the RBP-spe-
cific binding motif. For each of these cases, we simulated scenarios where the probability 
ρ of reverse transcriptase reading through the crosslinked nucleotide is very low, inter-
mediate or very high (Additional file 1: Fig. S1). We found that when the readthrough 
probability is low, the crosslink is a better indicator of the binding motif than the peak 
center (Fig. 4g). In contrast, when the readthrough probability is moderate to high, the 
crosslink position and the coverage peak center are located at comparable distances 
from the RBP-binding motif, so that either could be used to identify the RBP binding site 
(Fig.  4g). Thus, the motif–crosslink and motif–peak center distance relationships that 
we observed for the selected proteins indicate that the probability that the reverse tran-
scriptase reads through the RBP-RNA crosslink is much lower in the case of RBFOX2 
and hnRNPC compared PUM2 and PTBP1, leading to a more precise identification of 
the binding motif when binding sites are centered on the crosslink position. That “trun-
cations” are not always good indicators of the location of the binding motif has been 
reported before, a main reason being the variation in fragment size between experi-
ments [41, 42]. This is unlikely to be the cause in the variation we observe here because 
the fragments sizes were very similar (~ 10 nucleotides, Table S4) between samples.

These results suggest that model-driven analyses of CLIP data, taking into account the 
architecture of protein-RNA interactions, could further improve the identification of 
binding sites and the interpretation of the observed binding patterns. Furthermore, the 
variant RCRUNCH workflows provide a flexible platform to explore the architecture of 
RBP-RNA interaction sites.

RCRUNCH variants enable detection of specific classes of RBP targets

Tools for CLIP data analysis focus almost exclusively on reads that map uniquely to the 
genome, leaving out multi-mapping reads or reads that map across splice junctions, 
which are more challenging to map and quantify correctly. To provide users with the 
opportunity to investigate RBPs that specifically bind to repetitive elements or mature 
mRNAs, we have implemented and evaluated a few variations of the RCRUNCH 
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workflow. Specifically, we have implemented the option of identifying binding sites that 
are located in the immediate vicinity of exon–exon junctions in mature mRNAs, as well 
as the option of using reads that map to multiple genomic locations (multi-mappers). In 
the first situation, some reads end up mapping to the genome in a split manner, partly 
to the 5’ exon and partly to the 3’ exon. This in turn can lead to multiple distant peaks, 
with the RBP-binding motif being present at only one or perhaps neither of these peaks. 
Finally, the question of an appropriate “Background” for estimating the enrichment of 
reads in CLIP samples is still open [12]. Aside from the SMI control used here, the rela-
tive abundance of mRNAs (estimated based on RNA-seq data) is sometimes taken into 
account [43]. RCRUNCH allows an easy incorporation of different types of background, 
provided as an appropriate file with sequenced reads. Here we used the mRNA-seq data 
generated for the specific cell lines included in the ENCODE project. We benchmarked 
the performance of RCRUNCH variants on the proteins chosen at the beginning of our 
study. In all cases, we extracted sites anchored at the crosslink position within each peak 
and compared the “standard” RCRUNCH crosslink with individual variants across a few 
different measures. These measures were the number of significant sites (at FDR = 0.1) 
identified in a sample (Fig. 5a–c), the enrichment of the known motif in the top 1000 
sites identified in each sample (Fig. 5d–f), and the similarity of the known motif of the 
RBP to the de novo motif identified from the top 1000 peaks of a given sample (Fig. 5g–
i). While for the RCRUNCH transcriptomic and multi-mapper approaches the results 
were very comparable with those of the standard RCRUNCH, the choice of RNA-seq 
as background results in a strong decrease in performance. Including multi-mappers or 
splice junction reads led to the recovery of somewhat fewer sites, but the quality of the 
peaks, measured in terms of their enrichment in motifs, was not affected.

These results demonstrate that RCRUNCH is a flexible and performant method for 
CLIP data analysis. The choice of background is important, and in the case of eCLIP, the 
SMI control samples provide a more appropriate background for estimating read enrich-
ment in binding sites than the RNA-seq samples.

A compendium of RBP binding motifs inferred from eCLIP data

Although various analyses of the ENCODE eCLIP datasets have been carried out, a 
consolidated compendium of binding motifs inferred for individual proteins from these 
data is not available. To fill this gap, we have applied RCRUNCH (both peak center and 
crosslink variants) to all available samples in these datasets, determined peaks that are 
enriched in reads from IP relative to the SMI, inferred the most significantly enriched 
sequence motifs, and finally, for each RBP, identified the motif with the highest average 
enrichment across all samples corresponding to the RBP (Table S5). The distribution of 
the number of binding sites per RBP, as shown in Fig. 6a, indicates that two thirds of 
the samples yielded more than 100 binding sites, with few samples (for the HNRNPL, 
AGGF1, DDX3, TARDBP proteins) yielding thousands of sites. As may have been 
expected, a known binding motif in ATtRACT is indicative of the protein having a high 
number of binding sites (Fig. 6a–b). We next calculated the average Jaccard similarity 
index of peaks identified from pairs of samples, either corresponding to the same pro-
tein, or to different proteins (Additional file  1: Fig. S2). We also carried out an analy-
sis of the motifs enriched in samples for an individual RBP (Additional file 1: Fig. S3), 
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ultimately identifying the motif that best explains the entire data obtained for a given 
protein (highest sum of log-likelihood ratios across all samples, Fig. 6c–d). Of 149 pro-
teins, 86 yielded an enriched motif in our analysis and 26 of these already had a spe-
cific motif in the ATtRACT database; 21 of the proteins for which we could not identify 
an enriched motif in this study were covered by the ATtRACT database (Fig. 6b). The 
heatmap of peak overlaps shows good consistency among different experiments involv-
ing the same protein (Fig.  6c, diagonal) and also highlights interesting cases of pro-
teins that bind to similar regions, in many cases because the proteins take part in the 
same multi-molecular complex. For example, we found high overlaps between the sites 
of splicing factors U2AF1 and U2AF2 [44, 45], of the DXH30 and FASTKD2 proteins 
involved in the ribosomes biogenesis in the mitochondria (Additional file 1: Fig. S2) [46], 
of the DGCR8 and DROSHA components of the miRNA biogenesis complex [47], and 

Fig. 5 Performance evaluation of RCRUNCH variants. “RCRUNCH standard” refers to peaks identified based 
on reads that map uniquely to the genome, and binding sites that are always centered on the most frequent 
crosslink position in each peak. Rows correspond to variants of the RCRUNCH workflow, while columns 
show different metrics used to compare each of the variants with the “standard” RCRUNCH: a–c Number of 
significant peaks in a sample (at FDR < 0.1). d–f Enrichment of the known motif of the RBP that was assayed 
in a particular sample. g–i Similarity of the motif identified de novo from the top peaks of a given sample and 
the known motif for the respective RBP. In the case of the RNA-seq background variant, some samples did not 
yield any significant peaks (FDR = 0.1). These samples are therefore not represented in the plots
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a few others (Fig. 6c). These results lend further support to the notion that our method 
recovers expected signals in the eCLIP data. Additional per sample analyses are shown 
in Additional file 1: Fig. S2. In brief, we identified enriched motifs in 90% of the sam-
ples, similar between the RCRUNCH crosslink and RCRUNCH peak center approaches 
(Additional file 1: Fig. S4a), but in many cases, the enrichments were small. As we have 
seen for the benchmarked proteins, the enrichment of the de novo identified motif was 
higher than the enrichment of the known motif for the studied protein (Additional file 1: 
Fig. S4b). We further calculated the similarity (see “Methods”) between the known and 
de novo motifs, the latter obtained either from RCRUNCH crosslink or RCRUNCH 
peak center-predicted binding sites. We found that around 80% of the samples yielded 
motifs with at least 0.4 similarity to the known motif, which is a much higher proportion 
than when comparing random pairs of motifs. The similarity was slightly higher when 
sites were identified by RCRUNCH crosslink (Additional file 1: Fig. S4c). Given the large 
number of motifs identified for RBPs that are not represented in ATtRACT, we asked 

Fig. 6 RCRUNCH results for all ENCODE eCLIP data currently available. a Cumulative distribution of the 
number of significant binding sites detected per experiment (FDR threshold = 0.1, in black). Cumulative 
distributions are also shown separately for samples corresponding to proteins with a known binding motif 
(gray) and to proteins for which no known motif is available in ATtRACT, but one was found by RCRUNCH 
(blue). b Venn diagram summarizing the motif inference in the identified peaks. We distinguished four 
categories of proteins: for which (1) no motif is known and also no enriched motif was identified in this 
study (gray), (2) a de novo motif was found for a protein for which no motif is given in ATtRACT (blue), (3) a 
de novo motif was found for a protein with a known motif in ATtRACT (coral), and (4) a motif is known, but 
none was identified de novo (sand color). c Heatmap of mean peak agreement across RBPs. Only RBPs for 
which an enriched motif (see “Methods”) was found are included. The agreement is calculated as the Jaccard 
index of the nucleotides (nts) in the peaks, where the intersection of two sets of peaks is the number of nts 
covered in both sets, while the union is the number of nts covered in at least one of the two sets. The color 
range is capped at a similarity of 0.3 to make the clusters more easily distinguishable. The top peaks are taken 
according to the FDR threshold (0.1), extending by 20 nts upstream and downstream from the crosslink 
site. Since there are multiple replicates per RBP, the mean of pairwise Jaccard indices over all combinations 
of sample pairs are used here. The colors on the left indicate the relative frequency of each nucleotide type 
averaged over all positions of the PWM. d Polar projection of the enrichment of de novo motifs inferred for 
individual RBPs from all peaks with FDR > 0.1 extracted from the ENCODE samples. Only RBPs for which an 
enriched motif (see “Methods”) was found are included. The color of the bars indicate whether the respective 
RBP already has a known motif in ATtRACT (coral) or not (blue)
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whether these motifs are reproduced between replicate samples of an RBP. Indeed, the 
similarity of motifs obtained from replicate samples was similar for proteins with and 
without a known motif, and it correlated with the number of sites inferred from the sam-
ples (Additional file 1: Fig. S4d). De novo motifs that were reproduced between repli-
cate samples were also generally similar to known motifs for the corresponding protein 
(Additional file 1: Fig. S4e).

These data indicate that the motifs identified from RCRUNCH-extracted CLIP peaks 
are reliable, conform with prior knowledge, and explain the binding data better than 
the motifs that are currently available in databases. Altogether, the compendium that 
we have constructed (Table S5, see also “Availability of data and materials”) provides 
sequence specificity data for 86 RBPs, thus being, to our knowledge, the most extensive 
collection of in vivo, reproducibly identified, consensus RBP binding motifs.

Discussion
Within over a decade of development and application, CLIP has provided a wealth of 
insight into the RNA-binding protein-dependent regulation of cellular processes such 
as RNA maturation, turnover, localization, and translation. The large collection of 
RBP-centric high-throughput datasets that has been generated as part of the ENCODE 
project [48] is broadly used to unravel the functions of RBPs, many of which were 
only recently found to bind RNAs. As other types of high-throughput data, CLIP also 
requires dedicated computational analysis methods. In this context, RCRUNCH makes 
the following main contributions.

First, it is the first completely automated solution to CLIP data analysis, from reads 
to binding sites and sequence motifs, with accuracy and running times that compare 
favorably to those of the most broadly used tools to date. Key to this performance are the 
enrichment-based prioritization of genomic regions likely to contain RBP binding sites 
and the model for evaluating this enrichment in individual sites. These are based on the 
CRUNCH tool for analyzing ChIP data, and we find that they largely apply to CLIP data 
as well (Additional file 1: Fig. S5).

Second, to accommodate the variability of target types across RBPs, RCRUNCH goes 
beyond the typical approach of using uniquely genome-mapped reads, allowing the 
inclusion of multi-mappers and/or of reads that map across splice junctions. Both of 
these situations make it difficult to determine the locus of origin of the reads and may 
lead to a decreased accuracy of binding site inference. Nevertheless, for RBPs that spe-
cifically bind repeat elements, or in the vicinity of splice junctions, taking into account 
such reads and appropriately defining the peaks in read coverage is a must. The variant 
RCRUNCH workflows fulfill this need. RCRUNCH multi-mapper considers reads that 
map to a maximum number of genomic locations (specified by the user), distributing 
the reads equally among the loci with maximum alignment score. Compared to the run 
that only allowed uniquely mapped reads, this approach yields binding sites with similar 
enrichments in the expected sequence motifs of the benchmarked proteins, including 
those with repetitive binding motifs like PTBP1. More sophisticated models, e.g., apply-
ing an expectation/maximization approach to read-to-locus assignment, have been pro-
posed before [49], but they come at the cost of increased running times, and have not 
been broadly adopted. The RCRUNCH transcriptome variant was designed to address 
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another special case, namely that of RBPs that bind predominantly mature mRNAs. 
Many RBPs are located in the cytoplasm where they orchestrate RNA traffic and locali-
zation [36]. As internal exons of human transcripts are relatively short, ~ 147 nucleotides 
[50], it is likely that CLIP reads for RBPs that bind to these exons will cover exon–exon 
junctions [51]. Recent generation alignment programs such as STAR [52] can carry out 
spliced alignment. However, reads that span splice junctions will give rise to multiple 
peaks, in the 5’ and the 3’ exons that flank the splice junction. This will affect the accu-
racy of binding site and motif identification. A way to circumvent the issue is to map the 
reads to transcripts instead of genome sequences. This is not without drawbacks. First, 
given that it is not generally known a priori whether the RBP of interest binds mature 
RNAs or other classes of transcripts, a hybrid strategy will need to be adopted, to allow 
the identification of binding sites in introns as well as in mature mRNAs. Second, given 
the large number of possible isoforms per gene, accurate assignment of reads to isoforms 
and peak identification in multiple isoforms are not trivial. In RCRUNCH transcrip-
tome, we have implemented a general hybrid strategy to capture binding sites across 
all types of types of transcripts, including pre-mRNAs and mature mRNAs, without 
incurring large computational costs. Namely, taking advantage of the observation that 
individual cell types express predominantly one isoform from a given gene [53], we first 
determine which of the known isoforms of each gene has the highest expression level in 
the IP sample. We then use these isoforms as pseudo-chromosomes, assigning reads to 
the best-scoring loci, but with priority given to the spliced isoforms over genomic loci. 
This approach gave good results for the benchmarked proteins, including PUM2, which 
is known to bind to mature mRNAs [54], but overall, the number of sites that spanned 
splice junctions was small for the benchmarked proteins. On the other hand, for splic-
ing factors, we identified many sites in the vicinity of splice sites, as expected, indicating 
that these data can be studied further to determine to what extent these splicing factors 
remain associated with the mature RNAs (Additional file 1: Fig. S6). Nevertheless, our 
exploration of ways to handle reads that originate in various categories of targets was 
by no means exhaustive and this could be a direction for further development of the 
workflow.

Third, our analysis of the ENCODE eCLIP data yielded enriched sequence motifs 
for 86 RBPs. These were selected using a uniform procedure, based on the maximum 
enrichment across all samples available for a given RBP, in contrast to resources such 
as ATtRACT, which contain multiple, heterogeneous RBP-specific sequence motifs 
obtained with a wide range of techniques. While the eCLIP datasets were the focus 
of various previous studies (e.g., [16, 22, 36]), a compendium of reproducible binding 
motifs inferred from these data sets is not available. Moreover, although RBPs typically 
bind to a defined sequence (or sometimes structure) motif, the binding specificity of 
RBPs inferred from eCLIP data has been described in terms of collections of short motifs 
[16, 36], for reasons that remain unclear. The main aim of the work presented here was 
to provide a uniform procedure for inferring RBP sequence specificity from binding data 
and a resource of RBP-specific motifs similar to those available for transcription fac-
tors (e.g., [55]). For RBPs that have been extensively studied, the motifs that we identi-
fied de novo from the CLIP peaks conform with prior knowledge, though they differ in 
quantitative detail. Moreover, the de novo motifs have higher enrichment in the peaks 
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compared to the known motifs, which may indicate context-specific contributions to the 
binding affinity. Overall, we identified enriched sequence motifs for 86 proteins, 60 of 
which are not represented in the ATtRACT database. In some cases, the most enriched 
motif in a given sample was not the one known to be bound by the corresponding pro-
tein, as observed before [36]. Repetitive motifs (G/G&C/C-rich) were occasionally found 
to be enriched in various samples, and this enrichment was also reproduced in replicate 
samples for the same protein. This raises the question of whether these motifs represent 
some sort of non-specific background in IP samples [18]. However, we did not find a 
larger overlap among the binding sites containing such motifs relative to binding sites 
of randomly chosen pairs of proteins (Fig. 6c). In fact, overlaying the pairwise overlap 
data with data on protein complex composition revealed compelling cases of high over-
lap for proteins of the same complex such as the spliceosome, the pre-rRNA processing 
complex, a paraspeckle-related complex, and others (Additional file 1: Fig. S2). Thus, our 
analysis does not support the concept that general non-specific background in eCLIP 
leads to similar motifs for unrelated RBPs, though it will be interesting to investigate fur-
ther the functional significance of the identified motifs.

Finally, our analysis of the motif–crosslink and motif–peak center distances revealed 
distinct RBP-dependent patterns. Most striking was the peak in coverage observed 
over the AAEs in the hnRNPC eCLIP. HnRNPC binds (U)5 elements [9], while the read 
starts, indicative of crosslink positions, were located in a U-rich region upstream of 
the AAE. Our simulation of a CLIP experiment suggests that the hnRNPC data is quite 
unusual relative to data for other RBPs. HnRNPC has a large number of binding sites 
in Alu antisense elements that have a conserved consensus extending much beyond 
the U-rich element. Motif finding methods will identify this consensus as extremely 
enriched, more so than the much shorter (U)5 motif. The strong colocalization of the 
most frequent crosslink position within a peak and the RBP-specific motif supports the 
notion that the reverse transcriptase has a high propensity to stop extending the cDNA 
when it encounters the RNA-RBP crosslink [56]. However, our analysis also suggests 
that the readthough probability varies substantially between RBPs, being very low for 
hnRNPC, and relatively high for other proteins like PTBP1 and PUM2. This highlights 
the importance of a flexible but principled approach to binding site and motif identifica-
tion, using a general measure of performance such as the motif enrichment score. This 
is what RCRUNCH implements, running in parallel the standard and crosslink approach 
and reporting the motif enrichments to allow the user to determine the approach that 
yields the most consistent results. This is because the configuration of RBP-RNA inter-
actions varies across RBPs, influencing the nature of the reads that are captured in the 
CLIP experiment. Although beyond the scope of our present work, exploration of the 
ENCODE data set with a simulation-driven approach may yield further insight into the 
interactions of individual RBPs with their binding sites.

To ensure comparability of various tools, we used the metric provided by each of the 
tools to select the same number of top sites for further analyses. The question may arise 
whether the number of selected sites influences our conclusions. We did not find this to 
be the case (Additional file 1: Fig. S7). Specifically, the relative ranking of motif densities 
reported by different methods largely held for a number of top sites between 0 and 1000.
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The ENCODE project used the eCLIP approach, and thus eCLIP datasets are by far the 
most extensive. Aiming to obtain a comprehensive catalog of sequence motifs, we have 
therefore focused our analysis on these datasets. However, RCRUNCH is not specifically 
tailored to eCLIP. For example, it can also use single-end sequencing data, with or with-
out UMIs, generated by eCLIP or another protocol. What is important though is that 
background samples, not enriched for the protein of interest, are available. To illustrate 
this, we have analyzed data generated by PAR-CLIP for the fly CNBP protein (Additional 
file 1: Fig. S8), obtaining the expected sequence motif. In another case, PAR-CLIP data 
for the PUM2 protein, where we tried to use as background RNA-seq data from similar 
experimental systems, the read counts per window did not follow the expected distribu-
tion, and we were not able to compute meaningful enriched regions (Additional file 1: 
Fig. S8).

Conclusions
Our study provides a general, end-to-end solution for CLIP data analysis, starting from 
sequenced reads and ending in binding sites and RBP-specific sequence motifs. The 
tool compares favorably with the most broadly used tools to date, and further extends 
the type of reads that can be analyzed, to multi-mapping and split-mapping reads. By 
applying RCRUNCH to the entire ENCODE set of samples available to date, we pro-
vide a compendium of reproducibly enriched sequenced motifs for 86 RBPs, of which 
only 26 are represented in extensive databases available today, such as ATtRACT. Finally, 
our simulations suggest that the architecture of RBP–RNA interactions imposes strong 
variation in the probability of identifying the precise position of crosslinking from CLIP 
data.

Methods
Inputs to RCRUNCH

RCRUNCH performs its analysis on at least one paired-end or single-end, stranded 
CLIP sample, and a corresponding background sample (which could be the SMI from 
eCLIP experiments or RNA-seq) both provided in fastq format. All necessary param-
eters for the run such as sample file names, adapters, fragment size, presence of UMIs, 
etc. should be provided in a config file, a template of which can be found in the reposi-
tory along with a test case. The tool also requires the genome sequence fasta file and 
Ensembl [57] gtf annotation of the corresponding organism, also given in the config file. 
RCRUNCH can additionally perform some optional analyses, one being the filtering out 
of sequences that correspond to specific non-coding RNA biotypes and the other being 
the enrichment analysis for known sequence motifs. If these options are chosen, paths to 
corresponding files should be provided in the config file, according to the instructions in 
the README file accompanying the software.

Read preprocessing

Adapter removal

3’ and 5’ adapters for read1 and/or read2 specified in the config file are trimmed with 
Cutadapt [58].
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Alignment of reads to reference genome

The alignment of reads to the reference genome is done with STAR [52], disabling 
the soft-clipping option. Some of the options to STAR differ from the standard value 
to allow the alignment of short reads with only few mismatches (outFilterScoreMi-
nOverLread 0.2, –outFilterMatchNminOverLread 0.2, outFilterMismatchNoverL-
max 0.1). Multi-mapper reads (that map equally well—same number of errors—-to 
multiple regions in the genome) can be included in the analysis by setting the “mul-
timappers” field in the config file to the desired number of equivalent mappings to 
consider for a read. In this case, reads that map to at most “multimappers” loca-
tions in the genome are counted towards each of these locations with a weight of 1/ 
“multimappers”.

Removal of reads from abundant non‑coding RNAs

Reads derived from some non-coding RNAs (e.g., ribosomal (rRNAs), transfer 
(tRNAs), and small nuclear RNAs (snRNAs)) are abundant in many CLIP samples and 
thus believed to be largely contaminants [22]. Frequently, these abundant RNAs are 
also encoded in highly repetitive genomic loci. For these reasons, RCRUNCH allows 
the option of selective removal of reads mapping to ncRNAs, based on the annota-
tion from RNAcentral [59]. For this, the user will need to provide a gff3-formatted 
file for the appropriate species, which can be downloaded from RNAcentral. Specific 
biotypes of ncRNAs can be selectively removed by filling out the “ncRNA_biotypes” 
option in the config. The names of reads that overlap in the genome with any of the 
selected ncRNAs specified by the user are saved in a list. This is then used as input in 
the FilterSamReads function of the Picard software [60] to remove the reads from the 
alignment file that passed to downstream analysis.

Removal of PCR duplicates

PCR amplification is a well-established source of error in the estimation of transcript 
counts [61]. However, different CLIP protocols differ in whether and how they deal 
with this issue. Accordingly, RCRUNCH offers multiple options. The default is to not 
carry out any PCR duplicate removal, which can be specified by choosing “standard” 
as the value for the “dup_type” fields in the config file. Alternatively, RCRUNCH can 
take advantage of Unique Molecular Identifiers (UMIs), which are introduced by liga-
tion of a DNA adapter containing a random oligonucleotide (the UMI or randomer) 
to the cDNA fragments, as done in eCLIP [22]. As the UMI is preserved during PCR 
amplification, it can be used to identify reads that are copies of the same initial frag-
ment. To remove PCR duplicates, we use UMI tools [62], which assume that the UMI 
sequences are suffices of the read names. However, data from the ENCODE project 
has the UMIs as prefixes to the read names. Thus, we use a specific rule to make this 
transformation, which is controlled by the field “format” in the config file and can be 
either “encode” or “standard”. If standard is chosen, no reformatting occurs and it is up 
to the user to make sure the format of the fastq files they provide is compatible with 
UMI tools processing. Finally, if the sample preparation did not include the addition 
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of UMIs, RCRUNCH can still attempt this removal via the deduplication function 
of STAR [52] via filling out the “dup_type” option with “duplicates”. If no duplicate 
removal is desired then the “dup_type” can take the option “with_duplicates”.

Additional preprocessing steps for the “RCRUNCH transcriptome” approach

If the user chooses the transcriptomic mode of RCRUNCH (“method_types” as “TR” 
in the config), a few additional steps are needed to identify reads that map across splice 
junctions. First, reads are aligned to the genome (as described above), and the align-
ments are used to remove PCR duplicates and possibly ncRNAs. The remaining read 
alignments for the foreground sample are used by the Salmon software [52, 60, 63] to 
select the most expressed transcript isoform for each gene and construct a dataset-
specific transcriptome. The reads that were selected in the first step are aligned to the 
transcriptome, after which the genome and transcriptome alignment files are jointly 
analyzed to identify the highest scoring alignment (AS score in the bamfiles) for each 
read. If the AS score for the transcriptome alignment is greater than the AS score of the 
genome alignment -3, the alignment to the transcriptome is selected. We chose this cri-
terion rather than requiring the transcriptome alignment score to be strictly better than 
the genome alignment score to conservatively assign the reads preferentially to the tran-
scriptome. Peaks are then detected either on the genome or the transcriptome, treating 
individual transcripts as we treat chromosomes. This approach allows us to detect and 
properly quantify RBP binding sites in the vicinity or even spanning splice junctions.

The RCRUNCH model for the detection of RBP binding regions

Genome/transcriptome-wide identification of peaks corresponding to individual bind-
ing sites for an RBP is time-consuming. For this reason, RCRUNCH implements a two-
step process, as previously done for analyzing chromatin immunoprecipitation data [14]. 
That is, broader genomic regions that are enriched in reads in the foreground (IP) sam-
ple compared to the background are first identified, and then individual peaks are fit-
ted to the IP read coverage profiles within the selected windows. More specifically, we 
tabulate the number of fragments that map to sliding windows of a specific size (e.g., 
300 nucleotides, sliding by 150 nucleotides at a time), the same in both foreground (IP) 
and background (e.g., SMI) samples. For windows where the protein does not bind, fluc-
tuations in the number of reads across replicate samples have been found to be well-
described by the convolution of a log-normal distribution due to multiplicative noise 
in the sample preparation and Poisson sampling noise [14]. The frequency of reads in 
windows with no RBP binding should in principle be the same between the foreground 
and the background sample. However, unbound regions will be somewhat depleted of 
reads in foreground compared to the background sample because the IP should enrich 
for reads in bound regions. Thus, in modeling the probability of the data for an unbound 
region, we allow for this possibility by including a correction term µ which will be fitted 
from the data:

Pu(n|N ,m,M, σ ,µ) =
1

2π(2σ 2 + 1/n+ 1/m)

exp −
(log(n/N )− log(m/M)− µ

2

2(2σ 2 + 1/n+ 1/m)
,
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where n is the number of reads in a given window (of a total of N  reads) in the fore-
ground sample, m is the number of reads (of a total of M ) in the background sample, 2σ 2 
is the variance due to multiplicative noise in the two samples, and 1/n and 1/m are the 
variances due to the Poisson noise. For the probability of read counts due to binding, we 
assume a uniform distribution over the range corresponding to the maximum and mini-
mum difference in read frequency between foreground and background samples across 
all windows:

Finally, the probability of observing the n reads is given by a mixture model, of the win-
dow representing a background region (with probability ρ ) or a region of RBP binding 
(with probability 1− ρ):

We fit the parameters ρ, σ ,µ by expectation–maximization (detailed method 
described in [14], Supplemental material, Sect.  1.9). Regions that are found to be 
enriched in the foreground sample (z-score higher than 2) are analyzed individually with 
a second mixture model, to fit peaks corresponding to the individual binding events. The 
maximum number of peaks considered in a region is the region length divided by the 
fragment size. The z-scores of these peaks are recalculated based on the number of frag-
ments that are associated with the peaks and those that still have a high enough z-score 
(corresponding to FDR ≤ 0.1 for the enriched regions) are kept as significant. When 
peaks overlap by more than half of the size of one of the peaks, the least significant peak 
is removed, and the expectation–maximization is continued from the current peak con-
figuration. The procedure is repeated a number of iterations which is twice the maxi-
mum number of considered peaks and the configuration with the maximum likelihood 
score is kept.

De novo motif identification and enrichment calculation

For each peak, we extract the region covering 20 nucleotides (nts) upstream and 20 nts 
downstream of the peak center in the case of the RCRUNCH peak center approach (option 
“peak_center” in the config). For RCRUNCH crosslink, we extract the same type of window, 
centered not on the peak center but rather on the position where most read starts within 
the peak are located. To avoid double-counting of motifs, we merge overlapping peaks, 
obtaining thus a set of non-redundant peaks. To estimate the enrichment of known and de 
novo motifs we use the MotEvo software [27] as described in [14]. Namely, a subset of the 
peaks is used to train a prior probability of non-specific binding, and the motif enrichment 
is then estimated from the test set, using this prior. We carried out this procedure 5 times 
(parameter “runs”, can be modified by the user) to both estimate the mean enrichment for 
known motifs from the ATtRACT database [23] and to identify de novo motifs (represented 
as positional weight matrices, PWMs) of various sizes (provided by the user, default values: 
6, 10, 14) that are enriched in the foreground peaks relative to unbound sequences using 
PhyloGibbs [64]. As unbound sequences, we use those genomic regions obtained in the IP 
experiment that had the lowest z-scores, meaning that they were depleted in IP reads. We 

Pb(n|N ,m,M) =
1

δmax − δmin

, where δ = n/N −m/M.

P(n|N ,m,M, σ ,µ, ρ) = ρPu(n|N ,m,M, σ ,µ)+ (1− ρ)Pb(n|N ,m,M),
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sampled 20 background sequences of equal size (40 nts) for each foreground peak. For each 
motif length, we extracted the top two motifs in the order of cross-validated enrichment 
and trimmed off positions from the boundaries of the motif until the information score 
became at least 0.5. For both the known motifs, as well as the de novo motifs, we report the 
motif and corresponding enrichment for each of the 5 runs, as the motif can vary to some 
extent from run to run. The de novo motifs from all these runs are then collected together 
in an extra step and along with the known motifs, the enrichment over all the significant 
peaks is estimated (in this step, there cannot be any prior estimate).

Benchmarking peak finder tools

We compared RCRUNCH with the recently developed and broadly used tools CLIP-
per [22], Pure-CLIP [18], and omniCLIP [15]. To reliably and reproducibly perform 
this analysis, we created a separate snakemake workflow. For PureClip and omniCLIP, 
docker images [65] were either created or used from existing repositories. As we could 
not implement CLIPper in the same type of workflow as the other tools, we relied on the 
bed files of CLIPper-predicted binding sites from each sample provided by ENCODE. 
To benchmark the tools, we used eCLIP data generated for some RBPs whose binding 
motifs are well-known: hnRNPC [67, 71], PTBP1 [72, 73], PUM2 [68], and RBFOX2 [69, 
70]. For PureClip and omniCLIP, the eCLIP data had to be pre-processed separately, as 
the tools use alignments as input. To facilitate the comparison across methods, we used 
the pre-processed data from RCRUNCH. The execution of RCRUNCH was done using 
some specific options as explained in the RCRUNCH workflow description. Firstly, only 
unique mappers were aligned to the genome. PCR deduplication was performed, using 
the UMIs that eCLIP experiments contain. We did not remove any reads mapping to 
ncRNAs, and we used the RCRUNCH genomic approach. Each of the different peak call-
ing methods was applied, and the top 1000 peaks were extracted for the motif analysis, 
irrespective of FDR threshold. The motif analyses are included as a post-processing part 
of RCRUNCH. For RCRUNCH, both the “crosslink” and “peak center” positions were 
used as anchors for extending by 20 nts on either side and obtaining the sequences for 
the motif analysis. For the other methods, we used the method-predicted crosslink posi-
tions as anchors for extracting similar regions of 40 nts in length. For all methods, over-
lapping peaks were merged to ensure non-redundancy in the sequence set. To ensure 
comparability, we used the same set of sequences with lowest z-scores as background for 
motif enrichment estimation in the peaks predicted by all samples.

Calculation of peak agreement between replicate samples and between methods

To calculate the peak agreement between methods and across replicates we used the Jac-
card distance metric, defined as:

where nts1 and nts2 are the nucleotides contained in the top number of peaks chosen for 
sample 1 and sample 2, respectively.

A(nts1, nts2) =
|nts1 ∩ nts2|

|nts1| + |nts2| − |nts1 ∩ nts2|
,
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Calculation of motif similarity

We defined the motif similarity M of two sequence motifs m1 and m2 , 
M
(

m1,m2

)

=
2S(m1 ,m2)

S(m1 ,m1)+S(m2 ,m2)
, where S

(

m1,m2

)

= maxd

[

I
(

m1,m2, d
)]

 and I
(

m1,m2, d
)

= Σim1(i)m2(i − d) is 
the inner product of the motifs with the second motif being at offset d compared to the 
first motif [14]. This measure allows for the comparison of motifs of different lengths 
and takes values between 0 (when the base frequency vectors are orthogonal) and 1 
(when the two motifs are identical).

RCRUNCH analysis of ENCODE eCLIP data

We applied the RCRUNCH workflow to all of the ENCODE eCLIP datasets, consist-
ing of 220 distinct eCLIP experiments with 143 different RBPs in two cell lines (K562, 
HepG2). As for the benchmarks, we used reads mapping uniquely to the genome, per-
formed read deduplication based on the UMIs, and did not exclude reads mapping to 
ncRNAs. To identify the RBP-specific binding motifs, we used the top peaks for each 
RBP, based on FDR threshold < 0.1. Agreement across replicates and motif agreement 
with existing knowledge were the main metrics of performance evaluation. For the com-
parison of peaks across RBPs and the inference of RBP-specific motifs, we considered 
proteins for which we had at least 20 peaks in both replicate samples. We applied Phylo-
Gibbs and MotEvo (each run 5 times with different seeds of the random number genera-
tor) and collected all motifs reported to be enriched in at least one of the replicates for 
the corresponding protein. Finally, we identified the motif with the highest sum of log-
likelihood across all replicate samples for a given protein. This motif is reported in Table 
S5 and shown in Fig. 6d.

RCRUNCH variants

To evaluate the RCRUNCH variants, we used the same samples that were used for 
benchmarking the computational methods. The pre-processing and post-processing 
steps (motif analysis) were the same as those implemented in the benchmark analysis, 
but the selection of reads, regions, and peaks differed. Specifically, in the RCRUNCH 
transcriptome approach, we first construct a reference transcriptome composed of 
the most abundant isoform of each gene in the CLIP data and use these transcripts as 
“pseudo-chromosomes” in the mapping process. We then map reads in an unspliced 
manner to both this reference transcriptome and to the genome and retain the mappings 
with the highest score. In cases when the alignments to transcriptome and genome are 
very close in score (transcriptome—genome scores ≥ − 3 points), we give precedence to 
the transcriptome mappings and ignore the genomic ones. We then apply the standard 
RCRUNCH (see the section “The RCRUNCH model for the detection of RBP binding 
regions”). In RCRUNCH multi-mappers, we consider not only reads that map uniquely 
to the genome but also those that have up to 50 of equally good mappings (see the sec-
tion “Alignment of reads to reference genome”). For RCRUNCH RNA-seq background, 
we simply used RNA-seq samples that are provided by ENCODE for the cell lines (K562, 
HepG2) used for CLIP. These were treated the same as the SMI sample.
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