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Abstract 

Nanopore sequencing is being rapidly adopted in genomics. We recently developed 
SLOW5, a new file format with advantages for storage and analysis of raw signal data 
from nanopore experiments. Here we introduce slow5tools, an intuitive toolkit for 
handling nanopore data in SLOW5 format. Slow5tools enables lossless data conversion 
and a range of tools for interacting with SLOW5 files. Slow5tools uses multi-threading, 
multi-processing, and other engineering strategies to achieve fast data conversion 
and manipulation, including live FAST5-to-SLOW5 conversion during sequencing. We 
provide examples and benchmarking experiments to illustrate slow5tools usage, and 
describe the engineering principles underpinning its performance.
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Background
Nanopore sequencing analyzes native DNA or RNA molecules with no upper limit on 
read length [1]. Popular devices from Oxford Nanopore Technologies (ONT) measure 
the displacement of ionic current as a DNA/RNA strand passes through a protein pore, 
recording time-series signal data in a format known as “FAST5.” This signal data is typi-
cally “base-called” into sequence reads and is further used during a wide range of down-
stream analyses [2–8].

ONT’s native FAST5 data format suffers from several inherent limitations, which we 
have articulated previously [9]. FAST5 file sizes are inflated by inefficient space alloca-
tion and metadata redundancy. Its dependence on Hierarchical Data Format (HDF) 
makes FAST5 unsuitable for efficient parallel access by multiple CPU threads. FAST5 
files can only be read/written by the hdf5lib software library, which reduces usability and 
can make even relatively simple operations difficult and expensive.

We recently developed a new file format named SLOW5, which is designed to over-
come the above limitations in FAST5 [9]. In its compressed binary form (BLOW5), the 
new format is ~20–80% smaller than FAST5 and permits efficient parallel access by 
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multiple CPU threads. This enables order-of-magnitude improvements in the speed and 
cost of signal data analysis on common high-performance computing (HPC) and cloud 
systems [9]. SLOW5 is well-documented and fully open source. Data reading/writing is 
managed by an intuitive software API that is compatible with a wide range of system 
architectures. Overall, SLOW5 offers many benefits to the ONT user community.

To accompany the SLOW5 data format, we have developed a suite of tools for creat-
ing, handling, and interacting with SLOW5/BLOW5 files. Slow5tools includes all utilities 
required for novice and advanced users to integrate SLOW5 with their workflows and 
solves existing challenges in the management and analysis of ONT raw signal data. Slow-
5tools is implemented in C/C++ with minimal dependencies and utilizes multi-thread-
ing, multi-processing, and other software engineering strategies to achieve a fast and 
efficient performance. This article provides a series of examples that serve to articulate 
the design, usage, and performance of slow5tools. Slow5tools is freely available as an open-
source program under an MIT license: https:// github. com/ hasin du2008/ slow5 tools.

Results
Overview of slow5tools

Slow5tools is a modular toolkit for working with signal data from ONT experiments. 
Slow5tools is written in C/C++ and uses two core libraries, slow5lib and hdf5lib, for 
reading/writing SLOW5/BLOW5 and FAST5 files, respectively (see the “Methods” sec-
tion; Additional File 1: Fig. S1a). The software has the following basic usage, where “com-
mand” specifies the operation to be performed:

# generic usage for slow5tools

slow5tools command input.slow5 -o output.slow5

The various commands currently available in slowt5tools are summarized in Fig.  1 
and Additional File 1: Table S1. Different commands within slow5tools employ various 
engineering strategies to achieve optimum performance. These strategies are articulated 
below, along with relevant benchmarking results.

Fast, lossless data conversion

Because ONT devices currently write data in FAST5 format, data conversion to SLOW5/
BLOW5 format will be the first step in most workflows. FAST5-to-SLOW5 conversion 
can be performed with slow5tools f2s, as follows:

# convert a single FAST5 file into SLOW5 ASCII format

slow5tools f2s file.fast5 -o file.slow5

# convert a directory of FAST5 files into binary BLOW5 files

slow5tools f2s fast5_dir -d blow5_dir

Data conversion is lossless by default, and the user may convert their data back to the 
original FAST5 format using slow5tools s2f, as follows:

# convert a directory of BLOW5 files to FAST5

slow5tools s2f blow5_dir -d fast5_dir

https://github.com/hasindu2008/slow5tools
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It is not possible to read/write FAST5 files using parallel CPU threads, due to their 
dependence on the hdf5lib library, which serializes any thread-based input/output 
(I/O) operations [9]. Therefore, f2s/s2f data conversion is instead parallelized through 
a multi-processing strategy illustrated in Additional File 1: Fig. S1b (see the “Methods” 
section). To evaluate this solution, we measured runtimes for data conversion on a typi-
cal ONT sequencing dataset (~9M reads; Additional File 1: Table S2), as executed with 
various numbers of processes on three machines with different disk systems (SDD, 
HDD, Distributed; Additional File 1: Table S3). Data conversion rates scaled with the 
number of processes for both f2s and s2f, and the observed trends were similar to the 
ideal curves, indicating highly efficient utilization of parallel compute resources, with 
the exception of System 2 (Fig. 2a, b). Data conversion on System 2 showed sub-optimal 
parallelism for two main reasons: (i) System 2 has a traditional HDD disk system that 
throttles when the number of I/O requests is high and (ii) using processes instead of 
threads makes these I/O requests completely separated and thus the associated over-
head is high. This experiment demonstrates that multi-processing is a viable solution 
for the parallelization of FAST5/SLOW5 data conversion, in which multi-threading is 
not permitted, although this approach has limitations that will impact performance on 
some systems.

With the speeds achieved by f2s above, live FAST5-to-SLOW5 data conversion dur-
ing a sequencing experiment is also possible. To manage this process, we developed an 
accompanying script (realf2s.sh) that detects freshly created FAST5 files during sequenc-
ing, converts them to BLOW5, and checks the integrity of the data before (optionally) 

Fig. 1 Schematic overview of nanopore raw signal data management with slow5tools. The software permits 
lossless data conversion from FAST5-to-SLOW5 (f2s command) or SLOW5-to-FAST5 (s2f command). Slow5tools 
executes a range of common operations for data management, including combining multiple SLOW5/
BLOW5 datasets (merge or cat commands) or splitting a dataset into multiple parts (split command). The 
index command creates an index file for a SLOW5/BLOW5 file, which then enables a specific record(s) to be 
quickly fetched from the file using the get command. The view command is used to view the contents of a 
binary BLOW5 file/s in human-readable SLOW5 format and convert datasets between SLOW5 and BLOW5, or 
between different BLOW5 compression types. Finally, slow5tools can check the integrity of a SLOW5/BLOW5 
file (quickcheck) or generate simple summary statistics describing the dataset (stats)
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deleting the FAST5s (see the “Methods” section). We tested this feature on ONT’s Pro-
methION P48 device, using the onboard computer for live data conversion (Additional 
File 1: Table  S3), and found that f2s can easily match the pace of data production at 
maximum sequencing load (i.e., 48 flow cells running in parallel; Fig.  2c). Indeed, the 
average delay between the completion of an individual FAST5 file containing 4000 reads 
and its conversion to BLOW5 format was just ~20 s. Given the smaller size of BLOW5 
vs FAST5 files (typically ~50% smaller), live f2s conversion increases the number of 
sequencing runs that can be performed in parallel before reaching the maximum storage 
capacity on an ONT sequencing device. We also anticipate that the use of live-converted 
BLOW5 format will also improve the capacity of live base-calling that is achievable on 
ONT sequencing devices in the future.

Merging and splitting datasets

The slow5tools merge command can also be used to combine multiple batches of reads or 
data from different sequencing runs into a single BLOW5 file, for example when aggre-
gating data across replicate experiments. If data is merged from different runs/flow-cells, 
each will be assigned a separate read_group, with which all its constituent reads are 
tagged in the merged file. Merging can be performed as follows:

# merge all BLOW5 files in one or more directories into a 

single BLOW5 file

slow5tools merge blow5_dir1 blow5_dir2 -o file.blow5

Data merging is accelerated via an interleaved multi-threading strategy illustrated in 
Additional File 1: Fig. S1c (see the “Methods” section), which is more resource-efficient 
than the multi-processing strategy described above. Evaluating this solution on the same 
machines as above, we observed near-optimal parallelism, with data merging times 
being reduced in proportion to the number of CPU threads used (Fig. 3a, Additional File 
1: Fig. S2a).

Fig. 2 Efficient data conversion with slow5tools f2s and s2f commands. a, b Normalized execution times 
for conversion of a typical ONT dataset (~9M reads) from FAST5-to-SLOW5 format (a) or SLOW5-to-FAST5 
format (b) when using increasing numbers of parallel processes. Data conversion was evaluated on three 
separate machines with different disk systems (SSD, HDD, Distributed). For each system, execution times are 
normalized relative to the execution time for the smallest number of processes (four) run on that system. 
Ideal curves (dashed lines) model the expected performance under optimal parallelism. c The rate of FAST5 
data production (red) and FAST5-to-SLOW5 data conversion (orange) with realf2s.sh on a PromethION P48 
device running at maximum sequencing load
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The slow5tools cat command provides a lightweight alternative to merge, which can be 
used to quickly combine batches of reads without assigning read_groups. Similar to the 
Unix “cat” command, this tool is intended for concatenating the small batches of reads 
produced by ONT’s MinKNOW software into a single BLOW5 file for a given sequenc-
ing run and does so faster than possible with merge (Additional File 1: Fig. S2b) Cat does 
not permit the user to combine files with different metadata (e.g., reads from different 
flow cells) in their headers.

The user may also wish to split a dataset into multiple separate files. This can be 
achieved using the split command, which offers the user a choice to direct reads from 
each read_group to a single output file, or alternatively split the input into a specific 
number of output files or a specific number of reads per file:

# split a BLOW5 file into separate BLOW5 files based on read 

groups

slow5tools split file.blow5 -d blow5_dir -g

# split a BLOW5 file (single read group) into separate 

BLOW5 files such that there are 4000 reads per file

slow5tools split file.blow5 -d blow5_dir -r 4000

# split a BLOW5 file (single read group) into 100 separate 

BLOW5 files

slow5tools split file.blow5 -d blow5_dir -f 100

When splitting by read_group, split is accelerated via a multi-threading strategy simi-
lar to merge (see the “Methods” section) and also exhibits near-optimal parallelism on 
different machines (Fig.  3b). Together, the merge, cat, and split tools provide the user 
an efficient, flexible framework for reorganizing ONT raw signal datasets into the most 
convenient structure for any use case.

Fig. 3 Merging, splitting, and querying BLOW5 files. a Normalized execution times for merging all individual 
batches of reads produced by MinKNOW into a single BLOW5 file for a typical ONT dataset (~9M reads), when 
using increasing numbers of parallel CPU threads. Data merging was evaluated on three separate machines 
with different disk systems (SSD, HDD, Distributed). For each system, execution times are normalized relative 
to the execution time for a single thread run on that system. Ideal curves (dashed lines) model the expected 
performance under optimal parallelism. b The same comparison for splitting a typical BLOW5 file into 
separate files for each read_group with slow5tools split. c The same comparison for retrieving a set of records 
from a BLOW5 file based on their read_ids with slow5tools get 
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Indexing SLOW5/BLOW5 files

Efficient access to a SLOW5/BLOW5 file is facilitated by an accompanying binary 
index file that specifies the position of each read (in bytes) within the main file 
(see the “Methods” section). This file should be created using the slow5tools index 
command:

# index a SLOW5/BLOW5 file

slow5tools index file.blow5

Creating an index file for a BLOW5 file involves decompressing and parsing each 
record to get the position of each read_id. Decompressing and parsing an entire record 
is time-consuming. However, the zlib compression algorithm, used by default in slow-
5tools, supports partial decompression. Index is hence accelerated through a partial 
decompression strategy, where only the read_id is decompressed for a given record. This 
method enjoys substantial performance benefits during index creation, compared to 
complete decompression (Additional File 1: Fig. S2c).

Viewing and querying SLOW5/BLOW5 files

SLOW5 datasets can be stored in human-readable ASCII SLOW5 format, or the more 
compact binary BLOW5 format, which is preferable in most scenarios. The view tool 
allows the user to view the contents of a BLOW5 file or convert between SLOW5/
BLOW5:

# to view a BLOW5 file in SLOW5 ASCII on standard output

slow5tools view file.blow5

# Convert a BLOW5 file into SLOW5 ASCII

slow5tools view file.blow5 -o file.slow5

# convert a SLOW5 file to BLOW5 (default compression)

slow5tools view file.slow5 -o file.blow5

The view command can also be used to specify different compression methods avail-
able for BLOW5 format, with various combinations available across two compression 
layers (see the “Methods” section).

Rather than viewing the whole file, many use-cases require retrieval of a specific 
record/s from a dataset, based on their read_ids. This can be performed with the slow-
5tools get command, which enables efficient random access on BLOW5 files, as follows:

# extract records from a SLOW5/BLOW5 file corresponding to 

given read ids

slow5tools get file.blow5 readid1 readid2 -o output.slow5

Get employs a similar multi-threading strategy as above and exhibits optimal paral-
lelism on all systems tested (Fig. 3c). Together, these tools allow users to efficiently view 
and query datasets in SLOW5/BLOW5 format.
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POD5 conversion

POD5 is a prototype file format for raw signal data that is currently under active devel-
opment by ONT. It is anticipated that POD5 will eventually replace FAST5 as the native 
file format on ONT devices. It is therefore essential to develop capabilities for POD5-
to-SLOW5 and SLOW5-to-POD5 conversion. We have implemented and validated 
alpha-version tools for POD5 conversion under a repository that is currently separate 
from slow5tools (https:// github. com/ Psy- Fer/ proje ct_ blue_ crab). If the development of 
POD5 and its associated API for writing POD5 files continues to a point of maturity and 
stability, we intend to integrate the above tools into the slow5tools main code base, as 
core utilities s2p and p2s, ensuring ongoing compatibility of the SLOW5 ecosystem with 
ONT data frameworks.

Other tools

In addition to the commands outlined above, slow5tools also currently includes two tools 
for checking the integrity and/or specifications of a dataset in SLOW5/BLOW5 format. 
The slow5tools stats command generates simple summary statistics including the read 
count, number of read_groups, etc. A lightweight alternative, quickcheck simply checks 
a SLOW5/BLOW5 file to make sure it is not malformed. The slow5tools skim command 
allows the user to quickly skim through a SLOW5/BLOW5 file, printing only specified 
components to the standard output, rather than the entire file. The modular architecture 
of slow5tools will allow new tools to be readily added as new use cases arise. Similarly, 
the slow5tools command structure enables multiple operations to be combined in effi-
cient one-line BASH commands familiar to the bioinformatics community (https:// hasin 
du2008. github. io/ slow5 tools/ oneli ners. html).

Discussion
SLOW5 format was developed as an open-source, community-centric file format that 
addresses several inherent design flaws in ONT’s FAST5 format, on which the nanop-
ore community was previously dependent [9]. Performance, compatibility, usability, and 
transparency are central principles of the ongoing SLOW5 initiative.

In addition to the slow5lib and pyslow5 APIs for reading and writing SLOW5 files, 
slow5tools is critical for the usability of SLOW5 format. With ONT devices currently 
limited to write data in FAST5 format, the slow5tools f2s utility for FAST5-to-SLOW5 
conversion will be the first step in any workflow that integrates SLOW5. We also pro-
vide a method for live data conversion during sequencing, which easily keeps pace with 
a PromethION P48 device at maximum load. This allows the user to obtain their data 
in analysis-ready BLOW5 format with no additional cost to the overall workflow time, 
or to more efficiently move raw data off the sequencing machine for real-time analysis 
[10]. This also provides a base for future implementation of real-time base-calling with 
SLOW5 input, which we expect will enjoy significant performance benefits over FAST5.

Following data conversion, slow5tools provides a fast and flexible framework for man-
aging and interacting with SLOW5/BLOW5 files. We recommend the use of binary 
BLOW5 for almost all applications, because it is more compact and efficient than 
ASCII SLOW5. BLOW5 supports multiple compression methods, or no compression, 
at the user’s discretion. Zlib was chosen as the default compression method due to its 

https://github.com/Psy-Fer/project_blue_crab
https://hasindu2008.github.io/slow5tools/oneliners.html
https://hasindu2008.github.io/slow5tools/oneliners.html
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near-universal compatibility; however, svb+zstd is more compact and provides supe-
rior file-reading performance. In some cases, such as when writing temporary BLOW5 
files during an analysis, no compression may also be preferable. SLOW5 was designed to 
allow future compression strategies to be easily incorporated, and we anticipate domain-
specific compression algorithms will deliver future improvements.

Since its beta release alongside the SLOW5 format [9], slow5tools has undergone 
numerous performance optimizations, such as multi-threading and multi-processing 
accelerations, and various new utilities and options have been added. This includes fast 
and flexible methods for combining SLOW5/BLOW5 files (merge, cat); splitting by vari-
ous different specifications (split); efficiently retrieving specific reads, groups of reads, or 
specifics fields from reads within a file (get, skim); modular, customizable file compres-
sion (view); and basic summary stats or QC checks (stats, quickcheck) (Additional File 
1: Table  S1). Slow5tools will continue to grow and evolve with community needs. For 
example, an early-stage tool for POD5-to-SLOW5 conversion is now available and will 
mature in parallel to this prototype file format being developed by ONT.

Conclusions
Slow5tools greatly simplifies the basic processes involved in structuring, querying, and 
interacting with nanopore raw signal data files, which are at the heart of all data manage-
ment and analysis workflows. Slow5tools is the latest addition to the SLOW5 ecosystem, 
which already includes (i) the SLOW5/BLOW5 file format and accompanying design 
specifications; (ii) the slow5lib (C/C++), pyslow5 (python), and slow5-rs (rust) soft-
ware libraries for reading and writing SLOW5/BLOW5 files; (iii) the Buttery-eel client 
wrapper that enables Guppy base-calling with SLOW5 data input [11]; and (iv) a suite 
of open source bioinformatics software packages with which SLOW5 is now integrated 
[3, 7, 12–15]. We provide slow5tools as a free, open-source software package to facilitate 
the adoption of the SLOW5 format by nanopore users: https:// github. com/ hasin du2008/ 
slow5 tools.

Methods
Basic architecture/implementation of slow5tools

Slowtools is written in C/C++ and links with two file format-specific libraries. 
Hdf5lib and slow5lib are used to read and write files in FAST5 and SLOW5/BLOW5 
formats, respectively (Additional File 1: Fig. S1a). There are different FAST5 ver-
sions (v2.2 is the latest at the time of submission), and all current/previous ver-
sions can be converted to SLOW5 format using slow5tools. When converting back 
to FAST5 format, slow5tools conforms to the latest FAST5 version (currently v2.2). 
Slow5tools will provide support for future FAST5 versions. SLOW5 file format spec-
ification (https:// hasin du2008. github. io/ slow5 specs/) is maintained separately from 
slow5lib and slow5tools. Backwards compatibility will be ensured in future SLOW5 
versions and a compatibility table is maintained here: https:// hasin du2008. github. io/ 
slow5 tools/ compa tibil ity. html

https://github.com/hasindu2008/slow5tools
https://github.com/hasindu2008/slow5tools
https://hasindu2008.github.io/slow5specs/
https://hasindu2008.github.io/slow5tools/compatibility.html
https://hasindu2008.github.io/slow5tools/compatibility.html
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Slow5tools multi‑processing strategy

All slow5tools commands are optimized to run efficiently on modern computer CPUs. 
The key optimization is to exploit parallelization. Both the f2s and s2f commands require 
hdf5lib to read and write FAST5 files, respectively. Hdf5lib internally uses global locks 
to serialize parallel thread-based I/O operations. Therefore, to parallelize the conversion 
from FAST5 to SLOW5 and vice versa, we employ a multi-processing strategy (Addi-
tional File 1: Fig. S1b). In this approach, each process keeps a separate memory instance 
of the library. Firstly, the program recursively searches the input directories to list the 
files to be converted based on the file extension (e.g., f2s lists all files with .fast5 exten-
sions). Then, using the C function fork(), a pool of processes is created. The user can 
determine the number of processes to spawn (default is 8). Next, the number of files is 
equally distributed among the processes. Inside a process, an input file is opened, an 
output file is created, the content of the input file is written to the output file as per the 
output file format, and lastly, both files are closed. Then, the process iterates to the next 
allotted input file, if any. When all the processes terminate, all the files are converted 
successfully.

Slow5tools multi‑threading strategy

To exploit parallelization in the rest of the programs (where FAST5 files are not 
involved), a multithreading model is adopted (Fig. S1c), which uses less resources than 
a similar multiprocessing model. This is possible as these programs only depend on 
slow5lib that supports C/C++ POSIX threads. A SLOW5 record has a finite set of 
primary attributes—read_id, read_group, digitisation, offset, range, sampling rate, len_
raw_signal, and the raw signal. It can optionally have auxiliary attributes. By default, 
the raw signal is compressed using the stream variable byte (svb) encoding algorithm 
and the whole record is compressed using standard zlib compression (see below). 
When reading a SLOW5 file, first the compressed read should be read from the stor-
age disk, decompressed, and then parsed into structures in the memory. These steps 
can exploit parallelism to speed up the I/O operations. That is, a single-threaded appli-
cation (main program) fetches a batch of compressed records (using slow5_get_next_
mem()) from the file on the disk and spawns a set of worker threads to decompress 
and parse (using slow5_rec_depress_parse()) them. Later, the necessary processing 
on the records is also carried out on the threads. The output records are written to 
a buffer (using slow5_rec_to_mem()) that is accessible by the main program’s thread 
before the worker threads exit. Eventually, after returning to the main thread (after 
worker threads are joined by the main thread), the content in the buffer is written to 
the output stream. This workflow is carried out until the end of the file is reached. The 
number of records to fetch at a time is determined by the batch size parameter of the 
programs. The user can also set the number of threads to match the available compute 
resources. This method ensures the order of the records of the input is maintained in 
the output.

Single‑thread implementations

Slow5tools stats gives a summary of the slow5 file. In addition to the details about the 
primary and auxiliary attributes, it counts the number of reads in the file. Since no 
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processing is done on the records, a single-threaded program that continuously calls 
slow5_get_next_mem() on the file is the optimal method to count the records. How-
ever, the buffer size of the standard C function fread() determines how many bytes are 
fetched from the file through system calls. This affects the performance of slow5_get_
next_mem() and thus slow5tools. Hence, the buffer size was set to a larger buffer size of 
128k bytes using setvbuf() in stdio. To split a SLOW5/BLOW5 file into a given number of 
reads or files, split also uses a single-threaded implementation unless the user sets a dif-
ferent output format from the input format. That is because this requires no processing 
on a record but just writing as it is to an output file.

BLOW5 compression strategies

There are two compression layers applied on a SLOW5 record. By default, BLOW5 for-
mat has zlib compression and svb-zd encoding [zlib, svb-zd] on the entire record and 
on the signal respectively. Slow5tools view can be used to create BLOW5 files with dif-
ferent compression combinations. View also adopts the multithreading model explained 
above (Additional File 1: Fig. S1c). For example, to convert a BLOW5 record from [zlib, 
svb-zd] to [zlib, none] (i.e., no signal encoding), the record should be first decompressed 
using zlib followed by a svb-zd decoding of the signal. Then, the records are compressed 
back using zlib. On average, this process is ~6X times slower than the conversion from 
[zlib, svb-zd] to [zstd, svb-zd], because zlib compression is slower than zstd compres-
sion. Despite this disparity, zlib compression is used as the default BLOW5 record com-
pression method for the sake of compatibility. Zstd library is not yet widely available by 
default, especially on academic HPC servers and the user may face associated depend-
ency and version issues. However, we advise the users to use zstd compression where 
this is possible on their specific system.

Indexing

Slow5tools index creates a binary index file that stores the read_ids and the byte offset 
of the records. Loading the index to memory allows bioinformatics programs to quickly 
fetch the necessary records from a SLOW5/BLOW5 file in a random access pattern. Cre-
ating an index file from a BLOW5 file involves decompressing and parsing each record 
to get the read_ids. Decompressing and parsing an entire record just to fetch the read_id 
is time-consuming. The default SLOW5 record compression method, zlib, supports par-
tial decompression. This enables quick access to the read_id by only decompressing up 
to the read_id of a record. The other compression method, zstd, does not support par-
tial decompression. Therefore, index first determines which compression is used, and 
then, either partially or completely decompresses the BLOW5 record to fetch the read_
id. Using this partial decompression method, indexing is ~15 times faster than with the 
default zlib decompression and, despite the fact that zlib is slower than zstd, indexing is 
~3 times faster with zlib partial decompression than zstd (which must fully decompress 
each record; Additional File 1: Fig. S2c).

Live data conversion

Live FAST5-to-SLOW5 data conversion can be carried out using the realf2s.sh script 
provided under the slow5tools repository at https:// github. com/ hasin du2008/ slow5 

https://github.com/hasindu2008/slow5tools/tree/master/scripts/realtime-f2s
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tools/ tree/ master/ scrip ts/ realt ime- f2s. This is a BASH script that takes the sequencing 
data directory as an argument (e.g., /data/sample_id on a standard PromethION archi-
tecture). The script continuously monitors this specified directory for newly created 
FAST5 files using the inotifywait tool available under Linux’s inotify interface. As soon 
as a newly created FAST5 file is detected (the default in MinKNOW is such that one 
FAST5 file contains 4000 reads), the slow5tools f2s command is invoked unless the maxi-
mum number of processes is already reached. If the maximum number of processes has 
been reached, the newly detected FAST5 files are queued until the ongoing conversions 
are complete. This strategy prevents the system being overloaded if hundreds of files are 
generated by MinKNOW at once.

To test the capacity of real-time data conversion on a PromethION computer tower, 
we simulated 48 parallel sequencing runs using the playback feature in MinKNOW. 
The bulk-FAST5 file for MinKNOW playback was saved during the sequencing of a 
typical human genome sample (~10–20-kb reads, R9.4.1 flow cell, LSK110 kit). The 
simulation was performed by modifying the relevant MinKNOW TOML file (TOML 
file named sequencing_PRO002_DNA.toml under /opt/ont/minknow/conf/package/
sequencing was modified to include the “simulation = /path/to/bulk/fast5” field under 
“[custom_settings]” section) to point to this bulk-FAST5 file. The simulation was run 
for a period of 1 h with live base-calling disabled. The rate of data generation is high-
est during the first hour of a sequencing run; therefore, this simulation emulates the 
maximum load one could expect to encounter. Live base-calling was disabled during 
the simulation so that completed FAST5 files are released at the sequencing rate—
this would otherwise be tapered by MinKNOW because live base-calling cannot keep 
up with the sequencing rate. For this experiment, the maximum number of processes 
was capped at 56 (half of the CPU threads available on the PromethION compute-
node), thus limiting the maximum number of FAST5 files simultaneously converted 
to be 56.
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