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Abstract 

Long‑read single‑cell RNA sequencing (scRNA‑seq) enables the quantification of RNA 
isoforms in individual cells. However, long‑read scRNA‑seq using the Oxford Nanopore 
platform has largely relied upon matched short‑read data to identify cell barcodes. 
We introduce BLAZE, which accurately and efficiently identifies 10x cell barcodes 
using only nanopore long‑read scRNA‑seq data. BLAZE outperforms the existing tools 
and provides an accurate representation of the cells present in long‑read scRNA‑seq 
when compared to matched short reads. BLAZE simplifies long‑read scRNA‑seq while 
improving the results, is compatible with downstream tools accepting a cell barcode 
file, and is available at https:// github. com/ shiml ab/ BLAZE.

Background
Single-cell transcriptomics has become a widely accessible and popular means of pro-
filing gene expression at single-cell resolution. The applications of single-cell RNA 
sequencing (scRNA-seq) are broad, ranging from identifying cell and tissue types, track-
ing developmental trajectories, and assessing system heterogeneity [1]. However, short-
read scRNA-seq methodologies lack the ability to accurately identify RNA isoforms. 
Droplet-based platforms such as the popular 10x platform [2] are restricted to sequenc-
ing the 3′ or 5′ ends of transcripts, providing accurate gene counts but little information 
on RNA splicing or the RNA isoforms expressed in each cell [3]. Alternative methods, 
such as Smart-seq3, sequence all parts of transcripts but are still constrained by short 
sequencing read lengths, which largely prevents the accurate reconstruction of RNA iso-
forms longer than 1 kb [4].

The recent development of long-read single-cell sequencing methods has laid the foun-
dation for a more in-depth analysis of isoforms for single cells [5]. Long-read scRNA-seq 
methods have been developed using both the PacBio and Oxford Nanopore Technolo-
gies (ONT) platforms, allowing for the discovery and quantification of full-length RNA 
isoforms in single cells [6–19].
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Two key steps in enabling scRNA-seq analysis are the identification of cell barcodes, 
which denote which cell a read is from, and unique molecular identifiers (UMIs), which 
allow the removal of PCR duplicates and more accurate counting of gene and isoform 
expression. A limitation of most long-read scRNA-seq methodologies is that they 
require matched short-read scRNA-seq for the identification of cell barcodes and/or 
UMIs, particularly those using nanopore sequencing due to its higher error rate [8, 9, 
12, 14–17, 19]. The addition of matched short-read data adds technical complications for 
library construction and significantly increases both the time and cost needed to pro-
duce these datasets. Furthermore, the requirement for matched short-read data can also 
greatly decrease the proportion of usable long-reads [9]. Other methods for nanopore 
long-read scRNA-seq have been reported that do not require the addition of matched 
short reads. However, these methods are either very low throughput [10], require 
bespoke reagents and are incompatible with existing 10x workflows [13], or trade higher 
accuracy for lower read depth [18]. Therefore, a method which requires only nanopore 
long reads and is compatible with existing workflows is required [15]. Recently, ONT 
released the Sockeye pipeline (https:// github. com/ nanop orete ch/ Socke ye) to perform 
long read-only scRNA-seq analysis, including barcode and UMI identification. However, 
the performance of Sockeye is yet to be determined.

Here, we introduce Barcode identification from Long-reads for AnalyZing single-cell 
gene Expression (BLAZE), which accurately identifies 10x cell barcodes using only nano-
pore long-read scRNA-seq data. In combination with the existing FLAMES pipeline 
[15], BLAZE eliminates the requirement for matched short-read scRNA-seq, simplifying 
long-read scRNA-seq workflows, reducing sequencing costs, and producing improved 
results. We show that BLAZE performs well across different sample types, sequencing 
depths, and sequencing accuracies and outperforms other barcode identification tools 
such as Sockeye. We designed BLAZE to seamlessly integrate with the existing FLT-
seq—FLAMES pipeline which performs UMI calling, read assignment, and mapping to 
enable the identification and quantification of RNA isoforms and their expression pro-
files across individual cells and cell types. Taken together, BLAZE provides a cheaper, 
simpler, and more accurate means to profile transcript-level changes in long-read 
scRNA-seq datasets.

Results
Single‑cell barcode identification with BLAZE

We designed BLAZE for the accurate identification of cell barcodes from Oxford Nano-
pore long-read libraries generated using the 10x single-cell 3′ gene expression profil-
ing procedure. To enable cell barcode identification from nanopore reads despite their 
higher error rate, BLAZE performs a three-step procedure (Fig. 1A, see the “Materials 
and methods” section for further details). First, BLAZE identifies the likely position of 
the cell barcode and extracts the putative barcode sequence. The 16-nt barcode and the 
10–12-nt UMI are located between the adapter and polyT sequences. BLAZE locates 
the cell barcode in each read by identifying the probable adaptor and polyT regions. 
The 16-nt sequence immediately downstream of the adaptor is defined as the “putative 
barcode.” BLAZE discards putative barcodes that do not appear in the list of all pos-
sible 10x barcodes because these cannot represent true barcodes. Next, BLAZE selects 

https://github.com/nanoporetech/Sockeye
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high-quality putative barcodes whose sequences are less likely to contain base-calling 
errors. Specifically, BLAZE filters out barcodes with a minimum quality score (denoted 
as “minQ”) of less than 15 across the 16 bases that comprise the putative barcode (Addi-
tional file 1: Fig. S1). Finally, BLAZE counts the occurrence of each unique high-quality 
barcode, ranks them based on those counts, and selects the top-ranked ones as barcodes 
likely associated with cells using a quantile-based threshold.

A significant proportion of putative barcodes are expected to be error-free, despite 
the ~ 4–5% (or ~ 2% with higher-accuracy Q20 protocols) median error rate for nanopore 
reads (Table 1). With sufficient per-cell sequencing depth, this means each cell should 
be supported by a large number of high-quality putative barcodes. Therefore, highly 
supported barcodes likely represent true cells while poorly-supported barcodes likely 
represent sequencing errors and/or barcodes associated with empty droplets (Fig. 1A). 
The output of BLAZE is a list of unique cell-associated barcodes (referred to as barcode 
whitelist) that can be input into downstream gene and isoform quantification software in 
place of a whitelist generated from matched short-read sequencing.

Experimental workflow to assess the performance of BLAZE

We tested the performance of BLAZE by carrying out matched short- and long-read 
scRNA-seq on ~ 1000 human induced pluripotent stem cell (iPSC)-derived neural 
progenitors undergoing differentiation to the cortical lineage (Fig. 1B, see the “Mate-
rials and methods” section). Short reads were sequenced on an Illumina NOVA-seq 
to a high median depth of 96,000 reads per cell. Short-read data were analyzed with 
the Cell Ranger pipeline (10x Genomics) to generate a barcode whitelist that can 
be directly compared to a whitelist generated from long reads only. We performed 

(See figure on next page.)
Fig. 1 Experimental overview and comparison of identified cell barcodes. A BLAZE Workflow. Step 1: locate 
putative barcodes by first locating the adaptor in each read. Putative barcodes include those originating 
from different cells and empty droplets. In the schematic, putative barcodes with the same color come 
from the same original cell/droplet. Black blocks on putative barcodes represent basecalling errors. Step 2: 
select high‑quality putative barcodes. Bases representing sequencing errors tend to have low quality scores. 
Putative barcodes with minQ < 15 are filtered out (faded in the figure) and the majority of the remaining 
putative barcodes are expected to have no errors. Step 3: identify cell‑associated barcodes. BLAZE counts 
and ranks unique high‑quality putative barcodes and outputs a list of cell‑associated barcodes whose counts 
pass a quantile‑based threshold. B Schematic of experimental design. Human induced pluripotent stem 
cells (hiPSC) undergoing cortical neuronal differentiation were dissociated into a single‑cell suspension and 
processed to generate single‑cell full‑length cDNA. Full‑length cDNA was sequenced using both short and 
long‑read methods and barcode whitelists generated using Cell Ranger, BLAZE, and Sockeye followed by 
gene and isoform quantification and clustering. Three nanopore sequencing runs were performed on the 
same cDNA sample, a higher‑depth PromethION run, a lower‑depth GridION run, and a higher accuracy 
run using the Q20 protocol on the GridION. C Barcode upset plot comparing the different whitelists. The 
bar chart on the left shows the total number of barcodes found by each tool. The bar chart on the top 
shows the number of barcodes in the intersection of whitelists from specific combinations of methods. The 
dots and lines underneath show the combinations. The colors of the combinations are used to distinguish 
barcodes in Fig. 1D. D Barcode rank plot. Unique barcodes are ranked based on the counts output by each 
method and colored by which method(s) included each barcode in their barcode whitelist(s). The colors for 
different combinations of methods follow those in C, and barcodes not included in any of the whitelists are 
in gray. Cell Ranger short‑read counts, Sockeye long‑read counts, and BLAZE long‑read counts shown on left, 
middle, and right knee plots, respectively. Sockeye and BLAZE analyze the same dataset. Cell Ranger analyzes 
counts from a short‑read library, deriving from the same original cDNA. Unique barcodes are ranked on the 
x‑axis based on the number of reads/unique molecules observed for each (y‑axis). Shifts on the x‑axis are 
intentionally added to make the dots with different colors non‑overlapping. Note that these three methods 
generate counts in different ways so the three plots have different y‑axis labels
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long-read scRNA-seq using the FLT-seq protocol [15] and sequenced the sample on 
a PromethION flowcell generating ~ 62 million pass reads (Table  1). In addition to 
deep PromethION sequencing, we also sequenced the cDNA on the GridION using 
standard and higher-accuracy (Q20) chemistries generating ~ 7.5 and ~ 3.5 million 
pass reads, respectively (Table 1). This enabled us to assess the effects of read depth 
and variation in read accuracy on the performance of BLAZE, which is discussed 
in greater detail below. We also compared BLAZE to Sockeye (https:// github. com/ 
nanop orete ch/ Socke ye), the recently released ONT software for long-read scRNA-
seq analysis that also generates a cell barcode whitelist from nanopore long-reads.

BLAZE identifies high‑confidence cell barcodes

Maximizing sequencing depth per cell is key to accurately identifying and quantify-
ing isoforms in single-cell data [3]. Therefore, we first compared the performance of 
BLAZE to Sockeye and short-read barcodes detected by Cell Ranger in the higher-
depth PromethION dataset. Cell Ranger (from short-read scRNA-seq), BLAZE, and 

Fig. 1 (See legend on previous page.)

https://github.com/nanoporetech/Sockeye
https://github.com/nanoporetech/Sockeye
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Sockeye (from long-read scRNAs-seq) identified 1022, 804, and 1518 cell barcodes, 
respectively (Table 2). A comparison of barcodes showed 99.4% of barcodes identified 
by BLAZE were also found by Cell Ranger and Sockeye. However, a significant pro-
portion of barcodes were unique to Cell Ranger and Sockeye (Fig. 1C). Analysis of cell 
barcode rank plots revealed BLAZE cell-associated barcodes had high read support 
in all methods (Fig.  1D). In contrast, unique Cell Ranger barcodes were often sup-
ported by few long reads, regardless of the different strategies of counting barcodes 
in BLAZE and Sockeye, suggesting that some barcodes identified from short-read 
sequencing were not well represented in the long-read dataset (Fig.  1D). Similarly, 
many unique Sockeye barcodes had little or no short-read support, suggesting they 
are unlikely to be associated with cells. Further supporting this possibility, BLAZE 
counts for unique Sockeye barcodes were much lower (median 4.5-fold) than for bar-
codes found by both methods, suggesting many of the long reads supporting unique 
Sockeye barcodes were low quality and the barcodes potentially false positives.

The cell barcodes identified by Cell Ranger, BLAZE, and Sockeye enabled the down-
stream analysis of a very similar proportion of reads, 70%, 69%, and 69%, respectively 
(useable reads, Table 1), demonstrating that the smaller number of barcodes found by 
BLAZE does not negatively affect the overall proportion of reads that can be assigned 
to a cell. Together, these results show BLAZE provides an accurate list of long-read 
cell barcodes with little loss of sensitivity.

Cell Ranger and Sockeye identify barcodes that are poorly supported by long reads

We next asked if the barcode whitelists produced by Cell Ranger, BLAZE, and Sockeye 
would yield similar results when clustering cells based on gene or isoform expression. 
We used the barcode whitelists and the ~ 62 million long-reads from the PromethION as 
input into FLAMES [15] to produce gene and isoform counts and then generated UMAP 
plots in Seurat [20]. To facilitate a comparison between the methods, we made each 
UMAP plot separately and then colored each cell according to its assigned cluster using 
the Cell Ranger whitelist. This revealed both Cell Ranger and Sockeye identify an addi-
tional cluster not found by BLAZE. This result was consistent for analyses using either 
isoform (Fig. 2A) or gene (Additional file 1: Fig. S2A) counts and was further confirmed 
by re-coloring the cells based on the BLAZE clusters (Additional file 1: Fig. S2B). This 
cluster contained poorly supported barcodes, as demonstrated by the low UMI counts 
and low numbers of genes and isoforms detected in each “cell” (Fig. 2B and Additional 
file 1: Fig. S2C, D).

Table 2 Number of barcodes detected

a From matched short-read data

Dataset ID Cell  Rangera BLAZE Sockeye BLAZE 
high 
sensitivity

PromethION 1022 804 1518 1033

GridION 1022 802 1016 1016

Q20 1022 804 1015 1022

scmixology2 (Tian et al. 
[15])

248 188 522 270
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Additional cell cluster found with Sockeye and Cell Ranger barcodes corresponds to empty 

droplets and barcodes with sequencing errors

We sought to determine why both Cell Ranger and Sockeye identified an additional 
cluster of “cells” not found by BLAZE. We first asked whether any barcodes likely rep-
resented empty droplets instead of actual cells. We performed an empty drops analy-
sis using the R package DropletUtils [21] to identify cells that contained an expression 
profile not significantly different from the ambient RNA signature. The Sockeye, Cell 
Ranger, and BLAZE whitelists identified 211, 37, and 3 empty droplets, respectively. 
These Sockeye and Cell Ranger empty droplets were specific to the additional cluster not 
found in BLAZE (Fig. 2C).

Fig. 2 Comparison of cell clusters identified with BLAZE, Cell Ranger, and Sockeye barcodes. Isoform 
expression UMAP plots from PromethION data. Isoform counts were generated with FLAMES using barcode 
whitelists from either Cell Ranger, BLAZE, or Sockeye. A Cells in all three plots are colored based on clustering 
with the Cell Ranger whitelist. Cells not found in the Cell Ranger whitelist are colored in gray. B Cells colored 
based on UMI counts (sum of all unique UMIs across all transcripts) per cell. C Cells that are empty droplets 
colored in blue. D Sockeye UMAP colored based on edit distance ≤ 2 or empty droplet
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In the case of the Cell Ranger whitelist, 36% of the additional cluster not found by 
BLAZE (cluster 3) are classified as empty droplets. These empty droplets and the 
remaining “cells” in cluster 3 likely represent those barcodes that exist in the matched 
short-read dataset but are poorly represented in the long-read data. Due to their low 
UMI counts, comparatively low number of genes and isoforms, and commonly ambient 
RNA signatures, these “cells” would be uninformative in a long-read scRNA-seq analysis.

The additional cluster found using the Sockeye whitelist contained 51% empty droplets 
(Fig. 2C, D). We next asked if many of the remaining barcodes in this cluster are likely 
false positives generated from nanopore sequencing errors, as Sockeye has no process 
to filter these out. We hypothesized that false-positive barcodes from sequencing errors 
would be more similar in sequence to existing barcodes than the random selection of 
10x barcodes real cells would represent. To test this, we compared the edit distance of 
Sockeye-only barcodes to the Cell Ranger barcode whitelist and found that 60% of the 
Sockeye-only barcodes have an edit distance (ED) of ≤ 2 from real barcodes, which is 
significantly higher (p < 2.2E − 16, 1-sample proportion test) than the ~ 1% expected for a 
random set of 10x barcodes. These barcodes were highly enriched in the additional sock-
eye cluster not found by BLAZE (Fig. 2D), confirming that Sockeye only barcodes are 
often derived from sequencing errors.

Taken together, these analyses confirmed that the additional barcodes in both Cell 
Ranger and Sockeye often correspond to empty droplets instead of cells (in the case of 
Cell Ranger and Sockeye) and/or barcodes derived from sequencing errors (in the case 
of Sockeye). We note that BLAZE does not identify all Cell Ranger barcodes, and we 
theorize that some of these additional cells are likely recovered by Cell Ranger using an 
inbuilt empty drops algorithm, which identifies cells below the barcode threshold that 
have an expression profile which differs significantly from the ambient profile. BLAZE 
is unable to call these cells by default as gene and isoform expression quantification is 
needed to determine the ambient RNA signature. However, BLAZE can output the files 
necessary to perform such an analysis and recover additional barcodes (see the “Increas-
ing barcode recall with BLAZE” section).

Clustering based on the BLAZE whitelist separates biologically distinct cell types

The ~ 1000 cells analyzed here are in the early stages of cortical neuron differentiation; 
hence, it was important to confirm BLAZE whitelist-based cell clustering was due to 
distinct biological profiles and not as a result of sequencing depth per cell or non-bio-
logically relevant factors. Marker gene analysis confirmed biologically meaningful gene 
expression differences between clusters (Additional file 2: Table S1 and Additional file 3: 
Table S2). We identified significant differences in the expression of hundreds of genes 
including key transcription factors such as ELAVL4 and NHLH1 (Fig.  3), which are 
known to be upregulated during the differentiation of cortical neurons [22, 23]. More-
over, we find differential gene expression of well-defined neuron-specific genes such 
as NRN1 [24] and PLPPR1 [25] (Fig. 3). In contrast, marker gene analysis on the addi-
tional clusters found using Cell Ranger and Sockeye barcodes found 7 and 8 DE genes, 
respectively (Additional file 4: Tables S3, S4). No biological relevance could be assigned 
to these expression changes, in line with these clusters largely representing empty drop-
lets and non-cell associated barcodes. Together, these findings confirm that BLAZE cell 
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clusters are transcriptionally distinct and that the BLAZE-FLAMES long-read pipeline is 
capturing the biological signal of neuronal differentiation.

While the use of FLAMES for isoform identification and quantification enables a fair com-
parison between whitelists, we wanted to ensure the false-positive detections from Sock-
eye were not a result of the FLAMES pipeline. To address this possibility, we implemented 
the complete Sockeye pipeline using default parameters and interrogated the UMAP plots 
generated by Sockeye. The Sockeye pipeline retained the additional cluster with low UMI 
counts (Additional file 1: Fig. S3A). We also note that Sockeye is currently limited to per-
forming gene-based analyses and does not perform the isoform-based analyses enabled 
by long-read scRNA-seq. Overall, we find the BLAZE whitelist enabled the most accurate 
downstream expression and cell-type clustering of long-read scRNA-seq data.

Fig. 3 Gene expression UMAP colored by cluster and expression of marker genes. A UMAP showing 
clustering based on gene counts generated from FLAMES using the BLAZE whitelist. B UMAP colored by the 
expression of 4 marker genes known to be associated with differentiation and neuron development. The 
expression scale is colored based on Seurat normalized counts. Color scales are not comparable between the 
plots
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Barcode detection with BLAZE is robust to changes in read depth or read accuracy

We investigated the impact of read depth and sequencing accuracy on the results of 
BLAZE. We sequenced the same single-cell cDNA sample on the lower-output Nano-
pore GridION, using both the LSK110 and higher accuracy Q20 chemistries. We find 
that although the LSK110 and Q20 GridION data produce significantly fewer total and 
pass reads compared to the PromethION (approximately 10% and 5%, respectively) 
(Table 1), the number of barcodes found by BLAZE is virtually unchanged (Table 2). 
The Q20 GridION data is both lower depth and higher accuracy than the LSK110 
data, leading to the possibility that higher read accuracy (via an increased propor-
tion of high-confidence barcodes) could be maintaining barcode numbers. However, 
downsampling the LSK110 GridION data to match the Q20 read depth returned the 
same number of barcodes (802). We also downsampled the Q20 data to an average of 
500 reads per cell to test the performance of BLAZE when there are very low numbers 
of reads per cell. BLAZE returned an almost identical 812 barcodes, demonstrating 
that it performs consistently across datasets with variable read depths and different 
sequencing accuracies. In addition, we observed a similar proportion of usable reads 
between datasets (Table  1), implying that the improved Q20 accuracy had minimal 
effect on the number of reads that can be assigned to a cell.

We also assessed if Sockeye performed consistently across datasets of varying read 
depths. Sockeye identified 1016 and 1015 barcodes for LSK110 GridION and Q20 
datasets, respectively (Table 2 and Additional file 1: Fig. S4), which was a significant 
reduction on the 1518 barcodes from the PromethION data. UMAP results based 
on FLAMES quantification for the lower-depth LSK110 and Q20 datasets revealed 
similar clustering between the methods (Fig. 4). The number of barcodes detected by 
Sockeye (and subsequent downstream results) is therefore heavily dependent on per-
cell read depth, leading to inconsistent results, with a worse performance at higher 
read depths where cell-type separation and isoform profiling is enhanced.

Fig. 4 Isoform expression UMAP plot from Q20 and GridION data. A Q20. B GridION LSK110. Isoform counts 
were generated with FLAMES using barcode whitelists from either Cell Ranger, BLAZE, or Sockeye. Cells are 
colored as per Fig. 2A



Page 11 of 23You et al. Genome Biology           (2023) 24:66  

We again tested if the full Sockeye pipeline would provide improved results over 
using the Sockeye barcodes in FLAMES. In contrast, we find that irrespective of the 
sequencing library used, quantification and UMAP generation using the Sockeye 
pipeline cluster cells in large part based on total UMI counts (Additional file 1: Fig. 
S3). A UMI-associated clustering effect could potentially represent a real biological 
signal if it related to cells undergoing differentiation and changing their transcrip-
tional activity. However, using the BLAZE-FLAMES-Seurat pipeline (instead of the 
complete Sockeye pipeline), we do not see such strong correlations between clusters 
and UMIs (Additional file 1: Fig. S5). These findings confirm the Sockeye pipeline is 
impacted by UMI-associated confounders which bias UMAP results.

BLAZE correctly identifies barcodes in long‑read single‑cell data of known cell lines

To further validate the performance of BLAZE, we compared Cell Ranger, BLAZE, 
and Sockeye on an additional long-read single-cell dataset containing known and dis-
tinct cell lines. We utilized the scmixology2 data from Tian et al. [15], which contains 
equal mixes of five cancer cell lines (~ 40 cells per line) profiled with matched Illu-
mina and Nanopore reads. Cell Ranger (from the matched short-reads), BLAZE, and 
Sockeye identified 248, 188, and 522 cell barcodes, respectively (Table 2). Similar to 
the cortical differentiation dataset, we find all barcodes identified by BLAZE were also 
found by Cell Ranger and Sockeye (Fig. 5A). There were 59 barcodes identified by Cell 
Ranger and Sockeye but not by BLAZE and 275 barcodes unique to Sockeye (Fig. 5A). 
The larger number of cell barcodes identified by Sockeye compared to the number of 
cells sequenced further suggested it is identifying non-cell associated barcodes.

Implementation of the FLAMES pipeline for gene and isoform quantification sup-
ported the accurate identification of barcodes by BLAZE and confirmed the presence of 
Cell Ranger and Sockeye barcodes that did not reflect genuine cells in the long-read data 
(Fig. 5B–E). scmixology2 contained five distinct cell lines, and Tian et al. identified the 
barcodes belonging to each cell line in the long-read data (see Tian et al. [15] for details). 
We overlaid this information onto the UMAP plots generated from long reads (Fig. 5B). 
UMAP plots generated from BLAZE barcodes detected the five expected cell lines. All 
cells found by BLAZE were present in the matched short-read data (Fig. 5A), support-
ing the assertion that BLAZE accurately identifies cell barcodes while minimizing false-
positive detections. In contrast, Cell Ranger barcodes identified six distinct clusters. 
Five corresponded to the cancer cell lines in this sample (Fig. 5B), while the sixth cluster 
(denoted as N.A) largely comprised barcodes with no cell line match. All these barcodes 
had very low cellular UMI counts and few unique isoforms (Fig.  5C, D), and 23 were 
identified as empty droplets (Fig. 5E) and therefore likely represent cells present in the 
short-read data but with few/no reads in the long-read data.

Clustering based on the Sockeye whitelist identified multiple additional cell-type clus-
ters, with the majority (52%) of barcodes in clusters not matching one of the known 
cell lines. These “cells” all have low UMI counts and fewer detected isoforms (Fig. 5C, 
D), 47 have a background expression profile and are classed as empty droplets, and 135 
are likely derived from sequencing errors present in 16-bp barcode sequence (Fig. 5E, 
F), highlighting that these barcodes are unlikely to represent real cells. To ensure these 
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findings were not a consequence of the FLAMES pipeline, we also ran the entire Sockeye 
workflow. The Sockeye-generated UMAP displayed similar results (Additional file 1: Fig. 
S6), further supporting incorrect barcode identification by Sockeye. The identification 
of empty droplets and spurious cell clusters when using the Cell Ranger and Sockeye 

Fig. 5 Barcode identification and clustering of Scmixology2 data. A Barcode upset plot comparing different 
whitelists. The bar chart on left shows the total number of barcodes found by each tool. Bar chart on top 
shows the number of barcodes in the intersection of whitelists from specific combinations of methods. The 
dots and lines underneath show the combinations. B–D Isoform expression UMAP plots: Isoform counts were 
generated with FLAMES using a barcode whitelist from either Cell Ranger (left), BLAZE (middle), or Sockeye 
(right). Cells are colored based on known cell types from Tian et al. [15] (B), total UMIs per cell (C), number of 
isoforms detected in each cell (D), and cells that are empty droplets (E). F Sockeye UMAP colored based on 
edit distance ≤ 2 or empty droplet
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whitelists again demonstrates that BLAZE produces a more accurate representation of 
barcodes present in long-read datasets.

Increasing barcode recall with BLAZE

Some long-read single-cell analyses may prioritize high recall of the barcodes present. To 
enable this, we implemented two features in BLAZE: firstly, a high sensitivity (HS) mode, 
which aims to identify a larger set of possible barcodes present in the long-read data; 
secondly, an option to output a list of known background barcodes with an ED > 4, which 
can be used in an empty drops analysis to identify cells with ambient RNA expression 
and/or recover additional cells that are below the detection threshold. BLAZE HS mode 
identifies 1033 barcodes in our PromethION data and 270 barcodes in the scmixology2 
dataset, with a higher level of overlap between the Cell Ranger and BLAZE HS whitelists 
(Additional file 1: Fig. S7A). However, BLAZE HS identifies the additional cluster found 
by Cell Ranger and identifies barcodes not found in the Cell Ranger whitelist (Addi-
tional file 1: Fig. S7B). BLAZE HS mode trades higher recall (i.e., more true barcodes) 
for potentially lower precision (i.e., more non-cell associated barcodes), and therefore, 
we recommended running an empty drops analysis and removing cells with an ambient 
profile if using BLAZE HS mode. Using this combined methodology, we demonstrate a 
high level of concordance between Cell Ranger and BLAZE HS, while Sockeye identifies 
many non-cell-associated barcodes even after the removal of empty droplets (Fig. 6).

Overall comparison between BLAZE and Sockeye

BLAZE is more conservative than Sockeye in calling barcodes and therefore minimizes 
false-positive detections. However, both BLAZE and Sockeye use barcodes with counts 
above a threshold to generate the whitelist. Users of BLAZE have the flexibility to choose 
the count threshold in addition to using the default and HS modes. We therefore asked 
if BLAZE outperforms Sockeye generally. Using all four datasets above (Tables  1 and 
2) and defining the cell barcodes identified by Cell Ranger minus barcodes identified as 
empty droplets as the ground truth, we calculated precision-recall curves across differ-
ent count thresholds in BLAZE and Sockeye. The results demonstrated that BLAZE con-
sistently outperforms Sockeye (Fig. 7A, Additional file 1: Fig. S8A) and outputs a better 
whitelist regardless of whether users prefer high precision or recall.

Using real data, it is not possible to generate a perfect ground truth barcode whitelist, 
even after removing identifiable empty droplets from the Cell Ranger whitelist. 

Fig. 6 UMAP plots from PromethION data with BLAZE high sensitivity (HS) mode. Counts were generated 
with FLAMES using barcode whitelists from either Cell Ranger, Sockeye, or BLAZE HS. Isoform expression 
UMAP colored by Cell Ranger clusters: Empty droplets were removed prior to clustering
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Therefore, we created a software pipeline SLSim (https:// github. com/ youyu pei/ SLSim) 
to simulate nanopore single-cell long reads, allowing us to compare BLAZE and Sockeye 
with a known ground truth barcode whitelist. Precision-recall curves across different 
count thresholds confirmed BLAZE consistently outperforms Sockeye (Fig.  7B, Addi-
tional file 1: Fig. S8B).

BLAZE is easy to install and run (see Additional file 5: Tables S5 for the runtime of 
BLAZE). However, a fair runtime comparison between BLAZE and Sockeye is difficult 
because Sockeye is not designed to solely generate a barcode whitelist but instead runs 
the whole pipeline for single-cell gene expression and therefore requires a longer runt-
ime. Sockeye also needs to perform mapping to identify putative barcodes while BLAZE 
does not. In addition, Sockeye cannot be utilized as a stand-alone tool to perform single-
cell isoform analysis (for which long reads are significantly more useful than short reads) 
as it only performs gene-level quantification. In this sense, running BLAZE is quicker, 
and the integration is easier as BLAZE outputs a whitelist using the Cell Ranger format 
that can be input into tools such as FLAMES without modification.

Discussion
Single-cell RNA sequencing (scRNA-seq) has revolutionized the study of transcrip-
tomes, yet it is limited by the use of short-read sequencing methods. With recent 
advancements in long-read scRNA-seq methodologies [5, 26] and analysis tools [27], 
the potential to study the complete array of RNA isoforms and quantify isoform expres-
sion at single-cell resolution is becoming possible. The use of “noisy” long reads, how-
ever, presents its own unique set of challenges, primarily the difficulty in identifying 
the cell barcodes needed to assign each transcript to its cell of origin. Consequently, the 
use of matched short-read data has been fundamental to the successful implementation 
of high-depth, high-throughput nanopore long-read scRNA-seq. In spite of the higher 
error rate of nanopore reads, we show that BLAZE aids in eliminating the need for 

Fig. 7 Precision‑recall curves across A real and B simulated datasets for BLAZE and Sockeye. Precision and 
recall were calculated across different count thresholds by defining the barcodes identified from short reads 
as the ground truth, specifically the whitelist from Cell Ranger after the removal of empty droplets (A) and 
data simulated to the Cell Ranger whitelist to make it a perfect ground truth (B). The numbers in the legend 
show the area under the curve (AUC) values

https://github.com/youyupei/SLSim
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matched short-read sequencing. This not only simplifies the procedure but also reduces 
overall library construction and sequencing costs and therefore increases the accessibil-
ity of long-read scRNA-seq.

We found BLAZE to be robust in its ability to accurately identify 10x cell barcodes 
from long reads. BLAZE can be applied to different types of single-cell samples and per-
forms equally well on both higher accuracy Q20 data, as well as lower accuracy reads 
generated from ONT’s LSK110 and LSK109 protocols. We find that ONT’s recently pub-
lished software for long read-only barcode identification, Sockeye, appears to be affected 
by read-depth associated confounders and identifies false-positive cell barcodes that are 
derived from sequencing errors. An alternate possibility is that Sockeye is more effec-
tive than BLAZE at identifying cell barcodes and therefore finds larger numbers of cells. 
However, this seems unlikely given Sockeye finds much larger numbers of long-read bar-
codes than matched short-read sequencing, unique Sockeye barcodes do not match the 
known cell types present in the scmixology2 data, and the unique “cells” often repre-
sent empty droplets and have very low numbers of UMIs, genes, and unique isoforms. 
As a consequence of the BLAZE software and pre-print becoming publicly available 
prior to publication, Sockeye has been depreciated and BLAZE’s qscore filtering step 
and quantile-based approach incorporated into ONT’s replacement software pipeline 
wf-single-cell.

In order to accurately identify and quantify isoforms from scRNA-seq, it is important 
to sequence cells deeply [3]. BLAZE showed the greatest advantage over other methods 
in the higher-depth PromethION datasets and therefore performs well in the context 
most relevant to long-read scRNA-seq. At the same time, the performance of BLAZE 
is largely independent of read depth. BLAZE produced consistent results in datasets 
with > 60 k reads/cell down to only ~ 500 reads/cell, demonstrating it is applicable to a 
wide variety of samples. We designed BLAZE to be simple to install and use and seam-
lessly integrate into existing isoform identification and quantification pipelines such 
as FLAMES [15], meaning no modifications to the existing protocols or pipelines are 
needed. This provides a further advantage over Sockeye, which currently only performs 
gene-level quantification. Importantly, we find that BLAZE performs comparably well, 
if not better, than Cell Ranger whitelists generated from matched short-read data. More 
than 99% of barcodes identified with BLAZE were present in the short-read whitelist 
confirming that false-positive detections with BLAZE are rare. Conversely, > 20% of bar-
codes identified by Cell Ranger were not found by BLAZE default mode. These barcodes 
were supported by few long reads, expressed comparatively few genes and isoforms, and 
often had an ambient RNA profile. We hypothesize that despite sequencing matched 
samples, some cells (and hence barcodes) found in short-read data are poorly repre-
sented among the long reads. We theorize that the separate PCR reactions in the long- 
and short-read library preps, either by chance and/or bias, led to some cells dropping 
out of the libraries. Supporting this, the Cell Ranger knee plot showed that barcodes 
not found by BLAZE had low UMI counts in the short-read data. Such barcodes are the 
most likely not to be found in matched long-read sequencing due to chance, biases, or 
differences in read depths. Consequently, the use of long read-only barcode identifica-
tion methods should produce whitelists that more faithfully represent cells profiled with 
long-read sequencing.
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The accurate identification of single-cell barcodes is crucial to downstream gene and 
isoform quantification. Nearly all single-cell workflows cluster cells based on expression 
using dimensional reduction techniques such as t-SNE [28] and UMAP [29, 30]. These 
methods enable further integration of cell type-specific markers and can be used to 
identify differentially expressed genes and isoforms between cell clusters. Spurious cells 
often cluster together, giving a misleading impression of additional cell clusters, which 
could confound differential expression analyses and biological interpretation of the 
results. Furthermore, usable reads are assigned to non-cell associated barcodes, reduc-
ing the read depth of real cells and decreasing experimental power for isoform identi-
fication and quantification. We find around 7% of pass reads are assigned to non-cell 
associated Sockeye barcodes. Filtering out cells that have low UMI counts can reduce 
false-positive cells; however, deciding on an appropriate UMI filtering threshold can be 
difficult and would depend on sequencing read depth and the transcriptional activity of 
the cells. It can be challenging to distinguish between cells that produce small amounts 
of RNA (and subsequently have few UMIs) and non-cell-associated barcodes, while 
some non-cell-associated barcodes can be assigned enough reads to have an expression 
profile largely indistinguishable from real cells. Tools designed to generate single-cell 
barcode whitelists should therefore prioritize high precision as false-positive barcodes 
can confound downstream workflows.

While long-read scRNA-seq is becoming more feasible as sequencing outputs increase 
and analysis packages are designed, not all analysis challenges are completely solved. 
Along with barcode identification, the identification and collapse of UMIs, assignment 
of reads to identified barcodes, and construction of accurate isoforms are all areas of 
active research. Further progress in these areas will be important to enable higher accu-
racy isoform identification, quantification, and differential expression analyses from 
long-read scRNA-seq data.

A limitation of the current study is the use of Cell Ranger as the ground truth to deter-
mine the precision-recall of BLAZE and Sockeye, since our results suggest some bar-
codes identified by Cell Ranger do not represent genuine cells in the long-read data. Our 
simulation data largely solves the issue of a ground truth; however, it still contains limi-
tations with regard to correctly modeling nanopore read error distributions. Specifically, 
modeling an error distribution that accurately generates (1) a higher frequency of errors 
at the start and end of reads (in which the 10x barcode lies) and (2) a higher frequency 
of adjacent errors, as is the case for nanopore reads, is a challenge. These likely cause 
our simulated data to overstate the performance of Sockeye; even so, we find BLAZE 
precision-recall systematically outperforms Sockeye in both real and simulated data. We 
therefore conclude that the outperformance would be even greater with a ground truth 
dataset that perfectly reconstitutes the nanopore error profile.

Currently, BLAZE is limited to identifying 10x single-cell barcodes from nanopore 
reads. Although other long-read single-cell methodologies such as scCOLOR-seq [13] 
and R2C2 [31] have been used to profile single cells with long reads, the 10x chromium 
platform is the most widely available and popular platform. We therefore designed the 
initial version of BLAZE to facilitate 10x barcode identification. Recent developments 
in throughput and accuracy for PacBio HiFi sequencing are increasing the applicabil-
ity of PacBio for long-read scRNA-seq, while long-read nanopore protocols for other 
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scRNA-seq modalities such as Split-seq are also now available [14, 32–35]. Although 
BLAZE is currently limited to the identification of 10x barcodes from nanopore reads, 
we see the potential to expand BLAZE to process both PacBio HiFi reads and reads from 
other scRNA-seq methods in the future.

Conclusion
We show that BLAZE is a highly accurate single-cell barcode identification tool for 
nanopore long reads. We demonstrate that BLAZE works well across different data-
sets, read depths, and read accuracies and can seamlessly integrate into existing tools 
for downstream gene and isoform identification and quantification. Crucially, BLAZE 
eliminates the requirement for additional matched short-read data and therefore simpli-
fies long-read scRNA-seq protocols while significantly reducing cost. BLAZE has been 
designed to be widely accessible and easy to use and is available at https:// github. com/ 
shiml ab/ BLAZE.

Materials and methods
Cell lines and stem cell differentiation

RM3.5 human induced pluripotent stem cells (hiPSC) [36] were cultured under xeno-
geneic conditions in accordance with the protocol described in Niclis et al. [37]. RM3.5 
cells (passages 18–20) were confirmed to be karyotypically normal, pluripotent (Pluripo-
tentTest, Thermo Fisher), and regularly tested for mycoplasma (MycoAlert kit, Lonza). 
PSCs were differentiated into cortical neuron lineage using the protocol described by 
Gantner et al. [38].

Preparation of single‑cell suspension

At day 26 post-neural induction, RM3.5 cells undergoing cortical differentiation were 
harvested for analysis. Cells were washed twice in 300 mL of DPBS − / − and exposed 
to Accutase (Innovative Cell Technologies, Inc., San Diego, CA, http:// www. accut ase. 
com) for 12 min at 37 °C. Following incubation, cells were moved to a 15-mL falcon tube 
and were gently triturated to help generate a single-cell suspension. DPBS was added at 
a 1:1 ratio to inactivate the Accutase and the sample gently centrifuged at 1500 rpm for 
3 min at 4 °C and supernatant removed. Cells were resuspended in 2-mL DBPS and Rock 
inhibitor Y-27632 (diluted 1:1000) (Tocris Bioscience) to prevent cell death. The cell sus-
pension was passed through a Flowmi™ strainer (Flowmi; Cat. No. 64709–60) to remove 
the remaining cell debris. Finally, cells were counted using a hemocytometer, and viabil-
ity was assessed with trypan blue stain (Thermo Fisher Scientific Cat. No. 15250061) 
prior to the final resuspension in DPBS with 0.04% BSA and Rock inhibitor.

FLT‑seq 10x single‑cell processing and cDNA amplification

FLT-seq was performed in accordance with the published protocol [15] (https:// www. 
proto cols. io/ view/ massi vely- paral lel- long- read- seque ncing- of- single- 81wgb pp1nv pk/ 
v1). Briefly, the cell suspension was prepared for the target recovery of 5000 cells, with 
20% for matched short and long-read sequencing. Single-cell processing and cDNA 
amplification was performed in accordance with the 10x Genomics Chromium Single-
cell 3′ gene expression protocol (v3.1), except that to generate full-length cDNA, the 

https://github.com/shimlab/BLAZE
https://github.com/shimlab/BLAZE
http://www.accutase.com
http://www.accutase.com
https://www.protocols.io/view/massively-parallel-long-read-sequencing-of-single-81wgbpp1nvpk/v1
https://www.protocols.io/view/massively-parallel-long-read-sequencing-of-single-81wgbpp1nvpk/v1
https://www.protocols.io/view/massively-parallel-long-read-sequencing-of-single-81wgbpp1nvpk/v1
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reverse transcription extension time was extended to 2  h. GEMs were split 80%:20%, 
with the cDNA from the 20% (~ 1000 cells) processed to create matched short- and long-
read libraries. We performed 16 cycles for the short-read index PCR and 12 cycles for 
the long-read template generation. We used FLT-seq as this protocol generates a high 
proportion of full-length (3′ adaptor to 5′ TSO) reads and an almost negligible propor-
tion of TSO artifacts (TSO-TSO reads without a valid cell barcode).

Short‑read Illumina sequencing

The Illumina short-read library was sequenced on the Novaseq6000 to a depth of 
100 M reads. Basecalling and quality scoring were determined using Real-Time Analy-
sis (RTA3) on board software, while the FASTQ file generation and de-multiplexing uti-
lized bclConver v3.9.3.

Nanopore single‑cell library preparation and sequencing

Full-length cDNA generated from the FLT-seq protocol was prepared using the SQK-
LSK110 Ligation Sequencing Kit (ONT) with the following modifications: incubation 
times for end-preparation and A-tailing were lengthened by 15 min, and all AMPureXP 
cleaning steps were performed at × 1.8. Libraries were sequenced on both the GridION 
(FLO-MIN106 flow cell) and PromethION (FLO-PRO002 flow cell) loading ~ 45 fmol 
with an additional flow cell top-up with any remaining library at 24 h. Fast5 files were 
generated using MinKnow v21.02.5 on the GridION and v22.03.4 on the PromethION 
and basecalled with guppy v6.0.7 with the super high-accuracy configuration file.

We prepared an additional long-read library with the SQK-Q20EA Genomic DNA 
by ligation Q20 + early access kit (ONT) with the same modifications stated above. We 
sequenced the Q20 library on the GridION (FLO-MIN112 flow cell), loading 10 fmol 
with an additional 10 fmol top-up at 24 h. Fast5 files were generated using MinKnow 
v21.05.25 and basecalled with guppy v6.0.7 with the dna_r10.4_e8.1_sup.cfg configura-
tion file.

The median sequencing accuracy was calculated by first mapping pass FASTQ files 
to the transcriptome with Minimap2 [39] using the command minimap2 -ax map-ont 
$REF $FASTQ > trans_mapping.sam. The median accuracy was calculated using a cus-
tom R script found at https:// github. com/ josie glees on/ BamSl am [40]. In short, the cigar 
strings from primary alignments were extracted, and the total number of mismatches, 
insertions, and deletions per alignment was calculated.

Identification of putative barcode sequence in each read

BLAZE identifies the likely position of the cell barcode (referred to as “putative barcode”) 
by first identifying the position of the adaptor. Similar to [9], in each nanopore read, 
BLAZE searches for the last 10-nt sequence of the adaptor (i.e., “CTT CCG ATCT”) in the 
first 200 nt of the read. Specifically, BLAZE aligns the “CTT CCG ATCT” to the first 200 
nt of the read using Biopython [41] and allows up to 2 mismatches, insertions or dele-
tions. This procedure ensures a high sensitivity in identifying the adaptor location but 
will potentially find multiple locations. Thus, BLAZE also requires a downstream polyT 
sequence for accurate identification of the adaptor location. Specifically, BLAZE conducts 
a lenient search that looks for 4 consecutive ‘T’s 20 ~ 50 nt downstream of the adaptor, 

https://github.com/josiegleeson/BamSlam
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as the polyT tail in nanopore reads is often truncated due to limitations in basecalling of 
homopolymers [12]. The corresponding adaptor is considered to be valid only if the polyT 
is found. BLAZE then repeats the same procedure for the reverse complement sequence. 
Reads with exactly 1 valid adaptor were kept for the downstream steps. The 16-nt 
sequence immediately downstream of the adaptor is defined as the “putative barcode.”

Selection of high‑quality putative barcodes

To accurately identify the sequences of barcodes, BLAZE selects high-quality putative 
barcodes that are less likely to contain basecalling errors. Basecalling outputs provide 
a (Phred) quality score for each base, which indicates the probability of the base being 
correctly basecalled. Incorrectly basecalled bases generally have a low quality score, so 
putative barcodes with error(s) are more likely to have at least one base with a low qual-
ity score. Therefore, for each putative barcode, BLAZE calculates the minimum quality 
score across the 16 bases in the putative barcode, denoted as “minQ,” and selects puta-
tive barcodes with minQ ≥ 15 as high-quality putative barcodes. See Additional file 1: 
Fig. S1 for our choice of 15 as a threshold.

Identification of cell‑associated barcodes from high‑quality putative barcodes

BLAZE lists unique high-quality putative barcodes, counts their occurrences, and 
ranks them based on those counts. Next, similar to Zheng et  al., BLAZE selects 
those barcodes whose counts are larger than a stringent count threshold T  as cell-
associated barcodes (i.e., barcodes likely associated with cells) and outputs them in a 
whitelist. The threshold T  has been chosen as follows. For a given expected number 
of recovered cells, denoted by N  , we obtain c, the count of a unique high-quality bar-
code whose rank is 0.95× N  . Then, we use 0.05× c as the threshold T  . In practice, 
the targeted number of cells can be a plausible number for N  . We use N = 500 in the 
analysis in this manuscript. The number of barcodes in the final whitelist is robust to 
the choice of N  (Additional file 1: Fig. S9) as long as N is set within a reasonable range 
that is not too divergent from the true number (e.g., the number of barcodes change 
from 186 to 193 when N is increased from 50 to 1500 in the analysis of the scmixol-
ogy2 dataset with ~ 200 cells). In the BLAZE HS mode that aims to identify a larger 
set of barcodes, we reduced the threshold to 10% of the standard threshold above.

Barcode whitelist generation and gene and isoform qualification with FLAMES

We produced barcode whitelists using three software packages: Cell Ranger v6.0.2, 
Sockeye v0.2.1 (ONT) (https:// github. com/ nanop orete ch/ Socke ye), and BLAZE 
v1.1.0 (https:// github. com/ shiml ab/ BLAZE). First, we processed fastq files generated 
from the matched Illumina sequencing using the Cell Ranger pipeline to generate the 
barcode whitelist. Next, we ran the Sockeye pipeline and BLAZE on each long-read 
dataset using default parameters to generate barcode whitelists from long-reads only. 
We performed gene- and isoform-level qualification using FLAMES [15] (https:// 
github. com/ Olive rVoogd/ FLAMES) using an edit distance of 2, hg38 reference 
genome and GENCODE v31 comprehensive transcriptome. We used isoform count 
matrices generated by FLAMES to produce gene-level counts using a custom python 
script (available at https:// github. com/ youyu pei/ bc_ white list_ analy sis/).

https://github.com/nanoporetech/Sockeye
https://github.com/shimlab/BLAZE
https://github.com/OliverVoogd/FLAMES
https://github.com/OliverVoogd/FLAMES
https://github.com/youyupei/bc_whitelist_analysis/
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UMAP generation and single‑cell data processing

Gene and isoform count matrices were analyzed with the R package Seurat v4.1.1 [20]. 
We applied a minimum filtering threshold of 200 features (genes or isoforms) to remove 
cells with very low UMI counts in accordance with Seurat pipeline recommendations. 
Clustering was performed on all datasets with a resolution value of 0.7. Marker genes/
isoforms that distinguish clusters were found using Seurat::FindMarkers using default 
parameters: the full workflow is available at https:// github. com/ youyu pei/ bc_ white list_ 
analy sis/ blob/ main/ script/ SC_ Marker_ gene. Rmd. Seurat analysis scripts and output 
files can be found at https:// github. com/ youyu pei/ bc_ white list_ analy sis.

scmixology 2 dataset

Fast5 files from the scmixology 2 dataset published in Tian et al. [15] were rebasecalled 
with guppy v5.1.13 to generate fastq files. We generated long-read barcode whitelists 
using BLAZE and Sockeye as stated above. The Cell Ranger generated whitelist was 
obtained from matched Illumina short-read sequencing published in Tian et  al. [15]. 
These three whitelists were inputs into FLAMES for gene and isoform quantification, 
and downstream processing with Seurat is as stated above. To determine the cell line for 
each barcode Tian et al. (2019) used Demuxlet55 [42], which uses the genetic variation 
between cell lines to identify the most probable identity of each barcode [43].

Empty drops analysis and edit distance

To generate an ambient RNA expression profile to test for empty droplets, we ran-
domly selected 5000 background barcodes with an edit distance > 4 from the Cell 
Ranger whitelist. We combined the background list of barcodes with the whitelists 
generated from Cell Ranger, BLAZE, and Sockeye producing three whitelists that 
we provided to FLAMES to generate gene and transcript count matrices. The large 
edit distance in the background barcode set prevents incorrect read assignment to 
barcodes that may be similar, meaning reads from true cells will not be assigned to 
background barcodes biasing the ambient RNA profile. To identify cell barcodes that 
show an ambient RNA expression profile, we used the R package DropletUtils version 
1.12.2 [21] using default parameters and an FDR threshold of 1%.

We used a python package Levenshtien (https:// pypi. org/ proje ct/ python- Leven 
shtein/) to calculate the edit distance of Sockeye barcodes. We then extracted the set 
of Sockeye-only barcodes and a random set of 10x barcodes and compared the edit 
distance of both sets to the Cell Ranger whitelist. The full workflow is available at 
https:// github. com/ youyu pei/ bc_ white list_ analy sis/ blob/ main/ script/ empty_ drops_ 
trans cripts. Rmd.

Generating simulation data

To simulate long-read data with the most realistic read count distribution, we first 
analyzed the short-read dataset and identified 360,279 barcodes using Cell Ranger, of 
which 1022 barcodes were identified to be cells. In our simulation, the 1022 barcodes 
were classed as true cells, and the remaining 359,257 barcodes were background so 
that the precision and recall of the barcode whitelist can be calculated. For each of the 
360,279 barcodes, using the corresponding UMI count from short reads, we simulated 

https://github.com/youyupei/bc_whitelist_analysis/blob/main/script/SC_Marker_gene.Rmd
https://github.com/youyupei/bc_whitelist_analysis/blob/main/script/SC_Marker_gene.Rmd
https://github.com/youyupei/bc_whitelist_analysis
https://pypi.org/project/python-Levenshtein/
https://pypi.org/project/python-Levenshtein/
https://github.com/youyupei/bc_whitelist_analysis/blob/main/script/empty_drops_transcripts.Rmd
https://github.com/youyupei/bc_whitelist_analysis/blob/main/script/empty_drops_transcripts.Rmd


Page 21 of 23You et al. Genome Biology           (2023) 24:66  

the same number of long reads, so that the read count distributions of both true cells 
and background barcodes were identical to the short reads.

No existing simulation tool is specifically designed for single-cell long reads, and none 
of the existing long-read simulators provides options to add barcodes or UMIs. Therefore, 
we created a tool SLSim (https:// github. com/ youyu pei/ SLSim), which simulates single-
cell long reads in two steps: (1) constructs an artificial error-free read (or “perfect read”) 
with a given barcode and UMI and (2) simulates errors into the perfect reads. A perfect 
read starts with a nanopore adaptor, followed by a 10x adaptor, cell barcode, UMI, 15-nt 
poly T, 200-nt mRNA fragment, and ends with a template switch oligo (TSO) sequence. 
The UMI was a randomly generated 12-nt sequence in each read, and the mRNA was 
randomly sampled from the GENCODE V31 transcript reference [44]. As both cDNA 
strands are sequenced in real experiments, each perfect read had an equal probability 
of either being converted to its reverse complement or kept in the original strand. Next, 
SLSim uses a python function from Badread [45] that can simulate nanopore errors and 
per-base quality scores based on its pre-trained models. We set the error distribution to 
globally replicate the error profile from our PromethION dataset. The script for running 
the simulation can be found at https:// github. com/ youyu pei/ bc_ white list_ analy sis.
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