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Abstract 

Background: The NSD2 p.E1099K (EK) mutation is shown to be enriched in patients 
with relapsed acute lymphoblastic leukemia (ALL), indicating a role in clonal evolution 
and drug resistance.

Results: To uncover 3D chromatin architecture-related mechanisms underlying drug 
resistance, we perform Hi-C on three B-ALL cell lines heterozygous for NSD2 EK. The 
NSD2 mutation leads to widespread remodeling of the 3D genome, most dramatically 
in terms of compartment changes with a strong bias towards A compartment shifts. 
Systematic integration of the Hi-C data with previously published ATAC-seq, RNA-seq, 
and ChIP-seq data show an expansion in H3K36me2 and a shrinkage in H3K27me3 
within A compartments as well as increased gene expression and chromatin accessibil-
ity. These results suggest that NSD2 EK plays a prominent role in chromatin decom-
paction through enrichment of H3K36me2. In contrast, we identify few changes in 
intra-topologically associating domain activity. While compartment changes vary 
across cell lines, a common core of decompacting loci are shared, driving the expres-
sion of genes/pathways previously implicated in drug resistance. We further perform 
RNA sequencing on a cohort of matched diagnosis/relapse ALL patients harboring the 
relapse-specific NSD2 EK mutation. Changes in patient gene expression upon relapse 
significantly correlate with core compartment changes, further implicating the role of 
NSD2 EK in genome decompaction.

Conclusions: In spite of cell-context-dependent changes mediated by EK, there 
appears to be a shared transcriptional program dependent on compartment shifts 
which could explain phenotypic differences across EK cell lines. This core program is an 
attractive target for therapeutic intervention.
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Background
While the overall outcome with children with acute lymphoblastic leukemia (ALL) has 
improved dramatically, up to 20% of patients relapse making ALL one of the leading 
causes of cancer-related death in children [1, 2]. Genome-wide profiling studies have 
shown enrichment of mutations at relapse including somatic alterations in epigenetic 
regulators such as MSH6, SETD2, and NSD2 [3]. NSD2 is a key histone methyltrans-
ferase involved in monomethylation and dimethylation of lysine 36 of histone 3 (H3K36), 
a mark associated with active transcription [4]. Specifically, the recurrent gain of func-
tion mutation p.E1099K (EK) has been found to be enriched in patients with relapsed 
ALL [5].

The NSD2 EK mutation results in increased methyltransferase activity leading to a 
global increase in H3K36me2 levels (active mark) as well as the concomitant inhibition 
of EZH2-mediated H3K27me3 levels (repressive mark) in pediatric ALL [6, 7]. Our pre-
vious studies have shown knockdown of NSD2 in EK mutated B-ALL cell lines resulted 
in decreased proliferation, decreased clonal growth, and increased sensitivity to cyto-
toxic chemotherapeutic agents with no effect on NSD2 wildtype lines [5]. Other work 
also demonstrated changes in growth and clonogenicity as well as cellular adhesion 
upon CRISPR-mediated reversion of EK to wildtype in NSD2 mutated lines [7]. Interest-
ingly, RNA-seq data from both studies revealed variable transcriptional reprogramming 
upon loss of NSD2 in different cell line models. While some common pathways were 
identified, such as cell adhesion and Rap1 signaling, collectively the data suggests cell-
context-specific changes occur in response to mutated NSD2. Importantly, we also dem-
onstrated minimal overlap in chromatin accessibility changes upon NSD2 knockdown 
in the three EK harboring cell lines [5]. Our current work addresses the transcriptional 
and chromatin accessibility heterogeneity observed as a result of the NSD2 EK mutation.

In this study, we investigate the role 3D genome organization plays in EK-mediated 
relapse. 3D genome organization refers to the strategic positioning of regulatory ele-
ments to regions best suited for the regulation of genome function. The organizational 
hierarchy is made up of multiscale structural units such as chromosomal territories, A/B 
compartments, topologically associating domains (TADs), and chromatin loops each 
of which play an important role in regulating gene expression [8, 9]. At the Mb scale, 
chromosomes are spatially divided into two major domains, A and B compartments, 
that correspond to active and inactive chromatins, respectively [10, 11]. At the sub-Mb 
scale, the genome can be further subdivided into highly self-interacting chromatin units 
referred to as TADs [10, 12, 13]. TADs play a major role in the regulation of gene expres-
sion by restricting the influence of regulatory elements to genes within the same TAD as 
well as insulating them from interactions with neighboring domains [14].

Dysregulation of higher-order genomic architecture in several disease models has been 
linked to changes in the epigenetic landscape [15–18]. In multiple myeloma, expansion 
of H3K26me2 and shrinkage of H3K27me3 domains as a result of NSD2 overexpression 
were shown to be linked to chromatin changes in TADs and CTCF loops as well as dis-
ruptions in gene expression [15]. In lymphoma, profound decompaction of the genome 
as a result of disruption in H1 function was shown to drive changes in the epigenetic 
landscape including the gain of H3K36me2 and loss of H3K27me3 leading to the aber-
rant expression of normally silenced stem cell-associated genes [16]. In B-ALL, however, 
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NSD2-mediated context-dependent phenotypic changes have yet to be linked to the dys-
regulation of higher-order structures.

To uncover 3D chromatin architecture-related mechanisms underlying drug resist-
ance, we performed Hi-C on three B-ALL cell lines heterozygous for NSD2 EK (RS4;11, 
RCH-ACV, SEM) and assessed changes between NSD2 Low (knockdown) and NSD2 
High (mutant) cell lines. NSD2 EK led to the widespread remodeling of the 3D genome, 
most dramatically in terms of A/B compartment changes with a strong bias towards 
A compartment shifts. Systematic integration of the Hi-C data with previously pub-
lished ATAC-seq, RNA-seq and ChIP-seq data showed an expansion in H3K36me2 
and a shrinkage in H3K27me3 marks within A compartments as well as increased gene 
expression and chromatin accessibility. These results suggest that NSD2 EK plays a 
prominent role in chromatin decompaction through enrichment of H3K36me2 epige-
netic marks. In contrast, we identified few changes in intra-TAD activity suggesting that 
EK-mediated transcriptional changes occur through a remarkable dependence on com-
partmentalization. While compartment changes varied across cell lines, a common core 
of decompacting loci were shared driving the expression of genes/pathways previously 
implicated in drug resistance. To validate these findings beyond in  vitro models, we 
performed RNA-seq on a cohort of matched diagnosis/relapse ALL patients harboring 
the relapse-specific NSD2 EK mutation. Patient gene expression changes upon relapse 
significantly correlated with core compartment changes further implicating NSD2 EK 
in genome decompaction. In spite of cell-context-dependent changes mediated by EK, 
there appears to be a shared transcriptional program dependent on compartment shifts 
which could explain phenotypic differences across EK cell lines. This core program is an 
attractive target for therapeutic intervention.

Results
NSD2 drives widespread changes in A/B compartments

We performed Hi-C and systematically integrated it with previously published and new 
ATAC-seq, RNA-seq, and ChIP-seq data from three B-ALL cell lines heterozygous for 
NSD2 EK (RS4;11, RCH-ACV, SEM) either expressing a NSD2 targeting shRNA or a 
non-targeting shRNA henceforth referred to as NSD2 Low and High cell lines [5] (Fig 
1a). In this study, we assessed changes in these three cell lines from NSD2 Low (knock-
down) to NSD2 High (mutant) as NSD2 EK is a relapse-enriched mutation in patients 
and results in the overactive form of NSD2. Hi-C was performed using the Arima Kit, 
and Hi-C data was processed by our Hi-C-bench platform and showed alignment rates 
with a high number of usable intra-chromosomal long-range read-pairs (~100 mil-
lion) [19] (Additional file 1: Fig. S1a). We first assessed compartmentalization with the 
CscoreTool algorithm by calling A/B compartments [20]. Principal component analy-
sis (PCA) of compartment Cscores revealed a clear separation between NSD2 Low and 
High cell lines (Fig. 1b). Cscore compartment calls showed similar percentages of A/B 
compartments in NSD2 Low and NSD2 High cell lines (Fig. 1c).

We next examined changes in A/B compartments between NSD2 Low and NSD2 
High cell lines. We observed ~7.39% compartment switching across the three cell lines 
(Fig. 1d). Overall, a greater number of compartment switches occurred from B to A with 
4160 regions switching from B to A and 1661 regions switching from A to B. Of the 



Page 4 of 25Narang et al. Genome Biology           (2023) 24:64 

switching compartments, we identified 219 shared switches across the three cell lines 
from B to A and 50 from A to B (Fig. 1e). 22.40% (932/4,160) of B to A switches and 
16.20% (269/1,661) A to B switches were shared by at least 2 cell lines (Fig. 1f ). One such 
compartment switch from B to A shared by all three cell lines involved the Neogenin 1 
(NEO1) gene locus, which has been implicated in cell adhesion (Fig. 1g left panel) [21]. 

Fig. 1 NSD2 EK drives A/B compartment reorganization. a Schematic demonstrating overall study design. 
b PCA of A/B compartment calls with Cscore. c Pie chart showing numbers of A and B compartment calls 
for each cell line in NSD2 Low and High cell lines. d Bar plot showing number of compartment switches for 
each cell line from NSD2 Low to NSD2 High. e Venn diagram showing overlap of switching compartments 
between three B-ALL cell lines, B to A and A to B switches (left and right respectively). f Heatmap 
representation of the cscore (first eigenvector (PC1) of the correlation matrix) for genomic bins undergoing 
compartment switches in at least 2 of the 3 cell lines due to NSD2 EK. g IGV tracks of an example of B to A 
compartment switch shared by all three cell lines at the NEO1 locus (left). IGV tracks of an example of a B to A 
compartment switch specific to RS4;11 cell line at the PRDM8 and FGF5 locus (right)
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Several other notable genes shared by at least two lines have been previously implicated 
in cancer, including Epidermal Growth Factor Receptor Kinase Substrate 8 (EPS8) which 
has been associated with poor prognosis in ALL and is known to regulate proliferation 
and apoptosis [22], FAM92A (also known as BARMR1) which has been negatively cor-
related with prognosis in AML and shown to promote proliferation and colony forma-
tion [23], and insulin receptor substrate 1 (IRS1) which can activate PI3K/AKT/mTOR, 
B-catenin, and MAPK has been a target for inhibiting MAPK in ALL [24, 25]. Addition-
ally, we identified cell-line-specific switches including a B to A switch at the PR Domain 
Zinc Finger Protein 8 (PRDM8) and FGF5 gene locus in RS4;11 (Fig. 1g right panel) as 
well as guanosine nucleotide-binding protein Q gene (GNAQ) in RCH.

NSD2‑related compartment switches alter gene expression in a cell‑context‑dependent 

manner

To understand how NSD2 expression alters gene expression, we first analyzed previously 
published RNA-seq data from NSD2 Low and NSD2 High cell lines [5]. PCA revealed 
that NSD2 Low and NSD2 High replicates separated into distinct cell-type specific 
clusters demonstrating transcriptional heterogeneity (Fig. 2a). As previously described, 
we observed that NSD2 EK leads to the deregulation of several genes across all three 
cell lines (Fig. 2b). NSD2 was notably confirmed to be upregulated among other genes 
(Fig. 2b). Overlap analysis also revealed changes in gene expression to be predominantly 
cell-context dependent with minimal overlap between cell lines (Additional file 1: Fig. 
S2a). Only 1.24% of differentially expressed genes were shared between the three cell 
lines.

To examine the relationship between alterations in A/B compartments and gene 
expression, compartment switches were categorized as A to B, B to A, or stable and then 
assessed for changes in gene expression. BA compartment switches significantly corre-
lated with upregulated genes. Notably, AB compartment switches did not correlate with 
downregulated genes to a similar extent (Fig. 2c). Likewise, we observed that the B to 
A compartment switches were characterized by a significant fraction of upregulated 
genes (>75% in RS4;11 and SEM) whereas A to B compartment switches did not show 
as strong of a relationship with downregulated genes (Fig. 2d). This data suggests that 
NSD2 EK-mediated reorganization of compartments from B to A results in gene expres-
sion changes.

To expand our analysis, we incorporated compartment shifts in addition to compart-
ment switches (Fig.  3a). Shifts include A to more A, B to more B, A to less A, and B 
to more B. The addition of compartment shifts revealed 26.06% compartment changes 
between NSD2 Low and NSD2 High cell lines (Fig. 3b). Further exploring concordance 
with gene expression revealed that compartment changes significantly correlated with 
gene expression changes (Fig. 3c). We also identified that the majority of B to A switches 
and shifts were made up of significantly upregulated genes (Fig. 3d; L2FC < 0.32, p-value 
< 0.05), whereas A to B switches and shifts did not demonstrate a clear pattern similar to 
our findings with switches alone (Fig. 3d, Additional file 1: Fig. S2b).

To further explore this concordance between compartment and gene expression 
changes, we assessed the number of differentially expressed genes explained by com-
partment changes. Approximately 7.60% of genes upregulated could be explained by 
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compartments that switched from B to A (Additional file 1: Fig. S3). With the addition 
of compartment shifts, 20.00% of upregulated genes could be explained by compartment 
switches and shifts (Additional file 1: Fig. S3). In contrast, only 1.20% of downregulated 
genes could be explained by compartment changes. Ascribing a concordance score to 
each compartment shift and switch revealed that concordance was observed specifically 
in those compartments that decompacted (Additional file 1: Fig. S2c).

Lastly, to better understand the impact these changes have on downstream signaling, 
we performed pathway enrichment analysis for those differentially expressed genes that 
were associated with either a compartment switch or shift per cell line (Fig. 3e). Interest-
ingly, cancer-related pathways previously identified by RNA-seq or ChIP-seq analysis [5, 
26] were also found in our compartment-based analysis including Rap1, Ras, Phosphati-
dylinositol 3-kinase, and calcium signaling. Furthermore, these pathways were shared 
by at least two of the three cell lines providing evidence that the existence of a core of 
decompacting loci can explain previously described shared phenotypes such as prolif-
eration [5].

Fig. 2 NSD2 EK-related B to A compartment switches correlate with gene expression changes. a PCA 
representation of triplicate RNA-seq data showing top 1000 genes. b Volcano plots demonstrating 
differentially expressed genes (abs(L2FC) > 0.32, p-value < 0.05) per cell line from NSD2 Low to NSD2 High 
with top 10 labeled. c Correlation boxplots of gene expression changes and compartment switch status (AB, 
BA, stable) for each cell line. d Association barplots showing fraction of genes (increased, decreased, stable) at 
compartment switches (AB, BA, stable)
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Additionally, we performed a subcompartments analysis by applying SNIPER to 
our Hi-C datasets as a complementary analysis to the compartments switch and shift 
analysis (Additional file 1: Fig. S4 and S5). SNIPER (Subcompartment iNference using 
Imputed Probabilistic ExpRessions) is a computational method that is based on denois-
ing autoencoder and multilayer perceptron classifier to infer subcompartments using 

Fig. 3 NSD2 EK-related B to A compartment switches and shifts correlate with gene expression changes. a 
Scatter plot demonstrating strategy for calling 6 categories of compartment switches and shifts (A to B, and B 
to A compartment switches; A to less A, A to more A, B to less B, and B to more B compartment shifts). b Bar 
plot showing number of compartment switches and shifts for each cell line from NSD2 Low to NSD2 High. c 
Correlation boxplots of compartment cscore and gene expression changes (abs(L2FC) > 0.32, p-value 0.05) 
for each cell line. d Volcano plots demonstrating differentially expressed genes (abs(L2FC) > 0.32, p-value 
< 0.05) highlighted by compartment switch or shift (A to less A, A to B, B to more B, or stable). e KEGG 2021 
pathway enrichment analysis of genes differentially expressed (L2FC < −0.32, p-value < 0.05) at B to A 
compartment switches or A to more A and B to less B compartment shifts per cell line
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typical Hi-C datasets with moderate coverage. SNIPER reveals subcompartments using 
moderate coverage Hi-C datasets [27].

We first present the number of subcompartments classified as A1, A2, B1, B2, and B3 
with SNIPER for each of our cell lines at NSD2 Low and NSD2 High (Additional file 1: 
Fig. S4a). Next, we did a head-to-head comparison of the SNIPER subcompartments 
analysis with our initial analysis using Cscore. For this analysis, we identified the fraction 
of Cscore A or B compartments that overlapped the SNIPER subcompartments (Addi-
tional file 1: Fig. S4b). This data revealed that the B1 subcompartment was made up of 
mostly Cscore compartment A suggesting a discrepancy between the two methods. 
Moving forward, we excluded subcompartment B1 in order to investigate the SNIPER 
subcompartment analysis further. We present the number of subcompartments classi-
fied as A1, A2, B2, and B3 with SNIPER for each of our cell lines at NSD2 Low and NSD2 
High (Additional file 1: Fig. S4c).

We next examined changes in A/B subcompartments between NSD2 Low and NSD2 
High cell lines (Additional file 1: Fig. S4d). We noticed that both the RS4;11 and SEM 
cell lines showed a greater number of B to A subcompartment switches than A to B 
from NSD2 Low to NSD2 High which was consistent with our Cscore analysis. Next, 
we further classified subcompartment calls into shifts in addition to subcompartment 
switches. Activating subcompartment shifts include B3 to B1, B3 to B2, B2 to B1, and A2 
to more A1. Deactivating subcompartment shifts include B1 to B3, B2 to B3, B1 to B2, 
and A1 to more A2. With this data, we identified the fraction of SNIPER subcompart-
ment switches and shifts that overlapped the Cscore compartments switches and shifts 
(Additional file 1: Fig. S4e). Overall, this data showed similar trends in Cscore compart-
ment and SNIPER subcompartment switches and shifts.

Lastly, to examine the relationship between alterations in SNIPER subcompartments 
and gene expression, subcompartment switches were categorized as A to B, B to A, 
or stable and then assessed for changes in gene expression. B to A subcompartment 
switches seemed to more significantly correlate with upregulated genes than A to B sub-
compartment switches did with downregulated genes as we saw with the Cscore and 
gene expression analysis (Additional file  1: Fig. S5a). To further examine the relation-
ship between alterations in SNIPER subcompartments and gene expression, we added 
subcompartment shifts in addition to switches. We identified that the majority of B to 
A switches and shifts were made up of significantly upregulated genes (Additional file 1: 
Fig. S5b (bottom row)), whereas A to B switches and shifts did not demonstrate a clear 
pattern similar to our findings with Cscore switches and shifts (Additional file 1: Fig. S5b 
(top row)).

NSD2 EK‑related compartment switches associate with chromatin accessibility changes

To explore how NSD2 EK alters chromatin accessibility, ATAC-seq was performed on 
the NSD2 Low and NSD2 High cell lines. As previously described [5], NSD2 leads to the 
restructuring of a modest number of peaks across all three cell lines. This data showed a 
significant gain of ATAC-seq peaks for two of the three cell lines whereas SEM showed 
a paradoxical bias towards decreased accessibility (Fig. 4a). PCA and heatmap revealed 
that NSD2 Low and NSD2 High replicates separated into distinct cell-type-specific clus-
ters demonstrating chromatin accessibility heterogeneity (Additional file 1: Fig. S6a,b). 
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Overlap analysis also revealed changes to be predominantly cell-context dependent with 
minimal overlap between cell lines (Additional file 1: Fig. S6c). Additionally, we observed 
a shift in the distribution of the ATAC-seq peaks from promoter regions towards inter-
genic regions as has been previously shown with H3K36me2 peak distribution (Fig. 4b) 
[7, 28].

To examine the relationship between alterations in A/B compartments and chromatin 
accessibility, compartment switches were categorized as A to B, B to A, or stable and 

Fig. 4 NSD2 knockdown leads to cell-type specific alterations in chromatin accessibility. a Volcano plots 
demonstrating differentially accessible regions from NSD2 Low to NSD2 High per cell line (abs(L2FC) > 1, FDR 
< .01). b Bar plot showing distribution of annotated ATAC-seq peaks for each NSD2-Low and NSD2-High cell 
line. c Correlation boxplots of chromatin accessibility changes and compartment switches (AB, BA, stable) 
for each cell line. d Association barplots showing fraction of ATAC-seq peaks (increased, decreased, stable) 
at compartment switches (AB, BA, stable). e Enrichment analysis using LOLA for increased ATAC-seq peaks 
concordant with increased gene expression and B to A compartment switches and shifts (left) and decreased 
ATAC-seq peaks concordant with decreased gene expression and A to B compartment switches and shifts 
(right)
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then assessed for changes in accessibility. Chromatin accessibility data did not show 
strong correlation with compartment data across the three cell lines. The majority of dif-
ferential peaks were increased regardless of directionality of compartment changes for 
RCH-ACV and RS4;11 lines. The opposite was true for SEM, which showed decreased 
accessibility overall (Fig.  4c). Overall, SEM demonstrates a very different chromatin 
state than RCH-ACV and RS4;11 cell lines. Compartment switches were characterized 
by predominantly stable ATAC-seq peaks. We also noticed significant variability in the 
association with differential peaks across the three cell lines (Fig. 4d).

Exploring this link further, we identified concordant changes in A/B compartments, 
gene expression, and chromatin accessibility at the NEO1 and PRDM8/FGF5 loci. Along 
with the shared compartment switch from B to A in all three cell lines at the NEO1 locus, 
we also identified concordant increases in chromatin accessibility and gene expression 
shown by genome browser tracks (Additional file 1: Fig. S6d). Similarly, along with the 
RS4;11 cell-type specific compartment switch from B to A at the PRDM8/FGF5 locus, 
we identified concordant increases in chromatin accessibility and gene expression in 
RS4;11 cells shown by genome browser tracks (Additional file 1: Fig. S6e).

To identify key regulators of transcription attributed to compartment switches, 
we performed an enrichment analysis with LOLA using genomic loci with concord-
ant increased ATAC-seq peaks, increased gene expression, and B to A compartment 
switches and shifts, and genomic loci with concordant decreased ATAC-seq peaks, 
decreased gene expression, and A to B compartment switches and shifts (Fig.  4e). 
EZH2 and H3K27me3, involved in repression, were among the top hits for sites with B 
to A compartment changes. Notably, factors linked to stem cell functionality, including 
NANOG, SUZ12, SOX2, and MEIS1, were also enriched [29].

NSD2 EK leads to few intra‑TAD activity changes

Following our compartment analysis, we investigated TAD activity changes between 
NSD2 Low and NSD2 High cell lines. Assessing mean TAD activity across samples 
revealed that the bulk of TADs remain stable across the three cell lines (Additional file 1: 
Fig. S7a). Comparison of intra-TAD activity between NSD2 Low and NSD2 High cell 
lines identified several statistically significant increases and very few decreases across all 
three cell types (Fig. 5a, Additional file 1: Fig. S7b; FDR < 0.1 and abs(L2FC) > 0.25). Of 
the differential TADs, we identified no shared changes in TAD activity between the three 
cell lines suggesting that changes in TAD activity are cell-context dependent (Fig. 5b).

To investigate whether changes in intra-TAD activity associated with changes in gene 
expression and chromatin accessibility, we performed differential expression analysis 
(abs(L2FC) >0.32, p <0.05) and differential chromatin accessibility analysis (abs(L2FC) 
>0.32, FDR <0.01) within differentially active TADs. Although few differential TADs 
were identified, integration of gene expression changes and chromatin accessibil-
ity changes with differentially active TADs indicated a significant correlation in both 
cases (Fig. 5c). In addition, we observed that increases in TAD activity predominantly 
occurred in regions with decompacting compartment switches and shifts and decreases 
in TAD activity predominantly occurred in regions with compacting compartment 
switches and shifts (Fig.  5d). In addition to earlier data, we identified a cell-type-spe-
cific increase in TAD activity at the FGF5 locus in RS4;11 concordant with compartment 
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switch, chromatin accessibility, and gene expression as shown by the contact matrix at 
NSD2 Low, NSD2 High, and L2FC contact matrix (High/Low) (Fig. 5e).

NSD2 mutant patient samples reflect B‑ALL cell line data

To examine how relapse-enriched NSD2 EK mutation behaves in patient samples, 
we acquired expression data from three matched diagnosis (NSD2 Low) and relapse 
(NSD2 High) patient pairs (Additional file 1: Fig. S8). PCA revealed that NSD2 High 
samples separated from the NSD2 Low samples by the first principal component 
(Fig.  6a). Heatmap and volcano plots both demonstrate significant NSD2-mediated 
changes in gene expression with 525 increased and 514 decreased genes (Fig.  6b,c; 
abs(L2FC) >0.32, p-adj <0.05). To test our hypothesis that EK-mediated reorganiza-
tion of compartments affects gene expression in relapse, we compared gene expres-
sion data from the patient samples to expression and compartment data from the 
three cell lines. Comparing differentially expressed genes that were upregulated in 
NSD2 High cell lines to those upregulated in NSD2 High patients revealed signifi-
cant overlap whereas, as expected, cell line NSD2 High downregulated genes with 
patient NSD2 High downregulated genes did not (Additional file  1: Fig. S7c). We 
also show insignificant overlap of genes upregulated upon relapse in 9 matched D/R 
patient pairs with no NSD2 mutation (NSD2 Low to NSD2 Low) [26] and our cell line 
NSD2-High upregulated genes with a B to A compartment switch or shift (Additional 
file 1: Fig. S7c). Importantly, 37.94% of upregulated genes in patients overlapped with 
a BA switch or shift in cell lines (Additional file 1: Fig. S7d). Comparing those cell line 
NSD2 High genes upregulated and mediated by compartment switches and shifts to 
those upregulated in NSD2 High patients also revealed significant overlap (Fig. 6d). 
Additionally, differentially expressed genes in patients were found to be enriched in 
B to A changes compared with A to B changes (Fig. 6e). Upregulated genes in NSD2 
High patients were also found to correlate with B to A changes whereas downregu-
lated genes did not correlate with A to B changes as we had observed in cell lines 
(Fig. 6f ). Lastly, we performed pathway enrichment analysis with those genes upregu-
lated in NSD2 High patients that overlapped cell line compartment changes (Fig. 6g). 
Using this patient data, we identified numerous pathways that have been shown pre-
viously with NSD2 cell line models, such as calcium signaling, Rap1 signaling, and 
cell adhesion pathways. Interestingly, some of these pathways were identified because 
of shared compartment/gene expression changes across the cell lines, such as NEO1 
for cell adhesion, while others were found in only 1 or 2 of the lines, such as FGF5 or 
FGFR2 associated with Rap1 and calcium signaling. This data demonstrates changes 
in compartments unique to individual cell lines converge on pathways important for 
clonal evolution and drug resistance while others are shared across cell lines.

NSD2 EK‑mediated epigenetic changes correlate with 3D genome changes

We previously performed ChIP-seq on the RS4;11 NSD2 Low and NSD2 High cell lines 
[5]. For this work, we additionally performed ChIP-seq on the RCH and SEM NSD2 Low 
and NSD2 High cell lines for H3K36me2, H3K27me3, and H3K27ac epigenetic marks. 
As noted previously, H3K36me2 distribution shifted from predominantly promoter 
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regions to intergenic regions in all three cell lines, most dramatically in the RS4;11 cell 
line (Fig. 7a). Conversely, H3K27me3 peaks shifted from intergenic regions to promoter 
regions (Fig. 7a). Notably, H3K27ac was found to be enriched at promoter regions with 
little difference in distribution (Fig. 7a).

Fig. 5 NSD2 knockdown has minimal impact on intra-TAD activity. a Volcano plots demonstrating differential 
intra-TAD activity from NSD2 Low to NSD2 High per cell line (abs(L2FC) > 0.25, FDR < .01). b Venn diagram 
showing overlap of differential TADs between three B-ALL cell lines, decreased and increased (left and right 
respectively). c Correlation boxplots showing gene expression and chromatin accessibility changes within 
differential TADs. d Association barplots showing fraction of compartment switches and shifts (compaction, 
stable B, stable A, and decompaction) at intra-TAD activity changes (increased, decreased, or stable). e 
Example of a TAD activity alteration using Hi-C contact matrices for RS4;11 at the FGF5 locus showing an 
increase in intra-TAD activity (NSD2-Low, NSD2-High, and L2FC(High/Low) from left to right)



Page 13 of 25Narang et al. Genome Biology           (2023) 24:64  

To examine the relationship between alterations in the distribution of H3K36me2 and 
A/B compartment switches, we categorized the A/B compartment switches into those 
that are AB, BA, or stable and assessed changes in H3K36me2. H3K36me2 peaks posi-
tively correlated with BA switches more significantly than with AB switches in each of 

Fig. 6 NSD2 mutant patient samples reflect B-ALL cell line data. a PCA of 3 matched diagnosis (NSD2-Low) 
and relapse (NSD2-High) patient pair gene expression data. b Heatmap of significantly expressed genes upon 
relapse (from NSD2 Low to NSD2 High: abs(L2FC) > 0.32, p-adjusted < 0.05). c Volcano plot demonstrating 
differentially upregulated genes highlighted in red and downregulated genes in blue(abs(L2FC) > 0.32, 
p-adjusted < 0.05). d Venn diagrams demonstrating significant overlap of patient NSD2-High upregulated 
genes and cell line NSD2-High upregulated genes with BA compartment switches and insignificant 
overlap of patient NSD2-High downregulated genes and cell line NSD2-High upregulated genes with BA 
compartment switches (one-tailed Fisher’s exact test). e Barplot demonstrating number of patient genes 
overlapping cell line compartment switches and shifts colored by cell line. f Correlation boxplot showing 
patient gene expression changes within cell line compartment changes (NSD2-High/NSD2-Low). g KEGG 
2021 pathway enrichment analysis of patient genes upregulated in NSD2-High patients (abs(L2FC) > 0.32, 
p-adjusted < 0.05) that overlap with cell line B to A compartment switches, B to less B, and A to more A 
compartment shifts from any of the three cell lines. Starred pathways represent pathways previously shown 
in NSD2 models
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the cell lines (Fig. 7b). We also identified that B to A compartment switches were associ-
ated with increased H3K36me2 (Fig. 7c). This data suggests that expansion of H3K36me2 
as a result of NSD2 EK provides a more open chromatin landscape.

From previous work, we know that NSD2 regulates H3K36me2; therefore, we can rea-
sonably argue that the H3K36me2-related gene expression changes are due to NSD2. 
Under this assumption, we calculated the percentage of gene changes that can be attrib-
uted to both B to A compartment switches/shifts and increases in H3K36me2 (Addi-
tional file 1: Fig. S9a). Approximately 16–30% of genes that were upregulated were within 
a decompacted compartment, while ~16% presented with increased H3K36me2. For the 
differentially expressed genes that cannot be attributed to NSD2-related compartment 
switches, we believe these might be the result of indirect effects.

Next, to examine the relationship between alterations in the distribution 
of H3K36me2 and intra-TAD activity, we categorized the intra-TAD activity 
changes into those that are decreased, increased, or stable and assessed changes in 
H3K36me2. Although there were few intra-TAD activity changes, we observed that 
increased intra-TAD activity predominantly consisted of increased H3K36me2 and 
that decreased intra-TAD activity predominantly consisted of decreased H3K36me2 
(Additional file 1: Fig. S9b).

Lastly, to better understand the impact these changes have on downstream signaling, 
we performed pathway enrichment analysis for those differentially expressed genes that 
were associated with a compartment switch from B to A and an increase in H3K36me2 
in any of the cell lines (Fig. 7d). Wnt signaling and cell adhesion were identified as the 
two most significant pathways. Interestingly, we observed a B to A compartment switch, 
increased H3K36me2 peaks, and increased gene expression at the NCAM1 gene locus 
in all three cell lines (Fig. 7e), one of the genes that is related to cell adhesion pathways. 
Importantly, while cell adhesion was identified in several of our pathway analyses, some 
genes were impacted by both 3D change and epigenetic modifications such as NCAM1, 
while  NEO1 showed a compartment change but no change in H3K36me2. This high-
lights the convergence of NSD2 EK-mediated epigenetic modifications and 3D genome 
organization on downstream signaling.

Discussion
Our previous work demonstrated enrichment of the NSD2 EK mutation in pediatric 
B-ALL patients at relapse and confirmed its role in cell proliferation, clonogenicity, and 
therapy resistance [5]. The lack of effective agents to inhibit the enzymatic activity of 
NSD2 has hampered targeted therapy for NSD2 rearranged multiple myeloma and NSD2 
E1099K relapsed ALL. Moreover, we and others have demonstrated NSD2 EK activates 
a transcriptional program that is highly cell-context dependent, possibly endowing can-
cer cells with a broad repertoire of pathways needed to navigate the selective pressures 
of therapy. However, the lack of common genes impacted by NSD2 EK makes a single 
targeted strategy difficult. Herein we show that NSD2 EK plays an essential role in reor-
ganizing the 3D genome through a striking reliance on compartment reorganization and 
uncover a convergence on pathways vital to cancer progression, indicating the transla-
tional relevance of our findings.
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Hi-C analysis of NSD2 Low and NSD2 High cell lines revealed significant compart-
ment changes (26.06%). This is consistent with a multiple myeloma model in which 
23.00% of compartment changes were identified [15]. To put this finding into con-
text, only 3.00–5.00% compartment shifts were identified in various stages of B-cell 

Fig. 7 NSD2 EK-mediated epigenetic changes correlate with 3D genome changes. a Bar plots showing 
distribution of annotated ChiP-seq peaks for each epigenetic mark for NSD2-Low and NSD2-High in each cell 
line. b Correlation boxplots of H3K36me2 ChIP-seq and cscore compartment switches. c Association barplots 
showing fraction of differential H3K36me2 chip-seq peaks (decreased, increased, and no change) at cscore 
compartment switches (AB, BA, and stable). d KEGG 2021 pathway enrichment analysis of genes upregulated 
from NSD2-Low to NSD2-High that overlap with B to A compartment switches and increased H3K36me2 
peaks from all three cell lines. e IGV genome browser tracks showing an example of concordant changes in 
A/B compartments, H3K36me2, and gene expression from NSD2 Low to NSD2 High at the NCAM1 gene locus 
in all three cell lines
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differentiation including pre-B to pro-B and pro-B to immature-B (unpublished data). 
Consistent with NSD2 EK’s role in increased H3K36me2 methyltransferase activity, we 
observed significantly more B to A compartment switches and shifts, compared with A 
to B switches and shifts. This is in opposition to the multiple myeloma model in which 
low expressing vs high expressing cells showed comparable A to B and B to A switches 
[15].

Hi-C analysis also revealed shared compartment switches across the three cell lines 
including 219 shared switches from B to A and 50 from A to B (Fig. 1e). Additionally, 
22.40% (932/4,160) of B to A switches and 16.20% (269/1,661) A to B switches were 
shared by at least 2 cell lines. Previous work demonstrating variability in the phenotypic 
impact of NSD2 EK on proliferation, clonal growth, and sensitivity to cytotoxic chemo-
therapeutic agents attributed this diversity to cell context. Here, we highlight the exist-
ence of a common core of decompacting loci, attributed to the NSD2 EK mutation, that 
can explain previously described universal features, such as proliferation, as well as serve 
as targets for therapeutic intervention. While we used NEO1 as an example, several 
other genes known to have roles in cancer proliferation and various pathway cascades 
were identified within these shared compartments, including EPS8, FAM92A, IRS1, and 
SETBP1.

Importantly, those compartments that switched to a less compact state showed 
increased H3K36me2 and decreased H3K27me3 epigenetic marks, suggesting that 
NSD2 EK plays a prominent role in chromatin decompaction through enrichment of 
H3K36me2 epigenetic marks. The expansion of H3K36me2 past gene bodies into more 
distal intergenic regions was also revealed. These data suggest that NSD2 EK creates a 
more open, active chromatin environment by spreading the H3K36me2 mark perhaps 
endowing cells with an increased repertoire of genes to respond effectively to the selec-
tive pressures of treatment.

Furthermore, compartment changes and epigenetic changes significantly correlated 
with genes that were upregulated due to NSD2 EK. For those compartments that became 
compact (A to B), we did not see a clear association with decreased gene expression. 
Whether alterations in the epigenetic landscape can impact chromosome organization 
in a manner that corresponds to alterations in gene expression has been a long-standing 
question in the field. As Lhoumaud et al. described in multiple myeloma, our data also 
highlight a bidirectional relationship between 2D and 3D chromatin structure in gene 
regulation [15]. We propose a model in which the NSD2 EK mutation directly results 
in the expansion of the H3K36me2 landscape, and this is associated with genome-wide 
chromatin decompaction as well as concordant changes in gene expression. However, 
we did observe dysregulation of gene expression in the absence of any 3D or epigenetic 
change, suggestive of possible indirect or downstream effects of NSD2.

Although EK-mediated changes in transcriptional output as well as chromatin acces-
sibility differed dramatically between cell lines, pathway analysis on differential genes 
with compartments that changed from B to A demonstrated convergence on similar 
pathways, such as cell adhesion, Rap1, and calcium-related pathways. Interestingly, these 
pathways have also come up in our previous analysis with RNA-seq data alone as well as 
in other models [7]. Cell adhesion genes were identified in BA compartment switches 
associated with H3K36me2 gain and in clinical samples with NSD2 EK at relapse. 
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Swaroop et al. demonstrated that the NSD2 EK mutation was associated with increased 
adhesion to stromal cells as well as increased migratory properties [7]. The NEO1 gene 
was upregulated by a compartment shift in all three cell lines as well as in the patient 
samples and encodes neogenin-1 a cell surface receptor implicated in a variety of cell 
processes such as cell survival, angiogenesis, and migration. Neogenin has been associ-
ated with cell proliferation and motility in a number of solid tumors but not in hema-
tological malignancies. Recent work indicates a key role in maintaining hematopoietic 
stem cell quiescence and long-term self-renewal [30]. Likewise, the small GTPase Rap1 
is impacted by intracellular calcium in some circumstances, two pathways we also identi-
fied, and is known to stimulate integrin activation [31]. FGF5 and GNAQ were two of the 
genes implicated in Rap1 and calcium signaling in the patient samples but were found 
to be specific to either RS4;11 or RCH cells, respectively [32–34]. FGF5 has been shown 
to affect proliferation and migration in melanoma and glioblastoma multiforme models 
while GNAQ activates PKC, FAK, and ERK signaling cascades to promote proliferation 
and cell survival in uveal melanoma. These examples highlight how the underlying dif-
ferences in the 3D organization leads to the activation of various genes that ultimately 
provide a clonal advantage. In addition, WNT and MAPK (Ras-related) pathways were 
identified in two out of the three lines examined and have also previously been linked to 
NSD2 in the multiple myeloma model [15]. The identification of common downstream 
targets among preclinical models and patient samples has important clinical implica-
tions for possible future therapeutic interventions.

By examining the regions where we observed compartment decompaction, increased 
accessibility, and upregulation of gene expression, we identified enrichment of motifs 
linked to stem cell functionality, including NANOG, SUZ12, SOX2, and MEIS1. In 
the B-cell lymphoma model, Yusufova et al. also demonstrated that many differentially 
expressed genes were linked to stem cell functionality as well as enriched for various 
stem cell signature-related pathways [16]. This data suggests a potential core transcrip-
tion factor network that may be dependent on compartmentalization.

In contrast to the identification of widespread compartment switches upon, we identi-
fied very few changes in intra-TAD activity. This data suggests that NSD2 EK-mediated 
changes are primarily linked to changes in compartmentalization. Furthermore, this 
supports the notion that TADs and compartments are established by separate, compet-
ing mechanisms. Our findings are also in agreement with a recent paper demonstrating 
H1 loss-of-function mutations in B-cell lymphomas leading to chromatin decompaction. 
Few TAD changes were observed and H1 loss led to decompaction through increased 
H3K36me2, again supporting the idea of NSD2 playing a role in chromatin decompac-
tion [16]. Although few TAD activity changes were identified, decreasing TAD activity 
was predominantly associated with A to B compartment switches and increasing TADs 
predominantly associated with B to A switches suggesting that TADs might be suscepti-
ble to patterns established by compartments.

Conclusions
Here we have identified a link between NSD2 EK-mediated epigenetic changes and dys-
regulation of higher-order genomic architecture in B-ALL. Our study revealed NSD2 
EK’s prominent role in chromatin decompaction through enrichment of H3K36me2 
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epigenetic marks. We also demonstrated NSD2 EK’s remarkable reliance on compart-
ment reorganization over TAD activity. Despite transcriptional and chromatin accessi-
bility heterogeneity across the three cell lines, this study highlights the existence of a 
common core of decompacting loci that can explain previously described universal fea-
tures, such as proliferation, as well as serve as targets for therapeutic intervention. Ulti-
mately, this study offers a novel mechanism by which NSD2 EK creates a more open, 
active chromatin state through decompaction allowing for diverse transcriptional repro-
gramming in response to selective pressures associated with treatment.

Methods
Experimental procedures

Cell lines, RNA-seq, ATAC-seq, and ChIP-seq methods published previously [5]. The 
B-lineage leukemia cell lines RS4;11, RCH-ACV, and SEM were used for the purposes of 
this study. RS4;11 was acquired from ATCC (Manassas, VA), RCH-ACV was acquired 
from DSMZ (Braunschweig, Germany), and SEM was kindly gifted by Jun Yang, St. Jude 
Children’s Hospital. Each leukemia cell line was validated by short tandem repeat anal-
ysis through ATCC except for RCH-ACV which was purchased from DSMZ directly. 
DSMZ routinely verifies cell lines and provides authentication information with each 
order. Cell lines were routinely monitored for mycoplasma contamination by PCR using 
ATCC Universal Mycoplasma Detection Kit (20–1012K). NSD2 Low cell lines were 
generated in these three B-ALL cell lines because they naturally harbor a heterozygous 
NSD2 EK mutation. More specifically, a short-hairpin RNA (shRNA: GGA AAC TAC 
TCT CGA TTT ATG) was used to knockdown NSD2 targeting the NSD2 Type II and 
NSD2 RE-IIBP isoforms both of which contain the SET domain.

Primary patient sample experimental procedures

Cryopreserved PBMC samples from Children’s Oncology Group (COG) B-ALL study 
AALL-1331 were obtained from the COG Biobank. All subjects provided consent for 
banking and future research use of these specimens in accordance with the regulations 
of the institutional review boards of all participating institutions. Samples were resus-
pended in TRIzol reagent (Life Technologies) then processed using 5prime Phase Lock 
Gel Heavy tubes (Quantabio) following the manufacturer’s instructions. Following pre-
cipitation, the RNA was quantitated using the Qubit RNA BR assay kit (Life Technolo-
gies) and evaluated for quality using the Agilent 2100 Bioanalyzer with the RNA nano 
chip (Agilent). The KAPA RNA HyperPrep Kit with RiboErase (HMR) (Roche) with 
100–200ng of total RNA was used for library construction with either Nextflex-96 RNA 
barcode adapters (BIOO Scientific, Illumina HiSeq 4000 platform), or IDT for Illumina 
unique dual indices adaptors (Illumina, Novaseq 6000 platform) and 12 PCR cycles of 
library amplification. Libraries were evaluated on the Bioanalyzer 2100 using the DNA 
1000 chip. Libraries were sequenced using either the HiSeq 4000 (Illumina) or NovaSeq 
6000 (Illumina) paired-end 2X150 cycle protocol.

Hi‑C experimental procedures

Five million cells from actively growing NSD2 High and Low cell lines were crosslinked 
with 2% PFA and quenched with glycine. Following crosslinking, cells were lysed and 
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DNA digested and proximally ligated following Arima Genomics’ Hi-C kit User Guide 
for Mammalian Cell Lines by the NYU Langone Genome Technology Center. Hi-C 
libraries were generated using Arima-HiC Kit along with Swift 2S Plus Kit and Swift 
Indexing Kit following Arima-HiC Kit Library Preparation using Swift Biosciences(R) 
Accel-NGS(R) 2S Plus DNA Library Kit User Guide. Libraries were sequenced using 
Illumina’s NovaSeq 6000.

Computational analysis

Cell line RNA‑seq analysis

Cell line RNA-seq fastq files were processed in triplicates using the route “rna-star” and 
“rna-star-groups-dge” from the Slide-n-Seq (sns) pipeline: https:// igord ot. github. io/ sns/. 
Processing steps include alignment of paired-end reads to the human reference genome 
(hg19) using the STAR aligner with default parameters [35]. Counts were obtained using 
featureCounts [36]. Bigwig tracks were obtained for visualization on individual samples 
using deeptools (v3.1.0) [37]. Downstream analysis including normalization and differ-
ential expression analysis was performed using DESeq2 [38]. Genes were categorized 
as differentially expressed if abs(L2FC > 0.32, p-value < .05). Pathway analysis was per-
formed using enrichR [39].

Primary patient sample RNA‑seq analysis

COG RNA-seq count data was provided to us by Dr. Xiaotu Ma from the Department of 
Computational Biology at St. Jude Children’s Research Hospital. Count data was gener-
ated using HTSeq [40]. Downstream analysis including normalization and differential 
expression analysis was performed using DESeq2 [38]. Genes were categorized as dif-
ferentially expressed if abs(L2FC > 0.32, p-value < .05). Pathway analysis was performed 
using enrichR [39].

ATAC‑seq analysis

Cell line ATAC-seq fastq files were processed in two replicates using the route “atac” 
from the Slide-n-Seq (sns) pipeline: https:// igord ot. github. io/ sns/. Processing steps 
included aligning paired-end reads to the human reference genome(hg19) with Bowtie2 
(v2.3.4.1) [41]. Reads with a mapping quality <30 were removed. Duplicated reads were 
removed using Sambamba (v0.6.8) [42]. Remaining reads were analyzed by applying the 
peak-calling algorithm MACS2 (v2.1.1) [43]. Bigwig tracks were obtained for visualiza-
tion on individual samples using deeptools (v3.1.0) [37]. Differential ATAC-seq analy-
sis was performed using DiffBind [44]. Nearest genes were annotated using ChIPseeker 
[45]. Enrichment analysis was performed using Bioconductor package LOLA (Locus 
overlap analysis or enrichment of genomic ranges; R package version 1.24.0) with RStu-
dio (v3.6.1) [46]. Enrichment analysis of genomic regions sets was performed using Bio-
conductor package LOLA (Locus overlap analysis or enrichment of genomic ranges; R 
package version 1.24.0) with RStudio (v3.6.1) with the hg19 LOLA core database [46]. 
LOLA core database is curated from many sources including TF binding sites from 
Encode and epigenome databases from Cistrome.

https://igordot.github.io/sns/
https://igordot.github.io/sns/
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ChIP‑seq analysis

Processing of cell line ChIP-seq fastq files was performed by the Carroll lab’s previous 
bioinformatician, Gunjan Sethia, as previously described [5]. Cell line ChIP-seq data 
was processed with three replicates. Paired-end reads were aligned to the human refer-
ence genome (hg19) with Bowtie2 (v2.3.4.1) [41]. Reads with low mapping quality <30 
were discarded using Trimmomatic (v0.33; ref. 23) [47]. Due to the broad/diffuse peaks 
created by H3K36me2 and H3K27me3, peaks for these marks were called by SICER 
that uses a cluster enrichment–based analysis [48]. H3K27ac and H3K9ac peaks were 
called using MACS2 (–broad; ref. 30) [43]. Bigwig tracks were obtained for visualiza-
tion on individual samples using deeptools (v3.1.0) [37]. Differential ChIP-seq analysis 
was performed using DiffBind [44]. Peaks were categorized as differentially accessible if 
abs(L2FC > 1.0, FDR < .01). Nearest genes were annotated using ChIPseeker [45].

Hi‑C analysis

Raw Hi-C sequencing data was processed with the hic-bench platform [19]. Cell line 
Hi-C data was processed as single replicates. Data was aligned against the human ref-
erence genome(GRCh37/hg19) with bowtie2(version 2.3.1) [41]. The reads used for 
downstream analyses were filtered for by the GenomicTools tools-hic filter command 
in the hic-bench platform using default parameters. The GenomicTools tools-hic filter 
command discards reads including multi-mapped reads (“multihit”), read-pairs with 
only one mappable read (“single sided”), duplicated read-pairs (“ds.duplicate”), read-
pairs with a low mapping quality of MAPQ < 20, read-pairs resulting from self-ligated 
fragments (together called “ds.filtered”), and short range interactions resulting from 
read-pairs aligning within 25kb (“ds.too.short”). Downstream analysis is performed 
with the accepted intra-chromosomal read- pairs (“ds.accepted intra”). The number of 
accepted intra-chromosomal read-pairs varied between ~40 and ~140 million for all 
samples (Chapter 1; Fig. 2). Hi-C interaction matrices were generated for each chro-
mosome separately by the hic-bench platform at 40kb resolution. Filtered read counts 
were normalized by iterative correction and eigenvector decomposition (ICE) [49]. To 
account for variances in read counts of more distant loci, distance normalization for 
each chromosome matrix was performed.

Hi‑C contact matrix visualization

To visualize the Hi-C contact matrix for the PRDM8/FGF5 locus, ICE normalized 
Hi-C contact matrices for the corresponding chromosome was loaded and normal-
ized by the total number of intra-chromosomal interactions for NSD2 Low and NSD2 
High samples. The log2FC Hi-C contact matrix was produced by applying the log2 
function on the division product of the NSD2 High Hi-C table by the NSD2 Low Hi-C 
table.

A/B compartments analysis

A/B compartment analysis was performed using Cscore tool. The Cscore tool algorithm 
was used to assign active (A) and inactive (B) compartments [20]. Cscore assumes that 
each genomic window, i, has a chance Pi to be in the A compartment. By defining Cscore 
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as Ci=2Pi−1, which ranges between −1 and 1, Cscore deduces a log-likelihood func-
tion where nij is the observed number of contacts, dij is the distance along the genome, 
H(dij) is the scaling factor accounting for the decrease of interactions at longer genomic 
distance, and Bi and Bj are the bias factors from Hi-C experiments. A maximum-likeli-
hood estimation was performed for the model parameters B, C, and H using an iterative 
algorithm:

For a bin to be considered a switch from A to B or from B to A, the compartment score 
sign had to flip in sample 2 (NSD2 High) when compared with the reference sample 
(sample 1 or NSD2 Low). The absolute difference between the compartment scores had 
to be higher than the cutoff (default: 1.2). The difference is computed as a relative delta:

delta = (Y − X) / abs(Y) #delta value calculation
X = compartment score of bin in sample 1 (reference)
Y = compartment score of bin in sample 2
For the compartment switch analysis, percent switches in compartments was cal-

culated by quantifying the sum of the total number of bins that switched from A to B 
and B to A divided by the total number of compartment bins (switching bins + stable 
bins). For compartment switch and shift analysis, bins were classified as A to B or B to A 
switches if there was a switch in the compartment Cscore sign. Bins were classified as B 
to more B, B to less B, A to more A, or A to less A if there was not a switch in the com-
partment Cscore sign but the delta exceeded a cutoff of delta > 0.2. Additionally, percent 
switches in compartments was calculated by quantifying the sum of the total number of 
bins that switched from B to more B, B to less B, A to more A, A to less A, A to B, and B 
to A divided by the total number of compartment bins (switching bins + shifting bins + 
stable bins).

Intra‑TAD activity analysis

Intra-TAD activity was assessed using the “domains” and “domains-diff” steps within the 
hic-bench platform [19]. The “domains” step uses the hic-ratio algorithm for TAD calling 
developed within hic-bench by previous Tsirigos lab member Haris Lazaris in which the 
average of the normalized interaction scores is calculated for all interactions taking place 
within a particular TAD. The “domains-diff” step assesses TAD interactivity alterations 
and was developed by previous lab members Sofia Nomikou and Andreas Kloetgen [17, 
19]. To identify TADs with differential TAD interactivity between NSD2 Low and High 
cell lines, we used the TADs identified in the NDS2 Low sample as a reference to identify 
common TADs. Once intra-TAD values are obtained from the Hi-C data for NSD2 Low 
and NSD2 High cell lines, a Wilcoxon two-sided rank sum non-parametric test is per-
formed to determine the p-values for each TAD. Multiple testing is used to correct these 
p-values by adjusting to the total number of TADs. Lastly, the log2 fold change (log2FC) 
of intra-TAD activity value is calculated between the samples. Intra-TAD activity altera-
tions were categorized as significant if abs(L2FC > 0.25) and FDR < 0.01.
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Integration of compartment data with other datasets

To show the correlation between the compartment changes and the various sequenc-
ing datasets, we first calculated the peak intensity fold change or gene expression fold 
change between NSD2 Low and High cell lines for peaks obtained from H3K36me2, 
H3K27me3, H3K27ac, ATAC-seq, and the genes obtained from RNA-seq through a 
differential analysis as described above. Differential peaks and genes were then classi-
fied as increased, decreased, or stable according to thresholds described above and then 
mapped to the AB, BA, or stable regions using the “bedtools intersect” command [50, 
51]. Correlation between the compartment changes and the various sequencing datasets 
were then shown with boxplots or bar plots. Statistical significance was assessed using a 
paired two-sample t-test.

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059- 023- 02905-0.

Additional file 1: Figure S1a. Hi-C million read counts (left) and read percentage (right) per cell line. Figure S2a. 
Venn diagram showing overlap of differentially expressed genes (abs(L2FC) > 0.32, p-value < 0.05) between three 
B-ALL cell lines upon knockdown, decreased and increased genes (left and right respectively). b. Volcano plots dem-
onstrating differentially expressed genes (abs(L2FC) > 0.32, p-value < 0.05) highlighted by compartment switch or 
shift (A to more A, B to A, B to less B, or stable). c. Scatterplot demonstrating compartments colored by concordance 
score (percentage of genes with that compartment switch or shift that change in the same direction). Figure S3a. 
Rate of concordance calculations represent the amount of upregulated and downregulated genes (abs(L2FC) > 0.32, 
p-value < 0.05) that can be explained by compartment switches and shifts. Figure S4a. Barplot showing number 
of subcompartment calls with SNIPER for each cell line at NSD2 Low and NSD2 High. b. Barplots presenting fraction 
of Cscore compartment calls (A or B) overlapping SNIPER subcompartment calls (A1, A2, B1, B2, and B3) c. Barplot 
showing number of subcompartment calls with SNIPER for each cell line at NSD2 Low and NSD2 High excluding 
B1 subcompartment calls. d. Barplot presenting number of subcompartment switches from A to B and from B to A 
from NS2D Low to NSD2 High in each of the cell lines. e. Barplots presenting fraction of SNIPER subcompartment 
calls overlapping cscore compartment switches and shifts. Figure S5a. Correlation boxplots of SNIPER subcom-
partments and gene expression changes (abs(L2FC) > 0.32, p-value 0.05) for each cell line from NSD2 Low to NSD2 
High. b. Volcano plots demonstrate differentially expressed genes (abs(L2FC) > 0.32, p-value < 0.05) highlighted by 
subcompartment switches and shifts. Figure S6a. PCA of ATAC-seq peaks for each cell line identifies three distinct 
clusters which are cell line-specific. b. Heat map representation of ATAC-seq results generated with DiffBind. c. Venn 
Diagram showing overlap of differentially accessible regions between three B-ALL cell lines decreased and increased 
accessibility (left and right respectively; (FDR < 0.01, abs(log2(fold change)) > 1). d. Example of B to A compartment 
shift shared by all three cell lines at the NEO1 locus showing concordance with gene expression and chromatin 
accessibility. e. Example of B to A compartment shift specific to RS4;11 cell line at the PRDM8 locus showing concord-
ance with gene expression and chromatin accessibility. Figure S7a. Heatmap representation of mean intra-TAD 
activity per cell line. b. Bar plot showing number of TAD activity changes per cell line (abs(L2FC) > 0.25, FDR < 0.01). c. 
Venn diagrams demonstrating significant overlap of patient NSD2-High upregulated genes and cell line NSD2-High 
upregulated genes and insignificant overlap of patient NSD2-High downregulated genes and cell line NSD2-High 
upregulated genes (one-tailed Fisher’s exact test). The last row presents insignificant overlap of genes upregulated 
in 9 matched D/R patient pairs with no NSD2 mutation (NSD2 Low) and cell line NSD2-High upregulated genes 
with a B to A compartment switch or shift. d. Table presenting percentage of patient NSD2-High upregulated genes 
overlapping a compartment switch/shift from any of the three cell lines. Figure S8a. Table presents patient informa-
tion associated with the three matched diagnosis-relapse pairs acquired from COG. Figure S9a. Rate of concordance 
calculations present the number of genes upregulated in expression, increased in H3K36me2 ChIP-seq peaks, and 
B to A compartment shifts and switches for the RCH, RS4;11, and SEM cell lines. b. Association bar plots showing 
fraction of differential H3K36me2 chip-seq peaks (decreased, increased, and stable) that overlap changes in intra-TAD 
activity (increased, decreased, and stable TADs).

Additional file 2. stable_genomic_loci.bed LOLA Analysis File of stable ATAC-seq peaks.

Additional file 3. AB_genomic_loci.bed LOLA Analysis File of ATAC-seq peaks with A to B compartment switch.

Additional file 4. BA_genomic_loci.bed LOLA Analysis File of ATAC-seq peaks with B to A compartment switch.

Additional file 5. LOLA_enrichment_results.tsv LOLA Analysis Results File.

Additional file 6. shared_comp_genes_down.csv Expression of decreased genes with shared AB compartment 
switches.

Additional file 7. shared_comp_genes_up.csv Expression of increased genes with shared BA compartment 
switches.

Additional file 8. TAD_increased.csv Gained TAD activity due to NSD2 coordinates.
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Additional file 9. TAD_decreased.csv Lost TAD activity due to NSD2 coordinates.

Additional file 10. TAD_expression_cscore_AB.csv Concordant lost TAD activity, decreased gene expression, and AB 
compartment switch.

Additional file 11. TAD_expression_cscore_BA.csv Concordant gained TAD activity, increased gene expression, and 
BA compartment switch.

Additional file 12. TAD_expression_down.csv Concordant lost TAD activity and decreased gene expression.

Additional file 13. TAD_expression_up.csv Concordant gained TAD activity and increased gene expression.

Additional file 14. Review history.
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