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Abstract 

Background: Nanopore‑based DNA sequencing relies on basecalling the electric 
current signal. Basecalling requires neural networks to achieve competitive accura‑
cies. To improve sequencing accuracy further, new models are continuously proposed 
with new architectures. However, benchmarking is currently not standardized, and 
evaluation metrics and datasets used are defined on a per publication basis, impeding 
progress in the field. This makes it impossible to distinguish data from model driven 
improvements.

Results: To standardize the process of benchmarking, we unified existing benchmark‑
ing datasets and defined a rigorous set of evaluation metrics. We benchmarked the 
latest seven basecaller models by recreating and analyzing their neural network archi‑
tectures. Our results show that overall Bonito’s architecture is the best for basecalling. 
We find, however, that species bias in training can have a large impact on performance. 
Our comprehensive evaluation of 90 novel architectures demonstrates that different 
models excel at reducing different types of errors and using recurrent neural networks 
(long short‑term memory) and a conditional random field decoder are the main drivers 
of high performing models.

Conclusions: We believe that our work can facilitate the benchmarking of new base‑
caller tools and that the community can further expand on this work.
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Background
Sequencing of DNA (or RNA) can be achieved by translocating nucleic acids through a 
protein nanopore. By passing an electric current through the nanopore, a signal is meas-
ured that is representative for the chemical nature of the different nucleotides inside the 
pore. Therefore, capturing this current yields a signal that can be translated into a DNA 
sequence. In 2014, Oxford Nanopore Technologies (ONT) released the first commercial 
sequencing devices based on this principle.
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Basecalling is the process of translating the raw current signal to a DNA sequence 
[1]. It is a fundamental step because almost all downstream applications depend on 
it [2]. Basecalling is a challenging task due to several reasons. First of all, the current 
signal level does not correspond to a single base but is most dominantly influenced by 
the several nucleotides that reside inside the pore at any given time. Secondly, DNA 
molecules do not translocate at a constant speed. Therefore, the number of signal 
measurements is not a good estimate of sequence length. Instead, the detection of 
signal changes is required to determine that the next base has entered the pore.

To address the basecalling challenge, a wide array of basecallers has been devel-
oped both by ONT and the wider scientific community. Basecallers evolved from 
statistical tests, to hidden Markov models (HMMs) and finally to the use of neural 
networks [3, 4]. Wick et al. (2019) benchmarked Chiron [5] and four other ONT base-
callers that were being developed at the time: Albacore, Guppy, Scrappie, and Flap-
pie. Chiron used developments in the speech to text translation field as it applied a 
convolutional neural network (CNN) to extract the features from the raw signal, a 
recurrent neural network (RNN) to relate such features in a temporal manner, and a 
connectionist temporal classification (CTC) decoder [6] to avoid having to segment 
the signal. Since then, many other basecallers have been developed and published by 
the community (Fig. 1a): Mincall [7] used a deep CNN with residual connections [8], 
Causalcall [9] used a CNN with causal dilations [10], SACall [11] and CATCaller [12] 
used transformers [13] and lite-transformers [14] respectively, URNano [15] used a 
convolutional U-net with integrated RNNs [16], and Halcyon [17] used a sequence-
to-sequence (Seq2Seq) model with attention [18, 19]. ONT also updated its main 

Fig. 1 Overview of the latest basecaller models and benchmark. Code available columns indicate whether 
their github repositories contained scripts to train a model from scratch or basecall using their trained 
models. Values in the datasets indicate the number of species they used for training (left) and testing (right). 
Alignment rates reported for matches (M), mismatches (X), insertions (I), and deletions (D) and whether 
they were normalized based on the length reference sequence (Ref ) or the length of the alignment (Align). 
Metrics separated by a slash (/) are reported independently; others are reported as a combined error rate. 
Some models also report homopolymer and methylation site error rates. The architecture section shows 
a high level overview of the different models. Overview of the different tasks in the benchmark with their 
respective training and testing data (pink). Overview of the evaluation metrics in the benchmark (purple)



Page 3 of 18Pagès‑Gallego and de Ridder  Genome Biology           (2023) 24:71  

basecaller (Guppy) with the architecture from Bonito, which substituted the CTC 
decoder with a conditional random field (CRF) decoder [20].

With new AI methods being continuously developed and tailored to various applica-
tions, we can reasonably assume that further improvements to basecalling are around 
the corner. Problematically, there is currently no standardized benchmarking method 
to evaluate basecalling performance. Instead, evaluation metrics are often defined on 
a per-publication basis and are limited to only certain aspects of basecalling accuracy 
(Fig.  1a). This may bias conclusions as more favorable metrics are chosen for head to 
head algorithm comparisons. Furthermore, data used for training and testing is not uni-
form across publications, which makes it difficult to distinguish between data or neural 
network architecture driven improvements. This is in stark contrast to e.g., the field of 
machine learning itself, where new models and methods are benchmarked with com-
munity driven evaluation metrics and datasets, such as the CASP competition [21] and 
the CAMI benchmark [22]. Such efforts facilitate the comparison of new and existing 
models, and the identification of their respective strengths and weaknesses [23]. It also 
centralizes all the information, making it easier for users to find the best method for 
their end goal and lowering the bar to take on the challenge for new developers.

Here, we present a comprehensive set of benchmarking tools, including a range of 
evaluation metrics, that can be used to analyze the strengths and weaknesses of base-
caller models. This toolbox can be used as benchmark for the standardized training 
and cross-comparison of existing and future basecallers. Using this toolbox, we bench-
marked the neural network architectures of the latest basecaller models, as well as over 
eighty novel neural network architectures by combining the different components of 
existing basecaller models. This allowed us to study the influence of the different neu-
ral networks components, some of which greatly influence basecalling performance. 
Finally, we also benchmarked the top performing architectures using different training 
and testing datasets, allowing us to we evaluate the robustness of the models to training 
data biases. Together, our work provides insight into what the best model architecture 
is under what conditions and establishes that model architectures not currently imple-
mented in existing basecalling tools outperform state of the art for certain metrics.

Results
Benchmark setup

We first developed a basecalling benchmarking framework enabling new and existing 
basecalling algorithms to be easily compared. Moreover, our benchmark facilitates the 
study of individual components of basecallers, as different combinations of basecaller 
components can readily be evaluated. The framework is divided into two main compo-
nents: (i) standardized datasets for model training and testing (Fig. 1b) and (ii) evaluation 
metrics for extensive assessment of basecalling performance (Fig. 1c). The benchmark 
components are fully automated with minimal dependencies and publicly available on 
https:// github. com/ marcp aga/ nanop ore_ bench mark, making it easy for developers to 
focus on algorithm development rather than benchmarking.

https://github.com/marcpaga/nanopore_benchmark
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Datasets and tasks

We gathered datasets that have previously been used for benchmarking and were pub-
licly available for download and used the R9.4 or R9.4.1 pore chemistry. This yielded 
615,642 reads from 3 human datasets, 1 Lambda phage dataset, and 60 bacterial data-
sets encompassing 26 different bacterial species. After read annotation using tombo, 
460,225 reads (75%) were suitable for benchmarking (Additional file 1: Fig. S1, Table S1). 
Because nanopore sequencing has several possible downstream applications, we defined 
three different tasks: global, human, and cross-species. Each task uses specific portions 
of training and test data to simulate different scenarios. (i) The global task evaluates 
the performance of a general-purpose model by training and testing the model using 
data from all available species. In this task, models have access to most data, which is 
a similar strategy employed in Causalcall and URNano. (ii) The human task evaluates 
the performance of a human specialized model by training and testing exclusively on 
human data. This strategy is used in Halcyon and Mincall, although in the latter E. coli is 
used. (iii) The cross-species task evaluates the performance of a trained model on never 
before seen species. This allows us to evaluate the robustness of the model to overfit on 
genomic features from the training set, such as k-mer distribution or base modifications. 
This is achieved by training using a subset of bacterial species and testing on data from 
all species. This is most similar to the benchmark by Wick et al., (2019) and similar to 
the evaluation strategy followed in SACall and CATCaller models. However, here, we 
explicitly take into account the genomic similarity between species when splitting them 
between train and test sets (see the “Methods” section).

Evaluation metrics

We define six basecalling evaluation metrics allowing making unbiased and quantita-
tive comparisons of basecalling efficacy across various conditions. (i) Not all reads can 
be successfully basecalled. Since failed reads are excluded from any subsequent evalua-
tion, it is important to report the failure rate of the model. Read basecalling failure falls 
into one of several categories: not basecalled (the model did not produce any basecalls), 
not aligned (during evaluation, the alignment algorithm did not produce an alignment), 
short alignment (the length of the alignment is less than 50% of the length of the refer-
ence), or other (other possible errors that prevent the read from being evaluated). (ii) 
After alignment of a basecalled read to its reference, four types of events can be distin-
guished: matches, mismatches, insertions, and deletions. We report the different types 
of alignment rates independently, since two models may have similar match rates but 
have different profiles in the types of errors they produce. (iii) Homopolymers are par-
ticularly difficult to basecall in nanopore sequencing; for this reason, an independent 
metric is used to report them. We defined homopolymers as any repetitive sequence of 
the same base of length 5 or longer. (iv) Basecalling errors can have different distribu-
tions depending on the bases that surround the event. Error profiles, similar to the tri-
nucleotide context used to define mutational signatures [24], subdivide the errors based 
on its sequence context to study potential basecalling biases. Ideally, a model’s error 
profile is unbiased and uniform, for example, to avoid biased variant calling. (v) PhredQ 
scores are values that indicate the confidence of the model in its prediction of a base. 
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Ideally, incorrect calls have low quality scores while high scoring bases are mostly cor-
rect. PhredQ scores can be calculated from the predicted distribution of probabilities; 
however, the calculation of the PhredQ score varies between decoder types; therefore, 
we evaluate the separation of their distributions. (vi) PhredQ scores can also be used to 
evaluate the model at read level. This is done by evaluating the trade-off between filter-
ing out bad quality reads and the change in performance of the model by calculating the 
area under the curve (AUC).

Benchmark results

To compare existing basecallers and benchmark them in a comparable manner, we re-
implemented all their architectures. It is important to note, unless otherwise stated, 
that everytime a model is mentioned by name (Bonito, Causacall, Halcyon, etc.), we are 
referring to their neural network architectures and not the models as they were pub-
lished. The results of the human benchmarking challenge are summarized in Fig. 2 and 
(Additional file 1: Table S2).

Fig. 2 Latest basecallers benchmark on the human task. a Basecalling reads failure rates: pass, failed 
mapping, short alignment, and no prediction (from top top bottom). b Alignment event rates: match, 
mismatch, insertion, and deletion (from top to bottom). c Homopolymer error rates per base. d PhredQ 
scores distributions for correctly (light) and incorrectly (dark) predicted bases. e AUC of match rate sorted by 
average read PhredQ score
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Basecalling failure is a major determinant of reported performance

We first noted that the number of reads that failed basecalling varies substantially. 
Distinctively, Causacall, Halcyon, and Mincall only managed to properly basecall 
66%, 79%, and 87% of the reads respectively, while the rest of the models managed 
> 90% (Fig.  2a). It is therefore critical to include such a metric in model evaluation 
since models could be skipping difficult to basecall reads, which would skew results 
towards a false higher performance.

Different methods prevail at different measures

We evaluated the performance of the different architectures using the alignment 
event rates (Fig. 2b). Bonito performed best in three out of the four metrics. It has the 
highest median match rate (90%) and the lowest median mismatch (2.5%) and dele-
tion (4.3%) rates. Causalcall achieved the lowest median insertion rate (1.7%); how-
ever, it performed worst in the other three metrics with the lowest median match 
rate (77.6%) and highest mismatch (6%) and deletion (14.4%) rates. Halcyon shows the 
highest variation in performance rates, demonstrating that in addition to the median, 
the distribution across the reads is important to consider while comparing basecall-
ers. It is therefore critical to not only report the error rates but also their distributions.

Homopolymer error rates are correlated with alignment event rates

Homopolymers are especially difficult to basecall because, for long stretches of the 
same base, the signal does not change, and since the DNA translocation speed is not 
constant, the number of measurements is not a good indicator of the length of the 
homopolymer. For such stretches of DNA, Bonito performed best with the lowest 
median error rate (14.9% averaged across all four bases) and the lowest median error 
rate for each base individually. Causalcall performed significantly worse than the 
rest of the models with the highest median error rate (44.5% averaged across bases) 
(Fig. 2c). We observed a performance correlation between alignment event rates and 
homopolymer error rates; however, the latter have a significantly higher error rate 
likely due to the inherent difficulty of basecalling such stretches.

Utility of PhredQ scores varies across methods

To evaluate the relationship between the predicted bases and their PhredQ scores. 
We first consider the distributions of the scores of the correct and incorrect bases 
(Fig. 2d). For all model architectures, correct bases have higher scores than incorrect 
bases; Causalcall has the smallest overlap between the two distributions (0.7%), fol-
lowed by the rest of the models with similar overlaps (6–8%) except Halcyon (12%) 
and Bonito (32%). Secondly, we calculated AUCs by sorting the reads based on their 
average quality scores and determining the area under the normalized cumula-
tive score (Fig. 2e). All architectures showed a correlation between read quality and 
average match rate. Not surprisingly, Bonito performed best with an AUC of 0.91. 
CATCaller and SACAll are, however, close contenders both with an AUC of 0.886. 
Importantly, each model has its own PhredQ score offset that determines how their 
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quality scores are calibrated. As a result, quality scores across models, even when 
compared in a standardized benchmark, are not directly numerically comparable.

The signatures of basecalling errors

Finally, we evaluated the different types of mistakes in the context of the two neighbor-
ing bases in the basecalls (Additional file 1: Fig. S2). In general, these “error signatures” 
reveal that there are differences between the accuracy of the models depending on the 
predicted base context. Across all models, cytosine has low error rates ( ≈10%) when 
predicted in CCT or TCT context; however, it can have significantly higher error rates (> 
30%) when predicted in the context of the 3-mers TCC or TCG. We noticed that many 
of the contexts with higher error rates contain a CG motif, suggesting the increased 
error might be due to the potential methylation status of cytosine. To evaluate if specific 
models have particular error biases we performed hierarchical clustering on the pairwise 
Jensen-Shannon divergences between the error signatures (Additional file  1: Fig. S3). 
This revealed that Causalcall and Halcyon are the two most different models in terms 
of “error signatures”. The rest of the models have similar error profiles (lowest Pearson 
correlation coefficient between them: 0.95). We can conclude that basecalling errors are 
biased since they are not uniformly distributed across the 3-mer contexts. However, the 
error profiles are very similar between basecallers, suggesting that training data may play 
a stronger role in defining these error biases than the architecture of the model itself.

Architecture analysis

The benchmarking setup also allows straightforward investigation of which components 
of the neural networks provide the main performance gains. To this end, we created 
novel architectures by combining the convolution and encoder and decoder modules 
from existing basecallers, as well as some additional modules. We again used the human 
task to evaluate the different models. In total, ninety different models were evaluated 
and ranked based on the sum of rankings across all metrics (Fig. 3a, Additional file 1: 
Fig. S4). Out of the original models, Bonito again performs best but reached 9th place in 
the overall ranking. Consequently, our grid search reveals eight new model architectures 
that perform better in general. However, improvements in performance made by these 
models are small; for example, in comparison to the Bonito model, the alignment event 
rate improvements and homopolymer error rates are smaller than 1%, suggesting that 
we may be reaching the performance limits obtainable given the training data used.

CRF decoder is vastly superior to CTC 

We observed that most of the high performing models used the CRF decoder module. 
We therefore compared the change in performance between pairs of models whose only 
difference was the decoder (Fig.  3b, Additional file  1: Fig. S5). We see that for almost 
all models, using a CRF decoder leads to a general improvement of performance with 
a mean increase in match rate of 4% and mean decreases of mismatch, insertion, and 
deletion rates of 1%, 1%, and 2% respectively. Some exceptions are models that used the 
Mincall or URNano convolution modules, which have a mean increase in insertion rates 
of 1%, although their other alignment rate metrics still improve significantly. This is in 
concordance with our previous results, where Causalcall and URNano demonstrated 
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the lowest insertion rates of all the models, showcasing that it is their convolutional 
architectures that boosts performance for this type of metric. Notably, a decrease in 
homopolymer error rates is also observed for the models with Mincall or URNano con-
volution modules that include a CRF decoder. However, results for the other models are 
more varied and depend on the base. Consistently with these improvements, we observe 
an average improvement of 3% in the AUCs. However, the PhredQ overlap between cor-
rect and incorrect predictions worsened with a median increase of 30%.

Complex convolutions are most robust, but simple convolutions are still very competitive

Another main architectural difference is the complexity and depth of the convolutional 
layers: ranging from two or three simple convolutional layers like in Bonito, CATCaller, 
and SACall, to more elaborate convolutional modules like Causalcall, URNano, or Min-
call. We find that the top four ranked models use the URNano or Causalcall architec-
ture (Fig. 3a). However, the six following models all use one of the simpler CNNs. More 
complex convolutional architectures perform better in general, specifically Causalcall 
and URNano (Fig. 3c, Additional file 1: Fig. S6). Simple convolutional architectures can 
also perform as good or even better, however they are more dependent on the encoder 
architecture that follows.

Fig. 3 Benchmark of architecture components. a Top 25 best performing model combinations. 
b Comparison of CTC to CRF decoder. c Comparison of simple (Bonito, CATCAller, SACall) to complex 
(Causalcall, Mincall, URNano) convolutions. d Comparison of bidirection LSTM depth (1, 3, or 5 layers). 
e Comparison of RNN to Transformer encoders
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RNNs are superior to transformers and are depth dependent

Transformer layers have gained popularity in other fields due to increased perfor-
mance and speed [25]. However, our top ten models all use RNN (LSTM) layers in 
their encoders. A direct comparison shows that RNNs outperform Transformer layers 
in all the metrics (Fig. 3d, Additional file 1: Fig. S7). Therefore, the attention mecha-
nism appears to be less useful for this task as the RNNs are able to properly learn 
the time-axis relationships between samples. We also evaluated whether using deeper 
LSTM layers has any effect on the performance of the models. We see that there is 
a clear correlation between depth and performance, encouraging the use of deeper 

Fig. 4 Performance comparison on different tasks. Comparison between the human and global task on 
the top 10 best performing model combinations: a alignment event rates, b homopolymer error rates, and 
c PhredQ scoring. d Comparison between the cross‑species (green) and global task (blue). Each boxplot 
contains a set of species split according to the cross‑species task. Darker colors indicate increasing genomic 
distance from the species in the training set. The darkest colors contain lambda phage and human data. 
e Comparison between the human, global and cross‑species task only on human data
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encoders for this task, regardless of the preceding convolutional architecture (Fig. 3e, 
Additional file 1: Fig. S8).

Training on multiple species boosts model performance across all models

To assess adaptation of the model to the training dataset, we evaluated the top ten 
models (ranked based on their performance on the human task) on the global task. We 
observe that training on multiple species boosts the performance of all ten models across 
all metrics (Fig. 4). In particular, we observe a 3.2% improvement on mean match rate 
and 1.1% and 1.3% decrease in mean insertion and deletion rates, respectively (Fig. 4a). 
We also see a general improvement in homopolymer error rates, with decreases of 3.4% 
(A), 1.5% (C), 2% (G), and 4.2% (T) in mean error rates (Fig. 4b). As expected, there is 
also an improvement in AUCs of 2.9% (Fig.  4c). Surprisingly, we observe a significant 
decrease in the overlap between correct and incorrect base distribution, which was  35% 
for the human task trained models, and decreased to  21% for the global task trained 
models (Fig. 4d). These improvements in performance could be due to more variance in 
the data, but it could also be that non-human data is easier to basecall.

Lacking a species in the training data penalizes model performance

The cross-species benchmark task is aimed at evaluating the robustness of the models to 
data from species they have not been trained on. We find that all models performed sim-
ilarly on all bacterial species, regardless of their k-mer genomics distance to the genomic 
training set. However, all models perform significantly worse on the two non-bacterial 
sets (Homo sapiens or Lambda phage) (Fig. 4d). This trend can be seen across all evalua-
tion metrics (Additional file 1: Fig. S9). We therefore asked whether this drop in perfor-
mance was due to the lack of training data on those species or whether those particular 
species are more difficult to basecall. To answer this question, we analyzed the data from 
the global task in the same manner by splitting the species as in the cross-species task. 
We observed that, in general, models trained on the global task perform better (0.1%, 
0.3%, 0.8%, 0.7%, and 0.9% average mean match rate improvement for each set). There is 
however, a similar trend in which Homo sapiens and Lambda phage reads have a signifi-
cantly lower performance than the rest of species (Fig. 4d).

We hypothesized that the Homo sapiens and Lambda phage genomes might be more 
difficult to basecall in general. To further investigate this we evaluated the read length 
distributions, error profiles, 3-mer, and homopolymer contents of the three datasets. We 
found no correlation between read length and match rate (Additional file 1: Fig. S10a-
b). We found, however, that the human dataset contained more homopolymers than the 
two other datasets (Additional file 1: Fig. S10c). We also observe that, in the error pro-
files of the human dataset, that 3-mers containing a CG motif have the highest error 
rates (Additional file 1: Fig. S10d), which is not the case on the bacterial or virus datasets. 
Since these datasets are from native DNA, it is likely that CG methylation is the cause of 
that increased error rate, which has also been previously reported [26]. We finally calcu-
lated the average 3-mer error rate, weighted by their fraction in the test data: the human 
dataset has the highest weighted error (0.138), followed by the virus (0.126) and the bac-
teria (0.081). With this, we concluded that the the Homo sapiens and Lambda phage are 
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overall more difficult datasets and that the lack of data in the cross-species task heavily 
contributed to the lower performance.

Finally, we compared the performance of these models only on the Homo sapiens data 
and included the results from the Human task. The results again show that the lack 
of data is detrimental to the performance of the model (Fig. 4e, Additional file 1: Fig. 
S11). Furthermore, we can observe that all models performed best when only trained 
with Homo sapiens data, with an average mean match rate improvement of 3.8% and 
1.1% when compared to the cross-species and global tasks respectively. This result might 
encourage the use of species specific models, however, caution should be taken as it is 
possible that models start to overfit and memorize features like genomic sequences, GC-
biases and homopolymer length distributions.

Discussion
Nanopore basecalling is a critical task in accurate DNA sequencing and currently relies 
on deep learning, a field in which new algorithms are regularly proposed. However, the 
lack of consensus in benchmarking data and evaluation metrics makes it complicated 
and cumbersome to value new contributions by the field. Here, we propose a series of 
tasks and a set of clearly defined evaluation metrics which can serve as a starting point 
for what should become a community effort: both by researchers and ONT. In the 
future, both additional tasks and metrics could be added [26]. For example, additional 
datasets could be added to further study the viability of species-specific models. And 
computational metrics, such as basecalling speed and compute requirements, could also 
be added in the future.

Given these proposed tasks and metrics, we re-implemented and benchmarked the 
latest existing basecallers to evaluate their neural network architectures performances 
at read-level. To do so, we implemented previously published methods in a coherent 
framework enabling training on the same data and making a fair comparison not influ-
enced by implementation details or platform. Out of the original models, Bonito’s archi-
tecture achieved the best overall performance. However, our results show that other 
architectures can obtain better results in other metrics. For this reason, it is important 
to keep expanding the list of metrics so that end users can choose the best architecture 
for their end goals. While this work only focuses on read-level accuracy, users might 
consider consensus-level accuracy if high coverage data is available. We demonstrate 
that the basecalling error profiles are not uniform, and therefore theorize that a higher 
coverage will be required to achieve error-free consensus calling depending on the DNA 
sequence.

To investigate the ideal architecture for basecalling more generally, we created new 
models by combining their different components. We show that using a CRF decoder, 
over the more traditional CTC decoder, boosts performance significantly and it is 
likely the reason why Bonito’s architecture performs so well in the initial benchmark. A 
CTC decoder predicts each state independently, and it has been its main criticism over 
the years. For this reason, Seq2Seq models, like Halcyon, were preferred over CTC in 
other fields since they are able to predict the sequence of states in a conditional man-
ner. However, Seq2seq models are significantly slower than non-recurrent models (CTC 
and CRF) and require several training steps to be able to deal with large windows of 
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data. The CRF decoder brings the best of both approaches by predicting in a conditional 
manner while still having a non-recurring decoding step. We also show that deep RNNs 
(LSTM) are superior to transformer layers. Transformer layers have gained significant 
popularity in language processing tasks due to their attention mechanism and speed. 
However, it appears the attention mechanism is not beneficial for the basecalling task. 
We hypothesize that, while the attention mechanism might be good for long distance 
relationships between inputs, the temporal relationships in the electric signal are local 
enough that RNNs are sufficient for the task. Our results also show that both simple and 
complex convolutional architectures can achieve competitive performance. Finally, we 
demonstrate that lack of training data for a particular species decreases model perfor-
mance, and for species-specific tasks, models trained solely on that particular species 
have the potential to perform better than more general-purpose models.

Conclusions
In this work, we gathered several benchmark datasets, defined train and test sets for dif-
ferent tasks, and proposed a plethora of evaluation metrics with the goal to establish a 
basecalling benchmark baseline. We hope that this facilitates the comparison of further 
basecalling algorithm improvements, such as new neural network architectures, but also 
other data processing steps like normalization. We also analyzed the latest basecaller 
neural networks in order to understand their architecture-performance relationships. 
As a rule of thumb, we conclude that the CNN-LSTM-CRF combination will give the 
most competitive performance. However, one must also carefully consider the training 
data, as large differences between training and inference, in k-mer composition or DNA 
modifications, will significantly lower the performance of the basecaller.

Methods
Data

We gathered datasets that had previously been used for benchmarking, were avail-
able and were sequenced using a R9.4 or R9.4.1 pore chemistry (Additional file  1: 
Table S3). With that criteria, we used the bacterial dataset from [27] and the human 
genome reference (NA12878/GM12878, Ceph/Utah pedigree) dataset from [28]. 
The human dataset contained many different sequencing runs. We arbitrarily chose 
three experiments so that each different ligation kit (rapid, ligation and ultra) would 
be included: FAB42828, FAF09968 and FAF04090. We also included a Lambda phage 
dataset that we sequenced. The Lambda phage genome DNA material was purchased 
from NEB (N3011S). The sample was prepared according to the ONT Ligation KIT 
and sequenced with a MinION flow cell.

Data annotation

Data was annotated using the Tombo resquiggle tool (v1.5.1). First, reads were aligned to 
the reference sequences using their basecalls. Reference genomes were used as reference 
sequences for all the datasets; with the exception of the train portion of the bacterial 
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dataset from Wick et al. (2019), which was provided already with a reference sequence 
for each read. Using Tombo, we aligned the raw signal to the expected signal according 
to the reference. Reads that did not align to the reference genome or provided a bad res-
quiggle quality according to Tombo were discarded (Additional file 1: Fig. S1).

Tasks definitions

We decided to define three tasks in order to simulate different case scenarios of Nanop-
ore sequencing applications. We simulate this by controlling the data that is used for train-
ing and testing in each case. The global task resembles a general purpose model, where the 
model has been trained on most of the data available. The human task is used to evaluate 
the feasibility of a species specific model. Finally, the cross-species task is used to evaluate 
the robustness of the models to unseen species. For each task, we defined a set of reads to 
be used for training and testing (Additional file 1: Table S1). In the global task, reads were 
split according to their mapping position in their respective reference genome (human, 
bacterial, or lambda phage). Bacterial and lambda phage reads that mapped to the first 50% 
of the genome were used for training, and the rest were used for testing. Reads that mapped 
to both halves of the genome were discarded. Human reads that mapped odd numbered 
chromosomes were used for training and reads that mapped to even numbers were used for 
testing. A total of 100k reads were selected for training and 50k reads for testing. The num-
ber of reads was equally split for each species; therefore, each species would contribute with 
a maximum of 3571 for training and 1785 for testing. Some species did not have sufficient 
reads to reach this quota. A total of 81,955 reads were used for training and 47088 reads for 
testing. For the human task, reads were split as described in the global challenge. For this 
challenge, reads were also split equally between chromosomes, and a total of 42,812 and 
25,000 reads were used for training and testing. For the cross-species task, species were split 
between training and testing. First, we defined the similarity between species based on the 
the distribution of 9-mers in their reference genomes. We calculated the pairwise Jensen-
Shannon divergence between all species pairs. We then performed single-linkage clustering 
on the distance matrix and binned the distances into 4 bins (Additional file 1: Fig. S12). We 
then recursively selected species for training. At each iteration, we selected one species and 
added it to the training pool. We then recalculated the distance between the species in the 
training pool as a whole and the rest of the species. We pseudo-randomly added species to 
the training pool in a manner that species in the test pool would have a different grades of 
distance to species in the training pool. We did this by counting the number of test species 
in each distance bin relative to the training pool and then picking the species which would 
change the distribution of counts the least in the next iteration. We continued this process 
until at least 10 species were chosen for training, with a maximum of 12 allowed. Testing 
species were divided into different difficulty categories based on their distance to the closest 
species in the train set (Additional file 1: Table S4). Similarly to the global task, a total of 50k 
and 25k reads were selected for training and testing. The testing set was further subdivided 
between 20k reads, that would come from the test species, and 5k reads, that would come 
from the train species. Each set of reads was equally divided between the different species. 
A total of 48,013 reads were used for training, 5000 reads were used for testing from the 
training species, and 24,335 reads were used for testing from the testing species.
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Models

Model architectures were recreated using Pytorch (v1.9.0) based on their description in 
their publications and their github repositories. If their implementation was done using 
Pytorch, code was reused as much as possible (Additional file 1: Fig. S13-27).

Model training

Non-recurrent models (all except Halcyon) were trained for 5 epochs with a batch size 
of 64. All models were trained on the same task data which was also given as input in the 
same order. Models inital random parameters were initialized via a uniform distribution 
with values ranging from − 0.08 to 0.08. Reads were sliced in non-overlapping chunks of 
2000 data points. Models were trained using an Adam optimizer (initial learning rate = 
1e

−3 , β1 = 0.9, β2 = 0.999, weight decay = 0). Learning rate was initially increased line-
arly for 5000 training steps from 0 to the initial learning rate of the optimizer as a warm-
up; the learning rate was then decreased using a cosine function until the last training 
step to a minimum of 1e−5 . To improve model stability, gradients were clipped between 
− 2 and 2. Halcyon was trained similarly to non-recurrent models with the following 
differences: models were trained first for 1 epoch with non-overlapping chunks of 400 
data points, then for 2 epochs with chunks of 1000 data points and finally for 2 epochs 
with chunks of 2000 data points. This was necessary because training directly using 2000 
data points chunks led to unstable model training. This phenomenon is also described 
in the original Halcyon publication [17], requiting this transfer learning approach to 
ameliorate the issue. Recurrent models were also trained without warm-up and with a 
0.75 scheduled sampling. During training, 5% of the training data was used for validation 
from which accuracy and loss were calculated without gradients. Validation data was the 
same for all models. The state of the model was saved every 20,000 training steps. The 
model state was chosen based on the best validation accuracy during training. Models 
were evaluated on hold out test data from the task being evaluated.

Original model recreation and benchmark

URNano used cross-entropy as its loss; however, since the objective of the benchmark 
was basecalling and not signal segmentation, we used a CTC decoder instead. All the 
other models were recreated as stated in their respective publications; when in doubt, 
their github implementations were used as reference.

Comparison of original models to model recreations

Since Causalcall and Halcyon performed worse than the rest of the models, we evaluated 
the original models Causalcall, Halcyon, and Guppy model published by the authors 
and compared them against our PyTorch implementations (SAdditional file 1: Fig. S28, 
Additional file 1: Table S5). When evaluating the original Halcyon, we were unable to 
completely basecall all 25k reads in the test set due to memory limitations; we therefore 
compared our recreation based only on the ≈13k reads that were basecalled by the origi-
nal Halcyon model from the human task test set. We used Guppy (v5.0.11, latest version) 
for the comparison between original models and our PyTorch implementations. In terms 
of reads that we consider evaluable, we see small differences (less than 3%) between the 
original versions and our implementations of Causalcall and Guppy. However, we see 
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some differences in the types of failed reads between the original Causalcall, which 
has 7% more reads that failed mapping, whereas our recreation had 3% more reads 
with short alignments. Surprisingly, basecalls from the original Halcyon produce only 
46% of reads suitable for evaluation, (30% less than our recreation). A significant 34% of 
reads failed mapping (30% more than our recreation) to the reference. There is also an 
increase, although smaller, on the 19% of reads that have short alignments to the refer-
ence (5% more than our recreation) (Additional file 1: Fig. S28a). Regarding our imple-
mentation of Guppy, we find that differences are small, with at most a 2% difference. 
We then looked at the alignment event rates (Additional file 1: Fig. S28b). Differences 
between the two Guppy models were very small, with the largest being a 1.3% differ-
ence in increased match rate from the original version. The original Causalcall showed 
improved match performance, with increased match (2%) and a decreased deletion (6%) 
rates; however, it showed a slight increase in mismatch (1%) and insertion (1%) rates as 
well as higher variability across reads. Finally, the original Halcyon performed worse in 
all metrics except deletion rate. However, its performances are less variable across reads. 
Homopolymer error rates show a similar trend (Additional file 1: Fig. S28c), the original 
Causalcall performs significantly better with a more similar to the other models aver-
age error rate (25.6%), while the other two models show very similar performances. We 
finally compared the models regarding their PhredQ scores: when comparing Bonito to 
Guppy, we saw a large difference in the scale of the scores (Additional file 1: Fig. S28d); 
however, Guppy still had an overlap between the distributions of 28%. On the other 
hand, the original Causalcall showed a significant increase in the overlap between dis-
tributions (48%). (Additional file 1: Fig. S28e). Correlating with the event rates results, 
the original versions of Causalcall and Guppy performed slightly better than our recre-
ated counterparts with AUCs of 0.837 and 0.937 respectively. The original Halcyon does 
not report any PhredQ scores. With these results, we concluded that although there are 
some differences between the original models and our recreations, these are minor and 
could be attributed to training strategies and used data.

Architecture analysis

Most models contain a convolutional module that later directly feeds into an encoder 
(recurrent/transformer) module. To be able to combine modules from different models 
without changing the original number of channels, we included a linear layer in between 
the convolution and encoder modules to up-scale or down-scale the number of chan-
nels. After this additional linear layer, we applied the last activation function of the pre-
ceding convolutional module. Contrary to the other models, the convolution modules 
from URNano and Causalcall do not reduce the amount of input timepoints. For those 
modules, we also included an extra convolution layer with the same configuration as the 
last convolution layer in Bonito (kernel size = 19, stride = 5, padding = 9). This layer had 
the same number of channels as the last convolutional layer of URNano or Causalcall. 
This convolution layer was necessary in order to both use transformer encoders and/or 
a CRF decoder due to memory requirements. We also included three non-used encoder 
architectures: either one, three or five RNN-LSTM bidirectional stacked layers with 256 
channels each.
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Evaluation metrics

Evaluation metrics are based on the alignment between the predicted sequence and 
the reference sequence. Alignment is done using Minimap2 (2.21) [29] with the ONT 
configuration for all metrics except accuracy. Accuracy is based on the Needleman-
Wunsch global alignment algorithm implemented in Parasail (1.2.4) [30]. The global 
alignment is configured with a match score of 2, a mismatch penalty of 1, a gap open-
ing penalty of 8 and a gap extension penalty of 4. Accuracy is used to evaluate the best 
performing state of the models during training based on the validation fraction of the 
data. During training, short sequences have to be aligned; however, during testing, 
complete reads have to be aligned, for which Minimap2 is necessary.

Accuracy Accuracy is defined as the number of matched bases in the alignment divided 
by the total number of bases in the reference sequence.

Alignment rates Match, mismatch, insertion, and deletion rates are calculated as the 
number of events of each case divided by the length of the reference unless otherwise 
stated.

Homopolymer error rates Homopolymer regions are defined as consecutive sequences 
of the same base of length 5 or longer. Error rates on homopolymer regions are calcu-
lated by counting the number of homopolymers with errors (one or more mismatches, 
insertions, or deletions) and dividing it by the number of homopolymer bases.

PhredQ scoring PhredQ scores are calculated using the fast_ctc_decode library from 
ONT. Average quality scores are calculated for all the correct and incorrect bases for 
each read. Differences between mean scores between correct and incorrect bases are 
reported. AUCs are calculated by sorting the basecalled reads according to their mean 
Phred quality score and calculating the average match rate for cumulative fraction of 
reads in steps of 50.

Error profiles Error profiles are calculated for all 3-mers by counting the number of 
events (mismatches for each base, insertions and deletions) in the context of the two 
neighboring bases of the event itself according to the basecalls. Rates for each event are 
calculated by dividing each event count by the total number of 3-mer occurrences in 
the read. Error profiles are also calculated for each base, independently of their context. 
Randomness of error is defined as the Jensen-Shannon divergence between each 3-mer 
error profile and their corresponding base error profile.

Software and hardware requirements Packages and their versions used for training and 
evaluation can be found on (Additional file 1: Table S6). All analysis were run on Python 
3.7.8 and CUDA version 10.2. We used the following hardware requirements: 32 CPU 
cores and 64Gb of RAM (data processing and model performance evaluation); it is pos-
sible to reduce these requirements at the expense of longer compute time; 4 CPU cores, 
128Gb of RAM, and 1 NVIDIA RTX6000 GPU (model training basecalling).
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