
Open Access

© The Author(s) 2023, corrected publication 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 Interna‑
tional License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appro‑
priate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in
a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of
this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Pagès‑Gallego and de Ridder
Genome Biology (2023) 24:71
https://doi.org/10.1186/s13059‑023‑02903‑2

Genome Biology

Comprehensive benchmark
and architectural analysis of deep learning
models for nanopore sequencing basecalling
Marc Pagès‑Gallego1,2 and Jeroen de Ridder1,2*

Abstract

Background: Nanopore‑based DNA sequencing relies on basecalling the electric
current signal. Basecalling requires neural networks to achieve competitive accura‑
cies. To improve sequencing accuracy further, new models are continuously proposed
with new architectures. However, benchmarking is currently not standardized, and
evaluation metrics and datasets used are defined on a per publication basis, impeding
progress in the field. This makes it impossible to distinguish data from model driven
improvements.

Results: To standardize the process of benchmarking, we unified existing benchmark‑
ing datasets and defined a rigorous set of evaluation metrics. We benchmarked the
latest seven basecaller models by recreating and analyzing their neural network archi‑
tectures. Our results show that overall Bonito’s architecture is the best for basecalling.
We find, however, that species bias in training can have a large impact on performance.
Our comprehensive evaluation of 90 novel architectures demonstrates that different
models excel at reducing different types of errors and using recurrent neural networks
(long short‑term memory) and a conditional random field decoder are the main drivers
of high performing models.

Conclusions: We believe that our work can facilitate the benchmarking of new base‑
caller tools and that the community can further expand on this work.

Keywords: Nanopore, Basecalling, Benchmark, Deep learning

Background
Sequencing of DNA (or RNA) can be achieved by translocating nucleic acids through a
protein nanopore. By passing an electric current through the nanopore, a signal is meas-
ured that is representative for the chemical nature of the different nucleotides inside the
pore. Therefore, capturing this current yields a signal that can be translated into a DNA
sequence. In 2014, Oxford Nanopore Technologies (ONT) released the first commercial
sequencing devices based on this principle.

*Correspondence:
j.deridder‑4@umcutrecht.nl

1 Center for Molecular Medicine,
University Medical Center
Utrecht, Universiteitsweg
100, 3584 CG Utrecht, The
Netherlands
2 Oncode Institute, Utrecht, The
Netherlands

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-023-02903-2&domain=pdf
http://orcid.org/0000-0001-8888-5699

Page 2 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

Basecalling is the process of translating the raw current signal to a DNA sequence
[1]. It is a fundamental step because almost all downstream applications depend on
it [2]. Basecalling is a challenging task due to several reasons. First of all, the current
signal level does not correspond to a single base but is most dominantly influenced by
the several nucleotides that reside inside the pore at any given time. Secondly, DNA
molecules do not translocate at a constant speed. Therefore, the number of signal
measurements is not a good estimate of sequence length. Instead, the detection of
signal changes is required to determine that the next base has entered the pore.

To address the basecalling challenge, a wide array of basecallers has been devel-
oped both by ONT and the wider scientific community. Basecallers evolved from
statistical tests, to hidden Markov models (HMMs) and finally to the use of neural
networks [3, 4]. Wick et al. (2019) benchmarked Chiron [5] and four other ONT base-
callers that were being developed at the time: Albacore, Guppy, Scrappie, and Flap-
pie. Chiron used developments in the speech to text translation field as it applied a
convolutional neural network (CNN) to extract the features from the raw signal, a
recurrent neural network (RNN) to relate such features in a temporal manner, and a
connectionist temporal classification (CTC) decoder [6] to avoid having to segment
the signal. Since then, many other basecallers have been developed and published by
the community (Fig. 1a): Mincall [7] used a deep CNN with residual connections [8],
Causalcall [9] used a CNN with causal dilations [10], SACall [11] and CATCaller [12]
used transformers [13] and lite-transformers [14] respectively, URNano [15] used a
convolutional U-net with integrated RNNs [16], and Halcyon [17] used a sequence-
to-sequence (Seq2Seq) model with attention [18, 19]. ONT also updated its main

Fig. 1 Overview of the latest basecaller models and benchmark. Code available columns indicate whether
their github repositories contained scripts to train a model from scratch or basecall using their trained
models. Values in the datasets indicate the number of species they used for training (left) and testing (right).
Alignment rates reported for matches (M), mismatches (X), insertions (I), and deletions (D) and whether
they were normalized based on the length reference sequence (Ref) or the length of the alignment (Align).
Metrics separated by a slash (/) are reported independently; others are reported as a combined error rate.
Some models also report homopolymer and methylation site error rates. The architecture section shows
a high level overview of the different models. Overview of the different tasks in the benchmark with their
respective training and testing data (pink). Overview of the evaluation metrics in the benchmark (purple)

Page 3 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

basecaller (Guppy) with the architecture from Bonito, which substituted the CTC
decoder with a conditional random field (CRF) decoder [20].

With new AI methods being continuously developed and tailored to various applica-
tions, we can reasonably assume that further improvements to basecalling are around
the corner. Problematically, there is currently no standardized benchmarking method
to evaluate basecalling performance. Instead, evaluation metrics are often defined on
a per-publication basis and are limited to only certain aspects of basecalling accuracy
(Fig. 1a). This may bias conclusions as more favorable metrics are chosen for head to
head algorithm comparisons. Furthermore, data used for training and testing is not uni-
form across publications, which makes it difficult to distinguish between data or neural
network architecture driven improvements. This is in stark contrast to e.g., the field of
machine learning itself, where new models and methods are benchmarked with com-
munity driven evaluation metrics and datasets, such as the CASP competition [21] and
the CAMI benchmark [22]. Such efforts facilitate the comparison of new and existing
models, and the identification of their respective strengths and weaknesses [23]. It also
centralizes all the information, making it easier for users to find the best method for
their end goal and lowering the bar to take on the challenge for new developers.

Here, we present a comprehensive set of benchmarking tools, including a range of
evaluation metrics, that can be used to analyze the strengths and weaknesses of base-
caller models. This toolbox can be used as benchmark for the standardized training
and cross-comparison of existing and future basecallers. Using this toolbox, we bench-
marked the neural network architectures of the latest basecaller models, as well as over
eighty novel neural network architectures by combining the different components of
existing basecaller models. This allowed us to study the influence of the different neu-
ral networks components, some of which greatly influence basecalling performance.
Finally, we also benchmarked the top performing architectures using different training
and testing datasets, allowing us to we evaluate the robustness of the models to training
data biases. Together, our work provides insight into what the best model architecture
is under what conditions and establishes that model architectures not currently imple-
mented in existing basecalling tools outperform state of the art for certain metrics.

Results
Benchmark setup

We first developed a basecalling benchmarking framework enabling new and existing
basecalling algorithms to be easily compared. Moreover, our benchmark facilitates the
study of individual components of basecallers, as different combinations of basecaller
components can readily be evaluated. The framework is divided into two main compo-
nents: (i) standardized datasets for model training and testing (Fig. 1b) and (ii) evaluation
metrics for extensive assessment of basecalling performance (Fig. 1c). The benchmark
components are fully automated with minimal dependencies and publicly available on
https:// github. com/ marcp aga/ nanop ore_ bench mark, making it easy for developers to
focus on algorithm development rather than benchmarking.

https://github.com/marcpaga/nanopore_benchmark

Page 4 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

Datasets and tasks

We gathered datasets that have previously been used for benchmarking and were pub-
licly available for download and used the R9.4 or R9.4.1 pore chemistry. This yielded
615,642 reads from 3 human datasets, 1 Lambda phage dataset, and 60 bacterial data-
sets encompassing 26 different bacterial species. After read annotation using tombo,
460,225 reads (75%) were suitable for benchmarking (Additional file 1: Fig. S1, Table S1).
Because nanopore sequencing has several possible downstream applications, we defined
three different tasks: global, human, and cross-species. Each task uses specific portions
of training and test data to simulate different scenarios. (i) The global task evaluates
the performance of a general-purpose model by training and testing the model using
data from all available species. In this task, models have access to most data, which is
a similar strategy employed in Causalcall and URNano. (ii) The human task evaluates
the performance of a human specialized model by training and testing exclusively on
human data. This strategy is used in Halcyon and Mincall, although in the latter E. coli is
used. (iii) The cross-species task evaluates the performance of a trained model on never
before seen species. This allows us to evaluate the robustness of the model to overfit on
genomic features from the training set, such as k-mer distribution or base modifications.
This is achieved by training using a subset of bacterial species and testing on data from
all species. This is most similar to the benchmark by Wick et al., (2019) and similar to
the evaluation strategy followed in SACall and CATCaller models. However, here, we
explicitly take into account the genomic similarity between species when splitting them
between train and test sets (see the “Methods” section).

Evaluation metrics

We define six basecalling evaluation metrics allowing making unbiased and quantita-
tive comparisons of basecalling efficacy across various conditions. (i) Not all reads can
be successfully basecalled. Since failed reads are excluded from any subsequent evalua-
tion, it is important to report the failure rate of the model. Read basecalling failure falls
into one of several categories: not basecalled (the model did not produce any basecalls),
not aligned (during evaluation, the alignment algorithm did not produce an alignment),
short alignment (the length of the alignment is less than 50% of the length of the refer-
ence), or other (other possible errors that prevent the read from being evaluated). (ii)
After alignment of a basecalled read to its reference, four types of events can be distin-
guished: matches, mismatches, insertions, and deletions. We report the different types
of alignment rates independently, since two models may have similar match rates but
have different profiles in the types of errors they produce. (iii) Homopolymers are par-
ticularly difficult to basecall in nanopore sequencing; for this reason, an independent
metric is used to report them. We defined homopolymers as any repetitive sequence of
the same base of length 5 or longer. (iv) Basecalling errors can have different distribu-
tions depending on the bases that surround the event. Error profiles, similar to the tri-
nucleotide context used to define mutational signatures [24], subdivide the errors based
on its sequence context to study potential basecalling biases. Ideally, a model’s error
profile is unbiased and uniform, for example, to avoid biased variant calling. (v) PhredQ
scores are values that indicate the confidence of the model in its prediction of a base.

Page 5 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

Ideally, incorrect calls have low quality scores while high scoring bases are mostly cor-
rect. PhredQ scores can be calculated from the predicted distribution of probabilities;
however, the calculation of the PhredQ score varies between decoder types; therefore,
we evaluate the separation of their distributions. (vi) PhredQ scores can also be used to
evaluate the model at read level. This is done by evaluating the trade-off between filter-
ing out bad quality reads and the change in performance of the model by calculating the
area under the curve (AUC).

Benchmark results

To compare existing basecallers and benchmark them in a comparable manner, we re-
implemented all their architectures. It is important to note, unless otherwise stated,
that everytime a model is mentioned by name (Bonito, Causacall, Halcyon, etc.), we are
referring to their neural network architectures and not the models as they were pub-
lished. The results of the human benchmarking challenge are summarized in Fig. 2 and
(Additional file 1: Table S2).

Fig. 2 Latest basecallers benchmark on the human task. a Basecalling reads failure rates: pass, failed
mapping, short alignment, and no prediction (from top top bottom). b Alignment event rates: match,
mismatch, insertion, and deletion (from top to bottom). c Homopolymer error rates per base. d PhredQ
scores distributions for correctly (light) and incorrectly (dark) predicted bases. e AUC of match rate sorted by
average read PhredQ score

Page 6 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

Basecalling failure is a major determinant of reported performance

We first noted that the number of reads that failed basecalling varies substantially.
Distinctively, Causacall, Halcyon, and Mincall only managed to properly basecall
66%, 79%, and 87% of the reads respectively, while the rest of the models managed
> 90% (Fig. 2a). It is therefore critical to include such a metric in model evaluation
since models could be skipping difficult to basecall reads, which would skew results
towards a false higher performance.

Different methods prevail at different measures

We evaluated the performance of the different architectures using the alignment
event rates (Fig. 2b). Bonito performed best in three out of the four metrics. It has the
highest median match rate (90%) and the lowest median mismatch (2.5%) and dele-
tion (4.3%) rates. Causalcall achieved the lowest median insertion rate (1.7%); how-
ever, it performed worst in the other three metrics with the lowest median match
rate (77.6%) and highest mismatch (6%) and deletion (14.4%) rates. Halcyon shows the
highest variation in performance rates, demonstrating that in addition to the median,
the distribution across the reads is important to consider while comparing basecall-
ers. It is therefore critical to not only report the error rates but also their distributions.

Homopolymer error rates are correlated with alignment event rates

Homopolymers are especially difficult to basecall because, for long stretches of the
same base, the signal does not change, and since the DNA translocation speed is not
constant, the number of measurements is not a good indicator of the length of the
homopolymer. For such stretches of DNA, Bonito performed best with the lowest
median error rate (14.9% averaged across all four bases) and the lowest median error
rate for each base individually. Causalcall performed significantly worse than the
rest of the models with the highest median error rate (44.5% averaged across bases)
(Fig. 2c). We observed a performance correlation between alignment event rates and
homopolymer error rates; however, the latter have a significantly higher error rate
likely due to the inherent difficulty of basecalling such stretches.

Utility of PhredQ scores varies across methods

To evaluate the relationship between the predicted bases and their PhredQ scores.
We first consider the distributions of the scores of the correct and incorrect bases
(Fig. 2d). For all model architectures, correct bases have higher scores than incorrect
bases; Causalcall has the smallest overlap between the two distributions (0.7%), fol-
lowed by the rest of the models with similar overlaps (6–8%) except Halcyon (12%)
and Bonito (32%). Secondly, we calculated AUCs by sorting the reads based on their
average quality scores and determining the area under the normalized cumula-
tive score (Fig. 2e). All architectures showed a correlation between read quality and
average match rate. Not surprisingly, Bonito performed best with an AUC of 0.91.
CATCaller and SACAll are, however, close contenders both with an AUC of 0.886.
Importantly, each model has its own PhredQ score offset that determines how their

Page 7 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

quality scores are calibrated. As a result, quality scores across models, even when
compared in a standardized benchmark, are not directly numerically comparable.

The signatures of basecalling errors

Finally, we evaluated the different types of mistakes in the context of the two neighbor-
ing bases in the basecalls (Additional file 1: Fig. S2). In general, these “error signatures”
reveal that there are differences between the accuracy of the models depending on the
predicted base context. Across all models, cytosine has low error rates (≈10%) when
predicted in CCT or TCT context; however, it can have significantly higher error rates (>
30%) when predicted in the context of the 3-mers TCC or TCG. We noticed that many
of the contexts with higher error rates contain a CG motif, suggesting the increased
error might be due to the potential methylation status of cytosine. To evaluate if specific
models have particular error biases we performed hierarchical clustering on the pairwise
Jensen-Shannon divergences between the error signatures (Additional file 1: Fig. S3).
This revealed that Causalcall and Halcyon are the two most different models in terms
of “error signatures”. The rest of the models have similar error profiles (lowest Pearson
correlation coefficient between them: 0.95). We can conclude that basecalling errors are
biased since they are not uniformly distributed across the 3-mer contexts. However, the
error profiles are very similar between basecallers, suggesting that training data may play
a stronger role in defining these error biases than the architecture of the model itself.

Architecture analysis

The benchmarking setup also allows straightforward investigation of which components
of the neural networks provide the main performance gains. To this end, we created
novel architectures by combining the convolution and encoder and decoder modules
from existing basecallers, as well as some additional modules. We again used the human
task to evaluate the different models. In total, ninety different models were evaluated
and ranked based on the sum of rankings across all metrics (Fig. 3a, Additional file 1:
Fig. S4). Out of the original models, Bonito again performs best but reached 9th place in
the overall ranking. Consequently, our grid search reveals eight new model architectures
that perform better in general. However, improvements in performance made by these
models are small; for example, in comparison to the Bonito model, the alignment event
rate improvements and homopolymer error rates are smaller than 1%, suggesting that
we may be reaching the performance limits obtainable given the training data used.

CRF decoder is vastly superior to CTC

We observed that most of the high performing models used the CRF decoder module.
We therefore compared the change in performance between pairs of models whose only
difference was the decoder (Fig. 3b, Additional file 1: Fig. S5). We see that for almost
all models, using a CRF decoder leads to a general improvement of performance with
a mean increase in match rate of 4% and mean decreases of mismatch, insertion, and
deletion rates of 1%, 1%, and 2% respectively. Some exceptions are models that used the
Mincall or URNano convolution modules, which have a mean increase in insertion rates
of 1%, although their other alignment rate metrics still improve significantly. This is in
concordance with our previous results, where Causalcall and URNano demonstrated

Page 8 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

the lowest insertion rates of all the models, showcasing that it is their convolutional
architectures that boosts performance for this type of metric. Notably, a decrease in
homopolymer error rates is also observed for the models with Mincall or URNano con-
volution modules that include a CRF decoder. However, results for the other models are
more varied and depend on the base. Consistently with these improvements, we observe
an average improvement of 3% in the AUCs. However, the PhredQ overlap between cor-
rect and incorrect predictions worsened with a median increase of 30%.

Complex convolutions are most robust, but simple convolutions are still very competitive

Another main architectural difference is the complexity and depth of the convolutional
layers: ranging from two or three simple convolutional layers like in Bonito, CATCaller,
and SACall, to more elaborate convolutional modules like Causalcall, URNano, or Min-
call. We find that the top four ranked models use the URNano or Causalcall architec-
ture (Fig. 3a). However, the six following models all use one of the simpler CNNs. More
complex convolutional architectures perform better in general, specifically Causalcall
and URNano (Fig. 3c, Additional file 1: Fig. S6). Simple convolutional architectures can
also perform as good or even better, however they are more dependent on the encoder
architecture that follows.

Fig. 3 Benchmark of architecture components. a Top 25 best performing model combinations.
b Comparison of CTC to CRF decoder. c Comparison of simple (Bonito, CATCAller, SACall) to complex
(Causalcall, Mincall, URNano) convolutions. d Comparison of bidirection LSTM depth (1, 3, or 5 layers).
e Comparison of RNN to Transformer encoders

Page 9 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

RNNs are superior to transformers and are depth dependent

Transformer layers have gained popularity in other fields due to increased perfor-
mance and speed [25]. However, our top ten models all use RNN (LSTM) layers in
their encoders. A direct comparison shows that RNNs outperform Transformer layers
in all the metrics (Fig. 3d, Additional file 1: Fig. S7). Therefore, the attention mecha-
nism appears to be less useful for this task as the RNNs are able to properly learn
the time-axis relationships between samples. We also evaluated whether using deeper
LSTM layers has any effect on the performance of the models. We see that there is
a clear correlation between depth and performance, encouraging the use of deeper

Fig. 4 Performance comparison on different tasks. Comparison between the human and global task on
the top 10 best performing model combinations: a alignment event rates, b homopolymer error rates, and
c PhredQ scoring. d Comparison between the cross‑species (green) and global task (blue). Each boxplot
contains a set of species split according to the cross‑species task. Darker colors indicate increasing genomic
distance from the species in the training set. The darkest colors contain lambda phage and human data.
e Comparison between the human, global and cross‑species task only on human data

Page 10 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

encoders for this task, regardless of the preceding convolutional architecture (Fig. 3e,
Additional file 1: Fig. S8).

Training on multiple species boosts model performance across all models

To assess adaptation of the model to the training dataset, we evaluated the top ten
models (ranked based on their performance on the human task) on the global task. We
observe that training on multiple species boosts the performance of all ten models across
all metrics (Fig. 4). In particular, we observe a 3.2% improvement on mean match rate
and 1.1% and 1.3% decrease in mean insertion and deletion rates, respectively (Fig. 4a).
We also see a general improvement in homopolymer error rates, with decreases of 3.4%
(A), 1.5% (C), 2% (G), and 4.2% (T) in mean error rates (Fig. 4b). As expected, there is
also an improvement in AUCs of 2.9% (Fig. 4c). Surprisingly, we observe a significant
decrease in the overlap between correct and incorrect base distribution, which was 35%
for the human task trained models, and decreased to 21% for the global task trained
models (Fig. 4d). These improvements in performance could be due to more variance in
the data, but it could also be that non-human data is easier to basecall.

Lacking a species in the training data penalizes model performance

The cross-species benchmark task is aimed at evaluating the robustness of the models to
data from species they have not been trained on. We find that all models performed sim-
ilarly on all bacterial species, regardless of their k-mer genomics distance to the genomic
training set. However, all models perform significantly worse on the two non-bacterial
sets (Homo sapiens or Lambda phage) (Fig. 4d). This trend can be seen across all evalua-
tion metrics (Additional file 1: Fig. S9). We therefore asked whether this drop in perfor-
mance was due to the lack of training data on those species or whether those particular
species are more difficult to basecall. To answer this question, we analyzed the data from
the global task in the same manner by splitting the species as in the cross-species task.
We observed that, in general, models trained on the global task perform better (0.1%,
0.3%, 0.8%, 0.7%, and 0.9% average mean match rate improvement for each set). There is
however, a similar trend in which Homo sapiens and Lambda phage reads have a signifi-
cantly lower performance than the rest of species (Fig. 4d).

We hypothesized that the Homo sapiens and Lambda phage genomes might be more
difficult to basecall in general. To further investigate this we evaluated the read length
distributions, error profiles, 3-mer, and homopolymer contents of the three datasets. We
found no correlation between read length and match rate (Additional file 1: Fig. S10a-
b). We found, however, that the human dataset contained more homopolymers than the
two other datasets (Additional file 1: Fig. S10c). We also observe that, in the error pro-
files of the human dataset, that 3-mers containing a CG motif have the highest error
rates (Additional file 1: Fig. S10d), which is not the case on the bacterial or virus datasets.
Since these datasets are from native DNA, it is likely that CG methylation is the cause of
that increased error rate, which has also been previously reported [26]. We finally calcu-
lated the average 3-mer error rate, weighted by their fraction in the test data: the human
dataset has the highest weighted error (0.138), followed by the virus (0.126) and the bac-
teria (0.081). With this, we concluded that the the Homo sapiens and Lambda phage are

Page 11 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

overall more difficult datasets and that the lack of data in the cross-species task heavily
contributed to the lower performance.

Finally, we compared the performance of these models only on the Homo sapiens data
and included the results from the Human task. The results again show that the lack
of data is detrimental to the performance of the model (Fig. 4e, Additional file 1: Fig.
S11). Furthermore, we can observe that all models performed best when only trained
with Homo sapiens data, with an average mean match rate improvement of 3.8% and
1.1% when compared to the cross-species and global tasks respectively. This result might
encourage the use of species specific models, however, caution should be taken as it is
possible that models start to overfit and memorize features like genomic sequences, GC-
biases and homopolymer length distributions.

Discussion
Nanopore basecalling is a critical task in accurate DNA sequencing and currently relies
on deep learning, a field in which new algorithms are regularly proposed. However, the
lack of consensus in benchmarking data and evaluation metrics makes it complicated
and cumbersome to value new contributions by the field. Here, we propose a series of
tasks and a set of clearly defined evaluation metrics which can serve as a starting point
for what should become a community effort: both by researchers and ONT. In the
future, both additional tasks and metrics could be added [26]. For example, additional
datasets could be added to further study the viability of species-specific models. And
computational metrics, such as basecalling speed and compute requirements, could also
be added in the future.

Given these proposed tasks and metrics, we re-implemented and benchmarked the
latest existing basecallers to evaluate their neural network architectures performances
at read-level. To do so, we implemented previously published methods in a coherent
framework enabling training on the same data and making a fair comparison not influ-
enced by implementation details or platform. Out of the original models, Bonito’s archi-
tecture achieved the best overall performance. However, our results show that other
architectures can obtain better results in other metrics. For this reason, it is important
to keep expanding the list of metrics so that end users can choose the best architecture
for their end goals. While this work only focuses on read-level accuracy, users might
consider consensus-level accuracy if high coverage data is available. We demonstrate
that the basecalling error profiles are not uniform, and therefore theorize that a higher
coverage will be required to achieve error-free consensus calling depending on the DNA
sequence.

To investigate the ideal architecture for basecalling more generally, we created new
models by combining their different components. We show that using a CRF decoder,
over the more traditional CTC decoder, boosts performance significantly and it is
likely the reason why Bonito’s architecture performs so well in the initial benchmark. A
CTC decoder predicts each state independently, and it has been its main criticism over
the years. For this reason, Seq2Seq models, like Halcyon, were preferred over CTC in
other fields since they are able to predict the sequence of states in a conditional man-
ner. However, Seq2seq models are significantly slower than non-recurrent models (CTC
and CRF) and require several training steps to be able to deal with large windows of

Page 12 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

data. The CRF decoder brings the best of both approaches by predicting in a conditional
manner while still having a non-recurring decoding step. We also show that deep RNNs
(LSTM) are superior to transformer layers. Transformer layers have gained significant
popularity in language processing tasks due to their attention mechanism and speed.
However, it appears the attention mechanism is not beneficial for the basecalling task.
We hypothesize that, while the attention mechanism might be good for long distance
relationships between inputs, the temporal relationships in the electric signal are local
enough that RNNs are sufficient for the task. Our results also show that both simple and
complex convolutional architectures can achieve competitive performance. Finally, we
demonstrate that lack of training data for a particular species decreases model perfor-
mance, and for species-specific tasks, models trained solely on that particular species
have the potential to perform better than more general-purpose models.

Conclusions
In this work, we gathered several benchmark datasets, defined train and test sets for dif-
ferent tasks, and proposed a plethora of evaluation metrics with the goal to establish a
basecalling benchmark baseline. We hope that this facilitates the comparison of further
basecalling algorithm improvements, such as new neural network architectures, but also
other data processing steps like normalization. We also analyzed the latest basecaller
neural networks in order to understand their architecture-performance relationships.
As a rule of thumb, we conclude that the CNN-LSTM-CRF combination will give the
most competitive performance. However, one must also carefully consider the training
data, as large differences between training and inference, in k-mer composition or DNA
modifications, will significantly lower the performance of the basecaller.

Methods
Data

We gathered datasets that had previously been used for benchmarking, were avail-
able and were sequenced using a R9.4 or R9.4.1 pore chemistry (Additional file 1:
Table S3). With that criteria, we used the bacterial dataset from [27] and the human
genome reference (NA12878/GM12878, Ceph/Utah pedigree) dataset from [28].
The human dataset contained many different sequencing runs. We arbitrarily chose
three experiments so that each different ligation kit (rapid, ligation and ultra) would
be included: FAB42828, FAF09968 and FAF04090. We also included a Lambda phage
dataset that we sequenced. The Lambda phage genome DNA material was purchased
from NEB (N3011S). The sample was prepared according to the ONT Ligation KIT
and sequenced with a MinION flow cell.

Data annotation

Data was annotated using the Tombo resquiggle tool (v1.5.1). First, reads were aligned to
the reference sequences using their basecalls. Reference genomes were used as reference
sequences for all the datasets; with the exception of the train portion of the bacterial

Page 13 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

dataset from Wick et al. (2019), which was provided already with a reference sequence
for each read. Using Tombo, we aligned the raw signal to the expected signal according
to the reference. Reads that did not align to the reference genome or provided a bad res-
quiggle quality according to Tombo were discarded (Additional file 1: Fig. S1).

Tasks definitions

We decided to define three tasks in order to simulate different case scenarios of Nanop-
ore sequencing applications. We simulate this by controlling the data that is used for train-
ing and testing in each case. The global task resembles a general purpose model, where the
model has been trained on most of the data available. The human task is used to evaluate
the feasibility of a species specific model. Finally, the cross-species task is used to evaluate
the robustness of the models to unseen species. For each task, we defined a set of reads to
be used for training and testing (Additional file 1: Table S1). In the global task, reads were
split according to their mapping position in their respective reference genome (human,
bacterial, or lambda phage). Bacterial and lambda phage reads that mapped to the first 50%
of the genome were used for training, and the rest were used for testing. Reads that mapped
to both halves of the genome were discarded. Human reads that mapped odd numbered
chromosomes were used for training and reads that mapped to even numbers were used for
testing. A total of 100k reads were selected for training and 50k reads for testing. The num-
ber of reads was equally split for each species; therefore, each species would contribute with
a maximum of 3571 for training and 1785 for testing. Some species did not have sufficient
reads to reach this quota. A total of 81,955 reads were used for training and 47088 reads for
testing. For the human task, reads were split as described in the global challenge. For this
challenge, reads were also split equally between chromosomes, and a total of 42,812 and
25,000 reads were used for training and testing. For the cross-species task, species were split
between training and testing. First, we defined the similarity between species based on the
the distribution of 9-mers in their reference genomes. We calculated the pairwise Jensen-
Shannon divergence between all species pairs. We then performed single-linkage clustering
on the distance matrix and binned the distances into 4 bins (Additional file 1: Fig. S12). We
then recursively selected species for training. At each iteration, we selected one species and
added it to the training pool. We then recalculated the distance between the species in the
training pool as a whole and the rest of the species. We pseudo-randomly added species to
the training pool in a manner that species in the test pool would have a different grades of
distance to species in the training pool. We did this by counting the number of test species
in each distance bin relative to the training pool and then picking the species which would
change the distribution of counts the least in the next iteration. We continued this process
until at least 10 species were chosen for training, with a maximum of 12 allowed. Testing
species were divided into different difficulty categories based on their distance to the closest
species in the train set (Additional file 1: Table S4). Similarly to the global task, a total of 50k
and 25k reads were selected for training and testing. The testing set was further subdivided
between 20k reads, that would come from the test species, and 5k reads, that would come
from the train species. Each set of reads was equally divided between the different species.
A total of 48,013 reads were used for training, 5000 reads were used for testing from the
training species, and 24,335 reads were used for testing from the testing species.

Page 14 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

Models

Model architectures were recreated using Pytorch (v1.9.0) based on their description in
their publications and their github repositories. If their implementation was done using
Pytorch, code was reused as much as possible (Additional file 1: Fig. S13-27).

Model training

Non-recurrent models (all except Halcyon) were trained for 5 epochs with a batch size
of 64. All models were trained on the same task data which was also given as input in the
same order. Models inital random parameters were initialized via a uniform distribution
with values ranging from − 0.08 to 0.08. Reads were sliced in non-overlapping chunks of
2000 data points. Models were trained using an Adam optimizer (initial learning rate =
1e

−3 , β1 = 0.9, β2 = 0.999, weight decay = 0). Learning rate was initially increased line-
arly for 5000 training steps from 0 to the initial learning rate of the optimizer as a warm-
up; the learning rate was then decreased using a cosine function until the last training
step to a minimum of 1e−5 . To improve model stability, gradients were clipped between
− 2 and 2. Halcyon was trained similarly to non-recurrent models with the following
differences: models were trained first for 1 epoch with non-overlapping chunks of 400
data points, then for 2 epochs with chunks of 1000 data points and finally for 2 epochs
with chunks of 2000 data points. This was necessary because training directly using 2000
data points chunks led to unstable model training. This phenomenon is also described
in the original Halcyon publication [17], requiting this transfer learning approach to
ameliorate the issue. Recurrent models were also trained without warm-up and with a
0.75 scheduled sampling. During training, 5% of the training data was used for validation
from which accuracy and loss were calculated without gradients. Validation data was the
same for all models. The state of the model was saved every 20,000 training steps. The
model state was chosen based on the best validation accuracy during training. Models
were evaluated on hold out test data from the task being evaluated.

Original model recreation and benchmark

URNano used cross-entropy as its loss; however, since the objective of the benchmark
was basecalling and not signal segmentation, we used a CTC decoder instead. All the
other models were recreated as stated in their respective publications; when in doubt,
their github implementations were used as reference.

Comparison of original models to model recreations

Since Causalcall and Halcyon performed worse than the rest of the models, we evaluated
the original models Causalcall, Halcyon, and Guppy model published by the authors
and compared them against our PyTorch implementations (SAdditional file 1: Fig. S28,
Additional file 1: Table S5). When evaluating the original Halcyon, we were unable to
completely basecall all 25k reads in the test set due to memory limitations; we therefore
compared our recreation based only on the ≈13k reads that were basecalled by the origi-
nal Halcyon model from the human task test set. We used Guppy (v5.0.11, latest version)
for the comparison between original models and our PyTorch implementations. In terms
of reads that we consider evaluable, we see small differences (less than 3%) between the
original versions and our implementations of Causalcall and Guppy. However, we see

Page 15 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

some differences in the types of failed reads between the original Causalcall, which
has 7% more reads that failed mapping, whereas our recreation had 3% more reads
with short alignments. Surprisingly, basecalls from the original Halcyon produce only
46% of reads suitable for evaluation, (30% less than our recreation). A significant 34% of
reads failed mapping (30% more than our recreation) to the reference. There is also an
increase, although smaller, on the 19% of reads that have short alignments to the refer-
ence (5% more than our recreation) (Additional file 1: Fig. S28a). Regarding our imple-
mentation of Guppy, we find that differences are small, with at most a 2% difference.
We then looked at the alignment event rates (Additional file 1: Fig. S28b). Differences
between the two Guppy models were very small, with the largest being a 1.3% differ-
ence in increased match rate from the original version. The original Causalcall showed
improved match performance, with increased match (2%) and a decreased deletion (6%)
rates; however, it showed a slight increase in mismatch (1%) and insertion (1%) rates as
well as higher variability across reads. Finally, the original Halcyon performed worse in
all metrics except deletion rate. However, its performances are less variable across reads.
Homopolymer error rates show a similar trend (Additional file 1: Fig. S28c), the original
Causalcall performs significantly better with a more similar to the other models aver-
age error rate (25.6%), while the other two models show very similar performances. We
finally compared the models regarding their PhredQ scores: when comparing Bonito to
Guppy, we saw a large difference in the scale of the scores (Additional file 1: Fig. S28d);
however, Guppy still had an overlap between the distributions of 28%. On the other
hand, the original Causalcall showed a significant increase in the overlap between dis-
tributions (48%). (Additional file 1: Fig. S28e). Correlating with the event rates results,
the original versions of Causalcall and Guppy performed slightly better than our recre-
ated counterparts with AUCs of 0.837 and 0.937 respectively. The original Halcyon does
not report any PhredQ scores. With these results, we concluded that although there are
some differences between the original models and our recreations, these are minor and
could be attributed to training strategies and used data.

Architecture analysis

Most models contain a convolutional module that later directly feeds into an encoder
(recurrent/transformer) module. To be able to combine modules from different models
without changing the original number of channels, we included a linear layer in between
the convolution and encoder modules to up-scale or down-scale the number of chan-
nels. After this additional linear layer, we applied the last activation function of the pre-
ceding convolutional module. Contrary to the other models, the convolution modules
from URNano and Causalcall do not reduce the amount of input timepoints. For those
modules, we also included an extra convolution layer with the same configuration as the
last convolution layer in Bonito (kernel size = 19, stride = 5, padding = 9). This layer had
the same number of channels as the last convolutional layer of URNano or Causalcall.
This convolution layer was necessary in order to both use transformer encoders and/or
a CRF decoder due to memory requirements. We also included three non-used encoder
architectures: either one, three or five RNN-LSTM bidirectional stacked layers with 256
channels each.

Page 16 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

Evaluation metrics

Evaluation metrics are based on the alignment between the predicted sequence and
the reference sequence. Alignment is done using Minimap2 (2.21) [29] with the ONT
configuration for all metrics except accuracy. Accuracy is based on the Needleman-
Wunsch global alignment algorithm implemented in Parasail (1.2.4) [30]. The global
alignment is configured with a match score of 2, a mismatch penalty of 1, a gap open-
ing penalty of 8 and a gap extension penalty of 4. Accuracy is used to evaluate the best
performing state of the models during training based on the validation fraction of the
data. During training, short sequences have to be aligned; however, during testing,
complete reads have to be aligned, for which Minimap2 is necessary.

Accuracy Accuracy is defined as the number of matched bases in the alignment divided
by the total number of bases in the reference sequence.

Alignment rates Match, mismatch, insertion, and deletion rates are calculated as the
number of events of each case divided by the length of the reference unless otherwise
stated.

Homopolymer error rates Homopolymer regions are defined as consecutive sequences
of the same base of length 5 or longer. Error rates on homopolymer regions are calcu-
lated by counting the number of homopolymers with errors (one or more mismatches,
insertions, or deletions) and dividing it by the number of homopolymer bases.

PhredQ scoring PhredQ scores are calculated using the fast_ctc_decode library from
ONT. Average quality scores are calculated for all the correct and incorrect bases for
each read. Differences between mean scores between correct and incorrect bases are
reported. AUCs are calculated by sorting the basecalled reads according to their mean
Phred quality score and calculating the average match rate for cumulative fraction of
reads in steps of 50.

Error profiles Error profiles are calculated for all 3-mers by counting the number of
events (mismatches for each base, insertions and deletions) in the context of the two
neighboring bases of the event itself according to the basecalls. Rates for each event are
calculated by dividing each event count by the total number of 3-mer occurrences in
the read. Error profiles are also calculated for each base, independently of their context.
Randomness of error is defined as the Jensen-Shannon divergence between each 3-mer
error profile and their corresponding base error profile.

Software and hardware requirements Packages and their versions used for training and
evaluation can be found on (Additional file 1: Table S6). All analysis were run on Python
3.7.8 and CUDA version 10.2. We used the following hardware requirements: 32 CPU
cores and 64Gb of RAM (data processing and model performance evaluation); it is pos-
sible to reduce these requirements at the expense of longer compute time; 4 CPU cores,
128Gb of RAM, and 1 NVIDIA RTX6000 GPU (model training basecalling).

Page 17 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

Supplementary Information
The online version contains supplementary material available at https:// doi. org/ 10. 1186/ s13059‑ 023‑ 02903‑2.

Additional file 1. Figs. S1‑S28, Tables S1‑S6.

Additional file 2. The review history.

Acknowledgements
We thank Tobias Dansen for critical reading of the manuscript. We thank Carlo Vermeulen for critical reading of the
manuscript and contribution of the Lambda phage sequencing data. We thank Mike Vella for critical reading of the
manuscript. We thank Vlado Menkovski for very helpful discussions.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora‑
tion with the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
MPG and JdR designed the analysis and benchmark. MPG performed the analysis and wrote the code. MPG drafted the
first version of the manuscript with guidance from JdR. JdR contributed major parts of the manuscript and revised the
manuscript. All authors read and approved the final manuscript.

Funding
This work was funded by Health Holland (No. LSHM19029)

Availability of data and materials
Datasets
 Nanopore sequencing data: human raw data and basecall datsets (FAF04090, FAF09968, FAB42828) are available at
https:// github. com/ nanop ore‑ wgs‑ conso rtium/ NA128 78/ blob/ master/ Genome. md [28]; bacterial raw data are avail‑
able at the Monash University repository, download links are available at https:// github. com/ marcp aga/ nanop ore_
bench mark/ tree/ main/ downl oad [27]; lambda phage raw data is available on the Sequence Read Archive under the
PRJNA926802 bioproject ID [31].
 Code
 Source code and scripts used to recreate and train the models are available at https:// github. com/ marcp aga/ basec
alling_ archi tectu res [32]. Source code and scripts used for benchmarking (data download and evaluation) are available
at https:// github. com/ marcp aga/ nanop ore_ bench mark [33]. Both repositories are under the Unlicense license and
accessible at: https:// zenodo. org/ record/ 76570 37 (DOI: 10.5281/zenodo.7657037) [34].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
Mike Vella works at Oxford Nanopore Technologies; he had no influence on the design or conclusions of the analysis. JdR
is cofounder of Cyclomics. JdR has received reimbursement of travel and accommodation expenses to speak at meet‑
ings organized by Oxford Nanopore Technologies.

Received: 1 August 2022 Accepted: 20 March 2023

References
 1. Rang FJ, Kloosterman WP, de Ridder J. From squiggle to basepair: computational approaches for improving nano‑

pore sequencing read accuracy. Genome Biol. 2018;19(1):90. https:// doi. org/ 10. 1186/ s13059‑ 018‑ 1462‑9. https://
genom ebiol ogy‑ biome dcent ral‑ com. proxy. libra ry. uu. nl/ artic les/ 10. 1186/ s13059‑ 018‑ 1462‑9.

 2. Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat
Biotechnol. 2021;39(11):1348–65. https:// doi. org/ 10. 1038/ s41587‑ 021‑ 01108‑x.

 3. Boža V, Brejová B, Vinař T. DeepNano: Deep recurrent neural networks for base calling in MinION nanopore reads.
PLoS ONE. 2017;12(6):e0178751. https:// doi. org/ 10. 1371/ journ al. pone. 01787 51. https:// journ als. plos. org/ ploso ne/
artic le? id= 10. 1371/ journ al. pone. 01787 51.

 4. Stoiber M, Brown J. BasecRAWller: streaming nanopore basecalling directly from raw signal. bioRxiv. 2017. https://
doi. org/ 10. 1101/ 133058.

https://doi.org/10.1186/s13059-023-02903-2
https://github.com/nanopore-wgs-consortium/NA12878/blob/master/Genome.md
https://github.com/marcpaga/nanopore_benchmark/tree/main/download
https://github.com/marcpaga/nanopore_benchmark/tree/main/download
https://github.com/marcpaga/basecalling_architectures
https://github.com/marcpaga/basecalling_architectures
https://github.com/marcpaga/nanopore_benchmark
https://zenodo.org/record/7657037
https://doi.org/10.1186/s13059-018-1462-9
https://genomebiology-biomedcentral-com.proxy.library.uu.nl/articles/10.1186/s13059-018-1462-9
https://genomebiology-biomedcentral-com.proxy.library.uu.nl/articles/10.1186/s13059-018-1462-9
https://doi.org/10.1038/s41587-021-01108-x
https://doi.org/10.1371/journal.pone.0178751
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178751
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0178751
https://doi.org/10.1101/133058
https://doi.org/10.1101/133058

Page 18 of 18Pagès‑Gallego and de Ridder Genome Biology (2023) 24:71

 5. Teng H, Cao MD, Hall MB, Duarte T, Wang S, Coin LJMM. Chiron: translating nanopore raw signal directly into nucleo‑
tide sequence using deep learning. GigaScience. 2018;7(5). https:// doi. org/ 10. 1093/ gigas cience/ giy037. http:// dx.
doi. org. proxy. libra ry. uu. nl/ 10. 1093/ gigas cience/ giy037.

 6. Graves A, Fernández S, Gomez F, Schmidhuber J. Connectionist temporal classification: Labelling unsegmented
sequence data with recurrent neural networks. In: Proceedings of the 23rd international conference on Machine
learning ‑ ICML ’06. New York: ACM Press; 2006. p. 369–376. https:// doi. org/ 10. 1145/ 11438 44. 11438 91. http:// portal.
acm. org. proxy. libra ry. uu. nl/ citat ion. cfm? doid= 11438 44. 11438 91.

 7. Miculinić N, Ratković M, Šikić M. MinCall ‑ MinION end2end convolutional deep learning basecaller. GitHub. 2019.
arXiv preprint arXiv: 1904. 10337.

 8. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition. 2016. p. 770–8. https:// doi. org/ 10. 1109/ CVPR. 2016. 90.

 9. Zeng J, Cai H, Peng H, Wang H, Zhang Y, Akutsu T. Causalcall: nanopore basecalling using a temporal convolutional
network. Front Genet. 2020;10:1332. https:// doi. org/ 10. 3389/ fgene. 2019. 01332. https:// www. front iersin. org/ artic les/
10. 3389/ fgene. 2019. 01332/ full.

 10. van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, et al. WaveNet: a generative model for raw
audio. 2016. p. 1–15. arXiv preprint arXiv: 1609. 03499.

 11. Huang N, Nie F, Ni P, Luo F, Wang J. SACall: a neural network basecaller for Oxford Nanopore sequencing data based on self‑
attention mechanism. IEEE/ACM Trans Comput Biol Bioinforma. 2020;XX(X):1–10. https:// doi. org/ 10. 1109/ TCBB. 2020. 30392 44.

 12. Lv X, Chen Z, Lu Y, Yang Y. An end‑to‑end Oxford nanopore basecaller using convolution‑augmented transformer.
IEEE/ACM Trans Comput Biol Bioinforma. 2020:6. https:// doi. org/ 10. 1101/ 2020. 11. 09. 374165.

 13. Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is all you need. Adv Neural Inf
Process Syst. 2017;2017‑Decem(Nips):5999–6009.

 14. Wu Z, Liu Z, Lin J, Lin Y, Han S. Lite transformer with long‑short range attention. ICLR 2020. 2020. p. 1–13. arXiv
preprint arXiv: 2004. 11886.

 15. Zhang YZ, Akdemir A, Tremmel G, Imoto S, Miyano S, Shibuya T, et al. Nanopore basecalling from a perspective of
instance segmentation. BMC Bioinformatics. 2020;21(136). https:// doi. org/ 10. 1186/ s12859‑ 020‑ 3459‑0.

 16. Ronneberger O, Fischer P, Brox T. In: U‑Net: Convolutional Networks for Biomedical Image Segmentation. Cham:
Springer International Publishing; 2015. p. 234–41.

 17. Konishi H, Yamaguchi R, Yamaguchi K, Furukawa Y, Imoto S. Halcyon: an accurate basecaller exploiting an encoder‑
decoder model with monotonic attention. Bioinformatics. 2021;37(9):1211–1217. https:// doi. org/ 10. 1093/ bioin
forma tics/ btaa9 53. https:// acade mic‑ oup‑ com. proxy. libra ry. uu. nl/ bioin forma tics/ artic le/ 37/9/ 1211/ 59620 86.

 18. Sutskever I, Vinyals O, Le QV. Sequence to sequence learning with neural networks. Adv Neural Inf Process Syst.
2014;4(January):3104–12.

 19. Luong MT, Pham H, Manning CD. Effective approaches to attention‑based neural machine translation. In: Confer‑
ence Proceedings ‑ EMNLP 2015: Conference on Empirical Methods in Natural Language Processing. 2015. p.
1412–1421. https:// doi. org/ 10. 18653/ v1/ d15‑ 1166.

 20. Lafferty J, McCallum A, Pereira FCN. Conditional random fields: probabilistic models for segmenting and labeling sequence
data. Deparmental papers (CIS), University of Pennsylvania. 2001;11(1):1–84. https:// doi. org/ 10. 29122/ mipi. v11i1. 2792.

 21. Moult J, Krzystof F, Kryshtafovych A, Schwede T, Tramontano A. Critical assessment of methods of protein structure
prediction (CASP) – round x. Proteins. 2014;82(02):1–6. https:// doi. org/ 10. 1002/ prot. 24452. Criti cal.

 22. Sczyrba A, Hofmann P, Belmann P, Koslicki D, Janssen S, Dröge J, et al. Critical assessment of metagenome interpretation ‑
a benchmark of metagenomics software. Nat Methods. 2017;14(11):1063–71. https:// doi. org/ 10. 1038/ nmeth. 4458.

 23. Going for algorithm gold. 2008. https:// doi. org/ 10. 1038/ nmeth 0808‑ 659.
 24. Alexandrov LB, Nik‑Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering signatures of mutational processes

operative in human cancer. Cell Rep. 2013;3(1):246–259. https:// doi. org/ 10. 1016/j. celrep. 2012. 12. 008. https:// linki
nghub. elsev ier. com/ retri eve/ pii/ S2211 12471 20043 30.

 25. Karita S, Chen N, Hayashi T, Hori T, Inaguma H, Jiang Z, et al. A comparative study on transformer vs RNN in speech
applications. ASRU 2019. 2019. arXiv preprint arXiv: 1909. 06317.

 26. Delahaye C, Nicolas J. Sequencing DNA with nanopores: troubles and biases. PLoS ONE. 2021;16(10):1–29. https://
doi. org/ 10. 1371/ journ al. pone. 02575 21.

 27. Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford nanopore sequencing.
Genome Biol. 2019;20(1):1–10. https:// doi. org/ 10. 1186/ s13059‑ 019‑ 1727‑y. https:// genom ebiol ogy. biome dcent ral.
com/ artic les/ 10. 1186/ s13059‑ 019‑ 1727‑y.

 28. Jain M, Koren S, Miga KH, Quick J, Rand AC, Sasani TA, et al. Nanopore sequencing and assembly of a human
genome with ultra‑long reads. Nat Biotechnol. 2018;36(4):338–45. https:// doi. org/ 10. 1038/ nbt. 4060.

 29. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100. https:// doi. org/
10. 1093/ bioin forma tics/ bty191.

 30. Daily J. Parasail: SIMD C library for global, semi‑global, and local pairwise sequence alignments. BMC Bioinformatics.
2016;17(1). https:// doi. org/ 10. 1186/ s12859‑ 016‑ 0930‑z.

 31. Pagès‑Gallego M, de Ridder J. Nanopore sequenced (R9.4.1) Lambda phage dataset. 2023. https:// doi. org/ 10. 5281/
zenodo. 77281 75.

 32. Pagès‑Gallego M, de Ridder J. Deep learning architectures for basecalling. Github; 2023. https:// github. com/ marcp
aga/ basec alling_ archi tectu res.

 33. Pagès‑Gallego M, de Ridder J. Nanopore benchmark for basecallers. Github; 2023. https:// github. com/ marcp aga/
nanop ore_ bench mark.

 34. Pagès‑Gallego M, de Ridder J. Comprehensive benchmark and architectural analysis of deep learning models for
Nanopore sequencing basecalling. 2023. https:// doi. org/ 10. 5281/ zenodo. 76570 37.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1093/gigascience/giy037
http://dx.doi.org.proxy.library.uu.nl/10.1093/gigascience/giy037
http://dx.doi.org.proxy.library.uu.nl/10.1093/gigascience/giy037
https://doi.org/10.1145/1143844.1143891
http://portal.acm.org.proxy.library.uu.nl/citation.cfm?doid=1143844.1143891
http://portal.acm.org.proxy.library.uu.nl/citation.cfm?doid=1143844.1143891
http://arxiv.org/abs/1904.10337
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.3389/fgene.2019.01332
https://www.frontiersin.org/articles/10.3389/fgene.2019.01332/full
https://www.frontiersin.org/articles/10.3389/fgene.2019.01332/full
http://arxiv.org/abs/1609.03499
https://doi.org/10.1109/TCBB.2020.3039244
https://doi.org/10.1101/2020.11.09.374165
http://arxiv.org/abs/2004.11886
https://doi.org/10.1186/s12859-020-3459-0
https://doi.org/10.1093/bioinformatics/btaa953
https://doi.org/10.1093/bioinformatics/btaa953
https://academic-oup-com.proxy.library.uu.nl/bioinformatics/article/37/9/1211/5962086
https://doi.org/10.18653/v1/d15-1166
https://doi.org/10.29122/mipi.v11i1.2792
https://doi.org/10.1002/prot.24452.Critical
https://doi.org/10.1038/nmeth.4458
https://doi.org/10.1038/nmeth0808-659
https://doi.org/10.1016/j.celrep.2012.12.008
https://linkinghub.elsevier.com/retrieve/pii/S2211124712004330
https://linkinghub.elsevier.com/retrieve/pii/S2211124712004330
http://arxiv.org/abs/1909.06317
https://doi.org/10.1371/journal.pone.0257521
https://doi.org/10.1371/journal.pone.0257521
https://doi.org/10.1186/s13059-019-1727-y
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1727-y
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1727-y
https://doi.org/10.1038/nbt.4060
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1186/s12859-016-0930-z
https://doi.org/10.5281/zenodo.7728175
https://doi.org/10.5281/zenodo.7728175
https://github.com/marcpaga/basecalling_architectures
https://github.com/marcpaga/basecalling_architectures
https://github.com/marcpaga/nanopore_benchmark
https://github.com/marcpaga/nanopore_benchmark
https://doi.org/10.5281/zenodo.7657037

	Comprehensive benchmark and architectural analysis of deep learning models for nanopore sequencing basecalling
	Abstract
	Background:
	Results:
	Conclusions:

	Background
	Results
	Benchmark setup
	Datasets and tasks
	Evaluation metrics

	Benchmark results
	Basecalling failure is a major determinant of reported performance
	Different methods prevail at different measures
	Homopolymer error rates are correlated with alignment event rates
	Utility of PhredQ scores varies across methods
	The signatures of basecalling errors

	Architecture analysis
	CRF decoder is vastly superior to CTC
	Complex convolutions are most robust, but simple convolutions are still very competitive
	RNNs are superior to transformers and are depth dependent
	Training on multiple species boosts model performance across all models
	Lacking a species in the training data penalizes model performance

	Discussion
	Conclusions
	Methods
	Data
	Data annotation
	Tasks definitions

	Models
	Model training
	Original model recreation and benchmark
	Comparison of original models to model recreations
	Architecture analysis
	Evaluation metrics

	Anchor 35
	Acknowledgements
	References

