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Abstract 

Microbiome data from sequencing experiments contain the relative abundance of a 
large number of microbial taxa with their evolutionary relationships represented by a 
phylogenetic tree. The compositional and high‑dimensional nature of the microbiome 
mediator challenges the validity of standard mediation analyses. We propose a phy‑
logeny‑based mediation analysis method called PhyloMed to address this challenge. 
Unlike existing methods that directly identify individual mediating taxa, PhyloMed 
discovers mediation signals by analyzing subcompositions defined on the phylogenic 
tree. PhyloMed produces well‑calibrated mediation test p‑values and yields substan‑
tially higher discovery power than existing methods.

Keywords: Composite null hypothesis, Mediation analysis, Microbiome, Phylogenetic 
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Background
Recent studies suggest that the human microbiome is emerging as a crucial mediator 
between treatments (or exposures) and health outcomes. For example, gut microbes are 
found to greatly influence the potency of immunotherapy and some chemotherapies 
with immunostimulatory functions in the treatments for cancer [1]. Mediation analysis 
provides the statistical framework to investigate if a treatment or exposure affects an 
outcome through a mediator. The traditional meditation analysis studies the mediation 
effect of a single mediator [2, 3]. More recent developments have extended that to multi-
ple and even high-dimensional mediators [4–8]. A causal interpretation of the mediation 
effect can be established based on the potential outcomes framework for causal infer-
ence [9–11].

Microbiome data from sequencing experiments contain the relative abundance of a 
large number of different microbes. The compositional and high-dimensional nature of 
the microbiome mediator poses a significant challenge to traditional mediation analyses. 
A typical amplicon sequencing study generates hundreds of microbial taxonomic units, 
such as operational taxonomic units (OTUs) [12] and amplicon sequence variants (ASVs) 
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[13]. The abundance of each taxon is essentially measured in a fraction. We just know 
what percent of each taxon made up the total but cannot quantify the actual microbial 
load (i.e., absolute abundance). In differential abundance analysis, where microbial com-
positions are compared between samples, methods that do not account for composition-
ality can result in high false discovery rates [14, 15]. Several composition-aware methods 
compare the ratio of taxa as the bias introduced by unknown microbial load cancels out 
after taking the ratios between taxa [14, 16].

MedTest [17] and MODIMA [18] are two distance-based methods for testing the 
mediation effect of the entire microbial community. These methods summarize the 
microbial composition into between-sample distance matrices and construct the media-
tion test statistic using the distance matrices. Therefore, they are not designed to identify 
mediating taxa. The distance-based tests can achieve good power when many micro-
bial taxa in the community mediate the treatment effect on the outcome. However, their 
power is limited when the number of mediating taxa is small. LDM-med [19] tests the 
mediation effect at individual taxa using the relative abundance and combine test statis-
tics across taxa to produce a global test. False discovery rate (FDR)-controlling proce-
dures are applied to identify mediating taxa.

Other mediation analysis methods for microbiome data assume sparse mediation 
effects and estimate the effects via regularization [20–23]. They aim to select mediat-
ing taxa and some [20, 21] provide global tests of the overall mediation effect at the 
community level. These methods apply different treatments to handle compositional 
data. CMM [20] uses the composition operators to define the mediation model with 
the parameters interpreted under the additive log-ratio transformation; microHIMA 
[22, 23] uses the isometric log-ratio to transform the relative abundance to variables in 
the Euclidean space; SparseMCMM [20] uses the Dirichlet regression to model micro-
bial compositions. These methods also employ different mediation tests. CMM uses a 
Sobel-type test [24]; microHIMA uses a joint-significance-type test [25]; SparseMCMM 
includes two tests: one uses the overall mediation effect estimate as the test statistic and 
the other uses the sum of squares of the component-wise mediation effect estimates as 
the test statistic [7], both of which have conservative control of type I error reported in 
the original paper [21].

In this article, we develop a phylogeny-based mediation analysis method (PhyloMed) 
for the high-dimensional mediator of microbial composition. Microbial taxa are evolu-
tionarily related and their relationship is represented by a phylogenetic tree. Incorporat-
ing phylogenetic information has been shown to improve the performance of various 
statistical analyses [26–28]. PhyloMed models the microbiome mediation effect through 
a cascade of independent local mediation models of subcompositions on the internal 
nodes of the phylogenetic tree. Figure  1 shows an example of a simple rooted binary 
phylogenetic tree with 11 microbial taxa at leaf nodes and 10 internal nodes, represent-
ing the common ancestors of those taxa. The subcomposition on an internal node con-
sists of the relative abundance aggregated at its two child nodes. For example, the 
highlighted jth internal node in Fig. 1 has taxon 5 being its left child node and the most 
recent common ancestor of taxa 6 and 7 being its right child node. Therefore, the sub-
composition defined on that internal node consists of (Mj , 1−Mj) , where Mj = v5

v5+v6+v7
 , 

and v5 , v6 , and v7 are relative abundances of taxa 5, 6, and 7. As depicted in Fig. 1 and 
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detailed in the  “Methods” section, on each internal node of the phylogenetic tree, we 
propose to construct a local subcomposition mediation model using the log ratio of the 
abundance on the left and right child nodes (i.e., log( Mj

1−Mj
) ) as the mediator variable.

We develop a testing procedure to ensure the PhyloMed local mediation test p-values 
are asymptotically mutually independent and uniformly distributed under the global null 
hypothesis that no mediation effect in any of the internal nodes (Methods). We apply 
a FDR-controlling procedure to the local mediation p-values and identify mediating 
internal nodes. The descendants of an identified node represent a group of evolution-
arily close taxa that potentially plays a mediating role. Furthermore, we can combine 
local mediation p-values over internal nodes to test the global mediation effect of the 
entire microbial community. In this article, we employed the Benjamini-Hochberg (BH) 
procedure [29] in identifying mediating internal nodes and the harmonic mean p-value 
(HMP) combination method [30] in the global mediation test.

PhyloMed models mediation effects in many subcompositions on the phylogenetic 
tree rather than in a full composition with many taxa at the low taxonomic rank. There 
are several advantages of working with subcomposition mediation models. First, it 
avoids the difficulty of jointly modeling a large number of microbial taxa. Second, the 
descendants of each internal node share a certain degree of evolutionary affinity and 

Fig. 1 Example phylogenetic tree and causal path diagram of a local mediation model. The v1‑v11 are relative 
abundances of the taxa on leave nodes. PhyloMed considers subcompositions at every internal node of the 
phylogenetic tree and tests the mediation effect of the subcompositions
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tend to have similar biological functions. Therefore, mediating taxa are likely to clus-
ter on the tree, and PhyloMed can potentially enrich mediation signal and improve the 
power of mediation analysis. Third, as we explain next, the large number of independent 
subcomposition mediation models enables us to obtain well-calibrated mediation test 
p-values and boost discovery power.

In each local model of PhyloMed, we test the mediation effect of a subcomposition 
in the treatment-to-outcome pathway. The mediation effect is commonly expressed 
as a product of two parameters, the treatment-mediator association ( α ) and the medi-
ator-outcome association ( β ) conditional on the treatment. The null hypothesis of no 
mediation effect is composite: either one of those associations is zero or both are zeros 
( H00 : α = β = 0 or H10 : α �= 0,β = 0 or H01 : α = 0,β �= 0 ). Traditional tests, such 
as the Sobel’s test [24] and the joint significance test, are overly conservative and yield 
low power because they ignore the composite nature of the null hypothesis [25, 31]. 
To address this problem, we estimate the proportions of different nulls ( H00,H10,H01 ) 
among all the local mediation models and obtain the subcomposition mediation test 
p-value using a mixture distribution with three components, each corresponding to 
one type of null hypothesis (Methods). A large number of independent subcomposi-
tion mediation tests enables us to accurately estimate the proportions of different nulls. 
Therefore, the high-dimensionality of microbiome data becomes a blessing instead of a 
curse in PhyloMed.

One needs to be cautious about the separation of the treatment-mediator associational 
element and mediator-outcome associational element when interpreting the media-
tion signals identified from the microbiome data. The mediation effect at the ancestor 
taxon can be formed by aggregating lower-level taxa associated with only the treatment 
and lower-level taxa associated with only the outcome (i.e., the separation of two ele-
ments demonstrated in the last column of Additional file  1: Fig. S1). Therefore, if we 
want to extend the interpretation of mediation signal (discovered by PhyloMed or any 
other methods) from the upper level to the lower level, we need to assume that at least 
one descendant at the lower level has inherent the mediation effect from the mediat-
ing ancestor (i.e., no complete separation of the two elements demonstrated in the third 
column of Additional file 1: Fig. S1). In PhyloMed, we test the mediation effects at inter-
nal nodes but not at the leaf-level taxa. We show in the real data application a heuristic 
approach to investigate the mediation effect at few leaf-level taxa under the PhyloMed-
identified internal nodes.

The separation of the two elements can occur even when we analyze taxa at one tax-
onomic level because of the compositional nature of the microbiome mediator. The 
relative abundances of all taxa are linked because of the unit-sum constraint of the pro-
portions across taxa: changing the absolute abundance of one taxon would shift the rel-
ative abundance of all other taxa. Consequently, if a taxon is identified as a mediator 
using its relative abundance in the mediation model, the two elements contributing to 
the mediation signal may come from entirely different sets of taxa. To address composi-
tionality, many methods assume the mediation signal is sparse and apply different trans-
formations to the relative abundance. The mediation effects are defined and interpreted 
in the context of a particular treatment of the compositional data. We need the assump-
tion of no complete separation of the two elements in absolute abundance if we want 
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to extend the interpretion of the identified mediation signal to the absolute abundance 
level. This is probably a reason why many mediation methods for microbiome data focus 
more on hypothesis testing than estimation. The test results provide a scan of high-
dimensional microbial composition and generate candidates for downstream validation 
studies and mechanistic experiments.

Results
Simulation studies

We performed extensive simulation studies to evaluate the performance of PhyloMed 
under different settings. The simulation strategy is detailed in Methods. In short, we 
used the top 100 most abundant OTUs and the phylogenetic tree from a real gut micro-
biome study [32] as a basis. We considered the sample size of 50 or 200, a binary treat-
ment variable that defines a treatment and a control group, and two types of outcome 
variables (continuous and binary). Association and mediation signals were added at the 
OTUs. We let Sα and Sβ denote the set of treatment-associated OTUs and outcome-
associated OTUs, respectively. To perturb the abundance of a treatment-associated 
OTU, we added random counts to the subjects in the treatment or control group. To 
generate values of outcome, we used the log-contrast model [33] with the outcome-asso-
ciated OTUs as covariates. Under the null hypothesis of no mediation effect, the Sα and 
Sβ do not overlap, and we considered different mixtures of nulls by adjusting the OTUs 
in the two sets. Under the alternative, both sets contain the mediating OTUs. We var-
ied the number of mediating OTUs and made them clustered on the tree or randomly 
scattered.

PhyloMed controls type I error and improves power in the global mediation test 

of the microbial community

PhyloMed local mediation test statistic is constructed as the maximum of the treat-
ment-mediator association test p-value and the mediator-outcome association test 
p-value (Methods). We obtain these p-values via asymptotic approximation or permu-
tation (Methods) and refer to the corresponding PhyloMed result as PhyloMed.A and 
PhyloMed.P. We compared the performance of PhyloMed global mediation test with 
the global tests in MedTest [17], MODIMA [18], LDM-med [19], and CMM [20]. For 
the distance-based tests, we considered Aitchison, Bray-Curtis, Jaccard, weighted, and 
unweighted UniFrac distances. We reported the omnibus MedTest test over the five dis-
tances. As MODIMA does not provide an omnibus test, we reported the Bonferroni-
corrected minimal p-values among the five distances. The CMM method is for the 
continuous outcome. We found that CMM often fails to converge when the sample size 
is smaller than the number of taxa. Therefore, the CMM result is only reported in the 
setting of continuous outcome and large sample size ( n = 200).

The control of the type I error is demonstrated by the quantile-quantile plots of 
p-values from different global tests under various null hypothesis settings (Fig. 2 and 
Additional file  1: Fig. S2). The PhyloMed global test yields p-values that are mostly 
aligned with the diagonal line suggesting that the test produces uniformly distrib-
uted p-values under the null hypothesis of no mediation effect. The empirical type I 
error of PhyloMed is much closer to the significance level than the other methods in 
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all scenarios (Table 1). The permutation version of PhyloMed (PhyloMed.P) controls 
type I error slightly better than the asymptotic version (PhyloMed.A) when the sam-
ple size is small ( n = 50 ). MedTest, MODIMA, and LDM-med tests are generally con-
servative. When all taxa are under H00 , their conservativeness is worse than in other 
scenarios where some taxa are under H10 or H01 . In contrast, the performance of the 
PhyloMed global test is less affected by the mixture proportions of different nulls. The 
CMM test is too liberal and results in many false positives in our simulation study.

Figure 3 displays the power results under the setting where the mediating OTUs are 
clustered on the tree. PhyloMed is more powerful than MedTest, MODIMA, and LDM-
med. PhyloMed is also more powerful than CMM, even though CMM’s power is overes-
timated due to the inflation of its type I error. The power gain is because PhyloMed tests 
subcompositions on the ancestor nodes of mediating OTUs, at which mediation signals 
were condensed. Moreover, PhyloMed employs the mixture distribution in testing the 
subcomposition mediation effect, which is more efficient than traditional mediation 
tests. Additional file  1: Fig. S3 displays the power results when including more OTUs 
in the simulation. In this case, all methods become less powerful, but the power of Phy-
loMed remains the highest. Additional file 1: Fig. S4 displays the power results when the 
mediating OTUs are randomly scattered. PhyloMed still has a substantial power gain 
over other methods in most scenarios, especially when the mediation signal is sparse.

Table 1 Empirical type I error of different global mediation tests (significance level = 0.05). 
The|Sα |and|Sβ |denote the number of treatment‑associated OTUs and outcome‑associated OTUs, 
respectively. Different combinations of ( |Sα |,|Sβ | ) represent different mixtures of mediation nullsH00

,H10andH01

n |Sα | |Sβ | PhyloMed.A PhyloMed.P MedTest MODIMA LDM-med CMM

Continuous outcome
50 0 0 0.020 0.028 0.002 0.002 0.005 ‑

50 3 0 0.021 0.028 0.013 0.007 0.006 ‑

50 6 0 0.036 0.042 0.025 0.009 0.009 ‑

50 0 3 0.021 0.025 0.003 0.002 0.009 ‑

50 0 6 0.024 0.028 0.011 0.003 0.016 ‑

200 0 0 0.022 0.024 0.001 0.000 0.002 0.308

200 3 0 0.030 0.032 0.022 0.008 0.013 0.495

200 6 0 0.035 0.036 0.032 0.023 0.015 0.532

200 0 3 0.032 0.034 0.015 0.006 0.017 0.210

200 0 6 0.040 0.043 0.028 0.015 0.021 0.154

Binary outcome
50 0 0 0.017 0.020 0.000 0.000 0.004 ‑

50 3 0 0.028 0.033 0.011 0.002 0.010 ‑

50 6 0 0.029 0.037 0.023 0.011 0.012 ‑

50 0 3 0.021 0.031 0.002 0.000 0.006 ‑

50 0 6 0.018 0.029 0.004 0.002 0.007 ‑

200 0 0 0.018 0.021 0.002 0.000 0.003 ‑

200 3 0 0.043 0.044 0.025 0.011 0.009 ‑

200 6 0 0.040 0.040 0.030 0.016 0.018 ‑

200 0 3 0.024 0.028 0.008 0.002 0.005 ‑

200 0 6 0.038 0.045 0.018 0.007 0.011 ‑
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PhyloMed powerfully detects microbial subcompositions with mediation effects

We also evaluated the empirical FDR and power in identifying mediating nodes on 
the tree at the target FDR of 0.05. All the ancestor nodes of the mediating OTUs are 

Fig. 2 Quantile‑quantile plots of p‑values from different global mediation tests in the simulation study 
for the continuous outcome. The observed p‑values were compared to the expected quantiles generated 
by the uniform null distribution. The |Sα | and |Sβ | denote the number of treatment‑associated OTUs and 
outcome‑associated OTUs, respectively. Different combinations of ( |Sα | , |Sβ | ) represent different mixtures of 
mediation nulls H00 , H10 , and H01

Fig. 3 Power comparison of different global mediation tests when mediating OTUs are clustered on the tree
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mediating nodes. To evaluate power, we focused on the discovery rate of identifying the 
most recent common ancestor of the mediating OTUs because the signal on the upper-
level ancestor nodes was diluted by the OTUs with no mediation effects and is difficult 
to detect by any method. Besides the mixture-distribution-based test implemented in 
PhyloMed, we employed the Sobel’s test and the joint significance test to obtain the 
p-value for testing the subcomposition mediation effect in each local model.

In detecting mediating nodes, the empirical FDR is controlled for all local media-
tion tests (Additional file 1: Table S1). We also evaluate the empirical FDR with vary-
ing mediation signal strength and density. The empirical FDR is controlled for all signal 
strength and density levels, even though BH controls the FDR at a more stringent level 
for stronger and denser signals (Additional file  1: Fig. S5). Additional file  1: Table  S2 
shows the discovery rate of the most recent common ancestor of the mediating OTUs. 
PhyloMed has much higher power than the Sobel’s test and the joint significance test in 
identifying the mediating node.

Application of PhyloMed to study the mediation of mouse cecal microbiome 

in the relationship between antibiotics treatment and body fat

We demonstrate the utility of PhyloMed by analyzing a cecal microbiome dataset from a 
randomized mouse experiment [34]. The study randomly assigned mice to four types of 
antibiotics and a control group and evaluated the group difference in body fat percentage 
and cecal microbial composition. The mice in the antibiotics group have a higher aver-
age body fat percentage than those in the control group (Additional file 1: Fig. S6). We 
are interested in investigating if the cecal microbiome mediates the effect of antibiotics 
on body fat. After removing samples with low sequencing depth, we had 48 samples (38 
in antibiotics and 10 in controls). Due to the small sample size of this study, we included 
in the analysis the top 100 most abundant OTUs with at least 20% non-zero observations 
as potential mediators. These taxa make up 80% of the cecal microbial composition.

The PhyloMed global mediation test (PhyloMed.P) gives a p-value of 0.085. MedTest, 
MODIMA, and LDM-med global tests give p-values of 0.24, 1, and 0.42. PhyloMed also 
pinpoints two internal nodes with significant mediation effects on the phylogenetic tree 
while controlling FDR at 0.1. When we employed the Sobel’s test and the joint signifi-
cance test in local models, the subcomposition mediation test p-values showed a pattern 
of deflation, suggesting low power (Fig. 4b), and no mediating nodes were identified. We 
also applied LDM-med and microHIMA to identify mediating OTUs and no OTU was 
selected at FDR = 0.1.

It is instructive to examine the internal node with the smallest PhyloMed local media-
tion p-value. This node has an OTU as its left child node and the most recent common 
ancestor of the other five OTUs as its right child node (Fig. 4a). The proportion of the 
abundance at the left child node to the right child node is significantly associated with 
the antibiotics treatment and the body fat (Fig. 4c). The OTU descendants of the node 
are a group of evolutionarily close taxa that likely share similar biological functions and 
jointly contribute to the mechanism of antibiotics’ effect on body fat change.

We used a heuristic approach to explore what OTU descendants may contribute to 
the significant subcomposition mediation on that internal node. In particular, we con-
structed multiple subcompositions by pairing the OTU at the left child node with 
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individual OTU descendants of the right child node and examined the treatment-sub-
composition and subcomposition-outcome associations. All the (left OTU and right 
OTU) pairs exhibit evidence of mediation effect (the maximum p-values of the treat-
ment-subcomposition and subcomposition-outcome associations for all the pairs are 
less than 0.05, see Fig. 4d). This result demonstrates that testing the mediation effect on 
the internal node of the phylogenetic tree can enrich mediation signals clustered on the 
tree and boost the power of mediation analysis.

Application of PhyloMed to study the mediation of human gut microbiome 

in the relationship between fat intake and body mass index

We also applied PhyloMed to a human gut microbiome dataset from an observational 
study with a larger sample size [35]. The study sequenced gut microbiome from fecal 
samples of 96 healthy subjects and collected their diet and health information. The sub-
jects with higher fat intake generally have higher body mass index (BMI) values (Addi-
tional file 1: Fig. S7). We used PhyloMed to investigate if the gut microbiome mediates 
the effect of fat intake on BMI increase. We used 395 OTUs that have at least 20% non-
zero observations. These OTUs make up 79% of the microbial community composition. 
Total calorie intake was adjusted as a potential confounder in the mediation analysis.

Fig. 4 Analysis of mouse cecal microbiome data. a Phylogenetic tree with the size of the circle at each 
internal node proportional to − log 10 (PhyloMed local mediation test p‑value). The identified internal node 
with the minimum subcomposition mediation test p‑value and the subtree under the node are highlighted 
in a blue rectangle. b Quantile‑quantile plots of different subcomposition mediation test p‑values across 
internal nodes. PhyloMed: proposed mixture‑distribution‑based test; JS: joint significance test; Sobel: Sobel’s 
test. c Associations of the subcomposition (in log‑ratio) at the highlighted node in a with the treatment and 
the body fat percentage after adjusting for the treatment effect. d The highlighted subtree in a. Pair the OTU 
under the left child node to each of the five OTUs under the right child node. For the subcomposition of 
each pair, examine the treatment‑subcomposition and subcomposition‑outcome associations and report the 
maximum p‑value of the two associations
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The PhyloMed global mediation test (PhyloMed.P) gives a p-value of 0.047, indi-
cating the gut microbial community plays a mediating role in the effect of fat intake 
on BMI increment. MedTest, MODIMA, and LDM-med global tests give p-values of 
0.68, 0.27, and 1. PhyloMed identifies one internal node with significant mediation 
effects while controlling FDR at 0.1 (Additional file 1: Fig. S8). The left and right child 
nodes of the identified internal node are leaf nodes with two OTUs in the Lachno-
spiraceae family. It has been reported that members of the Lachnospiraceae family 
are associated with high-fat diets and diet-induced obesity [36, 37]. Subjects with 
low fat intake and BMI show dramatically different proportions of the two OTUs 
compared to those with higher fat intake and BMI (Fig. 5). The log-ratio abundance 
between the two OTUs is significantly associated with fat intake (p-value=5.9× 10−3 ) 
and BMI (p-value=2.2× 10−3 ). No mediating OTU was identified by LDM-med and 
microHIMA at FDR = 0.1. The analysis demonstrates that PhyloMed can detect the 
sparse mediation signal among a large number of taxa, which is often missed by other 
methods.

Fig. 5 Scatter pie plot for the subcomposition at the identified internal node in human gut microbiome data 
analysis. Each point is a pie chart showing a subject’s subcomposition of the two OTUs under the identified 
internal node. The fat intake value (after adjusting for total calorie intake) is on the x‑axis and the BMI value 
(after adjusting for fat intake and total calorie intake) is on the y‑axis
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Discussion
This article has introduced a new framework PhyloMed for testing the mediation effect 
in high-dimensional microbial composition. PhyloMed leverages the hierarchical phy-
logeny relationship among different microbial taxa to decompose the complex media-
tion model on the full microbial composition into multiple simple independent local 
mediation models on subcompositions. This tree-guided approach effectively enriches 
mediation signals that tend to cluster on the phylogenetic tree and boosts the power 
of the test for weak mediation effects among taxa. Moreover, PhyloMed accounts for 
the compositional nature of the relative abundance data and the composite mediation 
null hypothesis, resulting in well-calibrated p-values for testing local subcomposition 
mediation effects. Our simulation studies have shown that PhyloMed properly controls 
the type I error and has substantially higher power than existing methods. In addition, 
PhyloMed can pinpoint internal nodes at which the subcompositions have significant 
mediation effects. The cluster of descendant taxa under the identified node could serve 
as the top candidate mediating taxa for future biological validation.

Many p-value combination methods and FDR-controlling procedures can be applied 
to the local mediation p-values to test global mediation and identify mediating internal 
nodes. In this article, we adopt the HMP p-value combination method that is powerful 
to detect the sparse signal. If the mediation signal is dense (i.e., many taxa in the micro-
bial community have mediation effects), alternative methods such as Fisher’s p-value 
combination method could be more powerful. In addition, advanced FDR methods 
[38–40] may yield better performance in detecting mediating subcompositions on the 
internal nodes if mediation hypotheses defined on the nearby nodes are more likely to be 
jointly true or false. Evaluating these different methods under the PhyloMed framework 
would be an interesting area for future research.

PhyloMed uses the observed proportion data and does not model the sampling var-
iability of the read counts. A Binomial sampling layer could be added on top of each 
subcomposition model. However, the benefit of this practice may not outweigh the 
drawbacks. Although the mediation model can be changed without disrupting the Phy-
loMed testing procedure, it is not clear if the parameter we test still reflects the size of 
the causal mediation effect. Even if this is true, modeling the count data would increase 
the computation burden and may not readily improve the numerical performance of 
PhyloMed. We have considered replacing the log-ratio subcomposition model in Phy-
loMed with the Beta-binomial model [41] and a distribution-free model for the composi-
tion count data [27]. The resulting global mediation tests based on these two alternative 
mediator models do not yield a better type I error control (Additional file 1: Table S3).

The assumption of no unmeasured confounding is critical in obtaining an unbiased esti-
mate of the mediation effect and establishing the causal interpretation in mediation anal-
ysis. The correlation ρ between the residuals of the mediator regression model and the 
outcome regression model is often used to quantify the magnitude of confounding bias on 
the mediation effect estimate with ρ = 0 implying no confounding bias [11]. Therefore, a 
common way to examine the sensitivity of finding to the violation of the assumption is to 
evaluate how the mediation effect estimate changes when |ρ| deviates from zero [11]. Addi-
tional file 1: Fig. S9 displays the sensitivity analysis results for the identified mediating nodes 
highlighted in Fig. 4a and Additional file 1: Fig. S8 of the two real data analyses. The 90% 
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confidence interval of the estimated mediation effect covers zero when |ρ| > 0.13 in the 
mouse cecal study and |ρ| > 0.27 in the human gut study, which means the sign and signifi-
cance of the estimated mediation effect remain unchanged if |ρ| is not beyond those values. 
In our analyses, the sample residual correlations at the identified nodes are very close to 
zero with the absolute value smaller than 10−16 , suggesting that we probably do not have a 
strong confounding bias in our analyses.

Power can be affected if the phylogenetic tree is misspecified. For instance, if the media-
tion taxa are clustered on the true tree but more scattered on the misspecified tree, sig-
nals on the internal nodes may become less condensed and more challenging to detect. Our 
simulation study shows that PhyloMed is still more powerful than the competing methods 
when the taxa are randomly scattered on the tree (Additional file 1: Fig. S4). If the phylo-
genetic tree is unavailable, PhyloMed can be applied to the taxonomy tree, which is almost 
always provided in microbiome data. Our R package has incorporated this option.

In this article, we focus on microbiome data from targeted amplicon sequencing rather 
than metagenomic sequencing. But the ideas of the method can be extended to metagen-
omics studies. For metagenomics data, multiple phylogenetic trees can be constructed, 
each based on sequencing data of a set of marker genes. The structures of these trees may 
differ from one another. One approach is to apply PhyloMed to the data derived from each 
marker gene and harmonize the results across different tree structures. This may increase 
the robustness against tree misspecification compared to the analysis using a single tree.

Conclusions
Elucidating the causal role of the microbiome and identifying mediating microbial agents 
is an important step toward the development of strategies to manipulate the microbi-
ome to augment desirable health outcomes. A growing number of microbiome studies in 
recent years have leveraged mediation analysis to discover the causal mediation effect of 
the microbiome. We develop PhyloMed to combat low statistical power in the microbiome 
mediation analysis, especially when the mediation signal is sparse and weak. PhyloMed 
framework builds upon a phylogeny-guided divide-and-conquer strategy to search for the 
mediation signals in high-dimensional microbial compositions. A new testing procedure is 
developed to solve the problem of conservativeness in testing the composite mediation null 
hypothesis. These features of PhyloMed are fundamentally different from existing methods 
and substantially boost the power of microbiome mediation tests. We envision that Phy-
loMed will accelerate the discovery of causal mediating microbes and facilitate biological 
interpretation in the context of phylogenetic trees. As a general methodology, PhyloMed 
can be applied to the mediation analysis of other high-dimensional compositional data. We 
have provided an efficient R package for the broad utility of the method.

Methods
PhyloMed framework

We consider a random sample of n subjects measured on a set of OTUs. Suppose the 
OTUs are placed on the leaves of a rooted phylogenetic tree with J internal nodes. 
For subject i = 1, . . . , n , we let (Mij , 1−Mij) be the subcomposition at the jth internal 
node. In the PhyloMed framework, instead of having a single model on the composi-
tion of all leaf-level OTUs, we build a collection of independent local models, each of 
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which is for a subcomposition on a particular internal node of the tree. This modeling 
approach is similar to a Polya tree process [42] and has been adopted by several meth-
ods for microbiome differential abundance testing [27, 28, 43]. Despite the independ-
ence of the subcomposition Mij ’s over internal nodes, this modeling approach allows 
a rich dependence structure among leaf-level OTUs [44].

We apply the log-ratio transformation to subcomposition and use the log-ratio vari-
able (i.e., log

(
Mij

1−Mij

)
 ) as the mediator. We need to deal with zeros in the log-ratio 

transformation. In each local mediation model at an internal node, we remove sub-
jects with both components of the subcomposition being zero as they carry no infor-
mation on the subcomposition. We add 0.5 to the counts aggregated to the left and 
right child nodes for the remaining subjects. Although adding a small value (pseudoc-
ount) is a simple and commonly used practice to avoid zeros in log transformation 
[45], the choice of pseudocount is arbitrary and there is no consensus on the optimal 
value. Studies have shown that the pseudocount approach can lead to biased normali-
zation and the downstream data analysis can be sensitive to the choice of pseudoc-
ount [46, 47]. We conducted the sensitivity analysis to study how the choice of 
pseudocount may affect the performance of PhyloMed. Additional file  1: Table  S4 
shows the type I error and power results when we use the pseudocount of 0.1, 0.5, or 
1. The type I error is controlled for all pseudocounts and the power is slightly higher 
with smaller pseudocount but the difference is negligible with the increased sample 
size. Results from real data analyses echo those in the simulation (Additional file 1: 
Table  S5). The PhyloMed global test p-values from the analysis of the mouse cecal 
data with the pseudocount of 0.1, 0.5, or 1 are 0.064, 0.085, 0.126. The human gut 
microbiome data has a larger sample size and the corresponding PhyloMed global test 
p-values are 0.049, 0.047, and 0.057. These results demonstrate that PhyloMed is gen-
erally not sensitive to the choice of pseudocount. Alternative zero-handling 
approaches without relying on the arbitrary choice of pseudocount can also be 
applied. The universally best approach is still an open problem in the field and 
requires further research.

For each subject i, we let Ti be the treatment variable, Yi be the outcome variable, 
and Xi be a set of confounders that may affect the treatment, mediator, and outcome. 
To represent the causal path diagram of the local mediation model at the jth internal 
node (Fig. 1), we apply the following regression models

We omit the intercept term in both models as it can be absorbed into Xi . Equation (1) 
represents a distribution-free linear regression model with the mean of the logit(Mij ) 
depending on the treatment and confounders but the distribution of the subcomposi-
tion is not specified. Such a model is robust against the over-dispersion and outliers 
in the microbiome data. Equation (2) is a generalized linear regression with g{·} being 

(1)E log
Mij

1−Mij
= αT

jXXi + αjTi,

(2)g{E(Yi)} = βT
jXXi + βjTTi + βj log

(
Mij

1−Mij

)
.
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the link function depending on the type of outcome. As Mij ’s over internal nodes are 
independent, we can fit J low-dimensional models [Yi | Xi,Ti, logit(Mij)] as Eq. (2) as 
opposed to a large joint model [Yi | Xi,Ti, logit(Mi1), . . . , logit(MiJ )] for the purpose of 
hypothesis testing.

The potential outcomes framework [9–11] has established a series of identifiability 
assumptions such that models (1) and (2) lead to quantification of the causal mediation 
effect. A rigorous definition of causal mediation using potential outcomes framework is 
provided in Additional file 1: Note A.1 [7, 48]. An extension of the model to allow for the 
treatment-mediator interaction is described in Additional file 1: Note A.2.

Composite null hypothesis tests in local mediation models

In each local mediation model, we are interested in testing whether the subcomposition 
at the jth internal node lies in the causal pathway from the treatment to the outcome. For 
both continuous and binary outcomes, the null and alternative hypotheses for this test-
ing problem can be formulated as (details in Additional file 1: Note A)

The null hypothesis can be equivalently expressed as the union of three disjoint null 
hypotheses

The Sobel’s test [24] and the joint significance test have been widely applied to test the 
mediation null hypothesis. Unfortunately, these tests have severely deflated type I error 
and lack power because they fail to take into account the composite nature of the null 
hypothesis [25, 31].

To address this issue, several new mediation tests were recently developed. JT-comp 
[49] assesses the product of two test statistics of exposure-mediator association and 
mediator-outcome association, the method proposed by Dai et  al. [50] assesses the 
maximum of the two test p-values, and DACT [51] assesses a test statistic of a com-
posite p-value. Dai’s method and DACT estimate the proportion of the three types of 
nulls and assess their test statistics under different nulls. DACT employs Efron’s empiri-
cal null inference framework [52] to further calibrate the p-value. In light of these meth-
ods, we propose a new testing procedure that handles the composite null hypothesis 
and produces a well-controlled type I error for multiple local mediation tests. Let Pαj 
and Pβj denote the p-values for testing αj = 0 and βj = 0 , respectively. The Pαj and Pβj 
are asymptotically uniformly distributed under their respective null hypotheses (i.e., Pαj 
under αj = 0 and Pβj under βj = 0 ) and are independent under the no unmeasured con-
founding assumptions. In PhyloMed, we adopt score statistics and obtain the observed 
p-values pαj and pβj based on the reference asymptotic distribution or permutation 
(details in Additional file 1: Note B). The permutation p-value is more accurate than its 
asymptotic counterpart when the study sample size is small. We implement an adaptive 

H
j
0 : αjβj = 0 vs H

j
a : αjβj �= 0.

H
j
00 : αj = βj = 0,

H
j
10 : αj �= 0,βj = 0,

H
j
01 : αj = 0,βj �= 0.
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procedure to efficiently and accurately obtain the permutation p-values (Additional 
file 1: Note B.3) [53].

We then define the mediation test statistic for Hj
0 as

The joint significance test also takes Pmaxj as the mediation test statistic and deter-
mines statistical significance using the uniform distribution. In fact, Pmaxj follows a mix-
ture distribution with three components, each of which corresponds to one type of null 
hypothesis Hj

00 , H
j
10 , or Hj

01 . Let pmaxj denote max(pαj , pβj ) , and π00 , π10 , and π01 be the 
probabilities of the three null hypotheses among the J local mediation models defined on 
the tree. The p-value of the mediation test in the jth local model is given by

In this formula, we need to estimate three probabilities: π00 , π10 , and π01 , and two power 
functions evaluated at pmaxj : Pr(Pαj ≤ pmaxj | αj �= 0) and Pr(Pβj ≤ pmaxj | βj �= 0).

We first employ the method proposed by Jin and Cai [54] to estimate π0• , the propor-
tion of null αj = 0 , using pαj ’s in all J local mediation models. Specifically, we convert 
the pαj to Z-score Zαj = sign(α̂j)×�−1(1− pαj/2), where sign(α̂j) is the sign of the αj 
estimate and �−1(x) is the quantile function of the standard normal distribution. The 
empirical characteristic function and Fourier analysis are used to estimate the propor-
tion of nulls. The empirical characteristic function is defined as

where i =
√
−1 . The proportion of nulls can be consistently estimated as

where Re(x) denotes the real part of a complex number x. Similarly, we can obtain π̂•0 , 
the estimated proportion of null βj = 0 using pβj ’s across all local models. Then, under 
H

j
0 , the estimates of π00 , π10 , and π01 are π̂00 = π̂0•π̂•0/π̂0 , π̂10 = (1− π̂0•)π̂•0/π̂0 , and 

π̂01 = π̂0•(1− π̂•0)/π̂0 , where π̂0 = π̂0• + π̂•0 − π̂0•π̂•0.
We also consider an alternative approach to estimate ( π00 , π10 , π01 ). In particular, 

we apply the method of Jin and Cai [54] to pmaxj ’s across all local models to estimate 

Pmaxj = max(Pαj ,Pβj ).

(3)

Pr(Pmaxj ≤ pmaxj )

=π00Pr(Pαj ≤ pmaxj ,Pβj ≤ pmaxj | H
j
00)

+ π10Pr(Pαj ≤ pmaxj ,Pβj ≤ pmaxj | H
j
10)+ π01Pr(Pαj ≤ pmaxj ,Pβj ≤ pmaxj | H

j
01)

=π00Pr(Pαj ≤ pmaxj | αj = 0)Pr(Pβj ≤ pmaxj | βj = 0)

+ π10Pr(Pβj ≤ pmaxj | βj = 0)Pr(Pαj ≤ pmaxj | αj �= 0)

+ π01Pr(Pαj ≤ pmaxj | αj = 0)Pr(Pβj ≤ pmaxj | βj �= 0)

=π00p
2
maxj

+ π10pmaxj Pr(Pαj ≤ pmaxj | αj �= 0)+ π01pmaxj Pr(Pβj ≤ pmaxj | βj �= 0).

ϕJ (t;Zα1 , . . . ,ZαJ ) =
1

J

J∑

j=1

e
itZαj ,

π̂0• = inf{
0≤t≤

√
log(J )

}

[∫ 1

−1
(1− |ξ |)

{
Re(ϕJ (tξ ;Zα1 , . . . ,ZαJ ))e

t2ξ2/2
}
dξ

]
,
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the proportion of mediation null hypothesis (i.e., π0 = π00 + π10 + π01 ). We then 
estimate π00 , π10 , and  π01 as π̂00 = (π̂0• + π̂•0 − π̂0)/π̂0 , π̂10 = (π̂0 − π̂0•)/π̂0 , and 
π̂01 = (π̂0 − π̂•0)/π̂0 , where π̂0• and π̂•0 are the same estimates as before. The key dif-
ference between the two approaches is in the estimate of the proportion of media-
tion null hypothesis (i.e., π0 ). The first approach uses the product of two proportions 
π̂0 = 1− (1− π̂0•)(1− π̂•0) , and we refer to it as the “product” approach. The second 
approach directly estimate π0 using pmaxj , and we refer to it as the “maxp” approach. We 
evaluated the estimation bias and standard error of the two approaches in our simula-
tion studies (“Methods” section “Simulation strategy”). The result shows that the two 
approaches are very similar (Additional file 1: Table S6). Results presented in the main 
text are based on the “product” approach. Our R package has incorporated both options.

For the two power functions, we employ the nonparametric estimates based on the 
Grenander estimator of the p-value density [55]. We show below the procedure for 
obtaining P̂r(Pαj ≤ pmaxj | αj �= 0) . Specifically, we use formula (9) in [55] to compute 
the Grenander estimator of the decreasing density at every pαj , denoted by f̂ (pαj ) . Under 
H

j
0 , Pαj follows a mixture distribution composed of the uniform distribution (under Hj

00 
and Hj

01 ) and the power function (under Hj
10 ). Therefore, we can obtain the conditional 

density estimate f̂ (pαj |αj �= 0) by solving the equation

We can then estimate P̂r(Pαj ≤ pmaxj | αj �= 0) based on f̂ (pαj | αj �= 0) at all observed 
pαj’s. We can obtain P̂r(Pβj ≤ pmaxj | βj �= 0) using a similar estimation procedure. 
Finally, the mediation test p-value at the jth node can be estimated as

In our numerical studies, we compare this mixture-distribution-based mediation test 
with the Sobel’s test and the joint significance test (Additional file 1: Note C).

Mediating subcomposition detection

We deduce below that the mediation test statistics Pmaxj ’s of internal nodes under Hj
0 

(referred to as null internal nodes) are asymptotically mutually independent as the sam-
ple size goes to infinity.

Under H
j
0 , the two power function probabilities Pr(Pαj ≤ tj | αj �= 0) and 

Pr(Pβj ≤ tj | βj �= 0) converge to 1 for a constant tj when the sample size goes to 
infinity. Therefore, based on formula (3), Pr(Pmaxj ≤ tj) can be approximated by 
�
00
Pr(P�j

≤ tj ∣ �j = 0)Pr(P�j
≤ tj ∣ �j = 0) + �

10
Pr(P�j

≤ tj ∣ �j = 0) + �
01
Pr(P�j

≤ tj ∣ �j = 0) = �
00
t2
j
+ �

10
tj + �

01
tj  . 

Clearly, the formula only involves probabilities of Pαj and Pβj under their respective nulls 
αj = 0 and βj = 0 . Indeed, the p-value under the null is stochastically larger than the 
p-value under the alternative. At the null internal node j (at least one of the αj and βj is 
zero), the Pmaxj converges to the p-value ( Pαj or Pβj ) under the null ( αj = 0 or βj = 0 ) 
as the sample size goes to infinity. Moreover, Pαj ’s are asymptotically independent over 
the nodes under αj = 0 and Pβj ’s are asymptotically independent over the nodes under 
βj = 0 because subcompositions Mj ’s over internal nodes are modeled as independent 
variables. Hence, Pmaxj ’s over null internal nodes are also asymptotically independent.

f̂ (pαj ) = π̂10 f̂ (pαj | αj �= 0)+ π̂00 + π̂01.

pj = π̂00p
2
maxj

+ π̂10pmaxj P̂r(Pαj ≤ pmaxj | αj �= 0)+ π̂01pmaxj P̂r(Pβj ≤ pmaxj | βj �= 0).
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When there is no mediating node in the tree (global mediation null setting), the ( ̂π00 , 
π̂10 , and π̂01 ) converge to the true values and yield uniformly distributed mediation 
p-values under the large sample size. In the presence of mediating taxa, the π̂00 under-
estimates the true π00 , and the π̂10 and π̂01 overestimate their corresponding parameter 
values. This is because the estimate of the proportion of mediation null hypothesis (i.e., 
π̂0 estimated using “product” or “maxp” approach described in the last section) is inher-
ently higher than the true value in the presence of mediating taxa, resulting in deflated 
π̂00 . This has been demonstrated in the simulation where the bias of π̂00 is always nega-
tive under the settings |Sα| = |Sβ | = 3 or 6 in Additional file 1: Table S6. Consequently, 
the mediation test p-value at the null internal node is superuniform in the presence of 
mediating taxa because π̂00t

2
j + π̂10tj + π̂01tj < π00t

2
j + π10tj + π01tj when π̂00 < π00.

Given the properties of mediation p-values shown above, to control FDR in multiple 
testing, we can apply the standard BH procedure [29] to identify a collection of nodes 
with significant mediation effects on the phylogenetic tree.

Global mediation test

We can combine all subcomposition mediation test p-values to test the global media-
tion null hypothesis that there is no mediation effect in any of the internal nodes (i.e., 
H0 : ∩J

j=1H
j
0 ). Here, we employ the HMP method [30]. Specifically, the weighted har-

monic mean of the subcomposition mediation test p-values p1, . . . , pJ is defined as

where wj ’s are weights that sum to 1 and we set wj = 1/J  by default. The global test 
p-value can be obtained by calculating the tail probability from the p̊ ’s null distribution 
approximation [30].

Simulation strategy

To resemble reality, we used a real microbiome dataset [32] as a basis for the simula-
tion. The data contained microbiome samples from 900 healthy subjects. We chose this 
dataset as our basis because of its large sample size. The data from a healthy cohort is 
representative of the distribution of microbiome without major perturbation. In each 
round of the simulation, we randomly sampled n = 50 or 200 subjects out of the 900 
and divided them into two equal-sized treatment and control groups ( Ti = 1 or 0 ). 
We used the top 100 most abundant OTUs and the associated phylogenetic tree with 
99 internal nodes. Let Sα and Sβ denote the set of treatment-associated and outcome-
associated OTUs, respectively, and |S| be the number of elements in S . Under the null of 
no mediation effect, these two sets of OTUs do not overlap and we consider five combi-
nations of (|Sα|, |Sβ |) values: (0, 0), (3, 0), (6, 0), (0, 3), (0, 6). Different values represent 
different mixtures of nulls H00 , H10 , and H01 : (0, 0) pertains to the setting where all local 
models are under H00 ; (3 or 6, 0) pertains to the setting where some local models are 
under H00 and others are under H10 ; (0, 3 or 6) pertains to the setting where some local 
models are under H00 and others are under H01 . Under the alternative, we let Sα = Sβ 
and both sets index mediating OTUs that are associated with the treatment and the 

p̊ =
∑J

j=1 wj
∑J

j=1 wjpj
,
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outcome. We considered 3 or 6 mediating taxa clustered on the tree. In the case of 3 
mediating taxa, we randomly selected a clade with three descendant OTUs and assigned 
them as mediators. In the case of 6 mediating taxa, we randomly selected two clades 
with three descendant taxa in each and assigned the six OTUs as mediators. We gener-
ated 2000 simulated datasets for each setting.

To perturb the abundance of each treatment-associated OTU k ∈ Sα , we randomly 
decide if we change the abundance of the OTU in the treatment group or the control 
group with equal probability. For each subject i in the chosen group, we increased its 
abundance by adding a random count sampled from Binomial(Ni,Afk) , where Ni is the 
sequencing depth of subject i, fk is the average observed proportion of OTU k across all 
the samples in the data, A controls the strength of the treatment-mediator association, 
and we set A = 0.5 . To simulate the outcome, we used the log-contrast regression model 
[33] that imposes a zero-sum constraint on the association coefficients to account for 
the compositional nature of the covariates. In our simulation, we considered both con-
tinuous and binary outcomes. For the continuous outcome, we generated data from the 
linear log-contrast regression model

where fik is the observed proportion of OTU k in subject i and ǫi is the zero-mean nor-
mal error. For the binary outcome, we generated data from the logistic log-contrast 
regression model

In these models, the coefficient βT was sampled from Uniform(0,  1) and βk ’s were 
sampled from Uniform(0, B), where B controls the strength of the mediator-outcome 
association, and we set B = 0.5 . The values of βk ’s were centered such that the zero-sum 
constraint was satisfied.

Additional simulation study was performed to evaluate the power of the PhyloMed 
global test with more taxa (especially the rare taxa). We include all OTUs in the basis 
dataset (rather than the top 100 in the default setting). In each simulated data, we 
retained OTUs with at least one non-zero observation. With the sample size of 200, the 
median number of retained OTUs across replicates of simulation is 422.

To evaluate the performance of different methods when the mediation signals are 
denser and the mediating OTUs are randomly scattered rather than clustered on the 
tree, we conducted another set of simulations with the continuous outcome. Specifi-
cally, we considered 3, 6, and 15 randomly scattered mediating OTUs. We also lowered 
the mediation effect size by decreasing A to 0.001 to evaluate how PhyloMed performs 
under challenging cases.

Software tools

MedTest: R package “MedTest” version 1.1, https:// github. com/ jchen 1981/ MedTe st
MODIMA: R script “modima.R”, https:// github. com/ aleks eyenko/ MODIMA
LDM-med: R package “LDM” version 5.0, https:// github. com/ yijua nhu/ LDM

Yi = βTTi +
∑

k∈Sβ

βk log(fik)+ ǫi, subject to
∑

k∈Sβ

βk = 0,

logit{Pr(Yi = 1)} = βTTi +
∑

k∈Sβ

βk log(fik), subject to
∑

k∈Sβ

βk = 0.

https://github.com/jchen1981/MedTest
https://github.com/alekseyenko/MODIMA
https://github.com/yijuanhu/LDM
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CMM: R package “ccmm” version 1.0 on CRAN
microHIMA: R package “HIMA” version 2.0.1, https:// github. com/ Yinan Zheng/ HIMA
Sensitivity analysis: R package “mediation” version 4.5.0 on CRAN
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