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Abstract 

Significant improvements in long-read sequencing technologies have unlocked 
complex genomic areas, such as centromeres, in the genome and introduced the cen-
tromere annotation problem. Currently, centromeres are annotated in a semi-manual 
way. Here, we propose HiCAT, a generalizable automatic centromere annotation tool, 
based on hierarchical tandem repeat mining to facilitate decoding of centromere 
architecture. We apply HiCAT to simulated datasets, human CHM13-T2T and gap-
less Arabidopsis thaliana genomes. Our results are generally consistent with previous 
inferences but also greatly improve annotation continuity and reveal additional fine 
structures, demonstrating HiCAT’s performance and general applicability.
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Background
Centromeres play an essential role in the transmission of genetic information between 
generations. Deep analysis of centromere architecture is critical to understanding 
genome stability, cell division, and disease development [1]. In most eukaryotes, cen-
tromeres exhibit extra-long tandem repeat (TR) sequences, but the sequence and length 
of repeat units, which are referred to as monomers, vary significantly among species [2]. 
The canonical order of monomers yields higher-order repeats (HORs) [3]. For exam-
ple, in the active centromere of the human X chromosome (CENX), 12 monomers (the 
length of one monomer is approximately 171 bp) are consecutively ordered as HOR units 
(the length of one HOR unit is approximately 12 × 171 bp) (Fig. 1a) [4]. The sequence 
identity between monomers within an HOR unit is only 50–90%, but the pairwise 
sequence identity between HOR units in a given centromere is as high as 95–100% [5]. 
The extra-long TRs and high homogeneity make it difficult to achieve accurate assem-
bly of centromeres, hindering thorough investigations of their sequence architecture [5]. 
The rapid development of long-read sequencing technologies, especially PacBio high-
fidelity (HiFi) reads, has greatly improved genome assembly quality [6]. Based on this 
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progress, the telomere-to-telomere (T2T) consortium presented the complete sequence 
of the human complete hydatidiform mole (CHM) cell line CHM13 in 2022 [7]. In addi-
tion, gap-free genome assembly has been achieved in a few plant genomes, such as those 
of Arabidopsis thaliana and Oryza sativa [8, 9]. Significant improvements in genome 
quality have also contributed to the development of bioinformatic methods for the study 
of centromere architecture.

Centromere annotation, including monomer inference and HOR detection, is 
a prerequisite for studying the structure and evolution of centromeres within and 
between species [10]. Previous studies annotated a substantial number of monomers 
and HORs in the human genome in a semi-manual manner, facilitating the under-
standing of centromere architecture [11–13]. However, this semi-manual method 
lacks a rigorous algorithm definition and is time-consuming and laborious, prohib-
iting its ready application to new assemblies. To address this question, Dvorkina 
et  al. proposed the first automatic centromere annotation tool, CentromereArchi-
tect [10], which was based on StringDecomposer (SD) [4], an algorithm for detect-
ing sequence blocks by taking monomer templates to decompose centromere DNA 
sequences. In CentromereArchitect, monomer inference and HOR detection were 
considered two separate problems without interconnections, which often led to 
biologically inadequate annotation [14]. The authors next proposed HORmon [14] 
based on the centromere evolution postulate (CE postulate, where each monomer 
appears only once in the HOR unit) to address the lack of interconnection issue in 
CentromereArchitect. HORmon first constructs a de Bruijn graph based on mono-
mers inferred from CentromereArchitect and then refines the monomers by con-
sidering positional similarity to amend the graph as a single cycle (referred to as 
the detected HOR) to comply with the CE postulate. Finally, HORmon classifies the 
detected HORs into canonical and partial HORs. However, the CE postulate has 
never been strictly proven and heavily depends on parameters [14], while a single 
occurrence of each monomer in a HOR does not always hold. For example, tandem 

Fig. 1  Examples of higher-order repeats (HORs). a HORs in CHM13 CENX. b Local-nested HORs (LN-HORs) 
in CHM13 CEN9. In the monomer tracks, rectangles in various colors represent different monomers. In the 
HORmon tracks, differently colored rectangles represent different annotations in HORmon. Blue, orange, and 
green rectangles represent the annotated canonical HORs, partial HORs, and monomers not belonging to 
any HORs, respectively
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amplification of HOR subunit does occur within HORs and forms so-called local-
nested HORs (LN-HORs) (Fig. 1b). Specifically, we observed LN-HORs in CHM13 
CEN9, CEN13, and CEN18 (Additional file  1: Fig. S1), violating the CE postulate 
[14]. Thus, a substantial number of partial HORs were introduced based on the CE 
postulate, breaking annotation continuity and hindering the characterization of fine 
internal architectures in these centromeres (Fig. 1b). To overcome these problems, 
we propose a generalizable automatic centromere annotation tool named HiCAT 
based on hierarchical tandem repeat mining (HTRM) using a bottom-up iterative 
TR compression strategy to detect and represent LN-HORs, achieving Hierarchical 
Centromere structure AnnoTation. We compared HiCAT with HORmon on simu-
lated datasets to validate the performance. And then, we applied HiCAT to newly 
assembled telomere to telomere (T2T) genomes of human [11] and Arabidopsis thal-
iana [8]. We compared the results from HiCAT and those from semi-manual and 
HORmon approaches. We found that our automated results are generally consist-
ent with those of previous studies. In addition, HiCAT greatly improved annotation 
continuity and was able to detect fine structures and organization of HOR units with 
length variation (LN-HORs) that were missed by other methods. All the comparison 
results demonstrate the superior performance and generalization of HiCAT.

Results
Overview of HiCAT​

HiCAT takes a monomer template and a centromere DNA sequence as inputs. There are 
two steps in HiCAT: generation of a block list and similarity matrix (Fig. 2a) and mining 
of HORs (Fig. 2b). In the first step, HiCAT uses StringDecomposer [4] to transform a 
centromere DNA sequence into a block list based on an input monomer template. Each 
block is a subsequence of the centromere DNA sequence and exhibits high similarity to 
the monomer template. Then, we defined a similarity score based on the block edit dis-
tance to obtain a block similarity matrix (“Methods”). To improve calculation efficiency, 
we pre-processed the block similarity matrix by merging identical blocks. In the second 
step, we defined a block graph whose nodes are blocks and edges are links between any 
two blocks if their similarity value is greater than a given similarity threshold. A series 
of graphs are created when the similarity threshold iteratively increases from the mini-
mum value (by default 94%) to nearly 100% with a specific step (by default 0.5%). For 
each constructed block graph, we used the Louvain algorithm [15, 16] to detect block 
communities, i.e. so-called monomers. We assigned a unique number to each detected 
monomer as its ID and transformed the block list into a monomer sequence. To detect 
LN-HORs, we proposed the hierarchical tandem repeat mining (HTRM) method 
(“Methods”, Additional file  1: Fig. S2 and Additional file  1: Supplementary method). 
HTRM recursively detected and compressed local TRs in the monomer sequence until 
no TRs were identified. After HTRM, we merged all TRs with shifted monomer pat-
tern units, such as 1–2-3–4, 4–1-2–3, 3–4-1–2, and 2–3-4–1, to obtain HORs. To build 
interconnections between monomer inference and HOR detection, we calculated the 
associated HOR coverage of each similarity threshold and chose the threshold with the 
largest coverage to obtain HiCAT HORs. Finally, we scored HORs based on coverage 
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and the degree of local nesting to rank all HORs (“Methods”). Each HOR was named 
“R + (rank) + L + (length of HOR unit in the monomer pattern)”. For example, the first 
HOR in human CENX with 12 monomers was named R1L12.

Fig. 2  Overview of HiCAT. a Generation of the block list and similarity matrix. b Mining of higher-order 
repeats (HORs). td represents the similarity threshold in the current iteration. td+1 represents the similarity 
threshold in the next iteration. tmin is the minimum similarity threshold. step is the threshold increase for 
each iteration. For example, t0 = 94% and t1 = t0 + 0.5% = 94.5% . Si,j is the similarity between block i  and 
block j  . HTRM: hierarchical tandem repeat mining. Colored rectangles in the monomer sequence represent 
monomers
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Performance evaluation on simulated datasets

To comprehensively evaluate HiCAT’s performance, we simulated two datasets including 
both canonical HORs and LN-HORs. The LN-HORs were simulated based on canonical 
HORs (“Methods”, Additional file 1: Fig. S3). We simulated raw monomer template DNA 
sequence with 100, 200, 300, and 400 bp according to the reported satellite monomers 
often being 100–400 bp [17]. We built five diverged monomer templates by randomly 
mutating 10, 20 or 30% bases for each raw monomer template. We generated final DNA 
sequences by randomly mutating 0.5, 1.5 or 2.5% bases for each diverged monomer tem-
plate (Additional file 1: Fig. S3). We randomly simulated each case 10 times and obtained 
720 simulated HORs and LN-HORs in total (“Methods”, Additional file 2: Table S1 and 
Additional file 2: Table S2).

We first evaluated and compared HiCAT with HORmon (using default parameter) 
based on simulated canonical HORs. We found that the number of HORs annotated by 
HiCAT is closer to the ground truth of 40 HOR units than that of HORmon regard-
less of monomer size, monomer divergence and HOR divergence (Fig. 3a–c and Addi-
tional file 2: Table S1). Specifically, HiCAT correctly annotated 40 HOR units in 96.11% 
(346/360) simulated canonical HORs while 61.67% (222/360) for HORmon (Additional 
file 2: Table S1). We investigated the special cases that HORmon failed and found that 
HORmon misannotated majority of the events (89 out of 90 as 33 HOR units) while 
HiCAT correctly annotated most of the events (82 out of 90 as 40 HOR units) when 
monomer size was 400  bp, regardless of monomer divergence and HOR divergence 
(Fig.  3a and Additional file  2: Table  S1). Next, we evaluated HiCAT performance on 
simulated LN-HORs. On average, HiCAT annotated 19.7 local-nested units and 19.9 
canonical units (Fig. 3d). Specifically, 90.56% (326/360) LN-HORs from HiCAT annota-
tion were identical to the ground truth of 20 canonical HOR units and 20 LN-HOR units 
(Additional file 3: Table S2). We further investigated the annotation results of HORmon 
on the simulated LN-HORs and found that HORmon annotated 11.1 single monomers, 
38.5 partial HOR units and 39.3 canonical HOR units for each simulated LN-HOR data-
set on average (Fig. 3d).

Overall performance for human CHM13 centromeres

We first applied HiCAT in an active alpha satellite array for each centromere (Additional 
file 4: Table S3) of the human CHM13-T2T genome (v1.0) [11] and compared the results 

Fig. 3  Simulated validation for HiCAT and HORmon. The bias of canonical HOR annotation of HiCAT and 
HORmon grouped by a monomer size, b monomer divergence and c HOR divergence. d The result of HiCAT 
and HORmon in local-nested HOR annotation
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with published results obtained with semi-manual inference [11, 13]. We found that 
the HiCAT results were highly consistent with those of previous studies. The reported 
HORs in 21 out of 23 centromeres (CEN1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 18, 
19, 20, 21, 22, and X) were well detected by HiCAT, while substantial differences were 
observed for the remaining two chromosomes, CEN5 and CEN17 (Additional file  5: 
Table S4). We first took CEN11 and 15 as examples to explore the HiCAT results. We 
found that HORs in CEN11 were rather homogeneous, with as few as 12 nested units in 
R1L5 (Fig. 4a, b). In CEN15, there were approximately four times as many nested units 
in R1L11 as canonical units (Fig. 4c, d). The monomer pattern of the CEN15 R1L11 unit 
was 1–2-3–4-5-(6–7-8–9) × n-10–11. Each number represents a monomer, and “ × n” 
represents the number of times that a defined monomer set was repeated. For example, 
four consecutive monomers 6–7-8–9 in the R1L11 unit repeated, and most of them have 
two copies, while other numbers of repeats also existed (Fig. 4e).

In CEN1, 8, 9, 10, 13, and 19, previously reported HORs were not ranked first but 
among the top five HiCAT results (Additional file 5: Table S4) due to local-nested tan-
dem amplification (Fig. 4 and Additional file 1: Fig. S4). For CEN1, the first HiCAT HOR 
was R1L2 with two monomers, which was consistent with previously reported dimeric 
expansions in D1Z7 [13] (the HOR name in previous studies was displayed as “D + chro-
mosome number + Z + sequential number” [3, 11]). In the CHM13 genome, a 1.7-Mb 
inversion in the CEN1 active alpha satellite array [11] and split the reported D1Z7 into 
two HORs, R2L6, and R3L6 (Fig. 4f ), with reversed monomer patterns of 1–2-5–6-4–3 
and 3–4-6–5-2–1, respectively (Fig. 4g). In R2L6 and R3L6, we also detected LN tandem 
amplification in two monomers (1–2) at a peak of four copies (Fig. 4g).

For CEN8, HiCAT detected four frequent HORs, namely, R1L15, R2L7, R3L8, and 
R4L11 (Fig. 4h, i), corresponding to the reported HORs with different number of mono-
mers (4, 7, 8, and 11) [11, 18]. We found that R1L15 reported by HiCAT is a combi-
nation of two HORs with 11 monomers and 4 monomers, respectively (Additional 
file 1: Fig. S5a, b). We also detected the reported location bias of these HORs [18], that 
is R4L11 was mainly distributed in the marginal area, while R2L7 was enriched in the 
center. R1L15 and R3L8 were distributed between R4L11 and R2L7. Furthermore, we 
compared the monomer annotation from HiCAT and previous reported D8Z2 (so-
called S2C8H1L) [11, 18], and found monomer annotation is largely consistent although 
S2C8H1L.7 and S2C8H1L.4/7 were annotated as monomer 11 in HiCAT due to their 
high identity (95.93%) (Additional file 1: Fig. S5a, c). All of these results demonstrate the 
reliability of HiCAT on centromere HOR annotation. From these HOR patterns detected 
by HiCAT, we concluded that HOR patters in human centromeres are diverse and some 
of them show location specificity. Moreover, the results showed that large structure rear-
rangements exist in some centromeres.

Substantial differences between HiCAT and semi‑manual HOR annotations in CEN5 

and CEN17

Previous studies have reported that CEN1, 5, and 19 contain shared HORs with 
six monomers (D1Z7, D5Z2 and D19Z3, so-called S1C1/5/19H1L) belonging to 
suprachromosomal family 1 (SF1) and are organized as alternating dimers of J1 and 
J2 monomers [13]. D1Z7 and D19Z3 were detected in CEN1 (R2L6 and R3L6) and 
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CEN19 (R2L6), respectively (Fig. 4f and Additional file 1: Fig. S4a), while D5Z2 was 
not detected in the top five HiCAT results in CEN5 (Additional file 1: Fig. S6a). CEN5 
contains hybrid monomers which are a concatenate of two or more monomers, and 
D5Z2 is the result of dehybridization [11, 13, 14]. In HiCAT annotation, the top pat-
tern in CEN5 was R1L12 with 12 monomers, which are consistent with monomers 

Fig. 4  Fine structures in CHM13 CEN11, CEN15, CEN1, and CEN8. a Structure and annotation of CEN11. b 
The numbers of HOR repeats in CEN11. c Structure and annotation of CEN15. d The numbers of HOR repeats 
in CEN15. e The numbers of monomer patterns in CEN15 R1L11. f Structure and annotation of CEN1. g The 
number of monomer patterns in CEN1 R2L6 and R3L6. h Structure and annotation of CEN8. i Dotplots for 
different HORs in CEN8. D11Z1, D15Z3, D1Z7, and D8Z2 are previously reported HORs. MP is the monomer 
pattern. # means the number of
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in D5Z2 annotated from Altemose et  al. [11] (Additional file  1: Fig. S6b). HiCAT 
annotated three major hybrid monomers S1C1/5/19H1L.2/6, S1C1/5/19H1L.6/4 and 
S1C1/5/19H1L.2/4 as monomer 2, 7, and 8, respectively (Additional file 1: Fig. S6b,c). 
R1L12 was D5Z2 without dehybridization (Additional file 1: Fig. S6c,d). In R1L12, the 
number of nested units was approximately three times greater than that of canoni-
cal units (Fig. 5a). The HOR patterns with monomer lengths of 12, 16, and 20 were 
the top-three most frequent types of patterns, and their specific patterns were 1–2-
3–4-5–6-1–7-(1–2-3–8) × n with n = 1, n = 2 and n = 3, respectively (Fig.  5b, Addi-
tional file  1: Fig. S6d). The canonical HORs in R1L12 were significantly enriched 
(p-values < 0.05, z-test) in the marginal area and LN-HORs including 1–2-3–4-5–6-
1–7-(1–2-3–8) × 2 and 1–2-3–4-5–6-1–7-(1–2-3–8) × 3 were significantly enriched 
(p-values < 0.05, z-test) in the center (“Methods”, Fig.  5c and Additional file  6: 
Table S5).

Two HORs, D17Z1-B and D17Z1, were reported in CEN17 [11, 14]. D17Z1-B with 14 
monomers was detected as R3L14 by HiCAT (Fig. 5d), while D17Z1 with 16 monomers 
was detected as a special case of HiCAT R1L14 with monomer pattern of 1–2-3–4-5–6-
(7) × n-8–9-10–11-12–13-14 (Fig. 5e). For R1L14, 1272 HOR units contain local-nested 
TRs, while as few as 10 units were canonical (Fig. 5e, Additional file 1: Fig. S6e). Most 
of the R1L14 units contain 16 monomers with n = 3 (Fig. 5e), corresponding to D17Z1 
with monomer W1 (monomer 7 in HiCAT) triplication (Additional file 1: Fig. S6f ) [19]. 
Moreover, we also detected other rare fine structures of R1L14 with different copy num-
bers of monomer 7 up to five (Additional file 1: Fig. S6g).

Fig. 5  Resolving centromere structure in CHM13 CEN5 and CEN17. a The HOR repeat number in CEN5. b The 
number of monomer patterns in CEN5 R1L12. c Structure and annotation of CEN5 for R1L12 with different 
monomer pattern lengths. We split CEN5 into 25 bins and labelled the significantly enriched (p-value < 0.05, 
z-test) R1L12 units for each bin. d Structure and annotation of CEN17. e The number of monomer patterns in 
CEN17 R1L14 and dot plot for R1L14 (D17Z1) with 16 monomers. D17Z1 and D17Z1-B are previously reported 
HORs in CEN17. MP is the monomer pattern. # means the number of
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Comparison with HORmon annotation on human CHM13 centromere

We also compared the HORs detected by HiCAT and HORmon [14]. First, we evaluated 
centromere annotation coverage and continuity in all CHM13 centromeres (Additional 
file 7: Table S6) and found that the median coverage of both methods was greater than 
98% (Fig.  6a). Moreover, we found that HiCAT significantly outperformed HORmon 
(p-value = 4.6e − 7, Wilcoxon rank sum test) in terms of continuity, with fewer annota-
tion breakpoints because the LN-HORs were well captured by HTRM (Fig. 6b and Addi-
tional file 1: Fig. S7a).

Next, we further compared HiCAT with HORmon in detail by examining CEN9, 13 
and 18, which have extensive LN-HORs. Overall, the monomers inferred by the two 
methods were largely consistent (Fig. 6c and Additional file 1: Fig. S7b, c). For example, 

Fig. 6  Comparison of HOR annotations between HiCAT and HORmon. a Compared with HORmon in 
annotation coverage. b Compared with HORmon in annotation continuity. p-value = 4.6e − 7. *** represents 
p-value < 0.001, Wilcoxon rank sum test. c Monomer Sankey plot for CEN9 showing the high consistency 
between the two methods. To display the frequent monomers, we filtered the links with fewer than 10 
matches. The complete Sankey plots are shown in Additional file 1: Fig. S7g-i. d–f Structure and annotation 
of CEN9 (d), CEN13 (e), and CEN18 (f) with two methods. Here, “canonical” represents canonical HORs, “partial” 
represents partial HORs, and “monomers” represents monomers that do not belong to any HORs. g The 
number of monomer patterns in CEN18 R1L12. D9Z4, D13Z1, and D18Z1 are previously reported HORs. MP is 
the monomer pattern. # means the number of
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the frequent monomers inferred by HiCAT and HORmon were consistent in CEN9 
(Fig. 6c) but different in CEN13 monomer 1 and CEN18 monomers 1 and 4 due to a few-
nucleotide difference (Additional file 1: Fig. S7b, c) [14].

For HOR detection, HORmon detected canonical HORs with a monomer pattern as 
A4/9-(L9 + B9 + Y9)-C9-D9-E9-Z4/9-(G9 + M9) in CEN9 [14]. However, monomer F9 
with a frequency of 1193 was annotated as a single monomer in HORmon not belonging 
to any HORs, reducing the coverage of HOR annotation. In HiCAT, due to the HTRM 
method, monomer 8 (corresponding to monomer F9 in HORmon) was annotated as a 
subcomponent of R1L11 with a monomer pattern of (1–2-3–4) × m-5–6-7-(1–2-3–
8) × n (Fig. 6d), resulting in an increase in coverage from 88% (in HORmon) to 94% (in 
HiCAT) (Additional file 1: Fig. S4e). In CEN13 and CEN18, the monomer patterns of 
HORs were consistent between HORmon and HiCAT; e.g. D13Z1 (HORmon) equalled 
R2L11 (HiCAT) in CEN13, and D18Z1 (HORmon) equalled R1L12 (HiCAT) in CEN18 
(Fig. 6e, f ). However, nearly half of the regions were defined as partial HORs or single 
monomers by HORmon in CEN13 and CEN18 (Additional file  1: Fig. S7d), generat-
ing 726 and 1750 breakpoints, respectively, more than 10 times the number in HiCAT 
(Additional file 7: Table S6). We reported more fine structures of HORs than HORmon. 
For example, the canonical monomer pattern R1L12 in CEN18 was 1–2-3–4-5–6-7–8-
1–4-9–10, and most of the nested units contained 16 monomers and 6–7-8–1 or 1–4-
9–10 in the R1L12 unit repeated (Fig. 6g). Interestingly, we found that the HOR R2L8 in 
CEN18 with monomer pattern 1–2-3–4-5–6-7–8 was mainly concentrated on the right 
end of CEN18, reported as partial HORs in the HORmon annotation (Fig. 6e, Additional 
file 1: Fig. S7f ).

Annotation of centromere structures in the plant genome

To demonstrate generalization of HiCAT, we applied it to Arabidopsis thaliana Col-
CEN centromeres assembled by Naish et al. [8]. We first evaluated the accuracy of HOR 
annotation by comparing our results with the reported representative HOR region of 
chr2:4,808,994–4,826,785 [8]. HiCAT detected this HOR as R18L8 (chr2:4,800,609–
4,844,007) with a canonical monomer pattern of 2–1-3–4-2–3-4–1 (Fig. 7a, b, Additional 
file 1: Fig. S8, Additional file 8: Table S7). Next, we applied HiCAT to all centromeres in 
the Col-CEN assembly (Additional file 4: Table S3, Additional file 8: Table S7). In con-
trast to human centromeres, in which most HORs evolved from dimers or pentamers 
[19], we found one monomer tandem amplification (monomic expansion) in all Arabi-
dopsis thaliana centromeres (Fig. 7c, Additional file 1: Fig. S9). For example, in CEN1, 
the top HOR was R1L2 with canonical pattern 1–2 (Fig. 7c, d), and monomers 1 and 2 
had a substantial number of copies (Fig. 7e).

Discussion
High-precision and long-read sequencing technologies have revolutionized genome 
assembly, unlocking complex centromere regions and signalling a new stage in genom-
ics research. The new computing problems introduced by these advances, such as the 
centromere annotation problem, require novel bioinformatics methods. Here, we pro-
pose HiCAT, a generalized computational tool based on the HTRM method to automat-
ically process centromere annotations. The simulated tests demonstrated that HiCAT 
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outperforms HORmon. Furthermore, HiCAT is able to correctly annotate HORs in 
both human and plant centromeres, especially those with complex LN-HORs which 
were annotated as fragmented partial HORs in HORmon. This improvement facilitates 
the detection of fine structures and organization of HOR units with length variation in 
centromeres. For example, in human centromere, we found that nested tandem ampli-
fication of dimer is common in CEN1 at a peak of four copies (Fig.  4g). In CEN5, we 
found that LN-HORs were enriched in the center and canonical HORs were significant 
enriched in the marginal area (Fig.  5c). In CEN17, HiCAT reported monomer 7 with 
different numbers of copies up to five (Additional file 1: Fig. S6g). HiCAT contributes to 
the growing but limited toolkit of methods needed to annotate newly assembled satellite 
DNA regions in both human and non-human genomes. HiCAT results illuminate the 
organization and evolution of centromere-associated satellite DNA in ways that semi-
manual annotation might miss, while enabling the investigation of these regions in an 
automated fashion in many genomes.

The efficiency of any computational approach is vital for its success. We ran HiCAT on 
a Linux machine with 28 cores (Intel(R) Xeon(R) Gold 6132 CPU @ 2.60 GHz). In all our 
tests, the maximum runtime was approximately 2 h for Arabidopsis thaliana CEN5, with 
a length of 2.8 Mb, and the minimum runtime was only 28 s for CHM13 CEN21, with a 
length of 331 kb (Additional file 9: Table S8).

Currently, HiCAT annotates both canonical and local-nested HORs (LN-HORs) 
while the latter was defined as tandem amplification of a subunit (Additional 
file  1: Fig. S10), such as from A-B-C-D-E–F (canonical) to (A-B) × n–C-D-E–F 
(local-nested). For the special case of A-B-A-B-C-D-E–F, HiCAT annotates it as 

Fig. 7  Annotation of centromere structures in Arabidopsis thaliana CEN2 and CEN1. a Structure and 
annotation of CEN2 R18L8. b Dot plot and similarity heatmap for a part of R18L8. The complete dot plot and 
similarity heatmap are shown in Additional file 1: Fig. S8. c Structure and annotation of CEN1. d The HOR 
repeat number in CEN1. e The number of monomer patterns in CEN1 R1L2. MP is a monomer pattern. # 
means the number of



Page 12 of 17Gao et al. Genome Biology           (2023) 24:58 

(A-B) × 2-C-D-E–F while a single deletion of C-D-E–F indeed results in the same 
outcome (Additional file 1: Fig. S10b, c). We admit that in this case, both interpre-
tations are equivalent. However, we observed abundant cases with n > 2, like A-B-
A-B-A-B-C-D-E–F. For example, in CEN1, two monomers 1–2 in HOR pattern 
1–2-5–6-4–3 are tandem amplification and most of them have four copies (Fig. 4g). 
We also detected other patterns of 1–2-5–6-4–3 with different copy numbers of 
1–2 even more than ten (Fig.  4g). These cases would seem more likely to be due 
to nested tandem repeat amplification rather than by a multiple deletion process 
(Additional file 1: Fig. S10d, e). Having observed above instances, we believe that a 
unified framework of tandem repeat amplification to annotate both n = 2 and n > 2 
would be preferred, but we do not rule out alternative explanations, like deletions.

As promising as HiCAT is, there are still some technical limitations and future 
work that we plan to address. The first is the parameter of minimum similarity. 
Although we selected the max TR coverage result to guide selection of the simi-
larity threshold, some concerns still should be discussed. If the minimum similar-
ity threshold is set too low, some monomers may be merged, and we may obtain 
the ancestral state. If the parameter is set too high, the similarity judgment between 
blocks will be too strict, resulting in too many monomers and leading to failure of 
HOR detection. In our research, based on a previous study in human centromeres, 
we set the minimum similarity threshold as 94% since the similarity between HOR 
units was reported to be in the range of 95–100% in humans [5]. For future newly 
assembled genomes, this parameter may need to be adjusted to adequately reflect 
centromere evolution. Although HOR detection from a fully assembled genome 
gives us comprehensive centromere structures, generating a full genome assembly is 
still a challenging problem. Annotation of HORs from raw reads is one possible way 
to obtain and validate centromere structures, and the method named Alpha-CEN-
TAURI has been proposed and applied [20, 21]. We will update HiCAT to accept raw 
reads as input to extend its application scenarios. Finally, hybrid monomers are also 
important for comprehensively studying centromere architecture and evolution and 
were hypothesized as the “birth” of new frequent monomers and were reported in 
human CEN5 and CEN8 [14]. Currently, HiCAT defines monomers based on only 
the community detection algorithm, and we will update the monomer inference step 
to detect hybrid monomers in the future.

Conclusions
We have presented a generalized computational tool, HiCAT based on the HTRM 
method to automatically process centromere annotations. In human and Arabidop-
sis thaliana centromeres, we showed that HiCAT annotation not only were generally 
consistent with previous inferences but also greatly improved annotation continu-
ity and revealed additional fine structures, demonstrating HiCAT’s performance and 
general applicability. We believe that with the emergence of a substantial number 
of high-quality genomes, HiCAT will promote the study of pan-species centromere 
diversity and genetic diseases due to defects in centromeres.
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Methods
Datasets in humans and Arabidopsis thaliana

We obtained active alpha satellite arrays from the complete sequence of the human 
CHM13 cell line assembled by the T2T Consortium (version 1.0) [11, 14]. CHM13 
centromere annotation by the T2T Consortium was obtained from UCSC Table 
browser. HORmon annotation of CHM13 centromeres was downloaded from fig-
share [14]. We used the Col-CEN assembly of the Arabidopsis thaliana genome and 
obtained the corresponding centromere coordinates from Naish et  al. [8]. The cen-
tromere regions in both CHM13 and Col-CEN are summarized in Additional file 4: 
Table S3.

Generation of the block list and similarity matrix

The first step of HiCAT was to decompose the centromere DNA sequence into the 
block list based on the input monomer template by StringDecomposer [4] (Fig. 2a). 
We defined the similarity between blocks b1 and b2 as:

where ed is edit distance between b1 and b2 . b.len is the block length. We calculated the 
similarity of each block pair to obtain the similarity matrix. Then, we merged the identi-
cal blocks (similarity = 100%) to obtain the merged similarity matrix for improving com-
puting efficiency in the HOR mining step.

Mining HORs

Based on the merged similarity matrix, we first defined the block graph, whose nodes 
are blocks and edges are links between any block pairs if their similarity is greater 
than a given similarity threshold. A series of block graphs were constructed based 
on the similarity threshold iteratively increasing from the minimum value (by default 
94%) to nearly 100% with a specific step (by default 0.5%). Then, we applied the Lou-
vain algorithm [15, 16] to detect communities in each graph and considered each 
detected community as a monomer. We assigned a unique number to each monomer 
as its ID. Next, we transformed the block list into monomer sequences based on block 
communities (Fig. 2b). Since local-nested TRs hinder the detection of HORs, we pro-
posed the HTRM method to iteratively detect TRs in monomer sequences. HTRM 
includes monomer tandem detection, region checking, and sequence updating mod-
ules. The input of HTRM is a monomer sequence with an upper bound for the length 
of the TR unit (by default 40 for improving efficiency). We defined a top layer data 
structure to record non-overlapping TRs with maximum coverage. First, HTRM 
applied a monomer TR detection module (Additional file 1: Fig. S2a and Additional 
file  1: Supplementary method) to detect new TRs with a given TR unit length. The 
initial TR unit length is one. In the second step, we performed region checking (Addi-
tional file 1: Fig. S2b) to check for overlap between newly detected TRs (new TRs) and 
TRs already stored in the top layer (old TRs). The new TRs and old TRs were modified 
based on four situations. If there was no overlap between them, the new TRs could be 
saved in the top layer directly. If partial overlap was detected between old and new 

(1)1− ed(b1, b2)/max(b1.len, b2.len)
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TRs, the overlapping new TRs were removed, and the remaining ones were saved in 
the top layer. If new TRs covered old TRs, the new TRs replaced old TRs in the top 
layer. Finally, if new TRs were covered by old TRs, the new TRs were discarded. In the 
sequence updating module, if the top layer was not updated in the region checking 
step, the TR unit length for detection was increased by one to redetect TRs. Oth-
erwise, the monomer sequences of the newly saved TR region were compressed. 
After compression, we redetected the TRs by resetting the TR unit length to one. The 
details and pseudocode of HTRM are shown in the Additional file 1: Supplementary 
method. After HTRM, all detected TRs are reported, and their units are normalized; 
e.g. units of 4–1-2–3, 3–4-1–2, and 2–3-4–1 will be normalized as 1–2-3–4. Then, 
we merged TRs with the same ordered set of normalized units as a HOR. We calcu-
lated the associated HOR coverage of each similarity threshold and chose the thresh-
old with the largest coverage for defining HiCAT HORs. Finally, we ranked HiCAT 
HORs by HOR score combining the coverage and the degree of local nesting. The 
HOR score is defined as:

where cr is the coverage for the HOR in the input monomer sequence. pr represents the 
degree of local nesting. HOR.len is the length of the HOR region in the monomer pat-
tern, and m.len is the length of the monomer sequence. HOR.rn is the repeat number for 
the HOR, and HORunit.len is the length of the HOR unit in the monomer pattern. If the 
HOR is over-compressed, which means that it contains only a small number of repeats 
but with high coverage, HOR.rn will be significantly smaller than HOR.len/HORunit.len , 
and pr will balance the coverage and nested degree of the HOR. We named each HOR 
in each chromosome as “R + (ranking) + L + (HORunit.len)”. For example, in human 
CEN11, the first HOR is R1L5.

Simulated tests

We simulated two datasets including canonical HORs and LN-HORs. The simula-
tion process contains two steps: simulating monomer sequences and simulating DNA 
sequences (Additional file 1: Fig. S3a). In the first step, we set HOR unit with five mon-
omers and simulated 40 HOR units as canonical HOR monomer sequences. Next, we 
randomly selected 20 out of 40 canonical HOR units to generate LN-HORs. For each 
chosen unit, we randomly selected one to four consecutive monomers of the unit and 
tandemly amplified the chosen monomer(s) for a random number of times within 
the range from two to five. In the second step, we simulated raw monomer template 
DNA sequence with 100, 200, 300, and 400  bp since satellite monomer size are often 
observed in 100–400 bp [17], respectively. Then, we generated five diverged monomer 
templates by randomly mutating 10, 20, or 30% bases for each raw monomer template. 
Finally, based on the monomer sequences acquired in first step, we generated final DNA 

(2)HORscore = cr∗pr

(3)cr = HOR.len/m.len

(4)pr = HOR.rn/(HOR.len/HORunit.len)
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sequences by randomly mutating 0.5, 1.5, or 2.5% bases for each diverged monomer 
template (Additional file 1: Fig. S3b, c). In each case, we can obtain 36 (4 × 3 × 3) sets 
of simulated data and we repeated 10 times. Finally, we obtained 360 sets of canonical 
HOR data and 360 of LN-HOR. The code for generating simulation data is in https://​
github.​com/​xjtu-​omics/​HiCAT.

We compared HiCAT with HORmon using default parameter. And the bias measure-
ment is defined as:

where AN  is the number of annotation HOR number and GT  is ground truth HOR 
number which is 40 HOR units.

Enrichment analysis of HORs in CEN5

We split the CHM13 CEN5 into 25 bins to determine the location specificity of 12, 16, 
and 20 monomer HOR patterns. Firstly, we randomly generated the same number of 12, 
16 and 20 monomer HOR patterns based on uniform distribution across CEN5 with 100 
times. Then, we calculated mean ( µ ) and standard deviation ( σ ) of the background dis-
tribution for each HOR pattern, and calculated the z = (Nobv − µ)/σ , where Nobv is the 
observed pattern number and p-value is calculated by z based on the standard normal 
distribution.

Annotation visualization

StainedGlass [22] was used to visualize the TR structures with identity heatmaps, and 
the window size was set to 2000. We used Gepard [23] to create dot plots. For HiCAT 
results, within each centromere, we visualized the top five HORs with repeat numbers 
greater than 10 and reported all detected HORs in the output files.
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