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Abstract 

We propose BIGKnock (BIobank-scale Gene-based association test via Knockoffs), a 
computationally efficient gene-based testing approach for biobank-scale data, that lev‑
erages long-range chromatin interaction data, and performs conditional genome-wide 
testing via knockoffs. BIGKnock can prioritize causal genes over proxy associations at a 
locus. We apply BIGKnock to the UK Biobank data with 405,296 participants for multiple 
binary and quantitative traits, and show that relative to conventional gene-based tests, 
BIGKnock produces smaller sets of significant genes that contain the causal gene(s) 
with high probability. We further illustrate its ability to pinpoint potential causal genes 
at ∼ 80% of the associated loci.

Keywords:  Gene-based associations, Fine-mapping, Knockoff statistics, Algorithmic 
leveraging, UK Biobank

Background
Gene-based tests that incorporate regulatory variation from proximal and distal regula-
tory elements are appealing given that most genetic variants associated with complex 
traits reside in non-coding regions. Unlike single variant testing which requires follow-
up investigations to identify the causal gene(s), gene-based testing that incorporates 
putative regulatory elements provides a unified test at the gene level. Transcriptome-
wide association tests (TWAS) are typical examples of gene-based tests that leverage 
expression quantitative trait loci (eQTL) data from reference datasets such as GTEx [1]. 
However, a main challenge is the high false positive rate for such tests caused by con-
founding due to linkage disequilibrium (LD) and co-regulation. Reducing the number of 
false positive associations, referred to as fine-mapping, is essential for prioritizing causal 
genes and for a more mechanistic understanding of genetic associations. Although fine-
mapping approaches have been proposed for TWAS [2], these approaches are limited to 
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eQTLs being present in the reference datasets, and the majority of genetic associations 
cannot be clearly assigned to existing eQTLs [3–5].

Biobanks with comprehensive genetic and phenotypic data from electronic medical 
records provide a powerful resource for genomic studies. For example, the UK biobank 
is comprised of genotype and phenotype data on about 500,000 individuals and mil-
lions of genetic variants [6]. In previous work [7] we have proposed a new gene-based 
test (GeneScan3D) that incorporates genetic variation in proximal and distal regula-
tory elements (not restricted to eQTLs) and its knockoff version (GeneScan3DKnock) 
which performs genome-wide conditional tests (on LD) via knockoffs in order to reduce 
the confounding effect of LD [8]. The idea behind knockoff-based inference is to gen-
erate synthetic, noisy copies (knockoffs) of the original genetic variants that resemble 
the true variants in terms of preserving correlations but are conditionally independent 
of the phenotype given the true genetic variants. The knockoffs serve as negative con-
trols and help select significant variants while controlling the false discovery rate (FDR). 
Constructing multiple knockoff genotype features is time consuming and GeneScan3D-
Knock cannot be scaled to the large number of individuals and large number of vari-
ants available in biobank-scale datasets. In this paper we propose a gene-based test via 
knockoffs for biobank sized data, BIGKnock. The main ingredient for the improved com-
putational efficiency is the use of a sampling technique based on the empirical statistical 
leverage scores as an importance sampling distribution [9]. We further take advantage 
and implement recent developments for linear mixed models [10, 11] that make such 
models scalable to biobank sized datasets.

We illustrate BIGKnock’s performance in terms of power, FDR control and compu-
tational cost using simulations. We then demonstrate BIGKnock’s ability to prioritize 
likely causal genes for several binary and continuous traits in the UK biobank data. We 
illustrate with several loci where BIGKnock prioritizes well known causal genes along 
with loci with new, plausible causal genes. We also show that the prioritized genes have 
interesting properties relative to non-significant genes that are consistent with them 
being putative causal genes. Relative to recent causal gene prioritization methods such 
as combined SNP-to-gene (cS2G) [12] and Locus-to-gene (L2G) [13] which are based on 
supervised machine learning methods to integrate various functional features predictive 
of the causal gene(s) at a locus, and which are therefore dependent on good quality train-
ing data and high quality fine-mapping results, our gene-based test avoids these limita-
tions, produces more interpretable results (in terms of q-values and FDR control) and 
naturally restricts false positives due to LD confounding.

Results
Overview of BIGKnock

We provide here a brief overview of the proposed gene-based test, BIGKnock. BIG-
Knock provides a biobank-scale implementation of GeneScan3DKnock, by implement-
ing a sampling method called algorithmic leveraging, that uses the empirical statistical 
leverage scores as an importance sampling distribution [9]. BIGKnock computes for 
each gene a knockoff statistic W that measures the importance of each gene (similar to a 
p-value), and then uses the knockoff filter to detect genes with sufficiently large W, i.e., 
those genes significant at a specified FDR target level [8]. We also compute a q-value for 



Page 3 of 28Ma et al. Genome Biology           (2023) 24:24 	

each gene. A q-value is similar to a p-value, except that it measures significance in terms 
of FDR rather than FWER, and already incorporates correction for multiple testing. The 
details on these specific tests can be found in the Methods section.

We compare the performance of BIGKnock with GeneScan3DKnock in terms of 
power, FDR control and computational efficiency using simulations. In particular, we 
show that GeneScan3DKnock incurs substantial computational cost when applied to the 
UK Biobank data. We illustrate the advantages of the knockoff-based test (BIGKnock) 
vs. the conventional test (GeneScan3D) using applications to UK Biobank traits.

Power, FDR and computational cost of BIGKnock in simulations

We perform simulations to evaluate the statistical performance of BIGKnock in terms 
of power and FDR control, as well as the computational performance for biobank-scale 
datasets. We sample n = 10, 000 unrelated individuals from the UK Biobank (Euro-
pean) individuals to evaluate the power and FDR of BIGKnock and GeneScan3DKnock. 
We randomly select 10 causal genes and 175 noisy genes with gene length ≤ 100 Kb. 
For each gene, we include the corresponding GeneHancer and ABC enhancers located 
within ± 100 Kb of the gene (this restriction is only done in simulations); on average, we 
include 6.6 enhancers for each selected gene. To avoid FDR inflation due to co-regula-
tion issues, we select genes such that the gene ± 100 Kb region do not overlap for differ-
ent genes. For each replicate, we set 5% of the variants in the gene ± 5 Kb buffer region 
(MAF> 0.01 ) to be causal, all located within a randomly selected 10 Kb causal window. 
Additionally, we also simulate causal variants in enhancers, i.e., we randomly set 5% of 
the variants in all enhancers for a causal gene to be causal. We generated the continuous/
binary traits using the selected causal variants as follows:

•	 For a continuous trait: Yi = Xi +GT
i β + ǫi,

•	 For a binary trait: logit(P(Yi = 1)) = Xi + GT
i β,

where Gi denotes the genotypes of causal variants across 10 assumed causal genes and 
the corresponding enhancers for individual i = 1, . . . , n , and β is the vector of the corre-
sponding effect sizes. Xi ∼ N (0, 1) is a covariate and ǫi ∼ N (0, 1) . The case-control ratio 
for binary phenotype is 1:3. We set the effect size βj = c|log10MAFj| . For continuous 
traits, c = 0.2 ; for binary traits, c = 0.35.

The empirical power and FDR are averaged over 200 replicates. The empirical power is 
defined as the proportion of causal genes being identified; the empirical FDR is defined 
as the proportion of detected genes that are non-causal. We present results for BIG-
Knock and GeneScan3DKnock for multiple knockoffs ( M = 5 ) and GeneScan3D-BH 
(the standard Benjamini-Hochberg procedure based on original GeneScan3D p-values). 
We show that both BIGKnock and GeneScan3DKnock control the FDR at the target 
level, while GeneScan3D-BH has inflated FDR (Fig. 1a, b). BIGKnock has similar power 
as GeneScan3DKnock. Although GeneScan3D-BH has the highest power, its FDR can-
not be controlled (as also shown previously in [7]).

To compare the running time of BIGKnock and GeneScan3DKnock for knockoff gen-
eration, we consider varying sample sizes from 1000 to 400,000 in the UK Biobank data. 
The computing time was evaluated based on 1347 variants in one randomly selected 
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gene. BIGKnock with shrinkage algorithmic leveraging only takes 2.5 CPU hours to run 
for 400,000 individuals (Fig. 1c). However, GeneScan3DKnock is not able to finish com-
putation in less than 12 CPU hours for n > 300, 000 , so the computing time is truncated 
at n = 300, 000 . The computing time was evaluated on a single CPU (Intel Xeon CPU 
E5-2630 @ 2.30GHz).

Applications to UK Biobank: binary traits

We applied BIGKnock to nine binary traits in the UK Biobank, including hyperten-
sion, coronary artery disease (CAD), asthma, type 2 diabetes (T2D), hypothyroidism, 
hyperlipidemia, skin cancer, varicose veins, and inguinal hernia (See Additional file  1: 
Table S1 for sample size information). Note that we have previously [7] compared the 
performance of the original knockoff-based test, GeneScan3DKnock, and GeneScan3D 
with other commonly-used tests including STAAR-O [14] and MAGMA/H-MAGMA 
[15, 16], and have shown improved power and FDR control relative to these existing 
methods. Therefore, in these applications we directly compare BIGKnock with the con-
ventional test (GeneScan3D) to illustrate the advantages of the knockoff-based testing 
approach. We use a Bonferroni adjusted threshold of 2.5× 10−6 for GeneScan3D and 
an FDR threshold of 0.01 or 0.05 (depending on the size of the study) for BIGKnock. 
For nine binary traits we consider here, we identify 2295 gene-trait associations for 
GeneScan3D and 1555 associations for BIGKnock (Additional file  2: Supplementary 
Tables  6-14). Among the 2295 significant associations under GeneScan3D, only 1349 
(58.8%) are significant under BIGKnock, despite the more liberal (FDR) threshold used 
by BIGKnock. This reduction in the number of significant associations can be, in part, 

Fig. 1  Power, FDR and computing time comparisons for different methods. a and b Power and FDR 
comparisons between GeneScan3D-BH, GeneScan3DKnock and BIGKnock (M=5 knockoffs) for continuous 
and binary traits. c Computing time for different methods to generate knockoffs: GeneScan3DKnock and 
BIGKnock (with shrinkage algorithmic leveraging). The computing time were evaluated based on a gene with 
1347 variants, varying the sample size from 1000 to 400,000
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attributed to removal of some false positive associations due to the LD adjustment 
within the knockoff framework, consistent with simulation results showing inflated FDR 
for GeneScan3D.

We use the significant GWAS SNPs ( p < 5× 10−8 ) to define 1Mb loci centered at the 
most significant SNP. For each gene-based test (GeneScan3D and BIGKnock), we count 
the number of loci that contain at least one significant gene for each test respectively. 
In terms of the number of significant loci, GeneScan3D and BIGKnock show similar 
results, with most of the significant loci shared between GeneScan3D and BIGKnock 
(Additional file 1: Table S2). However, one of our main interests in employing the knock-
off framework is to filter out false positive genes that appear in the conventional GeneS-
can3D test. We therefore consider shared loci that contain at least one significant gene 
for both GeneScan3D and BIGKnock, and compare the number of significant genes 
identified by the two methods at such loci. The knockoff test discovers a smaller number 
of significant genes than GeneScan3D despite the more liberal FDR threshold (Fig.  2, 
Additional file 1: Fig. S1). We provide further evidence below that BIGKnock, by condi-
tioning on nearby variants, can prioritize genes more likely to be causal.

BIGKnock can prioritize putative causal genes at significant loci

We demonstrate that significant genes detected by BIGKnock tend to be enriched among 
genes nearest to the lead GWAS SNP at significant loci, the class of genes most likely to 
be the causal genes [17, 18]. We first perform the enrichment analysis (Methods) based 
on 257 BIGKnock significant loci for multiple binary traits. Knockoff significant genes 
are 4.5-fold (range 2.4–10.5 for nine binary traits) more likely to be the nearest gene rela-
tive to the rest of the genes at a locus (Fig. 3a). Similar results hold when we restrict the 
analyses to 245 loci shared between BIGKnock and GeneScan3D (4.7-fold with range 
2.4–9.1, Additional file 1: Fig. S2(a)).

Next, we focus on several loci where the knockoff-based test can prioritize only a few 
genes at a locus relative to the conventional GeneScan3D test (Table  1), and there is 
compelling literature support for a mechanistic role of the selected gene(s) in the patho-
genesis of the corresponding traits.

ALDH2 (aldehyde dehydrogenase 2) and coronary artery disease

We illustrate first in detail the association between ALDH2 and coronary artery disease. 
Although GeneScan3D identifies 12 significant genes at this locus, BIGKnock identifies 
only three of them as significant including ALDH2, BRAP, and ATXN2 (Fig.  4a). The 
additional associations detected by the conventional GeneScan3D test are likely due to 
LD between variants in those genes and putative causal variants in the ATXN2-ALDH2 
neighborhood. ALDH2 is expressed across many tissues in GTEx but is most abundant 
in the liver and adipose tissues (Fig. 4c). The role of ALDH2 in cardiovascular disease is 
well-documented in the literature [19]. The ALDH2 Glu504lys polymorphism is widely 
considered as a risk factor for the development of coronary artery disease, especially in 
Asian populations [20–22]. Furthermore, mitochondrial ALDH2 has emerged as a key 
enzyme for removal of ethanol-derived acetaldehyde, and has been shown to play a role 
in inflammation regulation and macrophages accumulation [23]. Epidemiological stud-
ies in humans carrying an inactivating mutation in ALDH2, combined with genetic and 
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pharmacological studies in animal models, have implicated ALDH2 in the development 
and prognosis of coronary heart disease, hypertension, type 2 diabetes, and stroke, and 
suggest ALDH2 as an important target for generating new treatments for heart diseases 
[24].

Additional loci with strong literature support

NGFR (nerve growth factor receptor) and asthma (Fig.  5a): Nerve growth factor has 
been implicated in both the immune and neuronal components of allergic asthma 
pathogenesis. Furthermore, the nerve growth factor (NGF) targeting treatment may be 
an important therapy for antigen-induced airway hyper responsiveness via attenuation 
of airway innervation and inflammation in asthma [25].

Fig. 2  Applications to UK Biobank binary traits (1). a–d, Manhattan plots for BIGKnock, Scatter plot of W 
knockoff statistics (BIGKnock) vs. −log10(p value) (GeneScan3D), and Scatter plot of the number of significant 
genes per locus between conventional GeneScan3D and BIGKnock are shown for a hypertension, b coronary 
artery disease, c asthma, and d type 2 diabetes. The dashed lines in the left and middle panels show the 
significance thresholds defined by Bonferroni correction (for p-values) and by false discovery rate (FDR; for W 
statistic)
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AGPAT1 (1-acylglycerol-3-phosphate O-acyltransferase 1) and type 2 diabetes 
(Fig. 5b): AGPAT1 is a metabolism (lipid biosynthesis) gene and plays important func-
tions in the physiology of multiple organ systems. In particular, Agpat1-deficient mouse 
developed widespread disturbances of metabolism including low body weight and low 
plasma glucose levels [26]. Furthermore, Agpat1 mouse knockout has low circulating 
glucose and increased urine glucose and urine microalbumin (International Mouse Phe-
notyping Consortium).

MARCHF5 (membrane-associated RING-CH-type finger 5) and type 2 diabetes 
(Fig. 5c): MARCHF5 is a PPARγ target gene that influences mitochondrial and cellular 
metabolism in adipocytes [27]. These functions likely alter the utilization of lipid, which 
subsequently impacts glucose metabolism.

IL2RA (interleukin 2 receptor subunit alpha) and hypothyroidism (Fig. 5d): IL2RA is 
involved in the regulation of T-cell function and has been related to autoimmune thyroid 
disease (AITD) [28].

CD69 (CD69 molecule) and hypothyroidism (Fig.  5e): Levels of CD69+ regulatory 
lymphocytes are increased in autoimmune thyroid disorder patients [29].

HMGCR​ (3-hydroxy-3-methylglutaryl-CoA reductase) and hyperlipidemia (Fig.  5f ): 
HMGCR​ has been identified as one of the therapeutic targets of hypercholesterolemia. 
It is a major point of control in cholesterol homeostasis and HMGCR​ and PCSK9 inhibi-
tors have been widely used to treat hypercholesterolemia in clinical settings [30].

APOA5 (apolipoprotein A5) and hyperlipidemia (Fig. 5g): There are multiple lines of 
evidence linking APOA5 and hyperlipidemia. For example, the APOA5 gene was found 

Fig. 3  Enrichment of BIGKnock significant genes among genes closest to the lead GWAS variant at BIGKnock 
significant loci. Enrichment of BIGKnock significant genes for a the nine combined binary traits and each 
binary trait separately; and b the 41 combined quantitative traits and each quantitative trait separately
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associated with familial combined hyperlipidemia and dyslipidemia in large dutch fami-
lies [31], and in an italian population [32].

Effector BIGKnock genes

We further restrict the list of BIGKnock significant genes by identifying those that coin-
cide with the closest gene (among all genes) to the top significant GWAS SNP at a locus. 
Among 257 significant BIGKnock loci across nine binary traits, we identify 178 ( 69% ) 
such loci. We call these genes effector BIGKnock genes. For loci that do not have effec-
tor BIGKnock genes, 35 loci have only one BIGKnock significant gene. Therefore, we 

Table 1  Selected loci for binary and quantitative traits. The number of significant genes per locus 
for GeneScan3D, BIGKnock, and BIGKnock significant genes are shown. The putative causal gene is 
shown in boldface font

BIGKnock locus-trait position (hg19) # 
GeneScan3D

# BIGKnock BIGKnock genes

BRAP-CAD 12: 111,986,818–
112,986,818

12 3 ALDH2, ATXN2, BRAP

UBE2Z-Asthma 17: 46,948,346–
47,948,346

11 2 NGFR, UBE2Z

AGPAT1-T2D 6: 32,126,272–33,126,272 12 1 AGPAT1
CPEB3-T2D 10: 93,966,910–

94,966,910
6 2 MARCHF5, CPEB3

IL2RA-Hypothyroidism 10: 5,606,266–6,606,266 8 2 GDI2, IL2RA
CD69-Hypothyroidism 12: 94,22,652–10,422,652 7 2 CD69, CLEC2B
HMGCR-Hyperlipidemia 5: 74,105,220–75,105,220 7 1 HMGCR​
BUD13-Hyperlipidemia 11: 116,148,917–

117,148,917
12 3 APOA5, BUD13, ZNF259

ASGR1-Cholesterol 17: 6,569,412–7,569,412 43 2 ASGR1, CD68
SLC39A8-BP-Diastolic 4: 103,269,304–

104,269,304
6 1 SLC39A8

DBH-BP-Diastolic 9: 135,649,709–
136,649,709

6 3 ADAMTS13, DBH, SARDH

ANGPTL4-Cholesterol 19: 7,951,937–8,951,937 9 1 ANGPTL4
RAB11A-Neutrophil 
count

15: 65,544,465–
66,544,465

8 1 RAB11A

ZHX3-Calcium 20: 39,455,078–
40,455,078

6 1 ZHX3

PPARG-LDL cholesterol 3: 11,739,931–12,739,931 6 1 PPARG​
POLDIP2-LDL cholesterol 17: 26,194,861–

27,194,861
22 3 POLDIP2, SLC13A2, 

TMEM199
E2F4-RBC count 16: 66,229,250–

67,229,250
18 3 E2F4, FAM96B, KIAA0895L

ENSA-WBC count 1: 150,095,537–
151,095,537

26 2 ENSA, MCL1

E2F2-Lymphocyte count 1: 23,019,508–24,019,508 11 1 E2F2
KCTD17-Hematocrit 
percentage

22: 36,962,936–
37,962,936

11 3 KCTD17, MPST, TMPRSS6

SAMD7-MCH 3: 169,029,895–
170,029,895

10 3 ACTRT3, LRRC31, SAMD7

ITGA4-Monocyte per‑
centage

2: 182,392,917–
183,392,917

6 3 CERKL, ITGA4, NEUROD1
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prioritize potentially causal genes at 213 (83%) loci (Additional file  2: Supplementary 
Table 57).

Mouse phenotype enrichment analyses

Using ToppFun [33] we have tested whether the effector BIGKnock genes are enriched 
in sets of genes associated with mouse phenotypes. The mouse phenotype data are 
extracted from the Mammalian Phenotype Ontology, and consists of mouse genes that 

Fig. 4  ALDH2-CAD and ASGR1-Cholesterol loci. a Scatter plot of W knockoff statistics (BIGKnock) vs. −log10(p 
value) (GeneScan3D) for the ALDH2-CAD locus, b Scatter plot of W knockoff statistics (BIGKnock) vs. −log10(p 
value) (GeneScan3D) for the ASGR1-Cholesterol locus, c GTEx gene expression across tissues for ALDH2, and 
d GTEx gene expression across tissues for ASGR1 
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cause phenotypes in genetically engineered or mutagenesis experiments. Effector BIG-
Knock genes are enriched in gene sets corresponding to relevant mouse phenotypes 
(Additional file 1: Fig. S3). For example, among the most significantly enriched pheno-
types were abnormal circulating insulin levels, and abnormal glucose tolerance for Type 
2 diabetes, abnormal systemic arterial blood pressure for hypertension, abnormal CD4-
positive, alpha-beta T cell physiology and abnormal T-helper 2 physiology for asthma, 
abnormal hepatobiliary system physiology for coronary artery disease, decreased choles-
terol level and decreased circulating cholesterol level for hyperlipidemia and abnormal 
skin pigmentation for skin cancer.

Applications to UK Biobank: quantitative traits

We have also applied BIGKnock to 41 quantitative traits in the UK Biobank (Additional 
file 1: Table S3).

Fig. 5  Putative causal genes at selected loci for UK Biobank binary traits. Scatter plots of W knockoff statistics 
(BIGKnock) vs. −log10(p value) (GeneScan3D) for selected loci of a asthma, b–c type 2 diabetes (T2D), 
d–e hypothyroidism, and f–g hyperlipidemia. Loci are named according to the most significant gene in 
BIGKnock. The dashed lines show the significance thresholds defined by Bonferroni correction (for p-values) 
and by false discovery rate (FDR; for W statistic).
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For quantitative traits we use more stringent FDR thresholds (0.001 or 0.005) relative 
to binary traits due to the much larger sample sizes and consequently large number of 
significant findings. For these 41 quantitative traits, we identify 125,246 gene-trait asso-
ciations for GeneScan3D and 80,917 associations for BIGKnock (Additional file 2: Sup-
plementary Tables 15-55). Among 125,246 associations significant under GeneScan3D, 
only 78,614 (62.8%) are significant under BIGKnock similar to the binary traits above.

We report the number of significant loci/genes per trait in Additional file 1: Table S4. 
As with the binary traits, for most of the significant shared loci, BIGKnock can reduce 
the number of significant associations despite the more liberal (FDR) thresholds being 
used (Additional file 1: Figs. S4-S11).

BIGKnock can prioritize putative causal genes at significant loci

As with binary traits, we demonstrate that significant genes detected by BIGKnock 
tend to be enriched among genes nearest to the lead GWAS SNP at significant loci. 
We first perform the enrichment analysis (Methods) on 13,548 BIGKnock significant 
loci for multiple quantitative traits. In particular, knockoff significant genes are 2.1-
fold (range 1.6–3.5 for individual traits) more likely to be the nearest gene relative to 
the rest of the genes at a locus (Fig. 3b). When we restrict the analyses to 13,224 loci 
shared between BIGKnock and GeneScan3D, similar enrichment can be observed 
(Additional file 1: Fig. S2(b)).

Next, we focus on several loci where the knockoff-based test can prioritize few 
genes at a locus relative to GeneScan3D (Table 1), and there is compelling literature 
support for a mechanistic role of the selected genes in the pathogenesis of the cor-
responding traits.

ASGR1 (asialoglycoprotein receptor 1) and cholesterol

We illustrate first in detail the example of ASGR1 and cholesterol. At the 1 Mb locus 
containing ASGR1, BIGKnock prioritizes two genes including ASGR1 among 43 genes 
significant using the conventional GeneScan3D test (Fig. 4b). Most of the GeneScan3D 
associations are due to gene-enhancer links for two enhancers (Additional file  1: Fig. 
S12). Specifically, 18 associations are due to variants in an enhancer GH17F007167 just 
upstream of gene ASGR1, and when accounting for LD with nearby variants, BIGKnock 
no longer detects them as significant. Furthermore, additional associations that are 
removed by BIGKnock are 12 genes linked to ABC enhancer chr17:7,144,929–7,146,587 
(hg19) downstream of gene ASGR1, and 6 genes linked to 4 other enhancers (Additional 
file 2: Supplementary Table 56). Therefore, at this locus, BIGKnock is able to prioritize 
two genes by adjusting for linkage disequilibrium in the region. ASGR1 is also highly 
expressed in liver (Fig. 4d). The role of ASGR1 in the control of non-HDL cholesterol 
levels and in regulation of the endogenous levels of at least some asialoglycoproteins has 
been established [34]. Specifically, Nioi et  al. [34] have identified rare loss-of-function 
variants in ASGR1 that are associated with lowering of non-HDL cholesterol levels and 
a reduced risk of coronary artery disease. Recent mechanistic studies also support a 
role of ASGR1 in cholesterol. For example, ASGR1-deficient pigs show lower levels of 
non-HDL cholesterol and less atherosclerotic lesions than that of controls, therefore 
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targeting ASGR1 might be an effective strategy to reduce hypercholesterolemia and ath-
erosclerosis [35].

Additional loci with strong literature support

SLC39A8 (solute carrier family 39 member 8) and diastolic blood pressure (Fig. 6a): 
Slc39a8 deletion in mice results in increased nitric oxide (NO) production, decreased 
blood pressure, and protection against high-salt-induced hypertension, while 
homozygosity of the SLC39A8 loss-of-function variant in humans is associated with 
increased NO, providing a plausible explanation for the association of SLC39A8 with 
blood pressure [36, 37].

Fig. 6  Putative causal genes at selected loci for UK Biobank quantitative traits. Scatter plots of W knockoff 
statistics (BIGKnock) vs. −log10(p value) (GeneScan3D) for selected loci of a–b BP-diastolic, c cholesterol, 
d neutrophil count, e calcium, f–g LDL cholesterol, h RBC count, i WBC count, j lymphocyte count, 
k hematocrit percentage, l MCH, and m monocyte percentage. Loci are named according to the most 
significant gene in BIGKnock. The dashed lines show the significance thresholds defined by Bonferroni 
correction (for p-values) and by false discovery rate (FDR; for W statistic)
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DBH (dopamine beta-hydroxylase) and diastolic blood pressure (Fig. 6b): Dbh(−/−) 
mice had a low heart rate, were severely hypotensive, and displayed an attenuated cir-
cadian blood pressure rhythm [38].

ANGPTL4 (angiopoietin-like protein 4) and cholesterol (Fig.  6c): ANGPTL4 was 
uncovered as a novel modulator of plasma lipoprotein metabolism. In 24-h fasted 
mice, Angptl4 overexpression increased plasma triglycerides (TG) by 24-fold, which 
was attributable to elevated VLDL-, IDL/LDL-, and HDL-TG content [39].

RAB11A (ras-related protein Rab-11A) and neutrophil counts and neutrophil per-
centage (Fig.  6d): In mice challenged with endotoxin, intratracheal instillation of 
Rab11a-depleted macrophages reduced neutrophil count in bronchoalveolar lavage 
fluid, increased the number of macrophages containing apoptotic neutrophils, and 
prevented inflammatory lung injury [40].

ZHX3 (zinc fingers and homeoboxes 3) and calcium (Fig. 6e): Zhx3-KO mice have 
increased bone mineral density (International Mouse Phenotyping Consortium), and 
ZHX3 may be useful as an early osteogenic differentiation marker [41].

PPARγ (peroxisome proliferator- activated receptor gamma) and LDL cholesterol 
(Fig. 6f ): PPARγ regulates fatty acid storage and glucose metabolism. The genes acti-
vated by PPARγ stimulate lipid uptake and adipogenesis by fat cells. PPARγ plays a 
regulatory role in the first steps of the reverse-cholesterol-transport pathway through 
the activation of ABCA1-mediated cholesterol efflux in human macrophages [42].

POLDIP2 (polymerase delta-interacting protein 2) and LDL cholesterol (Fig.  6g): 
Poldip2 was shown to increase Nox4 enzymatic activity by 3-fold and to positively 
regulates basal reactive oxygen species production in vascular smooth muscle cells 
[43]. The authors suggest that Poldip2 may be a novel therapeutic target for vascu-
lar pathologies with a significant vascular smooth muscle cell migratory component, 
such as restenosis and atherosclerosis.

E2F4 (E2F transcription factor 4) and red blood cell (erythrocyte) count (Fig. 6h): 
E2F4 is essential for normal erythrocyte maturation and neonatal viability, which 
makes a major contribution to the control of erythrocyte development [44]. Besides, 
E2F4 can regulate fetal erythropoiesis through the promotion of cellular proliferation 
[45].

MCL1 (myeloid cell leukemia-1) and white blood cell (leukocyte) count (Fig.  6i): 
Induced myeloid leukemia cell differentiation protein Mcl-1 is a protein encoded by 
the MCL1 gene and is essential for the survival of neutrophils (polymorphonuclear 
leukocytes) [46]. Furthermore, a novel class of Mcl-1 inhibitors has the potential to be 
developed for the treatment of acute myeloid leukemia [47].

E2F2 (E2F transcription factor 2) and lymphocyte count (Fig. 6j): E2Fs are impor-
tant regulators of proliferation, differentiation, and apoptosis. Mutations in E2F2 in 
mice cause enhanced T lymphocyte proliferation, leading to the development of auto-
immunity [48]. Furthermore, the combined loss of E2F1 and E2F2 was shown to have 
profound effects on hematopoietic cell proliferation and differentiation, as well as 
increased tumorigenesis and decreased lymphocyte tolerance [49].

TMPRSS6 (transmembrane serine protease 6) and hematocrit percentage (Fig.  6k): 
TMPRSS6 is a well-known red blood cell traits related gene [50] and also one of the effec-
tor genes identified by [51]. TMPRSS6 is essential for normal systemic iron homeostasis 
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in humans and mutations in TMPRSS6 may cause iron-refractory iron deficiency ane-
mia [52].

SAMD7 (sterile alpha motif domain containing 7) and mean corpuscular hemoglobin 
(Fig.  6l): The hepatocyte-specific SAMD7 knockout mice show decreased iron and 
hemoglobin concentration [53]. SAMD7 deficiency may decrease iron and hemoglobin 
through hepcidin up-regulation.

ITGA4 (integrin subunit alpha 4) and monocyte percentage (Fig. 6m): ITGA4 has been 
recently associated with inflammatory bowel disease [54, 55]. Additionally, an eQTL for 
ITGA4 is strongly associated with monocyte counts [56].

Effector BIGKnock genes

We further restrict the list of BIGKnock significant genes by identifying those that coin-
cide with the closest gene (among all genes) to the top significant GWAS SNP at a locus. 
Among 13,548 significant loci across 41 quantitative traits, we identify 8530 ( 63% ) such 
loci. Furthermore, for significant loci that do not contain effector BIGKnock genes, an 
additional 1799 (13%) loci have only one gene significant under BIGKnock. Therefore, 
using the BIGKnock significant genes we can prioritize potentially causal genes for 76% 
of the loci (Additional file 2: Supplementary Table 58).

Mouse phenotype enrichment analyses

Using ToppFun [33], we have tested whether the effector BIGKnock genes are enriched 
in sets of genes associated with mouse phenotypes (Additional file  1: Figs. S14-S17). 
Effector BIGKnock genes are enriched in gene sets corresponding to relevant mouse 
phenotypes. For example, among the most significantly enriched phenotypes were 
abnormal systemic arterial blood pressure for BP-diastolic, abnormal erythroid lineage 
cell morphology and abnormal erythrocyte morphology for RBC count, abnormal cal-
cium ion homeostasis for calcium, abnormal circulating LDL cholesterol level for LDL 
cholesterol, abnormal circulating HDL cholesterol level for HDL cholesterol, abnormal 
circulating hormone level for IGF-1, abnormal blood cell morphology/development for 
MPV, abnormal hemoglobin for HbA1c, increased circulating bilirubin level for direct 
bilirubin, increased lymphocyte cell number for lymphocyte count, abnormal mean cor-
puscular volume for MCH and MCV, abnormal cellular hemoglobin content for MCHC, 
abnormal mononuclear cell morphology for monocyte percentage and abnormal T cell 
morphology for Lymphocyte percentage.

Putative causal gene identification using BIGKnock

BIGKnock can prioritize putative effector genes in Backman et al. [51]

We use data on putative effector genes identified in a recent study by Backman et  al. 
[51] using rare-variant exome-wide association studies in 454,787 participants in the 
UK Biobank study. Specifically, Backman et al. first identify common variants indepen-
dently associated with each trait (i.e., GWAS sentinel variant), which are then included 
as additional covariates for Burden association tests with rare variants focusing on pLOF 
(including stop-gain, frameshift, stop-loss, start-loss and essential splice variants) and 
deleterious missense variants with a minor allele frequency (MAF) of up to 1%. Over-
all, 168 significant genes (with 584 gene-trait associations for 216 traits) adjusting for 
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GWAS signals (with Burden p-values ≤ 2.18× 10−11 ) and that are nearest to the GWAS 
sentinel variant are defined as the likely effector genes [51]. Here we consider the 201 
effector gene-trait associations corresponding to 43 binary and quantitative traits con-
sidered in our analyses (Additional file  2: Supplementary Table  59). We identify 194 
effector gene associations that are significant under GeneScan3D with 173 (89%) also 
significant under BIGKnock. Note that this is a significantly higher retention rate for 
effector gene associations than the expected rate ( 62.7% , 79,963 BIGKnock significant 
genes out of 127,541 GeneScan3D significant genes; Fig. 7) based on all genes significant 
under GeneScan3D for binary and quantitative traits (two-sided p= 4.4 × 10−14 ), and 
supports the claim that BIGKnock retains the truly causal genes while removing many of 
the false associations due to LD. Several examples include ASGR1 and SH2B3 and cho-
lesterol, APOB and apolipoprotein A, TMPRSS6 and hematocrit percentage, and SH2B3 
and WBC count. ANGPTL4 was also prioritized by BIGKnock for cholesterol, and iden-
tified as effector gene for HDL cholesterol (Additional file 1: Table S5 and Fig. S13).

In addition, Backman et al. [51] identified 564 genes associated with traits using rare 
variant association tests focusing as above on pLOF and deleterious missense variants 
with a MAF of up to 1%. Among 233 genes that correspond to 37 quantitative traits 
considered in our analyses (Additional file  2: Supplementary Table  60), we identify 
186 GeneScan3D significant genes with 163 (88%) being significant under BIGKnock. 
Again, this is a significantly higher proportion than expected based on all GeneScan3D 
associations (two-sided p=3.6× 10−12 ). Several example include DBH associated with 
BP-Diastolic, SLC5A3 associated with Cystatin C, POLE associated with MRV, E2F8 
associated with MCV, SIGIRR associated with Lymphocyte count and EPB41 associated 
with HbA1c (Additional file 2: Supplementary Table 61).

Fig. 7  BIGKnock retention rates for all genes, Backman effector genes and gold-standard genes, with 
two-sided p-values. The retention rates are computed as the proportions of BIGKnock significant genes 
among the GeneScan3D significant genes using three different gene sets: all genes and two gene sets 
enriched for causal genes (Backman effector genes, and gold-standard genes)
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Another recent study using whole-exome sequencing data on 200,337 UK Biobank 
participants and focused on cardiometabolic traits has also performed exome-wide rare 
variant analyses with rare (pLOF and deleterious missense) variants [57]. Restricting to 
the traits included in our analyses (hypertension, hypothyroidism, type 2 diabetes, BMI, 
HDL, LDL, and IGF-1) and the 25 gene-trait associations with q-value< 0.05 in [57], we 
find that 18 of them are significant in GeneScan3D, of which 16 (89%) are significant in 
BIGKnock (two-sided p = 4 × 10−2 ; Additional file 2: Supplementary Table 62).

Comparisons with other locus‑to‑gene linking methods on gold‑standard gene sets

We have compared the accuracy of effector BIGKnock genes to other methods to pri-
oritize putative causal genes at GWAS loci, including the closest gene footprint to the 
top GWAS SNP as well as more recent methods such as combined SNP-to-gene (cS2G) 
[12] and locus-to-gene (L2G) [13], using two gold-standard gene sets from the litera-
ture. Note that BIGKnock is mainly a gene-based test that uses individual level data and 
therefore different in nature to these existing gene prioritization methods; nonetheless, 
it is interesting to compare its performance with such methods in terms of ability to pri-
oritize causal genes at loci of interest.

Specifically, we first consider 49 expert-curated genes with high confidence [13] (note 
that 45 of these genes are significant in GeneScan3D, with 44/45 being BIGKnock sig-
nificant, i.e., retention rate 98%; Fig.  7), as well as 201 effector genes identified using 
rare pLOF variants in [51]. For all our analyses here we focus on 221 gene-trait asso-
ciations overlapping loci that are significant using the BIGKnock test. As control genes 
we consider the remaining genes at those loci for a total of 3255 genes. For cS2G, we 
further restrict to a subset of 114 positive genes and 1651 control genes for 18 traits 
analyzed both here and in [12]. We compare methods in terms of precision and recall, 
where precision for a method is computed as the fraction of positive genes among the 
genes prioritized by that method, and recall is computed as the fraction of positive genes 

Fig. 8  Comparisons of different locus-to-gene prioritization methods. Precision vs. recall is shown 
for several representative methods including closest footprint, cS2G, L2G, BIGKnock Effector genes 
(BK-Effector), BIGKnock Effector genes and genes at BIGKnock significant loci with only one significant gene 
(BK-Effector+1), as well as combination of BIGKnock and cS2G (BK-cS2G) and L2G (BK-L2G). a Gold standard 
and Backman effector dataset including 221 positive genes at BIGKnock significant loci. The negative genes 
include 3255 genes located within the 1Mb loci containing the 221 positive genes; b Forgetta et al. gene set 
including 55 positive genes at BIGKnock significant loci. The negative genes include 860 genes located at 
1Mb loci containing the 55 positive genes
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prioritized by that method (Fig. 8a). BIGKnock effector genes have the highest precision 
among all methods considered, i.e., 0.66; the recall is also high (0.77). By comparison, 
cS2G achieves a higher recall (0.93 for cS2G score > 0.5 ) with a greatly reduced preci-
sion (0.32). Closest gene footprint has a slightly higher recall (0.85) relative to effector 
genes, but reduced precision (0.61), while L2G has similar recall (0.81) but lower pre-
cision (0.48) relative to effector genes. Furthermore, combining BIGKnock with other 
scores (such as cS2G and L2G) generally leads to improved precision over the individual 
cS2G and L2G scores (Additional file 2: Supplementary Table 63).

We consider a second set of stringently defined positive genes, including Mendelian 
disease genes and drug targets as described in Forgetta et al. [58]. Specifically, we con-
sider 208 genes that corresponded to traits type 2 diabetes, hyperthyroidism, BP-sys-
tolic, BP-diastolic, LDL-cholesterol, calcium, direct bilirubin, and red blood cell count 
considered in our analyses. We focus on 55 genes residing at BIGKnock significant loci. 
As control genes we consider all genes at these 1Mb loci for a total of 860 genes. For 
cS2G, we further focus on a subset of 48 gold-standard genes and 743 control genes for 
6 traits analyzed both here and in [12] (calcium and direct bilirubin do not have cS2G 
gene scores). BIGKnock effector genes have the highest precision among all individual 
methods considered, i.e., 0.43; the recall is also relatively high (Fig. 8b, 0.47). By com-
parison, cS2G achieves a higher recall (0.81) but at a greatly reduced precision (0.31). 
Closest gene footprint has higher recall (0.56), but slightly lower precision (0.41). L2G 
has slightly higher recall (0.53) and lower precision (0.41). Furthermore, combining BIG-
Knock with other scores (such as cS2G and L2G) generally leads to improved precision 
over the individual methods (Additional file 2: Supplementary Table 64).

Finally, we have compared BIGKnock with L2G and cS2G for several known causal 
genes, including ASGR1-Cholesterol, ANGPTL4-Cholesterol and ALDH2-CAD, as 
previously discussed (Additional file  1: Fig. S18). For ASGR1, all three methods iden-
tify ASGR1 with high scores; however, cS2G identifies four such genes at the locus. For 
ANGPTL4, only BIGKnock and cS2G identify it among high scoring genes. However, 
cS2G identifies three other genes with similar high score at this locus. For ALDH2, only 
BIGKnock and L2G identify it among the highest scoring gene; however, L2G identifies 
six such genes at this locus. Results for other putative causal genes and loci highlighted 
before are similar (Additional file 1: Figs. S19-S21).

Characteristics of prioritized genes

We have focused here on prioritizing genes at ∼ 80% loci that have either effector genes, 
i.e., the gene closest to the most significant GWAS SNP is significant using the BIG-
Knock test, or loci where BIGKnock prioritizes only one gene. We show that these genes 
have certain interesting properties: (1) have significantly higher pLI scores, (2) they have 
significantly longer CDS (Coding DNA Sequence), and (3) higher LOF mutation rates 
than genes that are never selected by BIGKnock across a variety of binary and quanti-
tative traits considered here (Additional file 1: Fig. S22). This latter result is consistent 
with previous studies that showed that highly conserved genes (including putative dis-
ease causing genes) have, rather counterintuitively, higher mutation rates. Specifically, 
Michaelson et al. [59] showed that hypermutability is correlated with highly conserved 
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sequence using whole genome sequencing data. Although the exact mechanisms under-
lying this relationship are not known, one possible explanation is that these genes, on 
account of their essential nature, are highly transcribed and consequently more suscepti-
ble to transcription-mediated mutagenic events.

Discussion
A main limitation of gene-based tests when incorporating putative regulatory vari-
ants, such as eQTLs or variants residing in regulatory elements such as promoters and 
enhancers, is the potentially high false positive rate due to LD confounding and co-reg-
ulation. We propose here a gene-based test for biobank-scale data that reduces the con-
founding effect due to LD and can prioritize putative causal genes at GWAS significant 
loci. For co-regulation, e.g., when a causal enhancer may regulate multiple genes and 
hence will be included in the testing for multiple genes, the knockoff-based framework 
cannot help. The proposed test goes beyond state-of-the-art gene-based tests by allow-
ing integration of a wider class of regulatory variants than eQTLs, and by performing 
conditional analysis (on LD), thereby adjusting for LD.

We show that BIGKnock reduces the number of significant associations at a locus rela-
tive to conventional tests despite a more liberal FDR adjustment, and retains with high 
probability ( ∼ 90% ) the likely causal genes as shown using the effector and rare vari-
ant association results in [51]. Furthermore, between 63 and 69% of loci with BIGKnock 
significant genes have the closest gene to the top GWAS SNP at the locus being signifi-
cant under BIGKnock (Additional file 2: Supplementary Tables 57 and 58). In addition to 
such effector BIGKnock genes, BIGKnock also prioritizes genes that are not necessarily 
nearest to the top GWAS SNP. Overall, approximately 80% of loci have one single gene 
prioritized based on significant genes detected by BIGKnock.

BIGKnock is complementary to other locus-to-gene strategies in the literature that are 
based on supervised machine learning models and fine-mapping results. BIGKnock pri-
oritizes causal genes via a formal gene-based test that limits confounding due to LD rela-
tive to existing tests in the literature. Therefore BIGKnock is less functionally informed 
relative to existing locus-to-gene strategies, and therefore less affected by potential 
biases in existing training datasets. Combining significant genes in BIGKnock with 
other functionally informed causal gene prioritization methods is a promising avenue 
for increasing performance. We show that relative to other causal gene prioritization 
approaches, the proposed method has improved precision while achieving high recall, 
which is important in this setting due to costly follow-up functional studies.

Although it is a challenging task to prove that the prioritized genes from any method 
are indeed causal, we show multiple lines of evidence from mouse phenotype data, 
curated gold-standard gene lists, mutation rate data and supporting literature that BIG-
Knock is helpful in identifying putative causal genes including several examples with 
known causal links in the literature such as ASGR1 and ANGPTL4 and cholesterol, and 
ALDH2 and coronary artery disease. These prioritized genes can serve as good candi-
dates for further functional studies.

We have implemented BIGKnock in a computationally efficient R package that can be 
applied generally to the analysis of biobank scale data.
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Conclusions
BIGKnock is a powerful and computationally efficient gene-based test that leverages 
long-range chromatin interaction data, is applicable to biobank-scale data, and performs 
conditional testing genome-wide via model-X knockoffs. Unlike conventional tests, it 
helps reduce confounding due to LD and hence prioritizes causal associations over those 
induced by LD. As a method to prioritize causal genes at a GWAS locus, it has advan-
tages over existing supervised machine learning models in that it produces interpretable 
results (q-values) and is not dependent on possibly biased training data. Furthermore, it 
can be combined with existing prioritization scores to improve their performance. BIG-
Knock has been implemented in a computationally efficient package and can be applied 
widely to biobank-scale data analyses.

Methods
Overview of GeneScan3D and its knockoff‑based extension GeneScan3DKnock

We first describe the details of a previously developed gene-based test (GeneScan3D) 
that incorporates noncoding variants using long-range chromatin data [7]. Assume there 
are n samples with p variants in a gene plus buffer region as well as the correspond-
ing regulatory elements. For i-th individual, we denote Yi as the phenotype, Gi as the 
p× 1 genotype vector and X i as the d × 1 covariate vector including an intercept. We 
are interested in testing for association between the phenotype and the p variants, while 
adjusting for covariates. For unrelated individuals, we consider the generalized linear 
model (GLM):

where µi is the conditional mean of phenotype Yi conditional on covariates, α is a d × 1 
vector of regression coefficients for d covariates (including an intercept) and β is a p× 1 
vector of regression coefficients for p variants.

We scan the gene plus buffer region (± 5 Kb) using L 1D windows with sizes 1–5–10 
Kb, then construct 3D windows by adding one enhancer to each 1D window. For each 
gene, we focus on GeneHancer and ABC enhancers [60, 61] that are outside the gene 
plus buffer region, containing at least 2 variants and with length between 0.5 Kb and 10 
Kb. In the ABC model [61], we only incorporate predicted ABC enhancers with ABC 
scores ≥ 0.02 for 5 human cell types and tissues, i.e., K562, GM12878, NCCIT, LNCAP, 
hepatocytes.

Assuming R enhancers for a gene, then we construct L× R 3D windows. For each 3D 
window, we conduct (i) Burden and Sequence Kernel Association Test (SKAT) tests [62] 
for all common variants (MAF > 0.01 ) within the window, using equal weights; and (ii) 
single variant score tests for individual common variants with MAF > 0.01 . The Cauchy 
combination method [63] is applied to combine p-values from the above tests within 
each 3D window. Finally, we compute the GeneScan3D p-value by combining L× R 3D 
window’s p-values using Cauchy combination method.

g(µi) = XT
i α + GT

i β ,
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GeneScan3DKnock: knockoff‑based extension

By incorporating distal regulatory elements, gene-based tests can leverage noncoding 
genetic variation to improve power of gene-based tests. However, due to linkage disequi-
librium (LD) and/or co-regulation of multiple genes by the same regulatory element, many 
of the significant genes may be false positives. Hence, we previously developed GeneScan-
3DKnock [7], a knockoff-based test to attenuate the confounding effect of LD and prioritize 
putative causal genes with controlled false discovery rate (FDR). Note that co-regulation is 
still a problem and cannot be addressed by the proposed approach.

To generate multiple knockoff genotypes, we consider the general sequential conditional 
independent tuples approach [8, 64, 65]. Specifically, we sequentially sample ˜G1

j , . . . ,
˜GM
j  

independently from L(Gj| G−j , ˜G
1
1...j−1, . . . ,

˜GM
1...j−1) , where M is the number of knockoffs. 

Note that we can leverage the approximate block structure for LD in the genome to only 
condition on variants in a neighborhood Bj of the current variant j. The knockoff genotypes 
are exchangeable with the original genotypes G, and lead to guaranteed FDR control. With 
the assumption that genotypes can be approximately modeled by a multivariate normal dis-
tribution, we consider a computational efficient auto-regressive model to estimate:

We estimate the coefficients using the least squares method:

where

GBj
 and ˜GBj correspond to the original Gk and previously generated knockoff variants 

with k  = j, k ∈ Bj . By calculating the residual ǫ̂j = Gj −
ˆGj and its M permutation, the 

knockoff features ˜Gm

j =
ˆGj + ǫ̂

∗m
j  are obtained. Note that we can replace the sample 

covariance matrix above by a low rank approximation based on spectral decomposition.
After generating multiple knockoffs, we conduct the proposed gene-based test on the 

original genotype and knockoff genotypes for each gene. The feature statistic for each gene 
G is then defined as

where TG = − log10(pG) and Tm
˜G
= − log10(p

m
˜G
) are the importance score for gene G in 

original genotype and knockoff cohort, and I is an indicator function. We compute the 
threshold τ for FDR control at a certain level q:

(1)ˆGj = α̂ +

k �=j,k∈Bj

β̂kGk +

M

m=1 k≤j−1,k∈Bj

γ̂m
k

˜Gm
k .

(α̂, ˆβ , γ̂ ) = [cov(1,GBj , G̃Bj )]
−1(1,GBj , G̃Bj )

TGj ,

cov(1,GBj
, ˜GBj ) =







1 0 0

0 GT
Bj
GBj GT

Bj
˜GBj

0 ˜G
T

Bj
GBj

˜GT
Bj

˜GBj






.

WG = (TG −median Tm
˜G
)ITG≥max1≤m≤M Tm

˜G
,

τ = min

{

t > 0 :

1
M +

1
M #{G : κG ≥ 1, τG ≥ t}

#{G : κG = 0, τG ≥ t}
≤ q

}

,
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where κG = argmax0≤m≤MTm
˜G

 (note that T 0
˜G
= TG ) and τG = TG −median Tm

˜G
 . Finally, 

we select as significant those genes with WG ≥ τ.

q‑value

We additionally compute the corresponding q-value for a gene, qG . The q-value already 
incorporates correction for multiple testing, and is defined as the minimum FDR that 
can be attained when all tests showing evidence against the null hypothesis at least as 
strong as the current one are declared as significant. In particular, we define the q-value 
for a gene G with feature statistic WG > 0 as

where 
1
M+

1
M #{G:κG≥1,τG≥t}

#{G:κG=0,τG≥t}  is an estimate of the proportion of false discoveries for mul-
tiple knockoffs if we were to select all genes with κG = 0, τG ≥ t (with t > 0 ). For genes 
with feature statistic WG = 0 (i.e., κG ≥ 1 ), we set qG = 1 and never select those genes.

Shrinkage leveraging algorithm for knockoffs generation

The computational cost of knockoff generation for multiple knockoffs is substantial for 
biobank-scale data with hundreds of thousands of samples and millions of genetic vari-
ants. One commonly used strategy to improve the computational efficiency when deal-
ing with large-scale datasets is sampling. Here, to reduce the computational time and 
make the test scalable to biobank sized datasets, we employ the shrinkage leveraging 
(SL) algorithm [9, 66]. The SL algorithm is a sampling technique based on the empiri-
cal statistical leverage scores as an importance sampling distribution. Specifically, the 
method samples rows of the genotype data matrix to reduce the data size before per-
forming computations on the subproblem.

We draw r = 10n1/3 log n subsamples from n samples with importance sampling 
probabilities:

where πUnif
i = 1/n follows uniform distribution and πLev

i =

∑p
j=1U

2
ij

/
∑n

i=1

∑p
j=1U

2
ij , 

U  is the orthogonal singular vectors of (1,GBj ,
˜GBj ) . We then form a weighted linear 

regression model (1) with weights wi = 1/(r
√

πi) for r subsamples and compute the least 
square estimates (α̂SL, ˆβ

SL
, γ̂ SL

) . Finally, we generate the knockoff features for n samples 
using (α̂SL, ˆβ

SL
, γ̂ SL

) . In summary, we select a subset of “informative” samples to estimate 
intermediate parameters used for knockoff generation and thus improve the computa-
tional efficiency of the knockoff framework. To efficiently store the knockoff genotypes, 
we use the Genomic Data Structure compressed files based on gdsfmt R package [67].

Note. To filter out highly-correlated variants, we apply hierarchical clustering before 
doing the knockoff generation. We compute correlations for all pairs of variants in regions 
containing the gene plus buffer region (±100 Kb neighborhood) and enhancers (±50 Kb 
neighborhood). Variants with correlation ≥0.75 are clustered together and one representa-
tive variant is selected for each cluster. Specifically, if a cluster contains variants inside the 

qG = min
t≤WG

1
M +

1
M #{G : κG ≥ 1, τG ≥ t}

#{G : κG = 0, τG ≥ t}
,

πi = 0.5πLev
i + 0.5πUnif

i , i = 1, . . . , n,
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gene plus buffer/enhancer region, we randomly select one representative variant from 
inside the gene plus buffer/enhancer region. Otherwise, we randomly select one variant as 
representative.

Generalized linear mixed effects model for related samples

Unlike GeneScan3DKnock which does not account for sample relatedness, in BIGKnock 
we incorporate generalized linear mixed-effects model (GLMM) adapted to biobank-scale 
data. Specifically, we assume:

where the random effect b = (b1, . . . bn)
T
∼ MVN(0, τψ) and ψ is the n× n genetic 

relationship matrix (GRM).
Following SAIGE-Gene [11], we consider three steps for the UK Biobank data. In step 1 

we construct the sparse GRM ψS with cutoff 0.125 for n = 405, 296 British samples using 
106,256 pruned markers. In step 2 we fit the null GLMM for binary and quantitative traits. 
Both steps are using the existing software implementation in SAIGE/SAIGE-Gene [10, 11]. 
In step 3 we perform the gene-based test for each gene using the fitted values µ̂ and esti-
mated variance ratio r̂ obtained in step 2. Note that due to the light sample relatedness of 
UK Biobank data, one can use the sparse GRM to fit null GLMM and estimate variance 
ratio, which is much more computationally efficient than using the dense GRM [11].

To fit GLMM under the null hypothesis H0 : β = 0 in a computationally efficient way, 
SAIGE uses the preconditioned conjugate gradient method [68] that allows calculating the 
log quasi-likelihood and average information without taking the inverse of n× n matrix. 
Specifically, SAIGE maximizes the log quasi-likelihood using the average information 
restricted maximum likelihood algorithm (AI-REML) [69] to iteratively estimate (α̂, ˆb, φ̂, τ̂ ) 
(note that the dispersion parameter φ̂ = 1 for binary traits). Denote �̂ = Ŵ−1

+ τ̂ψ , where 
Ŵ = φ̂−1I for quantitative traits and Ŵ = diag(µ̂1(1− µ̂1), . . . µ̂n(1− µ̂n)) for binary 
traits. Denote the covariate-adjusted genotype matrix as ˜G = G − X(XTWX)−1XTWG 
and the projection matrix ˆP = �̂−1

− �̂−1X(XT �̂−1X)−1XT �̂−1.
After fitting the null GLMM, we obtain the variance ratio r̂ = g̃T ˆPg̃/g̃T ˆPS g̃ where g̃ is the 

covariate-adjusted single variant genotype vector, ˆPS = �̂−1
S − �̂−1

S X(XT �̂−1
S X)−1XT �̂−1

S  
and �̂S = Ŵ−1

+ τ̂ψS . The variance ratio, which is estimated using a set of 30 randomly 
selected variants and shown to be approximately constant for all variants [10], is used to 
calibrate the score test statistics and variance-covariance matrix of gene-based tests for 
GLMM.

For the single variant score test in GeneScan3D, Sj =
∑n

i=1
˜Gij(Yi − µ̂i)/φ̂ . We consider 

the variance-adjusted test statistic:

where g̃ j is the covariate-adjusted genotype vector of jth variant. The approximation of 
var(Sj) = g̃Tj

ˆPg̃ j = r̂g̃Tj
ˆPS g̃ j ≈ r̂g̃Tj �̂

−1
S g̃ j and the score test p-value can be computed 

based on S2j
/

var(Sj) ∼ χ2
df=1.

The Burden and SKAT test statistics in GeneScan3D can be written as:

g(µi) = X i α + Gi β + bi,

T
adj
j =

Sj
√

g̃Tj
ˆPg̃ j

,
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where wj is the weight of each variant. The joint null distribution of S = (S1, . . . Sp) 
follows a multivariate normal distribution with mean 0 and covariance matrix 
˜GT ˆP ˜G = GT �̂−1G − (GT �̂−1X)(XT �̂−1X)−1(XT �̂−1G) = GT ˆPG . We adjust the 
covariance matrix for GLMM as K = r̂GT ˆPSG . Since both �̂ and G are sparse matri-
ces, K can be calculated by using the sparse LU decomposition (solve function in R) for 
each 3D window. Then the Burden p-value is obtained from a scaled chi-square distribu-
tion ˜�Bχ2

1  , where ˜�B = (w1, . . . ,wp)K (w1, . . . ,wp)
T . The SKAT p-value is obtained from 

a mixture of chi-square distribution 
∑p

j=1
˜�Sjχ

2
1  using Davies method [70], where ˜�Sj are 

the eigenvalues of diag(w1, . . . ,wp)Kdiag(w1, . . . ,wp).

Saddlepoint approximation for gene‑based test

One challenge for binary traits in biobanks is the possibility of highly unbalanced 
case:control ratios. In such cases we implement the saddlepoint approximation (SPA) 
to recalibrate the score test statistics for gene-based testing [71, 72]. Specifically, under 
case-control imbalance, the distribution of score statistics S = (S1, . . . Sp) is skewed, in 
which case one needs to adjust the covariance matrix K using SPA. As in [11, 72], we 
first compute the p-values of single-variant score test by SPA p̃j , then the SPA-adjusted 
variance ṽj = S2j /Q(1− p̃j) , where Q is the quantile function of χ2

1  . The adjusted covari-
ance matrix ˜K =

√

Ṽ K
√

Ṽ  , where Ṽ = diag(ṽ1/v̂1, . . . , ṽp/v̂p) and v̂j = K [j, j] is the 
estimated variance of Sj . The adjusted covariance matrix ˜K  is used to compute the SPA 
gene-based p-values of SKAT and Burden.

UK Biobank data analyses

The UK Biobank data contains data on 488,377 individuals. All individuals underwent 
genome-wide genotyping with UK Biobank Axiom array from Affymetrix and UK 
BiLEVE Axiom arrays ( ∼ 825,000 markers). Genotype imputation was carried out using 
a 1000 Genomes reference panel with IMPUTE4 software [6]. We apply several qual-
ity-control filters, keeping only variants with MAF> 0.01 imputed with high confidence 
( R2

≥ 0.8 ). This resulted in 9,233,477 imputed variants that were available for the analy-
ses. We restrict our analyses to 405,296 participants (218,068 females and 187,228 males) 
with British ancestry. We adjust for covariates including sex, age, age2 , age × sex and 5 
principal components. For principal component analysis, we used a set of common gen-
otypes (MAF> 0.01 ) pruned using the following command in PLINK –indep-pairwise 
500 50 0.05 with 35,226 pruned variants using FlashPCA [73]. A total of 17,753 genes 
with gene length < 500 kb and with at least 2 variants in the gene plus buffer region were 
tested. The details on the traits analyzed are given in Tables S1, S3.

We use 106,256 pruned genotyped markers to construct the sparse GRM with related-
ness coefficient cutoff ≥ 0.125 , then fit null GLMMs for several binary and quantitative 
traits using SAIGE [10, 11]. The 106,256 markers were pruned from the UK Biobank 
genotype data using PLINK with pairwise LD threshold r2 ≤ 0.05 , MAF> 0.01 , 95% gen-
otyping rate, window size of 500 bp and step size 50 bp. Based on the sparse GRM, there 
are 21,397 related pairs among the 405,296 participants, including 8 duplicate twins 

QBurden =

( p
∑

j=1

wjSj

)2

, QSKAT =

p
∑

j=1

w2
j S

2
j ,
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(kinship coefficient >0.354), 8275 1st-degree relatives (kinship coefficient between 0.177 
and 0.354) and 13,114 2nd-degree relatives (kinship coefficient ≤ 0.177) [74].

Enrichment of BIGKnock associations among genes closest to lead GWAS SNPs

We consider the significant loci for different UK Biobank binary and quantitative traits. 
We use the SAIGE summary statistics from the existing UK Biobank studies for binary 
traits (https://​pheweb.​org/​UKB-​SAIGE/) and the GWAS summary statistics for UK 
Biobank quantitative traits were obtained from the Neale Lab (http://​www.​neale​lab.​is/​
uk-​bioba​nk). For each significant locus, all genes within the locus are ranked according 
to the distance to the lead GWAS variant. The enrichment is then defined as the ratio of 
the proportion of BIGKnock significant genes that are ranked k-th and the proportion of 
the remaining genes at the locus that are ranked k-th, where k = 1, . . . , 10.

Gene footprint

We compute the distance from the lead GWAS variant to gene footprint. The gene foot-
print can be any position between the start and end positions of the gene [75]. Specifi-
cally, if the lead variant is inside the gene, then the distance from the lead variant to the 
gene footprint is 0. If the variant is outside the gene, the distance to the gene footprint 
is the smallest distance from the lead variant to any position in the gene (start or end 
position).

Locus‑to‑gene scores

L2G

We selected GWAS analyses from the OpenTarget Genetics Portal [13] to match the 50 
traits tested by BIGKnock. For the nine binary traits we use summary statistics from 
SAIGE [10]. For ten quantitative traits (Apolipoprotein A, Calcium, Cholesterol, Cysta-
tin C, Direct bilirubin, eGFR, Glycated hemoglobin HbA1c, HDL cholesterol, IGF-1, and 
LDL direct) we use summary statistics from [76]. We use summary statistics from the 
Neale lab UKB GWAS round 2 results for BMI, Systolic blood pressure, and Diastolic 
blood pressure. For the remaining 28 quantitative traits, we use the summary statistics 
from [77]. OpenTarget used the “locus-to-gene” (L2G) model to prioritize likely causal 
genes at each GWAS locus detected by these studies. An L2G score is derived from gene 
distance, molecular QTL colocalization, chromatin interaction, and pathogenicity to 
quantify the causal probability of a gene. We downloaded the L2G scores and selected 
the gene with the highest L2G score for each GWAS locus for the 50 traits.

cS2G

The combined SNP-to-gene strategy (cS2G) [12] includes seven SNP-to-gene (S2G) link-
ing strategies such as Exon, Promoter, two fine-mapped cis-eQTL strategies, EpiMap 
enhancer-gene linking, Activity-By-Contact, and Cicero. A cS2G score is computed for 
a SNP and a gene as a linear combination of linking scores from different S2G strate-
gies, and the optimal weights are estimated to maximize the recall under a constraint of 
precision ≥ 0.75 with non-trait-specific training critical gene set. cS2G was applied to 
fine-mapping results of 49 UK Biobank diseases and traits; a cS2G score > 0.5 was used 
to identify high-confidence SNP-gene-disease triplets. In our analyses, we considered 

https://pheweb.org/UKB-SAIGE/
http://www.nealelab.is/uk-biobank
http://www.nealelab.is/uk-biobank
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the cS2G predicted target genes of fine-mapping results for 22 UKBB traits: hyperten-
sion, CAD (cardiovascular disease in cS2G), asthma, T2D, hypothyroidism, RBC count, 
eosinophil count, BMI, BP-diastolic, BP-systolic, platelet count, MPV, HDL cholesterol, 
cholesterol, HbA1c, RBC distribution width, LDL cholesterol, WBC count, lymphocyte 
count, monocyte count, HLSRC, and MCH.

Gold‑standard genes

For 9 binary traits and 41 quantitative traits considered in our analyses, we identified 
49 expert-curated gold-standard genes with high confidence for CAD, Skin cancer, HDL 
cholesterol, Cholesterol, MRV, Calcium, LDL cholesterol and Platelet [13]. Two hundred 
one effector genes are identified in [51] for 43 binary and quantitative traits (Additional 
file 2: Supplementary Table 59).

Positive genes in Forgetta et al. [58]

The positive genes for 12 traits considered in Forgetta et al. [58] were selected based on 
Mendelian disease genes or positive control drug targets. There are in total 494 positive 
genes across 12 diseases and traits, with 381 known to cause Mendelian forms of the 
disease and 113 drug targets. We focus on 208 gene-trait associations for 8 traits con-
sidered in our paper (type 2 diabetes, hyperthyroidism, BP-systolic, BP-diastolic, LDL-
cholesterol, calcium, direct bilirubin, and red blood cell count).

Computation cost

The estimated run time and memory use of BIGKnock depends on the sample size, gene 
length, number of variants in each gene and its corresponding regulatory elements, 
and the number of multiple knockoffs. For conducting BIGKnock gene-based tests on 
the UK Biobank data with 405,296 individuals and M = 5 multiple knockoffs, one trait 
requires 1817 CPU hours and on average 24 GB memory (for genes longer than 400kb, it 
requires >40 GB memory).

Genome build

All genomic coordinates are given in GRCh37/hg19.
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