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Abstract 

Measuring allele-specific expression in interspecies hybrids is a powerful way to detect 
cis-regulatory changes underlying adaptation. However, it remains difficult to identify 
genes most likely to explain species-specific traits. Here, we outline a simple strategy 
that leverages population-scale allele-specific RNA-seq data to identify genes that 
show constrained cis-regulation within species yet show divergence between species. 
Applying this strategy to data from human-chimpanzee hybrid cortical organoids, we 
identify signatures of lineage-specific selection on genes related to saccharide metabo-
lism, neurodegeneration, and primary cilia. We also highlight cis-regulatory divergence 
in CUX1 and EDNRB that may shape the trajectory of human brain development.
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Background
Changes in gene expression are thought to play a major role in the evolution of com-
plex traits [1–4]. As a result, comparing gene expression between species can enable 
the identification of molecular changes underlying phenotypic divergence. However, 
obtaining accurate comparisons of gene expression between species is challeng-
ing due to confounding factors like age, environmental effects, differential cell type 
abundances, differences in developmental timing, and batch effects [5–7]. The use of 
interspecies hybrids overcomes these issues through the measurement of allele-spe-
cific expression (ASE) [8, 9]. In hybrids, the genomes of both species share the same 
nucleus and are exposed to identical environments, so there are no confounding envi-
ronmental, batch, compositional, or developmental effects. This approach has been 
successfully applied in many species and advanced our understanding of the evolu-
tion of gene regulation and its role in establishing phenotypic variation [10–13]. Fur-
thermore, the recent development of human-chimpanzee allotetraploid “hybrid” cells 
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and organoids enables detailed, accurate quantification of differences in gene expres-
sion between humans and our closest living relatives [8, 9, 14].

Hybrids also enable the separation of cis- and trans-components of interspecies 
differences in gene expression [8, 9]. The cis-component is caused by differences in 
regulatory elements such as promoters or enhancers that only affect the expression 
of a nearby gene or genes on the same DNA molecule. The trans-component stems 
from changes in diffusible molecules such as transcription factors that can regulate 
gene expression throughout the genome. In hybrids, the genomes of the two species 
are exposed to the same trans factors. As a result, allele-specific differences in gene 
expression can only be explained by cis-regulatory differences. In addition, using 
ASE to identify differentially expressed genes (referred to as AS-DEGs) enables the 
elimination of many confounding factors (including the environmental, batch, com-
positional, and developmental timing effects mentioned above). Thus, ASE not only 
increases the signal-to-noise ratio, but also disentangles potentially evolutionarily 
significant gene-specific cis-regulation from broad trans-acting changes [4, 15, 16].

While the resulting list of AS-DEGs from hybrids is likely more accurate and iso-
lates the cis-regulatory component, there are often thousands of AS-DEGs which 
make it difficult to prioritize candidate genes and pathways that may have played a 
major role in evolution. Differential expression p-values are commonly used to rank 
genes in comparative RNA-seq studies. However, genes with large and significant fold 
changes may often have low evolutionary constraint on expression level. These large 
fold changes in unconstrained genes (e.g., pseudogenes) could result in no or very 
limited phenotypic changes, since a lack of constraint implies a lack of phenotypic 
consequence of changes in expression. Therefore, a large and significant fold change 
alone is not sufficient to determine the importance of the gene in the evolution of 
the parental species. For example, consider a gene whose expression varies by two-
fold between species. If this gene also varies by two-fold within each species indi-
vidual members of the same species, it is unlikely to account for any species-specific 
phenotypes. In contrast, a gene that is under strong stabilizing selection—with little 
variation in expression within species but with a two-fold change between species—
is more likely to have contributed to phenotypic divergence between species. Most 
studies of expression divergence between species do not include any comparison to 
within-species variation; the few exceptions have been limited by small sample sizes 
and the confounding factors inherent to any between-species comparison [17–20].

Here, we describe a method that leverages population-scale ASE data to approxi-
mate constraint on the cis-regulation of gene expression. This method ranks AS-DEGs 
identified from interspecies hybrids in a way that is likely more able to prioritize 
adaptive, functionally significant changes. We apply this method to ASE data from 
human-chimpanzee hybrid cortical organoids that recapitulate the gene expression 
patterns of the developing cerebral cortex. Using this dataset, we identify lineage-spe-
cific selection on the expression of genes related to neuronal homeostasis, glucose 
metabolism, primary cilium assembly, and glycan degradation [8, 9]. In addition, we 
highlight divergence in the expression of CUX1 and EDNRB that may have played an 
important role in human brain evolution.
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Results
In a typical ASE pipeline, AS-DEGs are identified by comparing the RNA-seq read 
counts from the allele from species 1 and the allele from species 2 and ranked using a 
p-value or false discovery rate (FDR) for differential expression (Fig. 1A). Various enrich-
ment tests and knowledge from the literature can then be used to identify interesting 
trends and prioritize candidate genes. However, these previous methods do not consider 
within-species variation in gene expression levels (Fig.  1B). If some genes have highly 
variable expression even within a single species, then differences of a similar (or smaller) 
magnitude between species are unlikely to explain species-specific traits (e.g., PDPR in 
Fig.  1B). Conversely, differential expression of genes with highly constrained expres-
sion in at least one species are more likely to be responsible for differences in organ-
ismal phenotypes between species. For example, ZNF331 and RPS16 have similar fold 
change magnitudes in human-chimpanzee hybrid cortical organoids (Fig. 1C). However, 
the fold change for ZNF331 lies well within the distribution of fold changes between 
alleles in the human population whereas the fold changes for RPS16 are nearly outside 
the human population distribution (Fig. 1C). This indicates that the expression level of 
RPS16 is much more constrained and that its differential cis-regulation between human 
and chimpanzee is more likely to have phenotypic consequences.

To systematically apply this concept, we compute the distribution of ASE in one pop-
ulation and use the Mann-Whitney U test to compare the population-level ASE distri-
bution to the interspecies ASE distribution for that gene (see the “ Methods” section) 
[21]. We use a large publicly available dataset of post-mortem human RNA sequenc-
ing data, GTEx, to estimate ASE variance for every gene. The Mann-Whitney p-value 
reflects how divergent the ASE of the gene is between species compared to its diver-
gence within species and may better reflect the potential of a change in gene expression 
to alter phenotypes. The ranked list is then used in enrichment analyses and to identify 
top candidates [22, 23].

Establishing population‑scale ASE distributions as a meaningful metric for constraint 

on gene expression

The GTEx v8 data includes RNA-seq from 838 individuals and 54 tissues for a total 
of 15,253 samples in which ASE values have been previously estimated [21]. To mini-
mize any allelic bias in the population distribution, we normalize the median to 1. The 
resulting rankings are robust to choosing either the reference or alternative allele as the 
numerator for the population distribution (Spearman’s rho = 0.999, p < 10−300). Nota-
bly, we minimize any batch effects between GTEx and the human-chimpanzee hybrid 
dataset by focusing on ASE since direct comparisons of expression levels between data-
sets are not involved. For example, if some technical factor (e.g., sequencing platform 
or RNA isolation method) caused a gene to show a spurious 2-fold higher expression 
in GTEx samples compared to the hybrid data, this would cancel out in the GTEx ASE 
calculation. In addition, biological factors (such as mutational target size) are also con-
trolled for by comparing the expression of two different alleles.

First, we tested whether the variance in ASE in the human population is a reasonable 
proxy for constraint on gene expression. We compared the variance of the GTEx ASE 
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distribution for each gene to its probability of haploinsufficiency score (pHI), a meas-
ure of sensitivity to a 50% reduction in gene dosage [24]. The pHI score was developed 
by using statistical learning approaches on a massive dataset of disease-associated copy 

Fig. 1  Outline of the methodology. A Outline of a typical ASE pipeline. Hybrids are generated and RNA-seq 
is used to determine the relative expression of each allele. The ASE ratio is computed as the ratio of 
species-specific read counts between the two alleles. B The distribution of the variance in the ASE ratio for 
each gene in the GTEx data. Insets in orange show two genes at the extreme ends (EEF2 with low variance 
suggesting strong stabilizing selection and PDPR with high variance suggesting less constraint on gene 
expression). For visualization purposes, we removed the few genes with GTEx ASE variance greater than 1 in 
this panel only. C Schematic of incorporation of the interspecies ASE and population level ASE. ZNF331 has a 
wide range of ASE values, and the human-chimpanzee ASE is well within the population distribution whereas 
human-chimp ASE in RPS16 is on the edge of the population distribution indicating the greater potential for 
functional relevance. For both B and C, only GTEx brain samples were used as this provided clearer illustrative 
examples, though results are similar using all GTEx samples (Fig. 2A)
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number variation in humans to predict the probability that each gene in the genome is 
haploinsufficient [24]. We observe a significant negative correlation (Spearman’s rho = 
− 0.28, p < 10−170) between the two measures indicating that the variance of the popula-
tion-scale ASE distribution provides a reasonable proxy for constraint on expression lev-
els (Additional file 1: Fig. S1A, B). This correlation remains significant when only five (as 
opposed to ten) reads from each allele for a gene in a sample are required for inclusion 
(Spearman’s rho = − 0.27, p < 10−160). Furthermore, genes with high pHI (> 0.75) value 
have lower ASE variance than genes with low pHI (< 0.25) when controlling for expres-
sion (p < 10−150, paired t-test, Additional file 1: Fig. S2) [24]. While this indicates that 
variation in ASE is sufficient to approximate evolutionary constraint on gene expres-
sion, the strength of this relationship should not be interpreted as a quantitative estimate 
of how well ASE represents constraint. Overall, the correlation with pHI indicates that 
within-species ASE variance contains useful information about evolutionary constraint 
on gene expression.

In addition, it is important to determine the extent to which sample heterogeneity 
may affect ASE variance and thereby impact our results. For example, GTEx contains 
data from a wide range of adult tissues, and donors have variable sex and ancestry. To 
determine the extent to which these factors affect our results, we divided the GTEx data-
set along lines of sex (male/female), ancestry (African descent/European descent), and 
brain/non-brain tissues. In all cases, the results obtained were very highly correlated 
(Spearman’s rho > 0.97, p < 10−170, Fig. 2A–C). This indicates that sample heterogeneity 

Fig. 2  Influence of population differences on gene rankings. A Comparison of ranks generated by our 
method derived from brain vs. non-brain samples. Spearman’s rho = 0.98 p < 10−170. B Comparison of ranks 
using only female subjects vs. male GTEx subjects. Spearman’s rho = 0.98, p < 10−170. C Comparison of ranks 
using only GTEx subjects of African descent vs. subjects of European descent. Spearman’s rho = 0.99, p < 
10−170. D Comparison of ranks derived from GTEx (across all tissues) vs. data from fetal cortex and primary 
fetal neurons/neural progenitors. Spearman’s rho = 0.92, p < 10−170
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is unlikely to have major effects on our results and that aggregating across all the GTEx 
samples provides a reasonable measure of constraint on gene expression within the 
human population.

The wide range of adult tissues in GTEx may or may not accurately reflect gene expres-
sion constraint in cortical organoids, which mimic fetal development [25, 26]. To test 
this, we used an ASE dataset generated from neural progenitors, neurons, and fetal cor-
tical wall which resembles the developmental stage of cortical organoids more closely 
than GTEx samples [27]. There is a strong correlation between the rankings generated by 
comparing to the fetal cortex dataset and GTEx (Spearman’s rho = 0.92, p < 10−170 for 
each of day 50, day 100, and day 150 after the initial differentiation of cortical organoids; 
Fig. 2D). While it is likely that the ASE variance for some genes changes over develop-
ment, these genes appear to be somewhat rare. Overall, these results (Fig.  2) indicate 
that even though gene expression levels vary considerably across samples, ASE variance 
is robust to sample heterogeneity. This suggests that within- and between-species ASE 
values can be meaningfully compared even when they are not based on the same tissues 
or developmental time points. We therefore focused our analysis on the full GTEx data 
but verified results for specific genes in the fetal cortex data when appropriate.

An important factor in determining the applicability of our method to other organ-
isms is the number of samples required for population-scale ASE variance to meaning-
fully reflect constraints on gene expression. To explore this, we restricted the GTEx data 
to only genes with greater than or equal to 5000 samples and down-sampled the GTEx 
data 100 times across a range of values and computed the Spearman correlation with 
pHI (the “ Methods” section). Even when only 10 samples are used, the correlation with 
pHI is still highly significant, and the correlation is even stronger when we use all genes 
with 10 samples or more (Spearman’s rho = − 0.13 and − 0.17, respectively, the former is 
shown in Additional file 1: Fig. S3). In addition, the Spearman correlation with 250 sam-
ples was nearly as strong as with 5000 samples (Spearman’s rho = − 0.225 and − 0.236, 
respectively, Additional file 1: Fig. S3). While the number of samples required to accu-
rately estimate ASE variance is likely a complex function of sequencing depth, library 
preparation methods, the genetic diversity present in a population, and other technical 
factors, our results indicate that meaningful estimates of ASE variance can be achieved 
for many species, including some non-model organisms.

Exploring the effects of incorporating population‑scale ASE into interspecies comparisons 

of ASE

To visualize the differences in rankings produced by our method and the traditional 
method (ranking by either DESeq2 FDR or log2 fold change), we plotted the rankings on 
a scatterplot. This showed that our method appreciably alters the rankings (Additional 
file 1: Fig. S4A, B). Next, we sought to highlight the differences between our method and 
the traditional method for ranking genes (Fig. 1A vs. Fig. 1C). We did this by computing 
the difference in ranks between the two methods and used gene set enrichment analysis 
in Python (GSEAPY) to identify gene sets enriched near the top or bottom of the result-
ing sorted list (referred to as the difference in ranks list, Fig.  3A) [28]. A top-ranking 
gene would be one that is lowly ranked by the traditional method but highly ranked by 
the population comparison method. Many Gene Ontology (GO) categories related to 
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cortical development were enriched near the top of the difference in ranks list includ-
ing calcium and potassium channel activity, various transcription factor (TF) related 
terms, and neuroligand-receptor interaction (Fig. 3B, C). This is consistent with previous 
observations that TFs, ion channel subunits, and important players in canonical sign-
aling pathways tend to have strongly constrained expression compared to other genes 
[24]. Many genes driving these enrichments are haploinsufficient and play key roles in 
neurodevelopment including MEF2C, NEUROD2, CUX1, and EDNRB (Additional file 1: 
Fig. S5A) [29–32].

Notably, differences in the expression of haploinsufficient genes are more likely to 
have phenotypic consequences than differences in the expression of genes for which loss 
of one copy has no clear phenotypic effect. For example, there is strong evidence that 
both increases and decreases in CUX1 expression alter neurodevelopment in humans, 
which implies that the CUX1 expression divergence between humans and chimpanzees 
is likely to have phenotypic consequences [29, 34]. CUX1 is expressed at a lower level in 

Fig. 3  Enrichment summary for the difference in ranks. A Pipeline for gene set enrichment analysis with 
GSEAPY preranked. Only genes with sufficient reads in the human-chimpanzee cortical organoid dataset and 
a sufficient number of samples in GTEx were included (see the “ Methods” section), leaving approximately 
10,000 genes in the list used for enrichment analysis. B Summary of GO molecular function enrichments 
across all time points with false discovery rate (FDR) < 0.05. REVIGO in conjunction with a custom python 
script was used to generate the plot [33]. The axes are derived from multidimensional scaling and measure 
semantic similarity, enabling the removal of redundant GO terms and visualization of the similarity between 
GO categories. Each circle represents a GO term and circles near each other contain similar genes in the 
corresponding gene set. Labeled gene sets are generally those with the lowest FDR in a cluster of terms on 
the plot or those highlighted in the text. The size of the circles indicates the number of genes that are driving 
the enrichment for that category. C Summary of GO cellular component enrichments across all time points 
with FDR < 0.05
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humans than chimpanzees across time points in both hybrid and parental cortical orga-
noids (e.g., log2 fold change of − 0.93, FDR < 0.005 in parentals, mean log2 fold change 
of − 0.74, FDR < 0.023 in hybrids at day 150 of differentiation, Additional file 1: Fig. S5B, 
C). Furthermore, the per-sample ASE ratios are well outside the human fetal cortex pop-
ulation ASE distribution and only 2.5% of GTEx samples have a more extreme ASE value 
(Additional file 1: Fig. S5D, E).

Another haploinsufficient gene that is ranked highly by our method but not by the 
DESeq2 false discovery rate is EDNRB, which is one of the causal genes for Waarden-
burg-Hirschprung disease and plays an important role in neurodevelopment [32, 35, 
36]. Human-chimpanzee ASE generally exceeds ASE found in human populations for 
EDNRB (Fig. 4A, B; Mann-Whitney U test p = 0.00027 comparing EDNRB distribution 
to human GTEx population). EDNRB is also one of the most strongly human-biased 
genes across all time points in both hybrid and parental cortical organoids (mean log2 
fold-change = 4.46, FDR < 0.005 at day 150 in hybrids, log2 fold-change = 2.85, FDR < 
0.0005 in parental samples, Fig. 4C).

Next, we analyzed published single-cell RNA-seq data from brain organoids to iden-
tify the cell types driving increased EDNRB expression [37]. We found that a previously 
identified radial glial cell (RGC) cluster was characterized by high EDNRB expression 
with non-zero expression in over 50% of cells [37]. Furthermore, this cluster had higher 

Fig. 4  Changes in the expression of EDNRB in great apes. A Comparison of human-chimpanzee EDNRB 
ASE to within-human ASE from GTEx. Raw ASE ratios (as opposed to the value derived from DESeq2) are 
indicated by “ASE Ratio.” The human-chimpanzee ASE is significantly outside of the human ASE distribution. 
p-values are from the Mann-Whitney U test comparing the distribution of human population ASE to 
human-chimpanzee ASE. B Comparison to the fetal brain population ASE distribution. C ASE of EDNRB across 
time points in cortical organoids. Expression from the human allele is consistently higher than expression 
from the chimpanzee allele. D Plot showing the mean expression of EDNRB across chimpanzee and human 
cell clusters [37]. Expression in the radial glia cluster “RGCs early 2” cluster is significantly higher than in all 
chimpanzee clusters by Mann-Whitney U test (p < 10−16 for all comparisons). Data are from Kanton et al. [37]
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expression than any chimpanzee cluster (Mann-Whitney U test, p < 10−16, Fig. 4D). In 
addition, changes in EDNRB expression appear to be human-derived with respect to 
gorillas and macaques (although orangutans may have independently evolved similar 
expression to humans in early-stage brain organoids) (Additional file  1: Fig. S6A, B). 
Overall, our results suggest that a subpopulation of human radial glia has much higher 
EDNRB expression than chimpanzee radial glia.

Applying the sign test to constrained differentially expressed genes

While our method is designed to prioritize genes that are relevant to phenotypic dif-
ferences between species, it does not imply selection on changes in gene expression on 
its own. On the other hand, the sign test is designed to detect lineage-specific selection 
based on systematic up- or downregulation of genes that deviates from neutral expecta-
tion [38, 39]. This is similar in principle to testing whether a coin is biased based on the 
outcome of multiple coin flips. As a result, an important requirement of the test is that 
the expression divergence of every gene being tested should be driven by independent 
genetic differences. For example, a single mutation in a trans-acting factor could cause 
a whole pathway to be downregulated, but this would only count as one genetic differ-
ence. For this reason, hybrids are ideal for applying the sign test to gene expression, since 
the cis-regulation of genes is typically independent (except in the case of some neigh-
boring genes that share cis-elements, which can be accounted for by using a minimum 
distance threshold between genes). For example, in the human-chimpanzee hybrid cells, 
if a particular pathway contains significantly more genes with higher expression from 
the human allele than the chimpanzee allele (with significance determined by a bino-
mial test) that would provide evidence of selection on that pathway in the human and/
or chimpanzee lineage. Similar to all tests of selection, the sign test cannot discern what 
the cause of the selective pressure is. For example, many cis-regulatory changes could be 
compensating for a change in a single trans-acting factor. Alternatively, changes in gene 
expression might cause a phenotypic change that is being selected for. In either case, the 
sign test provides evidence of lineage-specific selection on cis-regulation.

Thus far, we have primarily focused on the differences between our new method and 
the traditional method for ranking genes. Having established their differences, we now 
turn to an analysis of results from our new approach (Fig.  1 and the “  Methods” sec-
tion). To examine human- and chimpanzee-biased genes separately, we sorted the list 
so that highly ranked genes with human-biased expression are at the top of the list and 
highly ranked genes with chimpanzee-biased expression are at the bottom of the list. In 
effect, this results in a test for directionally-biased cis-regulatory divergence that exceeds 
the cis-regulatory variation among most human alleles present in the GTEx population. 
More concretely, we first run GSEAPY preranked on this gene list and take all gene sets 
with GSEAPY FDR < 0.25 (the cutoff suggested by the GSEA authors) [28]. We then use 
the rank cutoff identified by GSEAPY to count the number of genes that are human-
biased and the number that are chimpanzee-biased, excluding non-significant genes. We 
then apply the sign test (in the form of the binomial test) and consider any gene sets with 
binomial FDR less than 0.05 to be putatively under selection.

We elected to focus on the top ten most enriched terms ranked by the proportion 
of genes that show matching directionality (Additional file  2: Table  S1). This strategy 
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identified several gene sets that are particularly relevant to brain development including 
Other glycan degradation (KEGG, human-biased, binomial p = 0.03, Spastic dysarthria 
(HPO, human-biased, binomial p = 0.002), Gluconeogenesis (REACTOME, chimpanzee-
biased, binomial p = 0.000061), and Nonmotile primary cilium assembly (GO biologi-
cal process, human-biased, binomial p = 0.002) (Fig. 5A–D, Additional file 2: Table S1). 
Encouragingly, genes related to carbohydrate metabolism and ciliary function have 

Fig. 5  Evidence of lineage-specific selection. A Summary of Spastic dysarthria enrichment (from human 
phenotype ontology). In A–D, each blue line represents a gene in the gene set, and the green curve is the 
cumulative enrichment score. B Summary of other glycan degradation enrichment (from KEGG). C Summary 
of Gluconeogenesis enrichment (from REACTOME). D Summary of Nonmotile primary cilium assembly 
enrichment (from GO Biological Process). E Volcano plot summarizing of log2 fold changes for genes driving 
the enrichments for Spastic dysarthria, Other glycan degradation, Gluconeogenesis, and Nonmotile primary 
cilium assembly. All genes are human-biased for Other glycan degradation and Spastic dysarthria whereas all 
genes are chimpanzee-biased for gluconeogenesis. All but one gene is human-biased for Nonmotile primary 
cilium assembly. The four genes with the lowest DESeq2 FDR are highlighted
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previously been proposed to have played an important role in human evolution [8, 40, 
41]. In addition, several other terms that are less relevant to the brain but may have 
undergone selection on gene expression in other tissues (e.g., Regulation of bone min-
eralization as well as Metabolism of xenobiotics by cytochrome P450 and related terms) 
were significant using our method. In three out of the four brain-related gene sets we 
highlight, ASE for all genes was in the same direction at an identical rank cutoff (Fig. 5E, 
see Additional file 2: Table S1 for additional gene sets). The only exception was Nonmo-
tile primary cilium assembly which has a single chimpanzee-biased gene. These strong 
asymmetries in ASE suggest lineage-specific selection acting on these gene sets [39]. 
Notably, the bias in ASE found in the hybrids for these genes generally matched the bias 
in expression found in the parental cortical organoids (Additional file 1: Fig. S7A-D).

All four of the gene sets we highlight could plausibly play an important role in evolu-
tionary changes in brain development. Gluconeogenesis siphons oxaloacetate from the 
TCA cycle and eventually produces glucose [40]. Many of the gene expression changes 
driving the gluconeogenesis enrichment appear to be human-derived compared to other 
great apes (Additional file 1: Fig. S8). Decreased gluconeogenesis in the human lineage 
would likely enable increased flux through other anabolic pathways and the TCA cycle 
possibly increasing the availability of oxaloacetate for anabolic pathways that promote 
proliferation [40]. Six genes that were ranked very highly by our method and all have 
DESeq2 FDR < 0.1 drive the “Other glycan degradation” enrichment. Interestingly, the 
loss of function of three of the six human-biased glycan degradation genes (MANBA, 
MAN2B2, and MAN2B1) is associated with intellectual disability [42–44]. Spastic dys-
arthria is a condition in which patients speak in a characteristic slow, regular, monotone 
manner as the result of the degeneration of vulnerable upper motor neurons [45]. Spas-
tic dysarthria typically co-occurs with other symptoms such as spastic ataxia so, rather 
than being connected to speech, this finding may be connected to selection for main-
tenance of neuronal homeostasis [46]. Finally, our findings add to the growing body of 
evidence that signaling at the primary cilium likely played an important role in human 
evolution [8, 41].

Discussion
Here, we presented a method incorporating population-scale ASE data as a proxy for 
constraint on expression. This ranking method helps reveal candidate genes and sig-
natures of selection that may explain phenotypic differences between humans and 
chimpanzees. The test is based on the logic of comparing within- to between-species 
variation, similar in spirit to the Hudson-Kreitman-Aguade test although it is based on 
variation in ASE rather than protein-coding sequences [47]. Although the phenotypic 
consequences of these differences remain to be determined, our finding of probable 
polygenic lineage-specific selection on several gene sets suggests that these changes 
likely have some phenotypic effects. Collectively, these findings more than double the 
number of identified cases of lineage-specific polygenic selection on gene expression 
between humans and chimpanzees (the two previous examples being Hedgehog sign-
aling and astrocyte-related genes) [8, 9]. Future work using outgroup species such as 
gorilla would be required to determine whether this selection occurred in the human or 
the chimpanzee lineage.
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In addition to exploring gene sets prioritized by our method, we also highlighted two 
interesting genes. First, we showed that EDNRB is much more highly expressed in a 
subpopulation of human radial glia than in chimpanzee radial glia. EDNRB haploinsuf-
ficiency reduces the proliferation of cerebellar granule precursor cells and chemical inhi-
bition of EDNRB signaling reduces the proliferation of mouse radial glia [35, 36]. Based 
on this, the change in EDNRB expression may have promoted human brain expansion 
by increasing the proliferation of the subpopulation of radial glia that express EDNRB. 
In addition, a recent study identified a population of caudal late interneuron progenitor 
(CLIP) cells marked by expression of EDNRB and PTGDS along with caudal ganglionic 
eminence markers [48]. As both EDNRB and PTGDS have strongly human-biased ASE it 
would be interesting to investigate if this population of cells exists in chimpanzee brain 
organoids and if it may have expanded in humans. The phenotypic implications of the 
higher ENDRB and PTGDS expression in humans will be an exciting area for further 
research.

We also investigated the decreased expression of the haploinsufficient transcription 
factor CUX1 in human brain organoids compared to chimpanzee. Recent work linked 
a mutation in a human accelerated region (HAR) that likely increases CUX1 expression 
to autism spectrum disorder, suggesting that human-derived changes in CUX1 expres-
sion alter human behavior [34, 49]. The reduced expression from the human allele we 
highlight is surprising considering that a recent massively parallel reporter assay found 
that the HAR linked to CUX1 should increase expression in humans [49]. As expression 
is lower in humans, haploinsufficiency of CUX1 might provide a reasonable model of 
the phenotypic consequences of this change. CUX1 haploinsufficiency in humans leads 
to delayed development of speech and motor skills [29]. One aspect of this condition 
is that individuals with one functional CUX1 allele often close the developmental gap 
over time (i.e., cognitive impairments and delays disappear with age) [29]. This “catch-
up” phenotype is very rare and may even be specific to CUX1 haploinsufficiency [29]. 
Interestingly, humans develop more slowly than other great apes (known as neoteny) but 
eventually “catch up,” reminiscent of the CUX1 phenotype. Overall, future investigation 
of the development of layer II-III cortical neurons and behavior of CUX1 haploinsuffi-
cient mice will be required to explore its role in human evolution further.

While we have shown that our method can aid in the analysis of human-chimpanzee 
hybrid brain organoid data, its applicability to other tissues, cell types, and organisms 
underlies its potentially broad utility. Importantly, the strong correlation between the 
GTEx brain vs. non-brain rankings (Fig. 2A) and GTEx vs. fetal cortex rankings (Fig. 2D) 
suggests that the GTEx ASE distribution can be meaningfully compared with between-
species ASE measured in diverse cell types and organoids. Our results also suggest that 
even with relatively small sample sizes per gene (a low as 10), our method still captures 
meaningful information about constraints on gene expression. In addition, while it 
is unclear if our method is applicable to hybrids between more diverged species than 
humans and chimpanzees, it is likely that ASE variance within one species will still be 
meaningful. The method can be applied to any species with sufficient gene expression 
data, e.g., comparing ASE in Arabidopsis interspecies hybrids to ASE within A. thaliana 
[50]. Overall, our method has the potential to aid in the identification of gene expression 
changes underlying species-specific traits across many different organisms.
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Conclusions
We outlined a strategy that uses allele-specific expression data from interspecies hybrids 
and population-scale studies to prioritize genes that are more likely to impact species-
specific traits and applied this method to data from human-chimpanzee cortical orga-
noids. Our findings provide opportunities for targeted follow-up experiments and 
increase our understanding of how polygenic selection has shaped human and chimpan-
zee evolution. Overall, we anticipate that our method will become a useful tool for iden-
tifying functionally significant gene expression changes in many tissues and cell types 
across diverse species and will contribute to our understanding of how gene expression 
drives phenotypic diversification.

Methods
Read alignment and RNA‑seq data processing

Data from hybrid cortical organoids was mapped as previously described [9]. Briefly, 
hornet, a rewritten version of wasp, was used in conjunction with a curated list of 
human-chimpanzee SNPs and indels to correct for mapping bias [51]. Reads for every 
sample were aligned to both the human and chimpanzee genomes and the log2 fold-
change from both alignments was compared. Any genes with log2 fold change that dif-
fered by greater than 1 were removed. We used the ASE log2 fold change values available 
in the supplemental tables of Agoglia et al. Although this dataset is restricted to hybrids 
from two humans and two chimpanzees, previous work has shown that interspecies dif-
ferences dominate over differences between populations within a species so we expect 
that our results generalize well. It also contains multiple independently derived hybrid 
lines and independent differentiations, reducing confounding by technical differences. 
Throughout, for hybrids the mean log2 fold change between human genome mapped 
and chimpanzee genome mapped reads is stated as well as the highest p-value. Addi-
tional data was downloaded from GSE106245, GSE153076, and phs000755.v2.p1 and 
mapped separately for each dataset to the respective species’ genome (PanTro6 for 
chimpanzee, hg38 for human, mmul10 for rhesus macaque, Gorgor6 for gorilla, and 
PonAbe3 for orangutan) [7, 52, 53]. We used STAR v2.5.4 with arguments: -outSAMat-
tributes MD NH -outFilterMultimapNmax 1 -sjdbGTFfile -sjdbOverhang N where N is 
1 less than the read length used for each respective dataset [54]. For paired-end reads, 
we used Picard to remove duplicates with argument: DUPLICATE_SCORING_STRAT-
EGY = RANDOM. We used HT-Seq with the following arguments: -t exon -i gene_name 
-m intersection-strict -r pos to count reads overlapping gene bodies [55]. Transcripts 
per million (TPM) was computed as previously described [56]. We used the likelihood 
ratio test in DESeq2 to test for differential expression in the downloaded datasets [23, 
57].

Comparison of population and interspecies ASE distributions

GTEx data was downloaded from https://​www.​gtexp​ortal.​org/​home/​datas​ets and the 
fetal cortex ASE data was kindly provided by the Stein laboratory [21, 27]. GTEx con-
tains data from 838 individuals, and the data from the Stein Laboratory was generated 
from approximately 90 individuals and includes neuron, neural progenitor, and cortical 

https://www.gtexportal.org/home/datasets
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wall data for a total of 235 samples. To preprocess the GTEx data, we split the file into 
two files each containing read counts from 1 of the alleles with an R script. As cortical 
organoids are a mixture of different cell types including neural progenitors and imma-
ture neurons, we pooled all counts per individual in the fetal cortex dataset. For each 
gene in each sample, we added one count to each gene (to prevent division by zero) and 
computed the ASE ratio as the ratio of counts from allele 1 (the reference) to counts 
from allele 2. The distribution for each gene was then normalized so that the median 
was 1. This normalization ensures that the Mann-Whitney U test p-values only take 
into account the variance in allelic expression in the human population and are not 
confounded by consistently higher/lower expression from a particular allele. Notably, 
flipping the sign of each value in the GTEx ASE distribution had minimal effect on the 
rankings (Spearman’s rho = 0.999, p < 10−300 for day 50, day 100, and day 150 after the 
beginning of cortical organoid differentiation) supporting the efficacy of the correcting 
the median to 1 in isolating the variance of the human population expression distribu-
tion. For each gene, we removed any samples with fewer than 10 counts (not including 
the single added count) from each allele. For example, if a sample had greater than or 
equal to 10 counts from one allele but fewer than 10 from the other allele for gene A, 
this sample would be removed from the calculation for gene A. However, if that same 
sample had greater than or equal to 10 counts from each allele for gene B, that sample 
would be included for the calculation for gene B. Notably the rankings and our results 
are robust to requiring at least 5 counts from each allele instead of 10 (Spearman’s rho 
= 0.996, p < 10−300). To filter out genes that are lowly expressed in cortical organoids, 
we removed genes with an average number of counts from the chimpanzee and human 
alleles less than 25 (i.e., mean of human read count less than 25 and mean of chimpanzee 
read count less than 25). In addition, we filtered out any genes showing mapping bias 
(listed in the supplemental tables of Agoglia et al.) as well as genes on chromosomes 18 
and 20 as parts of these chromosomes were duplicated in some cortical organoid sam-
ples. Previous work has shown that these structural changes have minimal effect on the 
computation of ASE values for genes outside the duplicated region [9]. After filtering, we 
computed the interspecies ASE distribution in a similar manner to the population ASE 
distribution (i.e., by taking the ratio of the counts from the human allele to the ratio of 
the counts of the chimpanzee allele). However, we did not require 10 counts from each 
allele and did not normalize the medians. We did not require 10 counts from each allele 
because we expect extreme differences in expression to be relatively common in between 
species comparisons. We compared the log2(ASE Ratio) interspecies distribution to the 
population distribution using the Mann-Whitney U test (a nonparametric test robust 
to the distribution of data) and used the resulting p-values to rank genes as described 
below.

Generation of gene rankings and enrichment analysis

To highlight the differences between our method and the more traditional method for 
ranking genes, we computed the difference in ranks by subtracting the DESeq2 FDR 
ranking from the MWU ranking. This gene ranking was then used in GSEAPY preranked 
with the rankings used as the score that GSEAPY uses to sort the list. We used REVIGO 
in conjunction with a custom python script to generate the plots shown in Fig. 2 [33]. In 
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this context, highly ranked genes are likely those that show relatively mild gene expres-
sion changes but have more constrained expression. For enrichment testing, we tested 
gene sets from the Gene Ontology cellular component, biological process, and molecu-
lar function categories, the human phenotype ontology, KEGG, and REACTOME using 
the same version as in Gokhman et al. [8, 58–62]. Regardless of which ranking was used, 
we used GSEAPY preranked with the following arguments: processes = 4, permuta-
tion_num = 1000, seed = 6, min_size = 10, and max_size = 300 to test for enrichment 
[28]. Following the authors’ suggestion, we considered any category with an FDR below 
0.25 to be nominally enriched [28]. Enrichment analysis was performed for each time 
point that cortical organoids were frozen for RNAseq (day 50, day 100, and day 150) 
separately, and significant terms were aggregated with only one copy of redundant terms 
that were significant in multiple time points included. Only genes with an average of 25 
reads from at least one allele in the human-chimpanzee cortical organoid dataset and at 
least 50 individuals in GTEx were included, leaving approximately 10,000 genes in the 
list used for enrichment analysis.

We next ranked the genes using a signed version of the MWU ranking for use in the 
expression sign test. More specifically, genes were effectively ranked by the log10(MWU 
p-value) multiplied by the sign of mean DESeq2 log2 fold-change so that top-ranked 
genes with negative L2FC are at the bottom of the list and top-ranked genes with posi-
tive L2FC are at the top of the list. This ranking was then used in GSEAPY preranked 
with the above parameters. We then generated a list of all gene sets across all tested 
ontologies that were nominally enriched at an FDR of 0.25 (using the FDR from GSEAPY 
preranked) in at least one time point and that had greater than five genes driving the 
enrichment. To avoid testing the same gene set multiple times, we only tested each 
gene set at the time point that had the lowest GSEAPY FDR. We used the average of the 
DESeq2 log2 fold change from mapping to the human allele and from mapping to the 
chimpanzee allele as input for the binomial test to identify gene sets with significantly 
more human-biased or chimpanzee-biased changes than expected by chance. This log2 
fold change was generated by comparing the reads from each species’ allele in the corti-
cal organoid data. As an example of the inputs to the binomial test, if a gene set had 8 
human-biased and 3 chimpanzee-biased genes, then the binomial test was used with k = 
8, n = 11, and p = 0.5. We considered any gene set with Benjamini-Hochberg corrected 
FDR < 0.1 to be significant. All statistical tests (Mann-Whitney U test, binomial test, 
correlations) were performed in python using the implementation in scipy.

Single‑cell RNA‑seq data processing and analysis

Single-cell data from human and chimpanzee organoids and associated metadata were 
downloaded from E-MTAB-7552 [37]. We used SCANPY to read in the counts matrix 
and filter the data so that only data from 1-month, 2-month, and 4-month-old orga-
noids remained [63]. We used a two-sided Mann-Whitney U test to compare EDNRB 
log2(counts per million) between the “RGC early 2” cluster and all chimpanzee clusters 
with and without cells with 0 EDNRB counts included.
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Down‑sampling and controlling for gene expression in correlations with pHI

To investigate the dependency of our method on the sample sizes used to generate the 
population ASE distribution, we randomly down-sampled (without replacement) the 
full GTEx dataset to n = 5000, 4000, 3000, 2000, 1000, 500, 250, 100, 50, 25, and 10 
samples for each gene. This ensures that all genes have an equal number of samples 
in each condition. For example, if gene A had 8000 samples with quantifiable ASE, 
we would down-sample to 5000 samples for n = 5000 and 50 samples for n = 50. 
However, if gene B had 4000 samples, we would not include this gene in the n = 5000 
condition but would include it for the n = 50 condition. We then restricted only to 
genes with 5000 or more samples in the full dataset and computed the Spearman cor-
relation with pHI for each down-sampling and took the mean of the 100 Spearman 
correlations (shown in Additional file 1: Fig. S3). Restricting to only genes with 5000 
or more samples is necessary to make a fair comparison. We also repeated this analy-
sis for n = 10 and restricted to only genes with 10 or more samples.

To control for expression level in our comparison of the GTEx ASE variance to pHI, 
we first restricted only to the 2500 genes with the highest pHI (high pHI) and the 2500 
genes with the lowest pHI (low pHI). We then separately ranked both gene sets by the 
mean of the within-tissue median TPM across all GTEx tissues and matched the high 
pHI gene and low pHI gene with the same mean TPM rank. For each matched pair of 
genes, we computed the difference in GTEx ASE variance and plotted a histogram of 
these values. We also compared the paired genes with a paired t-test.
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