
Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Smajlović et al. Genome Biology (2023) 24:5
https://doi.org/10.1186/s13059-022-02841-5

Genome Biology

Sequre: a high‑performance framework
for secure multiparty computation enables
biomedical data sharing
Haris Smajlović1, Ariya Shajii2, Bonnie Berger2*, Hyunghoon Cho3* and Ibrahim Numanagić1*    

Abstract 

Secure multiparty computation (MPC) is a cryptographic tool that allows computa-
tion on top of sensitive biomedical data without revealing private information to
the involved entities. Here, we introduce Sequre, an easy-to-use, high-performance
framework for developing performant MPC applications. Sequre offers a set of auto-
matic compile-time optimizations that significantly improve the performance of MPC
applications and incorporates the syntax of Python programming language to facilitate
rapid application development. We demonstrate its usability and performance on
various bioinformatics tasks showing up to 3–4 times increased speed over the existing
pipelines with 7-fold reductions in codebase sizes.

Keywords:  Genomic privacy, Secure multiparty computation, Domain-specific
language

Background
Privacy concerns present a key hurdle in genomic data-sharing efforts. Genomic data
leaks are not only irreversible because one’s genetic sequence cannot be changed, but
their potential harm also extends to the genetic relatives of the individuals whose data is
leaked. Traditional approaches to privacy protection such as de-identification and access
control, as described in policies such as the Health Insurance Portability and Account-
ability Act (HIPAA) in the USA and the Personal Information Protection and Electronic
Documents Act (PIPEDA) in Canada, provide limited guidance for responsible shar-
ing of genomic data due to inability to fully de-identify such data. Furthermore, novel
privacy attack surfaces continue to be discovered, exacerbating these concerns [1–4].
Keeping the data in silos and imposing strict data access and sharing restrictions either
prevent or slow down biomedical research, which increasingly depends upon access to
large datasets [5].

*Correspondence:
bab@mit.edu;
hhcho@broadinstitute.org;
inumanag@uvic.ca

1 Department of Computer
Science, University of Victoria,
Victoria, BC, Canada
2 CSAIL, MIT, Cambridge, MA, USA
3 Broad Institute of MIT
and Harvard, Cambridge, MA,
USA

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02841-5&domain=pdf
http://orcid.org/0000-0002-2970-7937

Page 2 of 18Smajlović et al. Genome Biology (2023) 24:5

Recent advances in secure computation technologies offer a promising approach for
mitigating the privacy concerns associated with data sharing [6]. These technologies
generally enable computation on private data—in an encrypted form—without disclos-
ing the sensitive information to anyone involved. A prominent such approach is secure
multiparty computation (MPC) [7], which distributes the private data to multiple com-
puting parties in a form that does not reveal any sensitive information to either party,
but allows all parties to interactively carry out the desired computation without reveal-
ing the underlying data. As the private data is kept confidential throughout the analysis,
this approach allows private data held by multiple parties to be securely and jointly lev-
eraged without disclosing the raw data. Recent studies have demonstrated the practical
applicability of MPC for a range of computational genomics and biomedical research
workflows [8–13]. Note that MPC in principle allows arbitrary computation over pri-
vate data with formal security guarantees, and its lower computational cost compared
to other frameworks (such as homomorphic encryption) makes it an appealing solution
for analyzing large-scale datasets, which are common in biomedical domains [7, 8, 11,
13–16]. Unlike trusted execution environment (TEE) technologies for secure computa-
tion [17], MPC does not require specialized hardware for its application.

However, the practical application of MPC has been stymied by the high cost of devel-
oping efficient MPC protocols with minimal computational overhead. The distributed
nature of MPC implies that each data operation, such as multiplication of two secret
numbers, needs to be performed in a coordinated manner across different parties,
increasing the complexity of the computation compared to its non-secure counterpart.
This overhead can make even simple algorithms many orders of magnitude (e.g., 100× or
more) slower than their non-secure counterparts [18]. Furthermore, existing non-secure
pipelines cannot be easily ported to secure environments since MPC frameworks typi-
cally require (i) a near-complete reimplementation of existing algorithms using only low-
level MPC routines and (ii) a manual optimization of the algorithms to improve MPC
performance. Such optimization can obfuscate the original intent of the code and sacri-
fice readability and maintainability, thus making the subsequent development and code
reviews (needed for security assurance and compliance) tedious and prone to oversight.
These limitations are in part due to the fact that the existing MPC frameworks (e.g., [19])
are implemented as custom libraries of low-level MPC operations that cannot be effi-
ciently composed and optimized [20], or as domain-specific languages with ad hoc syn-
tax and limited expressiveness that increase the difficulty of MPC pipeline development
and maintenance [21].

Here we introduce Sequre, a Python-like, high-performance domain-specific lan-
guage for developing secure MPC algorithms. Sequre uses standard Python syntax
and semantics to ease the development of secure pipelines and the transformation of
existing code into MPC equivalents. On the other hand, Sequre builds upon Seq [20],
a recently introduced framework for compiling Pythonic codebases, and a set of newly
developed compile-time code analysis strategies and optimizations to improve perfor-
mance even beyond that of the fastest MPC frameworks in C/C++. Sequre’s novel opti-
mizations utilize Seq’s intermediate representation (IR) of the Python source code (i.e.,
a logical representation of a program’s execution flow that can be statically analyzed) to
remove unnecessary computation and to select the best MPC routines and optimization

Page 3 of 18Smajlović et al. Genome Biology (2023) 24:5 	

approaches for each computational step. As a result, Sequre enables high-performance
and simple codebases that do not require extensive MPC-related modifications.

We demonstrate Sequre’s performance and usability by employing it to implement
various bioinformatics pipelines, including genome-wide association study (GWAS) [9],
drug-target interaction (DTI) inference [10], and metagenomic binning [22, 23]. To our
knowledge, a secure MPC protocol for metagenomic binning has not been previously
developed. We implemented each pipeline in only 80–160 lines of high-level Python
code whose functionality is equivalent to the original algorithm. Compared to the exist-
ing state-of-the-art pipelines, we achieved up to 7× reduction in code length. Further-
more, the overall execution time of these pipelines was reduced 3–4× , and the network
utilization was also 17% lower. Where possible, we also compared Sequre to an existing
Python-based MPC framework, PySyft (SyMPC) [19], and showed that various machine
learning tasks can be performed 2 × faster while providing comparable security guaran-
tees. We also micro-benchmarked Sequre’s performance and compared it to ten exist-
ing MPC frameworks using a standard benchmark suite [21]. Sequre achieved the best
runtime performance in the majority of cases while being one of the easiest frameworks
to use.

We expect Sequre to enable practitioners without expertise in MPC and cryptogra-
phy to easily write efficient MPC algorithms for various biomedical workflows. Further-
more, the improved readability and usability of Sequre programs can simplify sharing
and maintenance of these tools. Thus, Sequre could facilitate the use of secure compu-
tation technologies and, as a result, broaden data sharing and collaboration efforts in
biomedicine.

Results
Overview of Sequre

Sequre is a high-performance framework for the development and deployment of secure
multiparty computation (MPC) pipelines (Fig. 1; see Additional file 1: Section 2 for
an overview of MPC). It takes in a computational pipeline written in the syntax of the
widely used Python language and compiles it to an equivalent MPC program. The source
code of the pipeline is statically analyzed to detect code blocks that need to be replaced
with secure computation routines, as well as to discover and apply MPC-specific com-
pile-time transformations and optimizations that can speed up the execution. The final
output includes optimized executable programs that can be deployed by a group of com-
puting parties to securely perform the desired computation on private data. The high-
level source code written in Sequre can be easily reviewed by the involved entities to
understand and agree upon the workflow before the execution.

Sequre’s compiler pipeline and automated optimization techniques are illustrated in
Fig. 2. Most importantly, arithmetic expressions are analyzed and restructured at com-
pile-time to minimize the computation and network overhead. For example, the com-
piler will expand a series of expressions into a polynomial and invoke the optimized
MPC routine for polynomial evaluation to minimize the network overhead. If the
expanded polynomial is highly complex, the compiler will perform a static code analy-
sis to find hotspots where auxiliary MPC computation can be cached—a procedure that
would otherwise require significant manual intervention. Additionally, Sequre looks for

Page 4 of 18Smajlović et al. Genome Biology (2023) 24:5

specific algebraic patterns (e.g., secure matrix and fixed-point arithmetics) and substi-
tutes them with MPC-efficient alternatives.

In the following, we demonstrate three applications of Sequre in different domains,
including medical genetics (GWAS), pharmacogenomics (drug-target interaction pre-
diction), and metagenomics (taxonomic binning). The first two are reimplementations of
recently published MPC solutions [9, 10], while the last (metagenomic binning [22, 23])
illustrates a novel MPC implementation of a common biomedical task from scratch. For
comparison with existing tools, we evaluate all methods using a single thread and based
on the same level of security (see Additional file 1: Section 5 for details). Our results
illustrate Sequre’s practical utility, performance, and usability.

Secure genome‑wide association studies

One of the first practical demonstrations of secure computation in genomics was
for genome-wide association studies (GWAS) [8, 9, 11, 24]. GWAS aims to identify
genetic variants that are statistically correlated with phenotypes of interest (e.g.,
biological traits or disease status). For example, Cho et al. [9] introduced an MPC

Fig. 1  Overview of Sequre. Secure multiparty computation (MPC) enables collaborative analysis of sensitive
private data—such as patient genomes and proprietary pharmaceutical datasets—without disclosing the
data to anyone other than the respective data providers. This functionality has the potential to allow various
stakeholders in biomedicine (e.g., academic, clinical, or commercial labs) to more broadly share sensitive
data for a range of biomedical applications (e.g., genetic association studies, drug-target prediction, and
metagenomic profiling). MPC enables secure collaboration by dividing sensitive data into encrypted
shares and distributing them across multiple computing parties (may be the data providers themselves),
leveraging a cryptographic technique known as secret sharing. Securely performing computation over the
distributed encrypted data necessitates complex and specialized computational protocols, which often incur
a significant performance overhead. Sequre addresses this challenge to accelerate MPC development and
deployment by automatically converting programs written in a readable, high-level Python-like language
into high-performance MPC programs, thus enabling both faster development and review cycles, as
well as faster execution. We envision a workflow where the end-users (e.g., collaborating researchers) use
Sequre to rapidly develop and agree upon on a pipeline for a secure collaborative study, then deploy the
optimized executable programs produced by Sequre to computing parties for execution. Finally, the results
of the collaborative analysis are returned to the end-users, revealing insights from the combined data that
individual entities could not obtain otherwise

Page 5 of 18Smajlović et al. Genome Biology (2023) 24:5 	

solution written in more than 1000 lines of carefully optimized C/C++ code, encom-
passing all the standard steps of a GWAS: quality control filtering (to control missing
rates, allele frequencies, and Hardy-Weinberg equilibrium), population stratification
analysis through principal component analysis (PCA), and linear regression-based
association tests. Despite extensive optimizations, this pipeline was estimated to
require 80 days to securely perform GWAS on a million individuals and half a million
single-nucleotide polymorphisms (SNPs), illustrating the overhead of MPC for com-
plex operations such as GWAS.

We developed Sequre-GWAS, a reimplementation of the aforementioned MPC-
based GWAS pipeline [9] in Sequre. Our implementation consisted of only 160
lines of high-level Python code, representing over 7× reduction in code length. We

Fig. 2  Sequre’s automatic compiler optimization workflow. Sequre transforms an analysis pipeline written
in standard Python language into equivalent secure MPC programs through a set of compiler analysis
and optimization modules. From the end-user’s perspective, the high-level syntax of Sequre is agnostic to
MPC, because the individual operations are automatically replaced with the corresponding MPC routines
by Sequre during compilation. The transformed code is then analyzed by the compiler in several passes
to optimize the performance of the MPC pipeline. More specifically, Sequre’s optimizations include (1)
replacing common code patterns with more efficient equivalents under the MPC setting, (2) restructuring
arithmetic expressions to minimize redundant computation and the network overhead incurred by the
Beaver partitioning operations, and (3) applying a set of higher-level performance optimizations, such as
faster modulus and matrix operations. The resulting program is a high-performance executable ready to be
executed by computing parties to carry out the desired analysis. The optimization techniques of Sequre are
described in the “Methods” section and Additional file 1: Section 4

Page 6 of 18Smajlović et al. Genome Biology (2023) 24:5

observed a 3.7× decrease in the overall runtime of GWAS with a comparable net-
work utilization on the lung cancer dataset from [9]. Further, we observed consist-
ent speedup factors for varying dataset dimensions (Additional file 1: Section 3),
based on which we estimate a runtime of 3 weeks for a million-individual study using
Sequre-GWAS, in contrast to nearly 3 months reported in the original publication.
The analysis results retain the same accuracy even after the transformations and opti-
mizations automatically applied to the pipeline by the Sequre compiler (Additional
file 1: Section 3).

The breakdown of the performance improvement achieved by Sequre is shown in
Fig. 3. MPC-related optimizations, such as caching the intermediate results of secure
multiplications and adjusting the precedence of operators to be executed in an MPC-
friendly manner—both manually optimized in prior work—are automatically performed
by our compiler. Not only Sequre reproduced all such optimizations in the original code,
but also it found 4% more hotspots in the original codebase that could be further opti-
mized. These optimizations alone, together with modular arithmetic optimizations,
improved the overall GWAS runtime by 1.64× . Finally, automatic conversion from the

Fig. 3  Sequre’s usability and performance improvements in three biomedical applications. Sequre’s
automated code transformation and optimizations reduce A code complexity (number of the lines of code
[LOC] in the implementation) and B runtime (execution time in seconds). We show Sequre’s improvements
in these metrics in three applications: genome-wide association studies (GWAS), drug-target interaction
(DTI) prediction, and metagenomic binning. For metagenomic binning, we consider two recent algorithms,
Ganon [22] and Opal [23]. We implemented the analysis pipeline for each application in Sequre and
compared with the version without the compiler optimizations as well as implementations in existing
frameworks where applicable (C/C++ and PySyft). Note that the C/C++ baselines refer to the recently
published, manually optimized MPC implementations of GWAS [9] and DTI prediction [10]. There is no prior
MPC implementation for metagenomic binning. Contributions of individual optimization modules in Sequre
are shown in different colors within a bar. Sequre generates high-performance MPC programs while allowing
them to be easily and compactly written in standard Python language

Page 7 of 18Smajlović et al. Genome Biology (2023) 24:5 	

finite (Galois) field-based to the ring-based MPC protocols (Additional file 1: Section 4)
resulted in an additional 2.3× speed-up.

Secure drug‑target interaction prediction

Another promising application of secure computation is drug-target interaction (DTI)
prediction. The goal of DTI prediction is to uncover novel interactions between drug
molecules and putative protein targets. The inference method takes a set of compounds
and a set of targets as input and outputs the probability of interaction between new com-
pound-target pairs. While the feature representations vary across the existing methods,
the inference is increasingly performed using neural networks [10, 25–27].

Unfortunately, many existing pharmacological datasets are held by labs and com-
mercial companies that are unable to share data due to intellectual property concerns.
This problem was recently addressed by a privacy-preserving DTI prediction pipeline
that protects the individual training datasets from the involved entities [10]. The pipe-
line begins with the data preprocessing step, where the chemical compounds and pro-
teins are encoded as feature vectors by the data holders and securely shared with the
untrusted computing parties. The second step of the pipeline—secure model train-
ing—uses these features to securely train a neural network using a secure MPC protocol
(Additional file 1: Section 3). The existing method for model training takes up to 4 days
for one million drug-target pairs [10]. After the training, DTI inference continues in a
similar fashion: the data owners encode their drug-target pairs locally and securely eval-
uate the pre-trained neural network on the new inputs to obtain the predictions.

To demonstrate that machine learning tasks, such as neural network training, can be
efficiently developed using our framework, we reimplemented the DTI prediction pipe-
line in Sequre (Sequre-DTI). We observed improvements similar to the GWAS task:
2–3× reduction in code length (from 274 to 117 lines of code), more than 4 × faster exe-
cution times, and more than 34% reduction in network usage (Fig. 3; Additional file 1:
Section 3). For example, 4 days of training time could be reduced to less than a day. The
impact of individual optimizations in Sequre-DTI followed the same patterns as in the
GWAS example.

We also implemented the DTI inference procedure in SyMPC (PySyft) [19], an existing
Python framework specialized in deep learning MPC pipelines. While Sequre-DTI and
the PySyft implementation were comparable in both accuracy and code length (Addi-
tional file 1: Section 3), Sequre-DTI was more than 2× faster (Fig. 3). This improvement
is despite the fact that SyMPC employs function secret sharing (more restrictive but the-
oretically faster than Sequre’s approach) and 64-bit data types that incur smaller CPU
and network overhead than Sequre’s 128-bit data types, thus highlighting the effective-
ness of Sequre’s automated optimizations.

Secure metagenomic binning

To demonstrate that new analysis pipelines can be easily developed from scratch with
Sequre, we turn to metagenomic binning, a central task in the analysis of microbiomes
for which practical MPC algorithms have not yet been developed. The goal of this task is
to identify and quantify the organisms present in a sequenced metagenomic sample by
classifying reads and assigning them to reference genomes, resulting in a “metagenomic

Page 8 of 18Smajlović et al. Genome Biology (2023) 24:5

profile” of the sample that can be used for various health-related tasks [28–31]. Despite
the need for a service where the user can upload their samples and receive the bin-
ning results with respect to the existing reference datasets (which may be proprie-
tary), privacy risks have limited the utility of such services. For example, a sequenced
metagenomic sample may include the host’s genetic sequence, as well as viral sequences
potentially indicating the infection status of the host [32]. In some cases, even the
metagenomic profile alone can identify the individual and disclose information about
the host’s behavior and environment [33].

There exists a wide variety of metagenomic binning methods and pipelines developed
in the non-secure context [34]. Here, we used Sequre to implement two state-of-the-
art metagenomics binning pipelines: Ganon [22], based on Bloom filters, and Opal [23],
based on locally sensitive hashing and machine learning classifiers. We refer to our MPC
implementations of Ganon and Opal as Sequre-Ganon and Sequre-Opal, respectively.

Given a sample including reads to be classified, Sequre-Ganon extracts sequence fea-
tures from the reads and secretly shares them with the computing parties (Additional
file 1: Section 3). The features are then securely queried against the index in the form
of an interleaved Bloom filter [35]. The query results—the probability of a read belong-
ing to a given bin (or reference)—are used to determine the most likely classification
for each read. This procedure is implemented in a secure manner using oblivious array
data structures [36], efficiently supported by Sequre. On the other hand, Sequre-Opal
uses machine learning classifiers (logistic regression or support vector machines) for the
same task. It also begins by encoding the reads as feature vectors, this time through Gal-
lager coding [37], and secretly sharing the data with computing parties. We implemented
MPC versions of both training and inference steps that use binary classifiers with hinge
loss and stochastic gradient descent optimization.

Despite the complexity of both algorithms, Sequre-Ganon and Sequre-Opal are imple-
mented as compact high-level Python programs in 113 and 80 lines of code, respectively.
The code did not include any manual MPC-related optimization, thus being effec-
tively identical to the non-secure counterparts. We evaluated our methods on the Opal
benchmark dataset [23], which includes 10 reference bacterial genomes sequenced at
15× coverage as well as a classification test data including 10,000 reads of length 65 bp.
Sequre-Ganon took 18.5 h to perform the classification—the task that otherwise takes
less than 10 s in offline, non-secure setting, while Sequre-Opal took 3 h for both train-
ing and classification. As a reference, the non-secure Opal run terminates in less than
10 min (Additional file 1: Section 3). The large runtime difference is due to Sequre-
Ganon’s use of Bloom filters, which incurs a considerable overhead in the MPC setting:
privately answering a query takes O(n) time, where n is the size of the data structure,
compared to O(1) time needed in the non-secure setting for the same task. The algo-
rithm of Sequre-Opal is less affected by the algorithmic complexity changes induced by
MPC protocols. Nonetheless, we note that Sequre still optimized the naïve MPC imple-
mentations of both methods. The compiler optimizations made Sequre-Ganon 2.29×
faster, and Sequre-Opal 1.16× faster (Additional file 1: Section 3). Finally, we note that
Sequre-Ganon and Ganon had identical accuracy as expected. This was also the case for
Sequre-Opal and Opal based on a comparable choice of models and parameters (Addi-
tional file 1: Section 3).

Page 9 of 18Smajlović et al. Genome Biology (2023) 24:5 	

Sequre and other MPC frameworks

Many other MPC frameworks have been introduced in recent years [18, 19, 38–46] (see
[21] for a survey of existing MPC frameworks). Each framework offers some novelty con-
cerning security, expressiveness, or performance; however, most of the available frame-
works are not yet ready for practical use due to performance limitations [21]. Sequre
emphasizes practicality and optimizes expressiveness and performance by adopting
an honest-but-curious security model based on the additive secret sharing scheme [7]
and leveraging various optimizations based on compile-time static code analysis for
improved performance. It operates under what we view as middle-ground security con-
straints, providing a rigorous notion of security based on the properties of secret shar-
ing, while introducing additional requirements to enable efficient performance, namely
an auxiliary party—known as a trusted dealer—that generates correlated randomness to
be used in the main protocol to greatly accelerate the computation. This model is also
known as the server-aided model of MPC, and it requires that the collaborating entities
identify an independent, trustworthy actor to assume this role. However, many bioin-
formatics applications with large-scale datasets currently necessitate this modification
to achieve practical performance. Nevertheless, disabling a trusted dealer at the expense
of performance can be done, should one wish to do so. Additionally, as discussed in Cho
et al. [9], the existing MPC scheme can be strengthened to allow both malicious and
semi-honest adversaries, which relaxes the security assumptions by allowing the parties
to deviate from the protocol at the expense of having worse performance.

Out of the available MPC frameworks, we selected and benchmarked ten mature and
actively maintained MPC frameworks that are comparable to Sequre. We evaluated usa-
bility (as measured by code length), overall runtime and network utilization. It should be
noted that not all frameworks operate under the same computational model and security
constraints. For example, four evaluated frameworks use garbled circuits which support
only two parties and the evaluation of Boolean circuits [7], while the other six operate
under the same or, in some cases, slightly weaker models (e.g., honest-majority setting)
compared to Sequre. For comparison, we used the closest MPC paradigm and parameter
settings across the tools to the extent possible (Additional file 1: Section 3).

In terms of usability, we found Sequre to be 3 × more expressive on average, measured
by the number of lines of code required to implement the benchmark (fewer means
more expressive) (Additional file 1: Section 3). Sequre is also one of the few frameworks
that do not require learning a new language or framework: a single-line decorator is
sufficient for Sequre to convert a normal Python code into its secure equivalent. Per-
formance-wise, Sequre was on average 100× faster than the other frameworks (despite
excluding the four outlier test cases where Sequre was from 1600× to 32,941× faster
than its counterparts). More precisely, Sequre was up to 250× faster in 9 test instances
based on similar security models, and up to 1117× faster in 8 test instances involving
comparison with a different MPC paradigm (garbled circuits). Even when compared
with frameworks with more limited security guarantees aimed at faster performance,
Sequre was 3–9× faster over 9 test instances. The only cases where Sequre was slower
(2.5–5.5× ) were the four comparisons that evaluated the performance of oblivious data
structures (e.g., secure array access), for which more efficient, specialized routines have
been implemented in existing frameworks. Note that, given the modularity of Sequre,

Page 10 of 18Smajlović et al. Genome Biology (2023) 24:5

more efficient subroutines such as these can be continuously integrated to further
improve performance while maintaining the expressiveness of the Sequre language. The
performance comparison between Sequre and three other frameworks that are similar
to Sequre in terms of design and features is presented in Table 1. An extended cross-
comparison between Sequre and ten other frameworks is provided in Additional file 1.
We also note that because Sequre is based on Seq [20], it also provides a wide range of
domain-specific features and routines for efficiently processing genomic datasets (e.g.,
sequence operations), which can be seamlessly integrated with the MPC portions of the
analysis pipeline.

Discussion
We note that there are inherent limitations to what can be achieved by the automated
compiler optimization of Sequre. For example, the performance difference between the
two Sequre tools for metagenomic binning (Sequre-Ganon and Sequre-Opal) illustrates
how the performance of a program pivotally depends on the underlying algorithmic
choices. To an extent, the user still needs to remain engaged in exploring different imple-
mentation strategies in order to obtain the most efficient tool for the desired task. The
fact that Sequre allows the user to program in Python without any special consideration
for MPC greatly simplifies and accelerates this development process. Providing a library
of high-level routines that are commonly used in biomedical analyses (e.g., basic statisti-
cal models) may further reduce the user’s burden on the algorithmic side and thus is a
meaningful direction for future work.

Sequre can easily be extended to incorporate novel MPC protocols, frameworks, and
optimization techniques. Sequre’s approach can also be used to target other privacy-
enhancing technologies such as homomorphic encryption or hardware-based trusted
execution environment (TEE) technologies, which present unique challenges. Finally,
practitioners in other fields beyond biomedicine can use Sequre to develop secure data

Table 1  A cross-comparison between Sequre and three state-of-the-art MPC frameworks.
Frameworks were benchmarked for expressiveness (in terms of lines of code (LOC)) and runtime
over multiple MPC setups. The best runtimes per benchmark per setup are bolded. Some variants
are not supported (marked with ⊥ ). A complete listing of cross-comparison against another seven
frameworks is provided in Additional file 1

Runtime (ms)

Framework LOC 128bitZp 128bitZ
2k

64bitZp 64bitZ
2k

mult3 MP-SPDZ 4 1.0 0.9 0.7 0.6

MPyC 8 ⊥ ⊥ 0.9 ⊥

Sharemind 4 ⊥ ⊥ ⊥ 2.8

Sequre 4 0.2 0.1 – –

innerprod MP-SPDZ 7 78 45 77 44

MPyC 7 ⊥ ⊥ 4,200 ⊥

Sharemind 4 ⊥ ⊥ ⊥ 20

Sequre 4 24 17 – –

xtabs MP-SPDZ 24 70 20 40 15

MPyC 9 ⊥ ⊥ 700 ⊥

Sharemind 15 ⊥ ⊥ ⊥ 2500

Sequre 9 50 95 – –

Page 11 of 18Smajlović et al. Genome Biology (2023) 24:5 	

analysis pipelines. Our work provides a key tool for broadening data sharing and col-
laboration in biomedicine.

Conclusions
We presented Sequre, a performant and user-friendly tool for developing privacy-pre-
serving software for biomedical data analysis. Sequre introduces a compiler that trans-
forms a high-level Python script to a secure MPC program while applying a variety of
sophisticated code optimizations without manual intervention. This allows practitioners
without the expertise in MPC to develop and use efficient MPC software. Our results
on diverse applications demonstrate the usability of Sequre as well as its state-of-the-
art performance, often outperforming carefully optimized published tools from prior
works.

Methods
Sequre at a glance

Sequre is a high-performance secure multi-party computing (MPC) compiler frame-
work consisting of a MPC library and a set of domain-specific compile-time transfor-
mation and optimization passes that can detect various MPC operations in the source
code and automatically simplify and optimize them. Sequre uses Seq [47], a compiler
framework for building statically typed high-performance languages that use Python’s
syntax and semantics. Thanks to Seq, Sequre is able to combine the ease of Python with
the performance of C/C++.

Sequre follows the fundamental principle that the code can be optimized by the com-
piler automatically through a set of custom analysis and compile-time optimizations
that utilize domain-specific knowledge. This principle has been successfully applied to
languages and optimization toolkits in various domains including GPU computing [48],
image processing [49], deep learning [50], tensor computing [51], parallel comput-
ing [52], and recently, bioinformatics [20, 53].

A Sequre pipeline is written in a dialect of Python that can be statically type
checked [20]. Secure MPC procedures—i.e., blocks of code meant to operate on securely
shared data in a distributed fashion—are annotated via the “@sequre” decorator.
Code annotated with this decorator is automatically converted to a secure MPC rou-
tine by transforming each operation to the MPC equivalent implemented in Sequre’s
standard library. This library supports common arithmetic, Boolean and linear algebra
operations, and shares the same semantics as Python’s standard library and the NumPy
library [54]. The transformed source code is then statically type checked and trans-
formed to a Seq intermediate representation (IR), a starting point for all further analy-
sis and optimization passes. After applying a basic set of general-purpose Python code
optimizations [47], Sequre performs additional MPC-related optimizations, which aim
to reduce network utilization and runtime performance of the pipeline. Optimized IR is
then translated to LLVM IR and subsequently handled by the LLVM framework [55] that
applies additional set of both general-purpose and MPC-related performance optimiza-
tions and facilitates the final machine code generation.

Page 12 of 18Smajlović et al. Genome Biology (2023) 24:5

The final result is a highly optimized executable that can be deployed by a set of com-
puting parties to perform the desired computation on the private data, as well as the
original high-level source code that can be easily understood by involved entities (see
Additional file 1: Section 1 for an example of a pipeline written in Sequre).

Sequre’s MPC framework

Sequre uses additive secret sharing-based MPC [7], which represents each data value
as an element in a finite algebraic structure. This structure is typically a finite (Galois)
field or a Z2k ring. While Z2k rings tend to have better performance due to native integer
operations, they support a limited range of arithmetic operations [56] (e.g., protocols
that require a modular inverse are not supported). Existing MPC frameworks typically
provide support only for a single algebraic structure. In contrast, Sequre supports both
and is able to convert between different representations to achieve better performance
(Additional file 1: Section 4).

There are many flavors of MPC that differ in the desired security and performance
guarantees, often trading off one for the other. Sequre uses additive (arithmetic) secret
sharing with a trusted dealer under an honest-but-curious security model [7], which we
view as a balanced option achieving both practical efficiency and a meaningful level of
security. Our framework builds upon the MPC framework used by the prior work on
secure GWAS [9], which combines a variety of key MPC building blocks from the lit-
erature (e.g., for fixed-point arithmetic and comparison protocols) into a unified MPC
library. Sequre supports joint computation among any number of computing parties (at
least two, not including the trusted dealer). It remains secure against arbitrary collusion
among parties as long as the trusted dealer and at least one other party (participating
in additive secret sharing) remain honest. Since Sequre provides a general framework
for MPC implementation and optimization, it allows end-users to extend and adjust the
existing MPC protocols, as well as to implement novel MPC protocols that could pro-
vide different security guarantees if desired.

MPC‑specific optimizations

Sequre performs five compile-time MPC-specific optimizations: two network load opti-
mizations, one code generation optimization, and two low-level performance optimiza-
tions. All of them are automatically invoked via the custom @sequre decorator (Fig. 2;
see Additional file 1: Section 4 for details).

Network optimizations

Sequre provides two network optimizations to reduce the communication rounds and
the overall network bandwidth in the secure multiplication routine. This routine by
default uses a generalized form of the Beaver multiplication triples [57], which were
originally devised for secure multiplication of two elements, but later generalized for
computing higher order polynomials [9]. Such computation necessitates constructing
the so-called Beaver partitions of the secretly shared data beforehand (Additional file 1:
Section 4).

A naïve implementation of this procedure calculates fresh Beaver partitions in each
multiplication for each variable. However, the Beaver partitions of the past variables

Page 13 of 18Smajlović et al. Genome Biology (2023) 24:5 	

that have not been modified can be reused in the future, which can significantly
improve the performance of the overall pipeline because Beaver partitioning is expen-
sive both in terms of network utilization and computational overhead [9]. Such reuses
are typically implemented manually and require developers to carefully inspect the
code and avoid redundant partitions when needed. While this manual optimization
can significantly reduce the runtime of the protocol, it complicates the development
process and makes the underlying code complex and less readable. For example, an
optimized secure MPC implementation of QR factorization or a simple linear regres-
sion [9] can become 10× longer than the non-secure program implementing the same
algorithm due to manual optimizations.

Sequre addresses this problem by automatically tracking the multiplication oper-
ations and finding the places where Beaver partitions can be reused through static
code analysis methods described below.

Beaver caching optimization: As mentioned earlier, the MPC framework of Sequre
requires Beaver partitions of the input variables before each multiplication. Once
generated, these partitions can be cached and reused in subsequent multiplications as
long as the variable remains unchanged. Furthermore, some operations, like addition
and public scalar multiplication, are invariant to Beaver partitioning (i.e., when add-
ing two numbers, it is enough to add the corresponding partitions to obtain the parti-
tions of the sum). Hence, the partitions of the sums can be propagated and reused in
subsequent multiplications, thus avoiding redundant computation and communica-
tion across different multiplications (Fig. 2). Sequre automates the partition reuse by
statically analyzing arithmetic expressions that operate on secretly shared variables.
Generated partitions are cached and reused by traversing the binary expression tree
for each target expression and by labeling the redundant sub-expressions, identified
either directly or through propagation. For a set of expressions that share the same
variable, the variable is partitioned in only one expression; other expressions in the
same set reuse the cached partitions. Sequre also tracks changes to variables and
invalidates a cached partition whenever a change occurs.

Polynomial optimization: Arithmetic expressions that contain operations that rely
on Beaver multiplications (multiplication, addition, and exponentiation) can often be
represented in a generalized polynomial form:

where N0 denotes non-negative integers including zero and R real numbers. Certain
types of these polynomials (e.g., a low-degree polynomial) can be efficiently evaluated
by the generalized Beaver partitioning approach [9], where Beaver partitions of the input
variables are calculated only once. However, manually formulating such polynomials
from the existing expressions is a cumbersome task that often requires large-scale code
changes. Even when the polynomials are identified, this procedure is hard to implement
manually.

To address this problem, Sequre automatically enumerates all candidate polyno-
mials from a block of expressions at compile-time, then identifies a sufficient set of

fm(x1, x2, . . . , xn) =

m

i=1

ci

n

j=1

x
pij
j , ci, xj ∈ R, pij ∈ N0,

Page 14 of 18Smajlović et al. Genome Biology (2023) 24:5

polynomials that can be efficiently evaluated to obtain the final results. Afterwards, it
generates the secure generalized polynomial evaluation procedures for each identified
polynomial (Fig. 2). By choosing the best polynomials to evaluate, Sequre minimizes the
overall network overhead for evaluating a set of expressions. Note that, while our pol-
ynomial evaluation routine minimizes the rounds of communication, it introduces an
offline performance overhead that can grow exponentially with the degree of the poly-
nomial. For this reason, Sequre limits the degree of polynomials for this optimization
and resorts to the Beaver caching technique to further divide the expression into smaller
components if the full expansion is deemed to be infeasible.

Code generation and performance optimizations

Sequre takes advantage of the specific nature of MPC algebraic operations to introduce
domain-specific optimizations that can improve elementary operations such as division
and square root. For example, the standard iterative technique for calculating a square
root via MPC (based on Goldschmidt’s algorithm) additionally outputs the inverse
square root as a by-product. Thus, an efficient way of dividing by the square root of some
number b (e.g., normalizing a vector by its norm) is to multiply the numerator by inverse
square root of b, as opposed to invoking both square root and division operations [9].
Sequre compiler identifies this and other similar patterns and replaces the expression
with an equivalent expression that can be more efficiently evaluated under MPC (Fig. 2).
In addition, Sequre tracks the diagonal matrices in the expressions using a vector repre-
sentation and replaces the matrix operations involving them with efficient vector-based
operations that avoid unnecessary calculations involving the off-diagonal zeros. Sequre
also optimizes compute-intensive operations like matrix multiplication by using a spe-
cialized, LLVM-optimized version of the Strassen algorithm.

We also note that the modulo operator is one of the most commonly used operators in
secret sharing-based MPC protocols. Unfortunately, LLVM ships with a generic imple-
mentation of the modulo operation, which often offers substandard performance. For
this reason, Sequre introduces a new and efficient calculation of fixed modulus opera-
tions (as the modulus remains fixed in MPC protocols), yielding up to 40% of perfor-
mance improvement over the default LLVM modulo operator (Fig. 3).

Code and data availability

Our software suite, including documentation and tutorials, is available at https://​github.​
com/​0xTCG/​sequre. Details about our datasets and experimental protocols are provided
in Additional file 1: Section 5.

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​022-​02841-5.

Additional file 1. Sequre supplementary notes provides additional insight to Sequre, its usability and optimizations,
and the results [61–90].

Additional file 2. Review history.

https://github.com/0xTCG/sequre
https://github.com/0xTCG/sequre
https://doi.org/10.1186/s13059-022-02841-5

Page 15 of 18Smajlović et al. Genome Biology (2023) 24:5 	

Acknowledgements
We would like to thank Nasrin Akbari and Amirali Baniasadi at the University of Victoria for helpful suggestions and
discussions.

Peer review information
Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration with
the rest of the editorial team.

Review history
The review history is available as Additional file 2.

Authors’ contributions
A.S., B.B., H.C., and I.N. jointly conceived the idea of Sequre. H.S. designed and implemented Sequre. A.S. and I.N. created
the compiler framework that underpins Sequre. B.B. and H.C. provided a theoretical and technical baseline for secure
multiparty computation protocols. All authors were the major contributors in writing the manuscript, and all authors
read and approved the final manuscript.

Funding
This work was partially supported by NSERC Discovery Grant (to I.N.), Canada Research Chair program (to I.N.), NIH R01
HG010959 (to B.B.), and NIH DP5 OD029574 (to H.C.).

Availability of data and materials
Our software suite, including documentation and tutorials, is published under the Apache 2 license at https://​github.​
com/​0xTCG/​sequre/​tree/​v0.0.​1-​alpha [58] and https://​doi.​org/​10.​5281/​zenodo.​74657​64 [59]. The datasets supporting the
conclusions of this article are included within the Additional file 1. The version of the source code used in the manuscript
is v0.0.1-alpha. For lung cancer data in GWAS analysis, we used dbGaP data with accession phs000716.v1.p1 [60].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
A.S., I.N., and B.B. are shareholders of Exaloop inc., which maintains the Seq language on top of which Sequre was built.

Received: 30 August 2022 Accepted: 21 December 2022

References
	1.	 Shringarpure SS, Bustamante CD. Privacy risks from genomic data-sharing beacons. Am J Hum Genet.

2015;97(5):631–46.
	2.	 Schadt EE, Woo S, Hao K. Bayesian method to predict individual SNP genotypes from gene expression data. Nat

Genet. 2012;44(5):603–8. https://​doi.​org/​10.​1038/​ng.​2248.
	3.	 Erlich Y, Shor T, Pe’er I, Carmi S. Identity inference of genomic data using long-range familial searches. Science.

2018;362(6415):690–4. https://​www.​scien​ce.​org/​doi/​abs/​10.​1126/​scien​ce.​aau48​32.
	4.	 Homer N, Szelinger S, Redman M, Duggan D, Tembe W, Muehling J, et al. Resolving individuals contributing

trace amounts of DNA to highly complex mixtures using high-density SNP genotyping microarrays. PLoS Genet.
2008;4(8):1–9. https://​doi.​org/​10.​1371/​journ​al.​pgen.​10001​67.

	5.	 Alaqra AS. The wicked problem of privacy: design challenge for crypto-based solutions. PhD thesis, Karlstads univer-
sitet; 2018.

	6.	 Berger B, Cho H. Emerging technologies towards enhancing privacy in genomic data sharing. Genome Biol.
2019;20(1):128. https://​doi.​org/​10.​1186/​s13059-​019-​1741-0.

	7.	 Evans D, Kolesnikov V, Rosulek M. A pragmatic introduction to secure multi-party computation. Now Foundations
and Trends; 2018. https://​doi.​org/​10.​1561/​33000​00019.

	8.	 Froelicher D, Troncoso-Pastoriza JR, Raisaro JL, Cuendet MA, Sousa JS, Cho H, et al. Truly privacy-preserving federated
analytics for precision medicine with multiparty homomorphic encryption. Nat Commun. 2021;12(1):5910. https://​
doi.​org/​10.​1038/​s41467-​021-​25972-y.

	9.	 Cho H, Wu DJ, Berger B. Secure genome-wide association analysis using multiparty computation. Nat Biotechnol.
2018;36(6):547–51. https://​doi.​org/​10.​1038/​nbt.​4108.

	10.	 Hie B, Cho H, Berger B. Realizing private and practical pharmacological collaboration. Science (New York, NY).
2018;362(6412):347–50. https://​doi.​org/​10.​1126/​scien​ce.​aat48​07.

	11.	 Kamm L, Bogdanov D, Laur S, Vilo J. A new way to protect privacy in large-scale genome-wide association studies.
Bioinformatics. 2013;29(7):886–93. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btt066.

	12.	 Jha S, Kruger L, Shmatikov V. Towards practical privacy for genomic computation. In: Proceedings of the 2008 IEEE
Symposium on Security and Privacy. SP ’08. USA: IEEE Computer Society; 2008. p. 216–230. https://​doi.​org/​10.​1109/​
SP.​2008.​34.

https://github.com/0xTCG/sequre/tree/v0.0.1-alpha
https://github.com/0xTCG/sequre/tree/v0.0.1-alpha
https://doi.org/10.5281/zenodo.7465764
https://doi.org/10.1038/ng.2248
https://www.science.org/doi/abs/10.1126/science.aau4832
https://doi.org/10.1371/journal.pgen.1000167
https://doi.org/10.1186/s13059-019-1741-0
https://doi.org/10.1561/3300000019
https://doi.org/10.1038/s41467-021-25972-y
https://doi.org/10.1038/s41467-021-25972-y
https://doi.org/10.1038/nbt.4108
https://doi.org/10.1126/science.aat4807
https://doi.org/10.1093/bioinformatics/btt066
https://doi.org/10.1109/SP.2008.34
https://doi.org/10.1109/SP.2008.34

Page 16 of 18Smajlović et al. Genome Biology (2023) 24:5

	13.	 Jagadeesh KA, Wu DJ, Birgmeier JA, Boneh D, Bejerano G. Deriving genomic diagnoses without revealing patient
genomes. Science (New York, NY). 2017;357(6352):692–5. https://​doi.​org/​10.​1126/​scien​ce.​aam97​10.

	14.	 Zeliadt N. Cryptographic methods enable analyses without privacy breaches. Nat Med. 2014;20(6):563. https://​doi.​
org/​10.​1038/​nm0614-​563.

	15.	 Check Hayden E. Extreme cryptography paves way to personalized medicine. Nature. 2015;519(7544):400–1. https://​
doi.​org/​10.​1038/​51940​0a.

	16.	 Kaissis G, Ziller A, Passerat-Palmbach J, Ryffel T, Usynin D, Trask A, et al. End-to-end privacy preserving deep
learning on multi-institutional medical imaging. Nat Mach Intell. 2021;3(6):473–84. https://​doi.​org/​10.​1038/​
s42256-​021-​00337-8.

	17.	 Intel. Intel Software Guard Extensions (2015). https://​softw​are.​intel.​com/​sites/​defau​lt/​files/​332680-​001.​pdf.
	18.	 Randmets J. Programming languages for secure multi-party computation application development. PhD Thesis,

University of Tartu; 2017.
	19.	 Ziller A, Trask A, Lopardo A, Szymkow B, Wagner B, Bluemke E, et al. PySyft: a library for easy federated learning. In:

Federated Learning Systems. Springer; 2021. p. 111–139. https://​doi.​org/​10.​1007/​978-3-​030-​70604-3_5.
	20.	 Shajii A, Numanagić I, Leighton AT, Greenyer H, Amarasinghe S, Berger B. A Python-based programming language

for high-performance computational genomics. Nat Biotechnol. 2021;39(9):1062–4. https://​doi.​org/​10.​1038/​
s41587-​021-​00985-6.

	21.	 Hastings M, Hemenway B, Noble D, Zdancewic S, Sok: General purpose compilers for secure multi-party computa-
tion. In: 2019 IEEE symposium on security and privacy (SP). IEEE; 2019. p. 1220–37. https://​doi.​org/​10.​1109/​SP.​2019.​
00028.

	22.	 Piro VC, Dadi TH, Seiler E, Reinert K, Renard BY. ganon: precise metagenomics classification against large and up-
to-date sets of reference sequences. Bioinformatics. 2020;36(Supplement_1):i12–i20. https://​doi.​org/​10.​1093/​bioin​
forma​tics/​btaa4​58.

	23.	 Luo Y, Yu YW, Zeng J, Berger B, Peng J. Metagenomic binning through low-density hashing. Bioinformatics (Oxford,
England). 2019;35(2):219–26. https://​doi.​org/​10.​1093/​bioin​forma​tics/​bty611.

	24.	 Blatt M, Gusev A, Polyakov Y, Goldwasser S. Secure large-scale genome-wide association studies using homomor-
phic encryption. Proc Natl Acad Sci. 2020;117(21):11608–13. https://​doi.​org/​10.​1073/​pnas.​19182​57117.

	25.	 Lee I, Keum J, Nam H. DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on
protein sequences. PLoS Comput Biol. 2019;15(6):e1007129.

	26.	 Wen M, Zhang Z, Niu S, Sha H, Yang R, Yun Y, et al. Deep-learning-based drug-target interaction prediction. J Pro-
teome Res. 2017;16(4):1401–9. https://​doi.​org/​10.​1021/​acs.​jprot​eome.​6b006​18.

	27.	 Tian K, Shao M, Wang Y, Guan J, Zhou S. Boosting compound-protein interaction prediction by deep learning. Meth-
ods. 2016;110:64–72.

	28.	 MacFabe DF. Short-chain fatty acid fermentation products of the gut microbiome: implications in autism spectrum
disorders. Microb Ecol Health Dis. 2012;23(1):19260.

	29.	 Turnbaugh PJ, Gordon JI. The core gut microbiome, energy balance and obesity. J Physiol. 2009;587(17):4153–8.
	30.	 Erickson AR, Cantarel BL, Lamendella R, Darzi Y, Mongodin EF, Pan C, et al. Integrated metagenomics/metaproteom-

ics reveals human host-microbiota signatures of Crohn’s disease. PloS ONE. 2012;7(11):e49138.
	31.	 Forsberg KJ, Reyes A, Wang B, Selleck EM, Sommer MO, Dantas G. The shared antibiotic resistome of soil bacteria

and human pathogens. Science. 2012;337(6098):1107–11.
	32.	 Franzosa EA, Huang K, Meadow JF, Gevers D, Lemon KP, Bohannan BJM, et al. Identifying personal microbiomes

using metagenomic codes. Proc Natl Acad Sci. 2015;112(22):E2930–8. https://​doi.​org/​10.​1073/​pnas.​14238​54112.
	33.	 Fierer N, Lauber CL, Zhou N, McDonald D, Costello EK, Knight R. Forensic identification using skin bacterial com-

munities. Proc Natl Acad Sci. 2010;107(14):6477–81. https://​doi.​org/​10.​1073/​pnas.​10001​62107.
	34.	 Meyer F, Fritz A, Deng ZL, Koslicki D, Lesker TR, Gurevich A, et al. Critical Assessment of Metagenome Interpretation:

the second round of challenges. Nat Methods. 2022. https://​doi.​org/​10.​1038/​s41592-​022-​01431-4.
	35.	 Dadi TH, Siragusa E, Piro VC, Andrusch A, Seiler E, Renard BY, et al. DREAM-Yara: an exact read mapper for very large

databases with short update time. Bioinformatics. 2018;34(17):i766–72. https://​doi.​org/​10.​1093/​bioin​forma​tics/​
bty567.

	36.	 Keller M, Scholl P. Efficient, oblivious data structures for MPC. 2014. https://​ia.​cr/​2014/​137. Cryptology ePrint Archive,
Report 2014/137.

	37.	 Horstein M. Review of ‘Low-density parity-check codes’ (Gallager, R. G.; 1963). IEEE Trans Inf Theor. 2006;10(2):172.
https://​doi.​org/​10.​1109/​TIT.​1964.​10536​51.

	38.	 Schoenmakers B. MPyC—Python package for secure multiparty computation. In: Workshop on the Theory and
Practice of MPC. 2018. https://​github.​com/​lschoe/​mpyc.

	39.	 Acay C, Recto R, Gancher J, Myers AC, Shi E. Viaduct: an extensible, optimizing compiler for secure distributed pro-
grams. In: Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation. PLDI 2021. New York, Association for Computing Machinery; 2021. p. 740–755. https://​doi.​org/​10.​
1145/​34534​83.​34540​74.

	40.	 Knott B, Venkataraman S, Hannun A, Sengupta S, Ibrahim M. van der Maaten L. Crypten: secure multi-party compu-
tation meets machine learning. Adv Neural Inf Process Syst. 2021;34:4961–73.

	41.	 Bao Y, Sundararajah K, Malik R, Ye Q, Wagner C, Jaber N, et al. HACCLE: metaprogramming for secure multi-party
computation. In: Proceedings of the 20th ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences. GPCE 2021. New York: Association for Computing Machinery; 2021. p. 130–143. https://​
doi.​org/​10.​1145/​34866​09.​34872​05.

	42.	 Bogdanov D, Laur S, Willemson J. Sharemind: a framework for fast privacy-preserving computations. In: European
Symposium on Research in Computer Security. Springer; 2008. p. 192–206. https://​doi.​org/​10.​1007/​978-3-​540-​
88313-5_​13.

	43.	 Demmler D, Schneider T, Zohner M. ABY-A framework for efficient mixed-protocol secure two-party computation.
In: Network and Distributed System Security Symposium. 2015. https://​doi.​org/​10.​14722/​NDSS.​2015.​23113.

https://doi.org/10.1126/science.aam9710
https://doi.org/10.1038/nm0614-563
https://doi.org/10.1038/nm0614-563
https://doi.org/10.1038/519400a
https://doi.org/10.1038/519400a
https://doi.org/10.1038/s42256-021-00337-8
https://doi.org/10.1038/s42256-021-00337-8
https://software.intel.com/sites/default/files/332680-001.pdf
https://doi.org/10.1007/978-3-030-70604-3_5
https://doi.org/10.1038/s41587-021-00985-6
https://doi.org/10.1038/s41587-021-00985-6
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1109/SP.2019.00028
https://doi.org/10.1093/bioinformatics/btaa458
https://doi.org/10.1093/bioinformatics/btaa458
https://doi.org/10.1093/bioinformatics/bty611
https://doi.org/10.1073/pnas.1918257117
https://doi.org/10.1021/acs.jproteome.6b00618
https://doi.org/10.1073/pnas.1423854112
https://doi.org/10.1073/pnas.1000162107
https://doi.org/10.1038/s41592-022-01431-4
https://doi.org/10.1093/bioinformatics/bty567
https://doi.org/10.1093/bioinformatics/bty567
https://ia.cr/2014/137
https://doi.org/10.1109/TIT.1964.1053651
https://github.com/lschoe/mpyc
https://doi.org/10.1145/3453483.3454074
https://doi.org/10.1145/3453483.3454074
https://doi.org/10.1145/3486609.3487205
https://doi.org/10.1145/3486609.3487205
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.1007/978-3-540-88313-5_13
https://doi.org/10.14722/NDSS.2015.23113

Page 17 of 18Smajlović et al. Genome Biology (2023) 24:5 	

	44.	 Demmler D, Katzenbeisser S, Schneider T, Schuster T, Weinert C. Improved circuit compilation for hybrid MPC via
compiler intermediate representation. IACR Cryptol ePrint Arch. 2021;2021:521.

	45.	 Rastogi A, Hammer MA, Hicks M, Wysteria: a programming language for generic, mixed-mode multiparty com-
putations. In: 2014 IEEE Symposium on Security and Privacy. IEEE; 2014. p. 655–70. https://​doi.​org/​10.​1109/​SP.​
2014.​48.

	46.	 Keller M. MP-SPDZ: a versatile framework for multi-party computation. In: Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 2020. p. 1575–1590. https://​doi.​org/​10.​1145/​33722​97.​
34178​72.

	47.	 Shajii A. High-performance computational genomics. PhD Thesis, Massachusets Institute of Technology; 2021.
	48.	 Nickolls J, Buck I, Garland M, Skadron K. Scalable parallel programming with CUDA: is CUDA the parallel pro-

gramming model that application developers have been waiting for? Queue. 2008;6(2):40–53. https://​doi.​org/​
10.​1145/​13654​90.​13655​00.

	49.	 Ragan-Kelley J, Barnes C, Adams A, Paris S, Durand F, Amarasinghe S. Halide: a language and compiler for
optimizing parallelism, locality, and recomputation in image processing pipelines. ACM SIGPLAN Not.
2013;48(6):519–30.

	50.	 Baghdadi R, Ray J, Romdhane MB, Del Sozzo E, Akkas A, Zhang Y, et al. Tiramisu: a polyhedral compiler for
expressing fast and portable code. In: Proceedings of the 2019 IEEE/ACM International Symposium on Code
Generation and Optimization. CGO 2019. IEEE Press; 2019. p. 193–205. https://​doi.​org/​10.​48550/​arXiv.​1804.​
10694.

	51.	 Kjolstad F, Chou S, Lugato D, Kamil S, Amarasinghe S. Taco: a tool to generate tensor algebra kernels. In: Proc.
IEEE/ACM Automated Software Engineering. IEEE; 2017. p. 943–8. https://​doi.​org/​10.​1109/​ASE.​2017.​81157​09.

	52.	 Leiserson WM. Defining scalable high performance programming with DEF. PhD thesis, Massachusetts Institute
of Technology; 2020.

	53.	 Shajii A, Numanagić I, Baghdadi R, Berger B, Amarasinghe S. Seq: a high-performance language for bioinformat-
ics. Proc ACM Program Lang. 2019;3(OOPSLA). https://​doi.​org/​10.​1145/​33605​51.

	54.	 Harris CR, Millman KJ, van der Walt SJ, Gommers R, Virtanen P, Cournapeau D, et al. Array programming with
NumPy. Nature. 2020;585(7825):357–62. https://​doi.​org/​10.​1038/​s41586-​020-​2649-2.

	55.	 Lattner C, Adve V. LLVM: a compilation framework for lifelong program analysis transformation. In: International
Symposium on Code Generation and Optimization, 2004. CGO 2004. Palo Alto; 2004. p. 75–86. https://​doi.​org/​
10.​1109/​CGO.​2004.​12816​65.

	56.	 Cramer R, Damgård I, Escudero D, Scholl P, Xing C. SPDZ
2k

 : efficient MPC mod 2k for dishonest majority. In: Sha-
cham H, Boldyreva A, editors. Advances in Cryptology - CRYPTO 2018. Cham: Springer International Publishing;
2018. p. 769–98.

	57.	 Beaver D. Efficient multiparty protocols using circuit randomization. In: Annual International Cryptology Confer-
ence. Springer; 1991. p. 420–432. https://​doi.​org/​10.​1007/3-​540-​46766-1_​34.

	58.	 Smajlović H, Shajii A, Berger B, Cho H, Numanagić I. Sequre. GitHub; 2022. https://​github.​com/​0xTCG/​sequre/​
tree/​v0.0.​1-​alpha.

	59.	 Smajlović H, Shajii A, Berger B, Cho H, Numanagić I. Sequre. Zenodo. 2022. https://​doi.​org/​10.​5281/​zenodo.​
74358​71.

	60.	 Lan Q, Hsiung CA, Matsuo K, Hong YC, Seow A, Wang Z, et al. Genome-wide association analysis identifies new lung
cancer susceptibility loci in never-smoking women in Asia. Nature Genetics. 2012;44(12):1330–5. https://​doi.​org/​10.​
1038/​ng.​2456.

	61.	 Pellow D, Mizrahi I, Shamir R. PlasClass improves plasmid sequence classification. PLoS Comput Biol. 2020;16(4):1–9.
https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10077​81.

	62.	 Damgård I, Pastro V, Smart N, Zakarias S. Multiparty computation from somewhat homomorphic encryption. In:
Safavi-Naini R, Canetti R, editors. Advances in Cryptology - CRYPTO 2012. Springer, Berlin Heidelberg: Berlin, Heidel-
berg; 2012. p. 643–62.

	63.	 Lindell Y. Secure multiparty computation. Commun ACM. 2021;64(1):86–96. https://​doi.​org/​10.​1145/​33871​08.
	64.	 Wang X, Malozemoff AJ, Katz J. EMP-toolkit: Efficient MultiParty computation toolkit. 2016. https://​github.​com/​emp-​

toolk​it.
	65.	 Zahur S, Evans D. Obliv-C: a language for extensible data-oblivious computation. Cryptology ePrint Archive. 2015.

http://​eprint.​iacr.​org/​2015/​1153.​pdf.
	66.	 Liu C, Wang XS, Nayak K, Huang Y, Shi E. ObliVM: a programming framework for secure computation. Proc IEEE Symp

Secur Priv. 2015;2015-July:359–376. https://​doi.​org/​10.​1109/​SP.​2015.​29.
	67.	 Songhori EM, Hussain SU, Sadeghi AR, Schneider T, Koushanfar F. TinyGarble: Highly compressed and scalable

sequential Garbled Circuits. Proceedings - IEEE Symposium on Security and Privacy. 2015;2015-July:411–428. https://​
doi.​org/​10.​1109/​SP.​2015.​32.

	68.	 Zhang Y, Steele A, Blanton M. PICCO: a general-purpose compiler for private distributed computation. In: Proceed-
ings of the 2013 ACM SIGSAC Conference on Computer and Communications Security. CCS ’13. New York: Associa-
tion for Computing Machinery; 2013. p. 813–826. https://​doi.​org/​10.​1145/​25088​59.​25167​52.

	69.	 Mood B, Gupta D, Carter H, Butler K, Traynor P. Frigate: a validated, extensible, and efficient compiler and interpreter
for secure computation. Proceedings - 2016 IEEE European Symposium on Security and Privacy, EURO S and P 2016.
2016; p. 112–127. https://​doi.​org/​10.​1109/​EuroSP.​2016.​20.

	70.	 Franz M, Holzer A, Katzenbeisser S, Schallhart C, Veith H. CBMC-GC: an ANSI C compiler for secure two-party compu-
tations. In: Cohen A, editor. Compiler Construction. Berlin, Heidelberg: Springer; 2014. p. 244–9.

	71.	 Albab KD, Issa R, Lapets A, Flockhart P, Qin L, Globus-Harris I. Tutorial: Deploying secure multi-party computation on
the web using JIFF. Proceedings - 2019 IEEE Secure Development, SecDev 2019. 2019;3. https://​doi.​org/​10.​1109/​
SecDev.​2019.​00013.

	72.	 Ben-David A, Nisan N, Pinkas B. FairplayMP: a system for secure multi-party computation. In: Proceedings of the 15th
ACM conference on Computer and communications security. 2008. p. 257–266.

	73.	 Aly A, et al. SCALE and MAMBA documentation. 2018. https://​homes.​esat.​kuleu​ven.​be/​~nsmart/​SCALE/.

https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1109/SP.2014.48
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/3372297.3417872
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.1145/1365490.1365500
https://doi.org/10.48550/arXiv.1804.10694
https://doi.org/10.48550/arXiv.1804.10694
https://doi.org/10.1109/ASE.2017.8115709
https://doi.org/10.1145/3360551
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1007/3-540-46766-1_34
https://github.com/0xTCG/sequre/tree/v0.0.1-alpha
https://github.com/0xTCG/sequre/tree/v0.0.1-alpha
https://doi.org/10.5281/zenodo.7435871
https://doi.org/10.5281/zenodo.7435871
https://doi.org/10.1038/ng.2456
https://doi.org/10.1038/ng.2456
https://doi.org/10.1371/journal.pcbi.1007781
https://doi.org/10.1145/3387108
https://github.com/emp-toolkit
https://github.com/emp-toolkit
http://eprint.iacr.org/2015/1153.pdf
https://doi.org/10.1109/SP.2015.29
https://doi.org/10.1109/SP.2015.32
https://doi.org/10.1109/SP.2015.32
https://doi.org/10.1145/2508859.2516752
https://doi.org/10.1109/EuroSP.2016.20
https://doi.org/10.1109/SecDev.2019.00013
https://doi.org/10.1109/SecDev.2019.00013
https://homes.esat.kuleuven.be/%7ensmart/SCALE/

Page 18 of 18Smajlović et al. Genome Biology (2023) 24:5

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	74.	 Büscher N, Demmler D, Katzenbeisser S, Kretzmer D, Schneider T. HyCC: Compilation of hybrid protocols for practical
secure computation. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. 2018. p. 847–61. https://​doi.​org/​10.​1145/​32437​34.​32437​86.

	75.	 Chandran N, Gupta D, Rastogi A, Sharma R, Tripathi S. "EzPC: Programmable and Efficient Secure Two-Party Compu-
tation for Machine Learning," 2019 IEEE European Symposium on Security and Privacy (EuroS&P), 2019, pp. 496–511.
https://​doi.​org/​10.​1109/​EuroSP.​2019.​00043.

	76.	 Heldmann T, Schneider T, Tkachenko O, Weinert C, Yalame H. LLVM-based circuit compilation for practical secure
computation. In: Sako K, Tippenhauer NO, editors. Applied Cryptography and Network Security. Cham: Springer
International Publishing; 2021. p. 99–121.

	77.	 Bogetoft P, Christensen DL, Damgård I, Geisler M, Jakobsen T, Krøigaard M, et al. Secure multiparty computation
goes live. In: Dingledine R, Golle P, editors., et al., Financial Cryptography and Data Security. Berlin, Heidelberg:
Springer; 2009. p. 325–43.

	78.	 Abbe EA, Khandani AE, Lo AW. Privacy-preserving methods for sharing financial risk exposures. Am Econ Rev.
2012;102(3):65–70.

	79.	 Flood, MD, Katz J, Ong, SJ, Smith A. 2013. Cryptography and the Economics of Supervisory Information: Balancing
Transparency and Confidentiality. FRB of Cleveland Working Paper No. 13-12, Available at SSRN: https://​ssrn.​com/​
abstr​act=​23540​38.

	80.	 Kamm L, Willemson J. Secure floating point arithmetic and private satellite collision analysis. Int J Inf Secur.
2015;14(6):531–48.

	81.	 Lemire D, Kaser O, Kurz N. Faster remainder by direct computation: applications to compilers and software libraries.
Softw Pract Experience. 2019;49(6):953–70.

	82.	 Wagner J, Paulson JN, Wang X, Bhattacharjee B, Corrada Bravo H. Privacy-preserving microbiome analysis using
secure computation. Bioinformatics. 2016;32(12):1873–9. https://​doi.​org/​10.​1093/​bioin​forma​tics/​btw073.

	83.	 Jokinen P, Ukkonen E. Two algorithms for approxmate string matching in static texts. In: Tarlecki A, editor. Math-
ematical Foundations of Computer Science 1991. Berlin, Heidelberg: Springer,; 1991. p. 240–8.

	84.	 Langford J, Li L, Strehl A. Vowpal Wabbit: your go-to interactive machine learning library. 2007. https://​vowpa​lwabb​
it.​org/.

	85.	 Cramer R, Damgård I, Ishai Y. Share conversion, pseudorandom secret-sharing and applications to secure computa-
tion. In: Kilian J, editor. Theory of Cryptography. Berlin, Heidelberg: Springer; 2005. p. 342–62.

	86.	 Araki T, Furukawa J, Lindell Y, Nof A, Ohara K. High-throughput semi-honest secure three-party computation with an
honest majority. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
CCS ’16. New York: Association for Computing Machinery; 2016. p. 805–817. https://​doi.​org/​10.​1145/​29767​49.​29783​
31.

	87.	 Damgård I, Fitzi M, Kiltz E, Nielsen JB, Toft T. Unconditionally secure constant-rounds multi-party computation for
equality, comparison, bits and exponentiation. In: Halevi S, Rabin T, editors. Theory of Cryptography. Berlin, Heidel-
berg: Springer; 2006. p. 285–304.

	88.	 Catrina O, Saxena A. Secure computation with fixed-point numbers. In: Sion R, editor. Financial Cryptography and
Data Security. Berlin, Heidelberg: Springer; 2010. p. 35–50.

	89.	 Aliasgari M, Blanton M, Zhang Y, Steele A. Secure computation on floating point numbers. Ndss2013. 2013; p. 1–31.
http://​www.​cse.​nd.​edu/​~mblan​ton/​papers/​ndss13.​pdf.

	90.	 Strassen V. Gaussian elimination is not optimal. Nurs Math. 1969;13(4):354–6. https://​doi.​org/​10.​1007/​BF021​65411.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1145/3243734.3243786
https://doi.org/10.1109/EuroSP.2019.00043
https://ssrn.com/abstract=2354038
https://ssrn.com/abstract=2354038
https://doi.org/10.1093/bioinformatics/btw073
https://vowpalwabbit.org/
https://vowpalwabbit.org/
https://doi.org/10.1145/2976749.2978331
https://doi.org/10.1145/2976749.2978331
http://www.cse.nd.edu/%7emblanton/papers/ndss13.pdf
https://doi.org/10.1007/BF02165411

	Sequre: a high-performance framework for secure multiparty computation enables biomedical data sharing
	Abstract
	Background
	Results
	Overview of Sequre
	Secure genome-wide association studies
	Secure drug-target interaction prediction
	Secure metagenomic binning
	Sequre and other MPC frameworks

	Discussion
	Conclusions
	Methods
	Sequre at a glance
	Sequre’s MPC framework
	MPC-specific optimizations
	Network optimizations
	Code generation and performance optimizations

	Code and data availability

	Acknowledgements
	References

