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Abstract 

A major question in systems biology is how to identify the core gene regulatory circuit 
that governs the decision-making of a biological process. Here, we develop a compu-
tational platform, named NetAct, for constructing core transcription factor regulatory 
networks using both transcriptomics data and literature-based transcription factor-
target databases. NetAct robustly infers regulators’ activity using target expression, 
constructs networks based on transcriptional activity, and integrates mathematical 
modeling for validation. Our in silico benchmark test shows that NetAct outperforms 
existing algorithms in inferring transcriptional activity and gene networks. We illustrate 
the application of NetAct to model networks driving TGF-β-induced epithelial-mesen-
chymal transition and macrophage polarization.
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Background
One of the major goals of systems biology is to infer and model complex gene regula-
tory networks (GRNs) which underlie the biological processes of human disease [1–6]. 
Particularly important are those gene networks that control decisions regarding cellular 
state transitions (e.g., replicative to quiescent [7–9], epithelial to mesenchymal (EMT) 
[10], pluripotent to differentiated [11, 12]), given the central importance of such regula-
tory processes to both healthy development as well as disease formation such as cancer 
tumorigenesis.

To construct and model GRNs associated with the biological process under investiga-
tion, researchers have developed two primary systems biology approaches. The first is a 
bottom-up approach, in which researchers focus on identifying a core GRN composed 
of a small set of master regulators [13]. Once the core GRN is obtained, mathematical 
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modeling is then applied to simulate the gene expression dynamics [14–17], which helps 
elucidate the potential gene regulatory mechanism driving the biological process in 
question. The current practice for synthesizing a core GRN is by compiling data via an 
extensive literature search, e.g., in these studies [18–20]. While this works well for sys-
tems where sufficient knowledge has been gained and accumulated, it is less effective 
in cases where key component genes and regulatory interactions have yet to be discov-
ered. Due to the rapid increase of biomedical publications, manual synthesis of litera-
ture information has become extremely time-consuming and prone to human error in 
data interpretation. One way to address the labor-intensive issue is to rely on existing 
manually curated databases, such as KEGG [21] and Ingenuity Pathway Analysis (IPA) 
[22]. However, these databases often compile gene regulatory interactions from different 
tissues, species, or diseases. Therefore, it is hard to obtain context-specific interactions 
directly from these types of databases.

The second approach adopts a top-down perspective, in which researchers apply bio-
informatics and statistical methods on genome-wide transcriptomics and/or genomics 
data to infer large-scale GRNs [13]. These data-driven methods are ideal for obtaining 
a global picture of gene regulation and the overall structure of gene-gene interactions. 
This approach can also be used to characterize key regulators and regulatory interactions 
between genes that are specific to the biological context of the study. However, conven-
tional bioinformatics methods for gene network inference are usually not designed to 
identify an integrated working system. These methods typically rely on significance tests 
to determine the nodes and edges of a gene network, yet it is rare to evaluate whether the 
constructed gene network is capable of operating as a functional dynamical system [23]. 
Moreover, many statistical methods work well to identify the association between genes, 
but not their causation, thus limiting the applicative value of the top-down approach in 
characterizing gene regulatory mechanisms.

To overcome the abovementioned issues, a relatively new approach has been explored 
in several studies in which the top-down and bottom-up approaches are integrated to 
infer and model a core GRN [23–31]. In this combined approach, a GRN is constructed 
with bioinformatics tools using genome-wide gene expression data, followed by mathe-
matical modeling of the GRN to simulate gene expression steady states and explore their 
similarity with biological cellular states. The simulations can help validate the accuracy 
of the constructed GRN and further clarify the regulatory roles of genes and interactions 
in driving cellular state transitions. This combined approach helps to discover existing 
and new regulatory interactions specific to the cell types and experimental conditions 
under study. Additionally, it helps pinpoint master regulators and reduce the system’s 
overall complexity. The GRN modeling is particularly crucial for cases with non-trivial 
cellular state transitions, such as multi-step state transitions as observed in epithelial-
mesenchymal transition (EMT) [32], and bifurcating state transitions, as observed in 
stem cell differentiation [33]. This is because the GRNs constructed by the top-down 
approach are not guaranteed to capture these state transition patterns. So far, to the best 
of our knowledge, there is no computational platform available that utilizes this com-
bined approach for systematic GRN inference and modeling.

In this study, we introduce a computational platform, named NetAct, for inferring 
a core GRN of key transcription factors (TFs) using both transcriptomics data and a 
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literature-based TF-target database. Integrating both resources allows us to take full 
advantage of the existing knowledgebase of transcriptional regulation. NetAct adopts 
the combined top-down bioinformatics and bottom-up systems biology approaches, 
designed specifically to address the following two major issues.

First, many network inference methods rely on correlations of gene expression data, 
yet the actual transcriptional activities of many master regulators may not be reflected 
in their gene expression. Instead, the activity may be better associated with either their 
protein level, the level of a certain posttranslational modification, localization, or their 
DNA binding affinity. As a result, the master regulators with weak correlations between 
the expression level and the transcriptional activity will likely be discarded in the net-
work. Some algorithms have been developed to infer the activities of regulators from 
transcriptomics data, such as VIPER [2], NCA [34], and AUCELL [35]. However, most 
of these algorithms (1) are not designed for gene network modeling, (2) still rely on the 
coexpression of a TF and its targeted genes, or (3) do not take advantage of the known 
regulatory interactions from the literature, hindering their applicability as automated 
algorithms for generic use in systems biology.

Second, conventional mathematical modeling approaches have been applied over the 
years to simulate the dynamics of a GRN, yet they are not particularly effective in ana-
lyzing core GRNs. A popular method models the gene expression dynamics of a system 
using the chemical rate equations that govern the associated gene regulatory processes. 
However, it is difficult to directly measure most of the kinetic parameters of a GRN. 
Although some parameter values can be learned from published results, many others are 
often based on educated guesses which significantly limits the predictive power of math-
ematical modeling. Moreover, a core GRN is not an isolated system. Thus, an ideal mod-
eling paradigm should also consider other genes that interact with the core network. To 
address this infamous parameter issue, we have developed the modeling algorithm RAC-
IPE [29, 36, 37] in previous work that analyzes a large ensemble of mathematical mod-
els with random kinetic parameters. RACIPE has been applied to model the dynamical 
behavior of gene regulatory networks of different biological processes, such as epithelial-
mesenchymal transition [23, 29], cell cycle [37], and stem cell differentiation [38].

The new NetAct platform addresses the abovementioned issues by (1) inferring the 
activities of TFs for individual samples using the gene expression levels of their targeted 
genes, (2) identifying the regulatory interactions between two TFs based on their activi-
ties rather than their expressions,  and (3) subsequently simulating the constructed core 
GRN with RACIPE to validate and evaluate the gene expression dynamics of the core 
GRN. In this paper, we describe in detail the NetAct platform, extensive benchmark tests 
for TF-target databases, TF activity inference, network construction, and two examples 
of applications to model GRNs with time series gene expression data.

Results
We developed a computational systems biology platform, named NetAct, to construct 
transcription factor (TF)-based GRNs using TF activity. The method uniquely integrates 
both generic TF-target relationships from literature-based databases and context-spe-
cific gene expression data. NetAct also integrates our previously developed mathemati-
cal modeling algorithm RACIPE to evaluate whether the constructed network functions 



Page 4 of 21Su et al. Genome Biology          (2022) 23:270 

properly as a dynamical system. It evaluates the roles of every gene in the network by in 
silico perturbation analysis. NetAct has three major steps: (1) identifying the core TFs 
using gene set enrichment analysis (GSEA) [39] with an optimized TF-target gene set 
database (Fig. 1a), (2) inferring TF activity (Fig. 1b), and (3) constructing a core TF net-
work (Fig. 1c). Then, the network is validated and analyzed by simulating its dynamics 
using mathematical modeling by RACIPE. Details of each step are given in the “Meth-
ods” section and Additional file 1: Supplementary Note 5. Below, we demonstrate how 
we optimized the NetAct algorithm, compared its performance of activity inference with 

Fig. 1  Schematics of NetAct. a First, key transcription factors (TFs) are identified using gene set enrichment 
analysis (GSEA) with a literature-based TF-target database. b Second, the TF activity of an individual sample is 
inferred from the expression of target genes. From the co-expression and modularity analysis of target genes, 
we find target genes that are either activated (blue), inhibited (red), or not strongly related to the TF (gray). 
The activity is defined as the weighted average of target genes activated by the TF minus the weighted 
average of target genes inhibited by the TF. c Lastly, a TF regulatory network is constructed according to the 
mutual information of inferred TF activity and literature-based regulatory interactions. d Performance of GSEA 
for various TF-target gene set databases. The plot shows the sensitivity and specificity with different q-value 
cutoffs. The gene set databases in the benchmark include the combined literature-based database (D1); 
FANTOM5-based databases (D2) with 20, 50, and 100 target genes per TF; the combined experimental-based 
database (D3, ChIP); and RcisTarget databases (D4), one with 10 targets per TF binding motif and another 
with 50 total number of targets per TF
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three existing methods using in silico gene expression data, and applied the network 
modeling approach to two biological datasets.

Literature‑based TF‑target relationships facilitate TF inference

To establish a comprehensive gene set database containing TF-target relationships, we 
considered data from different sources (Additional file 3: Table S1, also see Additional 
file 1: Supplementary Note 1). They are (D1) a literature-based database, consisting of 
data from TRRUST [40], RegNetwork [41], TFactS [42], and TRED [43]; (D2) a gene 
regulatory network database FANTOM5 [44], whose interactions are extracted from 
networks constructed using RNA expression data from 394 individual tissues; (D3) a 
database derived from resources of putative TF binding targets, including ChEA [45], 
TRANSFAC [46], JASPAR [47], and ENCODE [48]; and (D4) a database derived from 
motif-enrichment analysis, RcisTarget [35]. These databases have been frequently used 
to study the transcriptional regulations and have already been utilized for network con-
struction [29, 49].

We evaluated the performance of these databases by GSEA on a benchmark gene 
expression dataset. GSEA is a popular statistical method that can be used to evaluate the 
significant overlapping between a set of genes and differentially expressed genes between 
two experimental conditions. Using various types of TF-target databases, our goal is to 
find the best version of the database, so that GSEA can detect the target gene sets of 
the relevant TFs to be statistically significant. The benchmark dataset, denoted as set B, 
consists of a compilation of 12 microarray and 32 RNA-seq gene expression data (Addi-
tional file 3: Table S2). Each of these datasets contains at least three samples under the 
normal condition (control) and three samples under the treatment condition in which a 
specific TF is treated by knockdown (KD). We applied GSEA (with slight modifications, 
details in the “Methods” section) on set B to evaluate whether the enrichment analysis 
can detect the perturbed TFs. The underlying assumption is that, with a better TF-target 
gene set database, GSEA will be more likely to detect the corresponding perturbed TFs. 
For each TF-target database and each gene expression data in set B, we calculated the 
q-values of all the TFs in the database by GSEA to determine whether the target genes 
of the perturbed TF are enriched in the differentially expressed genes. We found that 
more significant q-values are usually associated with relatively larger number of targets 
for each TF; however, too many (e.g., greater than 2000) targets will result in non-signif-
icant q-values. The summary statistics, such as the total number of TFs and the average 
number of target genes per TF, are summarized in Additional file 3: Table S1. Further-
more, these corresponding q-values from all the gene expression data are converted to 
specificity and sensitivity values (see the “Methods” section), and different databases are 
compared based on the area under the sensitivity-specificity curves (Fig. 1d). We found 
that the literature-based database has the best overall performance; thus, we used this 
database for further analyses. Our results are in line with a previous benchmark study 
[50] that literature-based TF-target database outperforms others in capturing transcrip-
tional regulation.
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Inferring TF activity without using TF expression

NetAct can accurately infer TF activity for an individual sample directly from the expres-
sion of genes targeted by the TF (see the “Methods” section). Here, we will illustrate 
how NetAct infers TF activity on two cases of microarray KD experiments—one case 
for shRNA KD of FOXM1 and shRNA KD of MYB in lymphoma cells (GEO: GSE17172 
[51]), and another case for KD of BCL6 on both OCI-Ly7 and Pfeiffer GCB-DLBCL cell 
lines (GEO: GSE45838 [2]). NetAct first successfully identified the TFs that undergo 
knockdown in each case, i.e., FOXM1, MYB, and BCL6, by applying GSEA on the opti-
mized TF-target database (q-value < 0.15).

Next, for each identified TF, NetAct calculates its activity using the mRNA expres-
sion of the direct targets of the TF. We first constructed a Spearman correlation matrix 
from the expression of the targeted genes. As shown in Fig. 2a, the correlation matrix 
after hierarchical clustering analysis typically consists of two red diagonal blocks, two 
blue off-diagonal blocks, and the remaining elements with low correlations which will 
be filtered out subsequently (details in the “Methods” section). Within the red blocks, 
the expression of any column gene is positively correlated with that of any row gene, 
while within the blue blocks, the expression of any column gene is negatively corre-
lated with that of any row gene. This indicates that the genes in the two red blocks are 

Fig. 2  Illustration of the grouping scheme for target genes of a transcription factor. a The co-expression 
matrix of MYB target genes in shRNA knockdown of MYB lymphoma cells by hierarchical clustering analysis 
(Pearson correlation and complete linkage). b, c The poor clustering results from the co-expression of 
randomly selected 100 (b) and 200 genes (c). In panels a–c, the left subplots show the outcomes of all tested 
genes, and the right subplots show the outcomes of genes after the filtering step. Compared to the random 
cases, MYB target genes have a clear pattern of red and blue diagonal blocks from their co-expression. d, e 
The percentage of differentially expressed genes remained after the filtering step in the case of FOXM1 and 
MYB knockdown, respectively. f, g The proportion of genes from the activation group that are positively 
correlated with the TF expression (red bars) and the proportion of genes from the inhibition group that 
are negatively correlated with the TF expression (blue bars). h Spearman correlation (average and standard 
deviation) between TF activity and target expression (red) and between TF expression and target expression 
(blue)
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anti-correlated in the gene expression with each other. However, if the correlation matrix 
is constructed from 100 or 200 randomly selected genes (Fig. 2b, c), such a clear pattern 
disappears. Thus, our observation suggests that genes from one of the red blocks are 
activated by the TF, whereas genes from the other block are inhibited by the TF. Moreo-
ver, filtered genes are not likely to be directly targeted by the TF in this context, or they 
are regulated by multiple factors simultaneously and are thus likely not a good indicator 
for the TF activity.

We further evaluated how the filtering step removes noise and retains the important 
genes in the analysis. We found that, after the filtering step, most of the differentially 
expressed (DE) genes are retained, as evidenced by Fig. 2d. Here, DE genes from each 
comparison were retrieved by using limma with a cutoff for the adjusted p-values at 
0.05 and a cutoff for the log2 fold changes at 2. Subsequently, for DE TFs, we evaluated 
the Spearman correlations between the TFs and the corresponding targeted genes. In 
traditional approaches (such as ARACNe [1], WGCNA [52], and BEST [53]), the co-
expression between a TF and its targeted genes is commonly used to identify its associa-
tion and assign the sign (activation or inhibition) of the regulation. We found that, for 
each TF, most of the genes in a block either positively correlate with the TF expression 
(Fig. 2f, g, blue bars), or they negatively correlate with the TF expression (Fig. 2f, g, red 
bars). The tests demonstrate that, without directly using TF expression, NetAct can suc-
cessfully identify two groups of important target genes—genes in each group are either 
activated or inhibited by the TF. These two groups of genes are further used to infer 
TF activity by a weighted average of their gene expression (Eq. 1 in the “Methods” sec-
tion). Additionally, we found that the correlations between inferred TF activity and tar-
get expression are usually higher than the correlations between TF expression and target 
expression (Fig. 2h).

Evaluating activity inference and network construction in a simulation benchmark

To evaluate the accuracy and robustness of inferred TF activity, we performed extensive 
benchmark tests to compare NetAct with other existing methods. We first performed 
the benchmark tests on simulated data because TF activity is usually not directly meas-
urable. The activity of a TF can be related to its protein level or the level of a particular 
posttranslational modification, such as phosphorylation. Therefore, it is very difficult 
to obtain the ground truth of TF activity from an experimental dataset. Thus, in this 
benchmark test, we rely on mathematical modeling to simulate both the expression and 
activity of each TF from a synthetic TF-target network. With this simulated data, we 
benchmark NetAct against other methods.

To establish the simulated benchmark dataset, we first constructed a synthetic TF-tar-
get network with a total of 30 TFs. Each TF has 20 target genes randomly selected with 
replacement from a pool of 1000 genes. In addition, each TF also regulates two (ran-
domly selected) of the 30 TFs. This synthetic network has a hierarchical structure, where 
a target gene may be co-regulated by multiple TFs. The type of each TF-to-TF regulation 
is either excitatory, inhibitory, or signaling, with a chance of 25%, 25%, and 50%, respec-
tively; the type of each TF-to-target regulation is either excitatory or inhibitory with a 
50% chance for each. Here, the signaling regulation changes the activity of a TF without 
changing its expression, whereas the excitatory or inhibitory interactions change both 
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the activity and expression. From one realization of the synthetic network generation, 
the synthetic GRN contains a total of 477 genes (30 TFs, 447 targeted genes) and 660 
regulatory links (Fig. 3a). See Additional file 1: Supplementary Note 4 for more details.

To simulate the gene expression of the TF-target network, we applied a generalized 
version of the mathematical modeling algorithm, RACIPE [37]. Using the network 
topology as the only input, RACIPE can generate an ensemble of random models, each 
corresponds to a set of randomly sampled parameters. Here, we used RACIPE to gener-
ate simulated data including gene expression and TF activity for the benchmark. Some 
previous studies have also adopted a similar modeling approach for benchmarking [54, 
1]. To consider the effects of a signaling regulatory link, we generalized RACIPE to simu-
late both expression and activity for each TF. See Additional file 1: Supplementary Note 
5 for more details.

In the benchmark test, we used RACIPE to simulate 100 models with randomly gener-
ated kinetic parameters. From these 100 models, we obtained 83 stable steady-state gene 

Fig. 3  Simulation of both gene expression and activity of a synthetic GRN. a The synthetic GRN consisting of 
30 TFs and 447 target genes. An edge of transcriptional activation is shown as black line with an arrowhead; 
an edge of transcriptional inhibition as red line with a blunt head; an edge of signaling interaction as green 
line with an arrowhead. Transcription factor labeled as TF9 was selected for knockdown simulations. b The 
summary of the correlation analyses of the simulated expression and activity. The left, middle, and right 
columns represent the outcomes for TF and target activities, TF and target expressions, and TF activities 
and target expressions, respectively. For each category, the histograms of Spearman correlations are shown 
for non-interacting gene pairs (first row), interacting gene pairs (second row), gene pairs of excitatory 
transcriptional regulation (third row), gene pairs of excitatory signaling regulation (fourth row), and gene 
pairs of inhibitory transcriptional regulation (fifth row). Here, the target activity is set to be the same as 
the target expression for non-TF genes. c The histograms of Spearman correlations for gene pairs of target 
genes from the same TF. d Jaccard indices between the ground truth regulons of the synthetic GRN and the 
regulons inferred by ARACNe using either the simulated expression (red) or activity data (blue)
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expression and activity profiles for the 477 genes. As expected, TF activity and target 
activity from a regulatory link are correlated (1st column, 2nd row in Fig. 3b), TF activity 
and target expression (3rd column, 2nd row in Fig. 3b) are correlated, and the expres-
sion of two target genes (Fig. 3c) are correlated. However, there is no strong correlation 
between TF expression and target expression (2nd column, 2nd row in Fig. 3b) and, for 
a signaling regulatory link, between TF activity and target expression (3rd column, 4th 
row in Fig. 3b). Next, we applied ARACNe to predict the regulon (i.e., the list of targeted 
genes by a specific TF) using either the simulated expression profiles or the simulated 
activity profiles. We found that the regulons predicted from the activity profiles are sub-
stantially more similar to the predefined ground truth  regulons (measured by the Jac-
card index [55]) than those predicted from the expression profiles (Fig. 3d). The results 
indicate the need of using the TF activity, instead of TF expression, to identify TF-target 
relationships.

Next, we compared the performance of NetAct with several related algorithms, NCA, 
VIPER, and AUCell, in inferring TF activity using both the simulated expression pro-
files from the 83 models and a predefined regulon (i.e., the association of each TF with 
its target genes) (details for the implementation of these algorithms in Additional file 1: 
Supplementary Note 3). The predicted activity was then compared with the simulated 
activity (ground truth) to evaluate the performance. To mimic the real-life scenario 
where the target information may not be complete and accurate, we consider more chal-
lenging tests where the regulon data is randomly perturbed. Here, for a specific per-
turbation level, we generated 100 sets of regulon data by replacing a certain number of 
target genes for each TF with non-interacting genes. The numbers of replaced genes are 
0 (0% level of perturbation), 5 (25%), 10 (50%), and 15 (75%) in different tests. We then 
evaluated the performance of NetAct, NCA, and VIPER. AUCell protocol advises to 
include the target genes with only positive interactions in the regulons. To satisfy this 
criterion, we updated the regulons for both unperturbed and perturbed regulons. For 
the unperturbed regulons, we retained only the positive interactions; for the perturbed 
regulons, we retained the positive target genes that were not replaced and a random 
half of the replaced target genes (assuming that half of the genes are positively regu-
lated by the TF). We then evaluated AUCell performance using these updated regulons 
(denoted AUCell 1) and non-updated regulons (denoted AUCell 2). As shown in Fig. 4a 
(also Additional file 2: Figs. S3-S6), NetAct significantly outperforms each of the other 
methods in reproducing the simulated activity profiles at each perturbation level. As 
expected, the performance of NetAct is decreased by increasing the perturbation levels 
of the regulon data; however, NetAct still performs reasonably well even when only 25% 
of the actual target genes are kept in the regulon data. The results indicate that NetAct 
can robustly and accurately infer TF activity even with a noisy TF-target database.

Furthermore, we tested another scenario where the test data contains simulated data 
from two experimental conditions, e.g., one representing an unperturbed condition and 
the other representing a perturbed condition. Here, we used the same synthetic net-
work but compiled 40 expression and activity data from the abovementioned simulation 
(unperturbed condition), together with 43 expression and activity data from the simu-
lations in which a specific TF (TF9) is knocked down (perturbed condition). We then 
performed a similar test as above and found that NetAct outperformed each of the other 
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methods (Additional file 2: Fig. S2, Additional file 2: Fig. S7a). The notable performance 
gain of NetAct mainly emanates from the removal of incoherent (or noisy) targets of a 
TF before the activity calculation in NetAct (see the “Methods” section).

In addition, we performed a network construction benchmark of NetAct and a 
few other network construction algorithms using the in silico simulation dataset, as 
shown in Fig. 4b–d. NetAct, using the TF activity inferred from the original regulon 
database, outperforms not only network construction methods using gene expres-
sion, such as GENIE3 [56], GRNBoost2 [57], and ppcor [58, 59], but also GENIE3 
using the TF activity inferred by AUCell (Fig. 4b). The last approach was presented 
to mimic a popular method SCENIC. Moreover, we evaluated the performance of 
NetAct when using a perturbed regulon database. We found that NetAct remains 
performing well when the perturbation level is as large as 50%, when evaluated by 
all the ground truth interactions (Fig.  4c) and by those not presented in the reg-
ulon database (Fig.  4d). The latter case was designed to evaluate the capability of 
NetAct in predicting novel interactions. We observed similar outcomes for the case 
of the second scenario of the simulation data from two conditions (Additional file 2: 
Fig. S7b-d, see Additional file 1: Supplementary Note 6 for details of the benchmark 

Fig. 4  The performance of activity and network inference from a simulation benchmark. a TF activity 
inference. TF activity was inferred by several methods using the gene expression data simulated from 
the synthetic TF-target gene regulatory network (GRN) and the corresponding regulons. For each TF, we 
computed Spearman correlations between the inferred activity and simulated activity (ground truth) for all 
the simulated models. Then, we calculated the average correlation values over all TFs. The plots show the 
median of average correlations for the cases where we used the original regulons defined by the TF-target 
network (0% perturbation), and the regulons where 5 (25% perturbation), 10 (50% perturbation), and 15 
(75% perturbation) target genes are randomly replaced with non-interacting genes. The median values 
were computed over 100 repeats of random replacement for each perturbation level, and the values of the 
average correlations are reported for the case of zero perturbation. Shown are the results for NetAct (black), 
NCA (gray), VIPER (cyan), AUCELL 1 where regulons contain only positively associated target genes (orange), 
and AUCELL 2 where regulons contain all target genes (red). b–d Network inference. The panels show the 
performance of network inference algorithms from the simulation benchmark by the precision and recall 
for different link selection thresholds. b Network inference performance against all ground truth regulatory 
interactions. Tested methods are GENIE3, GRNBoost2, and PPCOR, using transcription factor (TF) expression; 
GENIE3 using TF activity inferred by AUCell; NetAct using its inferred TF activity. For the latter two methods, 
original (unperturbed) regulons obtained from the regulatory network were used. c Network inference 
performance of NetAct against all ground truth regulatory interactions using the regulons with 0% (the 
original), 25%, 50%, and 75% target perturbations. d Network inference performance of NetAct in discovering 
new regulatory interactions not existing in the regulons. NetAct was applied using the regulons at different 
perturbation levels (25%, 50%, and 75%). The benchmark results shown here are for the case of the untreated 
simulation. The results for the case of the knockdown simulation are shown in Additional file 2: Fig. S7
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method). In summary, our in silico benchmark test demonstrates the high perfor-
mance of NetAct over existing state-of-the-art methods in both inferring TF activity 
and gene regulatory networks.

Characterizing cellular state transitions by GRN construction and modeling

In the previous sections, we demonstrated the capability of NetAct in identifying the key 
TFs and predicting TF activity. With these data, NetAct further constructs a TF-based 
GRN using the mutual information (MI) of the activity from the identified TFs (details in 
the “Methods” section). We then applied RACIPE to the constructed network to check 
whether the simulated network dynamics are consistent with the experimental obser-
vations. Below, we show the utility of NetAct with two biological examples: epithelial-
mechanical transition (EMT) and macrophage polarization.

In the first case (EMT), we analyzed a set of time-series microarray data on A549 epi-
thelial cells undergoing TGF-β-induced epithelial-mesenchymal transition (EMT) (GEO: 
GSE17708) [60]. According to the overall structure of the transcriptomics profiles, we 
arranged the samples from different time points into three groups—early stage (time 
points 0 h, 0.5 h, and 1 h), middle stage (time points 2 h, 4 h, and 8 h), and late stage 
(time points 16 h, 24 h, and 72 h). We then performed three-way GSEA with our human 
literature-based TF-target database to identify the enriched TFs that are active between 
early-middle, early-late, and middle-late time points. Forty-one TFs (q-value cutoff 0.01) 
were identified including many major transcriptional master regulators, such as BRCA1, 
CTNNB1, MYC, TWIST1, TWIST2, and ZEB1, and factors that are directly associated 
with TGF-β signaling pathways, such as SMAD3 [61], FOS, and JUN [62]. The hierar-
chical clustering analysis (HCA) of the expression and activity profiles for these TFs 

Fig. 5  Network modeling of TGF-β-induced EMT. Application of NetAct to an EMT in human cell lines using 
time-series microarray data. a Experimental expression and activity of enriched transcription factors. b 
Inferred TF regulatory network. Blue lines and arrowheads represent the gene activation; red lines and blunt 
heads represent gene inhibition. c The relationship between SMAD3 gene activity and the first principal 
component of the activity of all network genes from RACIPE simulations. d Hierarchical clustering analysis 
of simulated gene activity (with Pearson correlation as the distance function and Ward.D2 linkage method). 
Colors at the top indicate the two clusters from the simulated gene activity. The blue cluster represents the 
mesenchymal state, and the yellow cluster represents the epithelial state. The color legend for the heatmap 
is at the bottom right. e Knockdown simulations of the TF regulatory network. The bar plot shows the 
proportion of RACIPE models in each state (epithelial or mesenchymal) for the conditions of the knockdown 
of every TF
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is shown in Fig. 5a. While the expression profiles are quite noisy, the activities show a 
clear gradual transition from the epithelial (E) to mesenchymal (M) state. Note that the 
signs of the activity of a few non-DE TFs were flipped according to experimental evi-
dence of protein-protein interactions and the nature of transcriptional regulation (see 
the “Methods” section for detailed procedures and Additional file 3: Table S3 for a list of 
the changes).

We then constructed a TF regulatory network (Fig.  5b) and performed mathemati-
cal modeling to simulate the dynamical behavior of the network using RACIPE (Fig. 5c, 
d). We found that, consistent with the expression and activity profiles (Fig. 5a), the net-
work clearly allows two distinct transcriptional clusters that can be associated with E 
(the yellow cluster in Fig. 5d) and M states (the blue cluster in Fig.  5d). To assess the 
role of TGF-β signaling in inducing EMT, we performed a global bifurcation analysis 
[29] in which the SMAD3 level is used as the control parameter (Fig. 5c). Here, SMAD3 
was selected as it is the direct target of TGF-β signaling [61]. As shown in Fig. 5c, when 
SMAD3 level is either very low or high, the cells reside in E or M states. However, when 
SMAD3 is at the intermediate level, the cells could be driven into some rare hybrid phe-
notypes. These results are consistent with our previous studies on the hybrid states of 
EMT [32, 63]. Using RACIPE, we systematically performed perturbation analyses by 
knocking down every TF in the network. Our simulation results (Fig. 5e) suggest that 
knocking down TFs, such as RELA, SP1, EGR1, and CREBBP, has major effects in driv-
ing M to E transition (MET), while knocking down TFs, such as TP53, AR, and KLF4, 
has major effects in driving E to M transition (EMT). These predictions are all consistent 
with existing experimental evidence (Additional file 3: Table S4).

Compared to a previous model of the EMT network based on an extensive litera-
ture survey [19], the GRN constructed by NetAct identified some of the same regula-
tors induced by the TGF-β pathway, such as SMAD3/4, TWIST2, ZEB1, CTNNB1, 
NFKB1, RELA, FOS, and EGR1. Because of the lack of microRNAs and protein-protein 
interactions in the database, NetAct did not identify factors like miR200 and signaling 
molecules like PI3K. Interestingly, the NetAct model identifies STAT1/3, which was con-
nected to other signaling pathways, such as HGF, PDGF, IGF1, and FGR, but not TGF-β 
in the previous network model. In addition, the NetAct model identified regulators in 
other important pathways in TGF-β-induced EMT in cancer cells, e.g., cell cycle path-
way (RB1 and E2F1) and DNA damage pathway (P53).

In the second case, we studied the macrophage polarization program in mouse bone 
marrow-derived macrophage cells using time series RNA-seq data (GEO: GSE84517) 
[64]. In this experiment, macrophage progenitor cells (denoted as UT condition) were 
treated with (1) IFNγ to induce a transition to the M1 state, (2) IL4 to induce a transition 
to the M2 state, and (3) both IFNγ and IL4 to induce a transition to a hybrid M state. 
Here, we reprocessed the raw counts of RNA-seq with a standard protocol (details in 
Additional file 1: Supplementary Note 2). From principal component analysis (PCA) on 
the whole transcriptomics (Fig. 6b), we found that the gene expression undergoes dis-
tinct trajectories when macrophage cells were treated with either IFNγ (M1 state) or IL4 
(M2 state). When both IFNγ and IL4 were administered, the gene expression trajectories 
are in the middle of the previous two trajectories, suggesting that cells are in a hybrid 
state (hybrid M state). We aim to use NetAct to elucidate the crosstalk in transcriptional 
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regulation downstream of cytokine-induced signaling pathways during macrophage 
polarization.

Here, we applied GSEA on six comparisons—untreated versus IFNγ-treated samples 
(one comparison between the untreated and the treated after 2 h, another between the 
untreated and the treated after 4 h, same for the other comparisons), untreated ver-
sus IL4-treated samples, and untreated versus IFNγ + IL4-treated samples. Using our 
mouse literature-based TF-target database, we identified 79 TFs (q-value cutoff 0.05 
for UT vs IL4-2 h and 0.01 for all others). The expression and activity profiles of these 
TFs (Fig. 6a–c) capture the essential dynamics of transcriptional state transitions dur-
ing macrophage polarization as follows. NetAct successfully identified important TFs 
in these processes, including Stat1, the major target of IFNγ, Stat2, Stat6, Cebpb, Nfkb 
family members, Hif1a, and Myc [65–67]. Myc is known to be induced by IL-4 at later 
phases of M2 activation and required for early phases of M1 activation [66]. Interest-
ingly, we find Myc has high expression in both IL4 stimulation and its co-stimulation 
with IFN but its activity is high only in IL4 stimulation. We then constructed a TF 
regulatory network that connects 60 TFs (Fig.  6d) and simulated the network with 
RACIPE, from which we found that simulated gene expression (Fig. 6f ) matches well 
with experimental gene expression data (Fig.  6a) (see Additional file  1: Supplemen-
tary Note 7). RACIPE simulations display disparate trajectories from UT to IL4 or 
IFNγ activation and stimulation with both IL4 and IFNγ. Strikingly, we found in the 
simulation that there is a spectrum of hybrid M states between M1 and M2 (Fig. 6e), 
which is consistent with the experimental observations of macrophage polarization 
[65]. Moreover, we also predict from our GRN modeling that the transition from UT 
to hybrid M is likely to first undergo a transition to either M1 or M2 before a second 
transition to hybrid M (Fig. 6e). This is because of our observation from the simula-
tion data that there are fewer models connecting UT and hybrid M than any of the 

Fig. 6  Network modeling of macrophage polarization. Application of NetAct to induced macrophage 
polarization via drug treatment in mice using RNA-seq data. a Experimental expression and activity of 
enriched TFs. b PCA projection of genome-wide gene expression profiles. Different point shapes indicate the 
time after treatment, and colors indicate treatment types c PCA projection of gene activity of enriched TFs. d 
Inferred TF regulatory network. Blue lines and arrowheads represent the gene activation; red lines and blunt 
heads represent the gene inhibition. e PCA projection of simulated gene activity of inferred network colored 
by mapping each model back to experimental data. f Hierarchical clustering analysis of simulated gene 
activity (with Pearson correlation as the distance function and Ward.D2 linkage method). Colors at the top 
indicate the mapped experimental conditions. The color legend of the heatmap is at the bottom



Page 14 of 21Su et al. Genome Biology          (2022) 23:270 

other two routes (i.e., UT to M1, and UT to M2) (Additional file 2: Fig. S10). Taken 
together, we showed that the NetAct-constructed GRN model captures the multiple 
cellular state transitions during macrophage polarization.

In conclusion, we show that NetAct can identify the core TF-based GRN using both 
the literature-based TF-target database and the gene expression data. We also demon-
strate how RACIPE-based mathematical modeling complements NetAct-based GRN 
inference in elucidating the dynamical behaviors of the inferred GRNs. Together, these 
two methods can be applied to infer biologically relevant regulatory interactions and the 
dynamical behavior of biological processes.

Discussion
In this study, we have developed NetAct—a computational platform for constructing 
and modeling core transcription factor (TF)-based regulatory networks. NetAct takes a 
data-driven approach to establish gene regulatory network (GRN) models directly from 
transcriptomics data and takes a mathematical modeling approach to characterize cellu-
lar state transitions driven by the inferred GRN. The method specifically integrates both 
literature-based TF-target databases and transcriptomics data of multiple experimen-
tal conditions to accurately infer TF transcriptional activity based on the expression of 
their target genes. Using the inferred TF activity, NetAct further constructs a TF-based 
GRN, whose dynamics can then be evaluated and explored by mathematical modeling. 
Our approach in combining top-down and bottom-up systems biology approaches 
will contribute to a better understanding of the gene regulatory mechanism of cellular 
decision-making.

One of the key components of NetAct is a pre-compiled TF-target gene set database. 
Here, we have evaluated different types of TF-target databases in identifying knocked-
down TFs using publicly available transcriptomics datasets. In this test, we have consid-
ered databases derived from the literature, gene co-expression, cis-motif prediction, and 
TF-binding motif data. Our benchmark tests suggest that the literature-based database 
clearly outperformed the other databases. The literature-based database usually contains 
a small (~ 30) number of target genes for each TF, but these data have direct experi-
mental evidence, therefore being more reliable than those from the other sources. How-
ever, the literature-based database for sure has missing regulatory interactions, therefore 
maybe limiting the overall performance of NetAct. One way to address this issue is to 
further update the literature-based database, once new information is available. Another 
potential approach is to compile a database by combining different types of databases 
together. However, this might be quite challenging as different databases have data of 
very different sizes (the number of target genes) and quality. Future investigations on 
this direction can help to expand our knowledge of transcriptional regulation and mean-
while improve the performance of the algorithm.

NetAct also has a unique approach to infer the TF activity from the gene expression of 
the target genes with the consideration of activation/inhibition nature. From our in silico 
benchmark tests, we found that NetAct outperforms major activity inference methods, 
owing to the design of the filtering step and the use of a high-quality TF-target database. 
NetAct is also robust against some inaccuracy in the TF-target database and noises in 
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gene expression data, because of its capability of filtering out irrelevant targets as well as 
remaining key targets.

One potential issue is the assignment of the sign of TF activity, as it is algorithmi-
cally assigned according to the correlation with TF expression. In the case where the TF 
expression is very noisy or the expression is completely unrelated to TF activity, the sign 
assignment might be inaccurate. To deal with this issue, we have devised a semi-manual 
approach that identifies the sign of TF activity according to the sign of other interacting 
TFs. Another potential issue is that some TFs from the same family may have very simi-
lar target genes; therefore, NetAct will have difficulty in identifying exactly which TF 
from the family is most relevant. Additional data resources, such as epigenomics [68], 
TF-binding data [35], and Hi-C data [69], will be helpful to address this problem. One of 
the future directions is to design methods to integrate these data resources.

Lastly, instead of constructing a global transcriptional regulatory network, NetAct 
focuses on modeling a core regulatory network with only interactions between key TFs. 
The underlying hypothesis is that these TFs and the associated regulatory interactions 
play major roles in controlling the gene expression of different cellular states and the 
patterns of state transitions. With the core network identified using NetAct, we can fur-
ther perform simulations with mathematical modeling algorithms, such as RACIPE, to 
analyze the control mechanism of the core network. These simulations allow us to gen-
erate new hypotheses, which can be further tested experimentally. The validation data 
can further help to improve the model. Ideally, this needs to be an iterative process to 
refine a core network model, which is indeed another interesting future direction.

Conclusions
We developed NetAct, a computational platform for constructing and modeling core 
transcription factor regulatory networks using both transcriptomics data and literature-
based transcription factor-target gene databases. Utilizing both types of resources allows 
us to identify regulatory genes and links specific to the data and fully take advantage of 
the existing knowledgebase of transcriptional regulation. Our method of combining top-
down and bottom-up systems biology approaches contributes to a better understanding 
of the mechanism of gene regulation driving cellular state transitions.

Methods
Selecting enriched TFs

For a comparison between two experimental conditions, we obtained a ranked gene list 
quantified by the absolute value of the test statistics (t statistics in microarray and Wald 
test statistics in RNA-seq) from differential expression (DE) analysis [70], followed by 
gene set enrichment analysis (GSEA) [39] using our optimized transcription factor (TF)-
target gene set database. Here, for each TF, the corresponding gene set consists of all 
its target genes. GSEA identifies important TFs whose targets are enriched in DE genes 
between the two conditions. The significance test is achieved through 10,000 permuta-
tions of the gene list names and TFs are kept for further analysis when the q-value is 
below a certain threshold cutoff (0.05 by default). A C++ implementation of this version 
of GSEA, specifically for gene name permutations, has been provided in NetAct for fast 
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computation. For multiple comparisons, a set of enriched TFs are first identified from 
each pairwise comparison and then a union of the multiple sets of TFs is considered.

In the database benchmark test, for each database, we computed the sensitivity and 
specificity values for different q-value cutoffs. Here, for each cutoff value, we defined 
the sensitivity as the proportion of datasets where the gene sets for the KD TFs were 
enriched with q-values below the cutoff value. We also defined specificity as the fraction 
of cases where the gene sets for the other TFs (non-KD TFs in the benchmark) were not 
enriched with q-values above the cutoff value. We then computed the area under the 
ROC curve (AUC) using the DescTools R package [71].

Inferring TF activity

TF activity is inferred from the expression of target genes retrieved from the TF-target 
database. NetAct defines the activity of the selected TFs using two different schemes—
one using only the expression of target genes and the other using the expression of both 
the TF and its target genes. The second scheme is only used for the situation of noisy 
target gene expression. For each TF, the algorithm selects the better scheme according to 
its performance, as described below.

Without directly using TF expression

For each TF, its downstream targets are first divided into two modules using Newman’s 
community detection algorithm [72] on the pairwise Spearman correlation matrix of the 
target genes. Then, within each module, some less-correlated genes are filtered out to 
improve the quality of the inference. Here, the filtering step is achieved as follows: (1) 
each target gene is assigned a vector of correlations with the other target genes, where 
the distance between two genes is calculated as the sum of squares of the correlation 
vectors of two genes; (2) k-mean algorithm (k = 1) is performed within each cluster to 
determine the center vector; and (3) genes are filtered out if the distance between the 
genes and the center is larger than the average distance.

This step outputs two groups of genes—genes in one group are supposed to be acti-
vated by the TF, while genes in the other group are inhibited by the TF. Note that, at this 
stage, the nature of activation/inhibition of the individual group is not yet determined. 
The activity of the TF is calculated as:

where gi is the standardized expression value of a target gene i, and wi is the weighting 
factor defined as a Hill function:

where si is the adjusted p-value from DE analysis for gene i, the threshold S0 is 0.05, 
and n is set to be 1/5 for best performance (Additional file 2: Fig. S8). Ii is 1 if the corre-
sponding gene belongs to the first group and − 1 if it belongs to the second group. If the 
calculated TF activity pattern is not consistent with the TF expression trend (evaluated 
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by Spearman correlation), both the sign of the two groups and the sign of the activity are 
flipped. According to our in silico benchmark test (Additional file 2: Fig. S9), we found 
that majority of the targets in one group are activated by the TF, and majority of those 
in the other group are inhibited by the TF. For genes in the inhibition group, the higher 
the TF activity, the more the genes are suppressed. Thus, the formula in Eq. 1 captures 
well the activity of TFs for their effects to both activating and inhibitory targets. We also 
explored a few other community detection algorithms [73–75] and found they produced 
similar results (Additional file 2: Fig. S1).

Using TF expression

For each TF, its downstream targets are first divided into two groups according to the 
sign of the Spearman correlation between the TF expression and the target expression. 
Similar to the previous scheme, in each group, target genes are filtered out if the correla-
tion value is less than the average correlation of all the targets. The activity of the TF is 
also calculated using Eq. 1.

Sign assignment for DE TF

For any DE TF (i.e., there is a significant difference in the TF expression across cell type 
conditions) of interest, NetAct computes the activity values from both the schemes (with 
or without TF’s expression) and selects the better way based on how well the activity val-
ues correlate with target expression. To this end, NetAct calculates the absolute value 
of Spearman correlation between the TF activity and the expression of each target, and 
selects the scheme whose activity gives larger average correlations.

Sign assignment for non‑DE TF

If the expression patterns of the identified TFs fail to show the significant differences 
between cell type conditions, a semi-manual method to assign the sign of activity can be 
adopted. Putative interaction partners between DE and non-DE TFs in the inferred net-
work are identified using Fisher’s exact test between TF targets in the NetAct TF-target 
database. The most significant pairs are then cross-referenced with the STRING data-
base  (https://​string-​db.​org) to identify instances of protein-protein interactions  (PPIs). 
A literature search is then performed to identify the nature of the PPI, and the sign of 
the non-DE TF is adjusted based on the DE TF and the type of PPI. Note that the last 
step needs to be done manually for each modeling application. Additional file 3: Table S3 
shows the details of TF sign flipping and supported experimental evidence for the two 
network modeling applications.

Network construction and mathematical modeling

NetAct constructs a TF regulatory network using both the TF-TF regulatory inter-
actions from the TF-target database and the activity values. (1) The network is 
constructed using mutual information between the activity values of two TFs. (2) 
Interactions are filtered out if they cannot be found in the TF-target regulatory data-
base (i.e., D1). (3) The sign of each link is determined by the sign of the Spearman 
correlation between the activity of two TFs. (4) We keep the interaction between two 

https://string-db.org
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TFs if their mutual information is higher than a threshold cutoff. With different cut-
off values for mutual information, NetAct establishes networks of different sizes. To 
identify the best network model capturing gene expression profiles, we apply math-
ematical modeling to each of the TF networks using RACIPE [29]. RACIPE takes net-
work topology as the input and generates an ensemble of mathematical models with 
random kinetic parameters. By simulating the network, we expect to obtain multiple 
clusters of gene expression patterns that are constrained by the complex interactions 
in the network. RACIPE was also applied to generate simulated benchmark test sets 
for a synthetic TF-target network (Additional file 1: Supplementary Note 5).
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