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Abstract 

Background:  Quality control (QC) of cells, a critical first step in single-cell RNA 
sequencing data analysis, has largely relied on arbitrarily fixed data-agnostic thresh-
olds applied to QC metrics such as gene complexity and fraction of reads mapping to 
mitochondrial genes. The few existing data-driven approaches perform QC at the level 
of samples or studies without accounting for biological variation.

Results:  We first demonstrate that QC metrics vary with both tissue and cell types 
across technologies, study conditions, and species. We then propose data-driven QC 
(ddqc), an unsupervised adaptive QC framework to perform flexible and data-driven 
QC at the level of cell types while retaining critical biological insights and improved 
power for downstream analysis. ddqc applies an adaptive threshold based on the 
median absolute deviation on four QC metrics (gene and UMI complexity, fraction of 
reads mapping to mitochondrial and ribosomal genes). ddqc retains over a third more 
cells when compared to conventional data-agnostic QC filters. Finally, we show that 
ddqc recovers biologically meaningful trends in gradation of gene complexity among 
cell types that can help answer questions of biological interest such as which cell types 
express the least and most number of transcripts overall, and ribosomal transcripts 
specifically.

Conclusions:  ddqc retains cell types such as metabolically active parenchymal cells 
and specialized cells such as neutrophils which are often lost by conventional QC. 
Taken together, our work proposes a revised paradigm to quality filtering best prac-
tices—iterative QC, providing a data-driven QC framework compatible with observed 
biological diversity.
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Background
Single-cell RNA sequencing (scRNA-seq) offers unprecedented resolution into cell biol-
ogy by characterizing the individual cells within a biological sample of interest. Quality 
control (QC) of the cells is a critical first step in any scRNA-seq data analysis, which 
typically takes place after alignment of the sequencing reads to the reference genome (or 
transcriptome), and generation of the cell-by-gene matrix of gene expression counts. The 
goal of such “cell QC” is to remove “poor-quality” cells, based on QC metrics such as the 
number of genes detected (“gene complexity” or “transcriptional diversity”), the number 
of unique molecular identifiers (UMIs) recovered (typical for droplet-based technolo-
gies), and the fraction of mitochondrial and ribosomal protein genes [1]. The guiding 
motivation is that tissue dissociation techniques stress the cells and as cells die, tran-
scription tapers off, cytoplasmic transcripts are degraded, and mitochondrial transcripts 
dominate [2]. Thus, low complexity of genes and high mitochondrial read content have 
been used as a proxy for identifying poor-quality cells (or droplets with ambient RNA). 
As a corollary, high gene complexity has been used as a proxy for doublets or multiplets 
in droplet-based sequencing [3]. While specialized computational strategies have been 
developed for other specific QC tasks such as ambient RNA correction [4–6], empty 
droplet removal [7], or doublet identification [8–10], the standard practice in “cell QC” 
is to filter out cells by setting arbitrarily defined thresholds on the QC metrics. Widely 
used pipelines [11, 12] by default set a flat filter on the QC criteria for each sample or 
sets of samples analyzed, agnostic of the dataset and biology under study.

Although widely used, data-agnostic QC filters do not account for the fact that vari-
ation in the commonly used QC metrics may also be driven by biology (in addition to 
technical factors). For example, mitochondrial transcript abundance is dependent on 
cellular physiology [13], and metabolically active tissues (e.g., muscle, kidney) have 
higher mitochondrial transcript content [14, 15]. Ribosomal protein gene expression has 
also been shown to vary by tissue [16] in human adults and mice [17]. Although biologi-
cal variability in ribosomal protein gene expression has been reported [18], ribosomal 
protein gene expression is often conflated with technical artifacts or housekeeping tran-
scription activity during analysis. Within each tissue, compartments and cell types may 
show further variability in these QC attributes. For example, the total number of genes 
expressed (gene complexity) varies with both cell type (cells with biologically distinct 
functions) and cell state (distinct physiological functions adopted by the same cell type) 
as seen during stages of mouse and human development [19]. Expression profiles also 
vary with progression through the cell cycle [20] or changes in cell volume [21]. Fur-
ther, specific biological conditions or perturbations can lead to differences in these QC 
measures. For example, naive poised T cells are known to have higher ribosomal content 
[22, 23], as are malignant cells [24]. Activated lymphocytes such as innate lymphoid cells 
(ILCs) [25] have greater transcriptional diversity, in an activation and condition-depend-
ent manner. Thus, the commonly used QC metrics can exhibit widespread biological 
variability bringing to the center the biological context of the study.

The importance of calibrating cell QC for the mitochondrial read fraction based 
on the mouse or human tissue of origin has been highlighted [26]; however, the pro-
posed upper limit of 5 or 10% was largely based on existing data at the time of the 
study. Newer technologies (e.g., 10x v3 chemistry) may need a variable cutoff for 
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mitochondrial read fraction [27]. The scater package [28] encourages the use of diag-
nostic plots and sample-specific QC. More recently, probabilistic mixture modeling 
has been favored for data-driven quality control at the level of samples or sample sets, 
either in combination with other QC approaches [15] or standalone as in miQC [29]. 
However, no approach performs quality control explicitly considering the biological 
variability of QC metrics at the cell type or cell-state level.

Here, we survey the variability of QC metrics across diverse scRNA-seq datasets at 
the tissue and celltype level, demonstrate the need for a data-driven quality control 
approach that accounts for the biological variability of QC metrics at the level of cell 
types, and present a framework for data-driven QC (ddqc), inspired by unsupervised 
approaches in single-cell analysis, that performs adaptive quality control while retain-
ing biological insights. ddqc partitions data by filtering out cells that fail adaptive 
thresholds on QC metrics as determined by the median absolute deviation (MAD) on 
each cluster of cells. Finally, we demonstrate that ddqc retains cell types that are lost 
by conventional QC, expanding existing cellular taxonomies for tissues, and offering 
an opportunity for further exploration and biological discovery.

Results
Survey of QC practices suggests a need for data‑driven QC

To study existing QC practices in cell filtering, we sampled 107 research papers 
(“Methods”) with publication dates between 2017 and 2020, and focusing on analysis 
of scRNA-seq data generated across a range of technologies (3’ 10x V2 and 3’ 10x V3, 
Smartseq2, Drop-seq, mCEL-Seq2, Dronc-seq, MIRALCS, Microwell-seq) and in two 
species (mouse and human [30]), and summarized the QC practices adopted (Addi-
tional file  1: Table  S1). The most commonly used QC metrics were the number of 
genes detected, the number of UMIs counted, and the fraction of reads mapping to 
mitochondrial or ribosomal protein genes. While there were few studies that used 
study-specific QC thresholds (Additional file  2: Supplementary Text), most studies 
(Table 1) that applied cell QC on specific metrics used data-agnostic QC filters, usu-
ally set at 5–10% for fraction of mitochondrial reads (86% or 73 papers), and 500 for 
gene complexity (86.5% or 77 papers).

Table 1  Summary of QC survey

Metric\QC 
type

Papers 
with 
any QC

Data-agnostic 
fixed threshold 
(% of filtered)

Multiple fixed 
thresholds 
varying by 
sample

Mito or 
ribo genes 
removed before 
analysis

Data-driven 
study-level 
threshold

Custom QC No 
filtering

nCounts 65 48 (73.8%) 5 (7.7%) 0 (0%) 11 (16.9%) 1 (1.5%) 42

nGenes 89 72 (80.8%) 5 (5.6%) 0 (0%) 12 (13.5%) 0 (0%) 18

nCells 41 35 (85.4%) 3 (7.3%) 0 (0%) 2 (4.9%) 1 (2.4%) 65

%Mito 85 69 (81.2%) 5 (5.9%) 4 (4.7%) 6 (7.1%) 1 (1.2%) 22

%Ribo 7 2 (28.6%) 0 (0%) 3 (42.8%) 2 (28.6%) 0 (0%) 100

Empty droplets Doublets/multiplets Ambient RNA

4 17 6
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Across species and technologies, QC metrics vary by tissue

To systematically investigate if scRNA-seq data generated by commonly used technolo-
gies retains tissue and celltype specificity of the QC metrics, we profiled QC statistics by 
tissue and cell type on large public datasets after minimal basic QC (“Methods”). We sur-
veyed 5,261,652 cells from 498 samples and 47 human tissues across 34 studies [31–54], 
and 966,560 cells from 337 samples and 37 mouse tissues across 5 studies [55] (“Meth-
ods”, Additional file 1: Table S2). We examined 8 human tumor types across protocols 
(fresh cells/scRNA-seq vs frozen nuclei/snRNA-seq) and droplet chemistries (10x v2 vs 
10x v3) [27]. A subset of the studies (Tabula Muris [56] 10X, Tabula Muris Smartseq2; 
Microwell-seq mouse [57] and human [42]; Tabula Muris Senis [58]) had both uniformly 
generated and processed datasets, while others (PanglaoDB [59–67]) were generated 
in independent studies but uniformly processed. The mouse Tabula Muris dataset was 
particularly convenient having data generated from both 3’-end droplet-based sequenc-
ing (10X, (Additional file 3: Fig. S1A, C, E)) and full-length RNA plate-based Smartseq2 
techniques (Additional file 3: Fig. S1B, D, F) from the same samples, and processed uni-
formly using the same reference and computational pipelines.

We found a tissue-specific (Fig. 1) trend for the QC metrics across studies. In general, 
we found variation by tissue for proportion of mitochondrial reads (Fig. 1A, B) within 
the same study regardless of the technology used (Tabula Muris 10X, Tabula Muris 
Smartseq2; Microwell-seq mouse and human) with some tissues emerging as having 
higher mitochondrial content (e.g., kidney, colon, heart, liver). The tissue-specific order-
ing of mitochondrial reads seen in [13] was most faithfully recapitulated by the Smart-
seq2 dataset (Additional file 3: Fig. S1B) with kidney, colon, cerebellum, and heart having 
the highest mitochondrial load. Differences in the gene complexity (Fig. 1C, D) and the 
percent of ribosomal protein genes (Fig. 1E, F) were also observed among tissues. Across 
both Tabula Muris 10X and Tabula Muris Smartseq2, the tongue had the highest mean 
gene complexity (Additional file  3: Fig. S1C, D), with the mean percentage of riboso-
mal protein reads being higher in the 10X dataset (Fig 1E). Trends were generally also 
maintained with age (Tabula Muris Senis 30m, Additional file 3: Fig. S2A, C, E). When 
compared to frozen tumor nuclei, the gene complexity was higher for cells (Additional 
file 3: Fig. S2D). Further, within each tissue, multiple density modes were evident (Fig. 1) 
for the QC metric studied. Finally, we note that the summary statistics of the QC metrics 
can vary by the experimental condition (technology and study) on the same tissue.

Across species and technologies, QC metrics vary by cell type within a tissue

We next assessed cell subset-specific (representing cell types or cell states) QC attrib-
ute differences within tissues by uniformly processing all datasets (starting with the 
gene expression count matrices) to derive clusters within each tissue without applying 
standard QC cutoffs (“Methods”). However, many publicly available datasets did not 
come with assigned celltype annotations. To uniformly assign biological annotations 
to the cell clusters, we devised a heuristic score function leveraging the top differen-
tially expressed genes in a cluster, and the PanglaoDB [59] database of marker genes 
to predict the most probable cell-type annotation. We tested the annotation strategy 
on 4 mouse (Tabula Muris Smartseq2, Tabula Muris 10X, Tabula Muris  Senis 24 
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months, Tabula Muris  Senis 30 months) and 1 human (Human Tissue Atlas) data-
sets which had partial annotations provided by the authors. On these data, our heu-
ristic approach had an accuracy of 80.2 and 92.1% for cluster annotations in human 
and mouse data respectively (Additional file 1: Table S3, “Methods”). We applied our 

Fig. 1  QC metrics vary by tissue. (X-axis) Fraction of mitochondrial reads (A, B), gene complexity (C, D), and 
percentage of ribosomal protein genes (E, F) per cell across human tissues (Y-axis) and technologies. Various 
human tissue scRNA-seq datasets generated by 10X droplet-based (A, C, E) and Microwell-seq (B, D, F) 
technologies. Each row in a panel is a density curve with the mean represented by a blue diamond. Red lines 
indicate conventional threshold values set at 10% for percentage of mitochondrial reads, and 200 for gene 
complexity
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heuristic approach to all test datasets and then examined trends of the QC metrics 
among cell types within tissues. As case studies, we manually verified annotations and 
describe examples for murine (Additional file 3: Fig. S3) and human tissues (Fig. 2).

Across all tissues, we observed variability by annotated cell type, in the per cell QC 
metrics (fraction of mitochondrial and ribosomal reads mapped, and gene complexity 
per cell). To illustrate the impact of standard practice QC thresholds, we applied QC 
thresholds of 10% for the maximum mitochondrial read fraction and 500 genes detected 

Fig. 2  QC metrics vary by celltype. (X-axis) Fraction of mitochondrial reads (A, B), gene complexity (C, D), 
and percentage of ribosomal protein genes (E, F) per cell across cell types (Y-axis) of various human tissues: 
kidney (A), testis (B), adipose (C), substantia nigra (D), bone marrow (E), and lung (F). All scRNA-seq data was 
generated using the 10X droplet-based technology. Each row in a panel is a density curve with the mean 
represented by a blue diamond. Red lines indicate conventional threshold values set at 10% for percentage 
of mitochondrial reads, and 200 for gene complexity. Cluster numbers are indicated preceding the cell type 
annotation



Page 7 of 27Subramanian et al. Genome Biology          (2022) 23:267 	

for minimum gene complexity. A fixed cutoff of 10% mitochondrial read fraction led to 
loss of parenchymal cell subsets in human kidney and testis (Fig. 2A, B), and mouse cer-
ebellum, and colon (Additional file  3: Fig. S3A,B). More broadly, mitochondrial-read-
rich clusters ranged from muscle cells to tissue-parenchymal cells such as enterocytes 
(gut), proximal tubular cells (kidney), or sertoli cells (testis), all cell types known to have 
high metabolic activity and energy needs such as active transport in the kidney proximal 
tubule, and oxidative phosphorylation in cardiomyocytes of the heart. Even a conserva-
tive fixed cutoff of 200 genes led to loss of diverse cell subsets including immune cells 
such as neutrophils (Additional file 3: Fig. S3C, D) and neurons (Fig. 2D). Cell type-spe-
cific trends in percent ribosomal protein genes were also evident (Fig. 2E, F, Additional 
file 3: Fig. S3E,F). Thus, data-agnostic thresholds remove biologically relevant cells, and 
hence, QC based on these metrics must not only adapt to different tissues or samples 
but also to cell states and cell types.

ddqc: a cell‑state adaptive quality control framework

To account for biological variability among QC metrics, and also adapt to differences 
in experimental conditions (study design, technology, etc.), we propose data-driven QC 
(ddqc, Fig.  3A), an unsupervised, data-driven, and adaptive thresholding framework 
for optimal capture of biological diversity. Inspired by and adapting existing unsuper-
vised approaches in scRNA-seq analysis [68], ddqc identifies neighborhoods of cells by 
graph-based clustering and performs QC on these clusters using an adaptive threshold-
ing approach. The basic concept is that data must be partitioned by biology and that QC 
must be performed on these independent partitions. Briefly, cells that pass empty drop-
let filters are subjected to dimensionality reduction by principal component analysis, 
followed by nearest neighbor graph construction and clustering to identify cell clusters 
with similar transcriptional states (details in “Methods”). Our approach does not rely on 
prior annotation, rather it identifies biologically similar cells based on the density of the 
transcriptional data. Within each such cluster, we identify “outliers” based on one- or 
two-sided thresholds on the QC metric of interest, defined as those cells that lie beyond 
a chosen number of median absolute deviations (MAD) from the cluster QC metric dis-
tribution median. Cells that pass these thresholds then enter downstream analysis.

The specific downstream analysis depends on the study and biological questions of 
interest. For example, the next step may range from integration with other data modali-
ties (e.g., spatial data) or batch effect correction or cell classification. If the next step is 
indeed conventional analysis involving clustering-based cell-type/state identification, 
followed by differential gene expression, analysts may choose to start with the cluster-
ing labels that ddqc generates during QC (and returns as an output) to merge, re-cluster, 
or subcluster based on their research question. ddqc is available as both R and Python 
packages on GitHub and can be readily plugged into standard scRNA-seq analysis pipe-
lines such as Pegasus [69] or Seurat [12]. Flexible options and exploratory plots are 
provided to the user for more control. ddqc is agnostic to the approach used to remove 
empty droplets (Additional file 2: Supplementary Text) which can be user defined. Our 
results were robust to varying clustering algorithms (Additional file 3: Fig. S4A, B, Addi-
tional file  1: Table  S4) or hyperparameters at the different steps (Fig S4C,D). Cluster-
ing approaches perform on par with automated cell-type annotation methods [70–72] 
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(Additional file 1: Table S5). To help evaluate the MAD multiplier parameter to use as 
the adaptive threshold, ddqc provides exploratory plots. Our extensive evaluation sup-
ports an analyst involved interactive analysis that integrates EDA and the analyst’s 
expertise in the problem of interest.

We evaluated the performance of ddqc on all test datasets (Additional file 1: Table S2) 
applying adaptive QC on three QC metrics: fraction of UMIs mapped to mitochondrial 

Fig. 3  ddqc retains biologically meaningful cells that conventional QC filters out. A Overview of the ddqc 
approach. B, C ddqc retains more cells when compared to the standard cutoff approach across B tissues in 
the Tabula Muris dataset, and C scRNA-seq data generating technologies. D UMAP visualization of Tabula 
Muris lung cells. Colors represent whether the cells are included in the paper or uniquely retained by ddqc. 
E Violin plot visualization of cell type-specific signature scores in average log(TPX+1). From top to bottom: 
muscle, neutrophil, NK cells, and Gamma-delta T cells. F UMAP visualization of joint clustering of cells retained 
by both ddqc and the standard cutoff in the Tabula Muris heart and aorta tissues. G Proportion of cells 
retained by ddqc, standard cutoff, or both in the mouse heart and aorta tissues
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genes, gene complexity, and number of UMIs. For comparisons, we ran conventional 
QC (“standard cutoff”) on our test datasets using a fixed threshold of 10% as the maxi-
mum fraction of mitochondrial reads, and 200 as the minimum gene complexity. We 
then evaluated the cells that passed QC by either approach in a number of ways: ability 
to (1) improve power, (2) expand existing cellular taxonomies, (3) recover biologically 
meaningful states, and (4) discover broadly useful insights of transcriptional activity. 
At instances, we use the terms cell “states” and “types” interchangeably as there may 
be multiple clusters with identical celltype markers, potentially representing biological 
states.

ddqc improves power for downstream analysis when compared with conventional QC 

methods

We computed the number of cells retained by either ddqc or conventional QC and deter-
mined the breakdown by QC attributes. ddqc preserved more cells in comparison to 
conventional QC across datasets and biological conditions (Additional file 1: Table S6). 
Overall, ddqc retained up to a median of 95.4% of input cells versus 69.4% cells using the 
standard cutoff approach. The higher number of cells retained by ddqc held across tis-
sues (Fig. 3B) and technologies (Fig. 3C). Stratified by QC attributes, on average 83.19% 
of cells lost by ddqc are due to  thresholds on the proportion of mitochondrial reads 
while 6.2% are lost due to gene complexity (Additional file 1: Table S6) thresholds. Thus, 
the higher number of cells preserved by ddqc provides more statistical power for down-
stream analysis.

ddqc retains biological cellstate information lost using default cutoff or data‑driven 

approaches that do not consider biology

As ddqc applies QC per cluster, it helps retain several cell types or states of biological rel-
evance. We illustrate the biological relevance of ddqc in two ways. First, using the Tabula 
Muris lung dataset as a case study, we compared changes in lung cell taxonomies derived 
by conventional clustering analysis following either ddqc or the author-defined cutoffs. 
In the Tabula Muris  paper, the authors used fixed cutoffs of 500 genes for minimum 
gene complexity and 1000 UMIs for the minimum number of UMIs. After QC by ddqc, 
we overlaid cell barcode annotations (Fig.  3D) provided by the authors [56] to define 
clusters with cells retained both in the paper and ddqc, and those exclusively retained 
by ddqc (i.e., all cells in the cluster were filtered out in the paper but retained by ddqc). 
Examining clusters exclusively retained by ddqc, we find various cell types of interest 
such as muscle cells, neutrophils, Natural Killer (NK) cells, and T cells, which we vali-
date using their known canonical signatures (Fig. 3E, Additional file 1: Table S7). These 
cell states were filtered out in the Tabula Muris study and not analyzed downstream. 
When these data are lost, we also lose the biology or insights we might have learned by 
analyzing them. Thus, using ddqc, we are able to expand tissue cellular taxonomies by 
retaining tissue-native cell types missed by arbitrary cutoff-based QC.

Next, to demonstrate that ddqc recovers biologically meaningful states, we proceeded 
to annotate the cells that passed QC using our heuristic annotation strategy. Since our 
annotation strategy labels cell clusters and not individual cells, we jointly clustered the 
cells retained by both ddqc and the standard cutoff QC, and then applied our heuristic 
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clustering strategy to assign biologically relevant labels. To evaluate differences in the 
filtered cells by both approaches, we defined “uniquely retained” clusters as those that 
had at least 30 cell members, and 85% of cluster membership consisted of cells uniquely 
retained by either QC method. No cluster was unique to the standard cutoff approach 
by the above definitions whereas several biologically meaningful clusters were uniquely 
retained by ddqc (Additional file 1: Table S8). We describe three examples: Tabula Muris 
heart and aorta (Fig. 3F, G, Additional file 3: Fig. S4E, G), human Olfactory Epithelial 
cells (Additional file  3: Fig. S4F,H, S5A,B), the human lung (Fig S5C,D). Compared to 
the standard cutoff method, ddqc retained cell subsets with low gene complexity includ-
ing olfactory epithelial cells, dendritic cells, erythroid precursor cells, and platelets 
which were filtered out by the conventional QC approach. Cardiomyocytes (Additional 
file  3: Fig. S3A) and lung muscle (Fig.  3G) cells were mito-rich and retained in ddqc. 
The majority of cells with high mitochondrial content are diverse epithelial cells in both 
mouse and human. We provide a table of cell states lost when conventional methods are 
used across all our surveyed datasets (Table S8).

Finally, to compare with a data-driven approach, we ran miQC using standard set-
tings (“Methods”) on the human olfactory epithelium and the mouse heart datasets 
(Additional file  3: Fig. S5E, F). For the human Olfactory Epithelium, both ddqc and 
miQC retain all clusters (miQC retaining up to 95% of cells as ddqc) with ddqc retaining 
more of mito-rich olfactory epithelial cells. However, in the Tabula Muris  mouse heart 
example (Additional file 3: Fig. S5E), miQC retained only 90.5% of cells as ddqc, com-
pletely removing the cardiomyocyte cluster. The cardiomyocyte cluster had a median of 
15.178% reads mapping to mitochondrial genes, and 2427.67 as the median gene com-
plexity, which ddqc retains. Cardiomyocytes are essential parenchymal cells of the heart. 
In both examples, miQC retained fewer cells exclusively (that ddqc did not); however, 
these did not map to a missing biologically relevant cell type. Thus, ddqc retains biologi-
cally relevant cell types that miQC filters out.

Which cells have the least and most number of transcripts?

We next turned to insights such as patterns of celltype-specific gene usage that a more 
biology-driven QC approach such as ddqc preserves (Fig.  4). Following application of 
ddqc, we examined trends in QC metrics (Additional file 1: Table S9), to answer ques-
tions such as “which cell types  or  states transcribe the fewest or largest number of 
genes?”. We defined cell states with low gene complexity as those with both low median 
number of genes detected (< 200) as well as low median percentage of mitochondrial 
reads (<10%). Across 20 human studies and 159 clusters, 44 of the clusters (27.7%) sat-
isfying the criteria were diverse immune cells including dendritic cells, plasma cells, T 
cells, NK, and mast cells. Other subsets included endothelial subsets, platelets, and RBCs 
(6%). Specific parenchymal cells with low gene complexity were specialized cells such as 
gastric chief cells (PGA5+, PGC+, CHIA+, PGA3+, LIPF+) of the stomach, cardiomyo-
cytes (NPPA+, NACA​+, NACA2+, MYL2+), neuronal subsets (Schwann, astrocytes, neu-
rons) of the substantia nigra, and olfactory epithelial cells. Across 4 large mouse studies 
and 465 clusters, 133 (28.6%) were immune cell clusters including 28 neutrophil (Elane+, 
Prtn3+, Mpo+) subsets, 27 B cells, and 46 macrophage/Kupffer subsets. Endothelial (46) 
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Fig. 4  Schematic summarizing trends in “low” and “high” transcriptional diversity among mouse and human 
cell types for total number of genes (A) and ribosomal gene fraction (B). Top row represents the most 
prevalent cell type within the group (% of total clusters examined) for mouse and bottom row for human. 
Cell types are further partitioned within the immune cell category. A Gene complexity trends. Cell types 
with number of genes < 200 median number of genes detected are in the low gene complexity group while 
those with > 2000 median number of genes detected are in the high category. B Ribosomal gene fraction 
trends. Cell types with median fraction of ribosomal genes < 10% are in the low gene complexity group while 
those with median fraction of ribosomal genes > 20% are in the high category
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and erythroid (23) lineages followed. Parenchymal cells included lactating and involut-
ing mammary gland cells, pancreatic acinar cells, and diverse epithelial cells.

Next, we looked at cell types/states with high gene complexity (> 2000 median genes, 
< 10% fraction mitochondrial reads). Among 311 such clusters in humans, neurons (35), 
and fibroblast (28) emerged as the higher ranked ones, along with epithelial cells (159). 
In mice, across 377 clusters, macrophages/microglia (61), fibroblasts (53), neuronal (20), 
and diverse epithelial cells (111) were among the most populous subsets with high gene 
complexity.

Immune cells have a high fraction of ribosomal protein content

Examining trends of ribosomal protein transcription, we defined high or low median 
ribosomal protein gene complexity as that with greater than 20% reads or lower than 
10% reads mapping to ribosomal protein genes, and lower than 10% reads mapping to 
mitochondrial genes. Among 438 human clusters with high ribosomal protein gene 
complexity, 212 (48.4%) were immune cell subsets including 85 T cell, and 50 dendritic 
cell subsets. Immune cell function often requires rapid protein translation [23, 73]. 
Other preponderant subsets were epithelial (110) and fibroblasts (43). Among 450 such 
clusters in mice, 241(53.6%) were annotated as immune including diverse subsets (B cell 
(78), macrophages (44), and T cells (75)) suggesting that certain immune states may have 
high translational activity and need for ribosomal protein genes.

Neurons (20.6%) were a large fraction of human cell states with lower ribosomal pro-
tein gene complexity. In mouse, cell states with low ribosomal protein gene complexity 
included diverse epithelial and immune cells, fibroblasts, and endothelial cells. Thus, a 
more context-focused QC approach such as ddqc can enable us to recapitulate and study 
fundamental patterns in cell-type-specific gene expression and associated function.

Discussion
Cell quality control remains an essential step in scRNA-seq data analysis; however, con-
ventional approaches apply arbitrary filters on defined QC metrics without accounting 
for the biological context. The standard QC practice among published papers is largely 
data-agnostic and arbitrary threshold-based. We have demonstrated (Figs. 1 and 2) that 
not accounting for the underlying biological heterogeneity at the level of cell states dur-
ing QC can lead to loss of relevant biological insights (including important cell types) 
as well as reduced statistical power for downstream analysis. However, identifying cell 
types and cell states is a time-consuming process requiring either well-annotated train-
ing sets or involves the manual and subjective task of cell-state annotation. The field of 
single-cell biology is still in the nascent stages of building experimentally validated and 
reproducible ontologies of cell states. The few existing automated annotation strategies 
are limited in the number of tissues they can handle. To overcome these challenges, we 
present an unsupervised approach ddqc that leverages clustering to identify transcrip-
tionally similar cellular neighborhoods (approximating broad cell types) and performs 
adaptive QC on these clusters. The unsupervised approach underlying ddqc performs 
on par with independent annotation strategies on test datasets (Additional file 2: Sup-
plementary Text).
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We observe limitations of our approach: (1) ddqc applies adaptive thresholds on each 
cluster, and hence, we are likely to lose a small number of good-quality cells (false posi-
tives) due to inherent spread of the cluster data distribution. (2) While in most cases, 
ddqc retains clusters that are biologically meaningful, in some cases, ddqc may retain 
cells (Additional file 1: Table S8) with high percentages of mitochondrial genes that may 
be a mix of biology and technical artifacts. These clusters when sub-clustered do not 
always represent bimodal distributions (Additional file 3: Fig. S3), rather a gradation, and 
there is no perfect way to assess the right cutoff. Such cells are usually subsets of larger 
neighborhoods of biologically meaningful cells that reflect true metabolic stress due to 
the biological condition studied. In the current version of ddqc, removal of such cells 
has been left to the analyst after examination via Exploratory Data Analysis (EDA) in 
the context of the biology of the study, and during downstream analysis. We believe QC 
should be iterative and to help empower the user, ddqc provides detailed statistics for all 
cells that pass or fail adaptive QC.

ddqc provides several advantages relative to conventional cutoff or biology-agnostic 
data-driven approaches. First, it retains more cells than standard or data-driven QC 
approaches leading to more power for downstream analysis. Second, the additional cells 
retained by ddqc are biologically meaningful thus increasing the potential for further 
biological discovery. Such biological insights include retaining a diversity of cell types 
with extreme value QCs and rare cells, as well as uncovering study-specific metabolic 
and physiological programs that may dictate changes in these common QC metrics. 
Further investigation of retained cell states may provide insights into the underlying 
biological processes. Finally, we examine cells lost by conventional QC to add insights 
into questions of fundamental interest in biology such as parsimony in total gene usage 
or transcription. Our analysis has revealed interesting biological observations in terms 
of overall transcriptional diversity of cell states, as well as ribosomal protein gene 
expression.

Conclusions
In summation, we propose a biology-centered and iterative approach to cell quality 
control for scRNA-seq data that retains cell states of critical biological relevance often 
removed by conventional QC. By contributing a framework for quality control that con-
siders the biological properties of data, ddqc can revise how data analysis is performed 
in every scRNA-seq study.

Methods
QC survey

We conducted a survey of 107 single-cell and single-nucleus RNA sequencing papers 
published between 2017 and 2020. Papers included in the survey were collated either 
from Twitter posts, searches on Google, or a curated scRNA-seq database [74]. For each 
paper, we recorded the Quality Control (QC) strategy from the “Methods” section into 
Additional file  1: Table  S1. Additional information was also recorded for each paper, 
including:
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•	 Year published
•	 Organism
•	 Tissue of origin
•	 Sequencing technology
•	 Analysis software
•	 Preprocessing software

QC was classified into the following categories:

•	 QC to remove low-quality cells and genes by QC metric

° Number of counts
° Number of genes
° Percent of mitochondrial transcripts
° Percent of ribosomal transcripts
° Number of cells in which gene is present

•	 QC to remove empty droplets
•	 QC to remove doublets/multiplets
•	 QC to account for ambient/background RNA

We categorized the papers based on the type of QC used for a particular metric. 
These categories were:

•	 Data-agnostic fixed threshold—QC removed all cells with a metric above/below 
a certain number (for example keep all cells with <10% mitochondrial tran-
scripts)

•	 Multiple fixed thresholds—several fixed thresholds for different samples
•	 Data-driven study-level threshold—QC threshold was determined from the 

data (for example, keep all cells with a number of genes within 2 SDs from the 
median)

•	 Custom—QC that was very specific for the particular paper
•	 No filtering—no filtering based on this metric was done

The summary of the QC survey and QC methods are documented in Table 1 and 
the “Results” section.

Datasets

We downloaded publicly available mouse (n=5) and 32 human (n=32) (Table  S2) 
single-cell (scRNA-seq) or single-nucleus (snRNA-seq) RNA sequencing datasets. 
We restricted our study to droplet- (10X Genomics), Microwell-seq, and plate-based 
(SmartSeq2) technologies from various tissues.

We downloaded data at the level of gene counts after preprocessing (genomic refer-
ence alignment and gene-level quantification) but prior to any quality control (QC). 
However, many datasets in public repositories were already filtered using cutoffs or 
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were aligned to reference genomes with missing genes. In some cases, we were able 
to contact study authors (e.g., Tabula Muris) and get the unfiltered expression matri-
ces. Links to the unfiltered datasets used can be found in Additional file 1: Table S2. 
Our dataset search was agnostic to the computational preprocessing methodology or 
genome reference version used.

Input files

For all analyses, we start with loading the unfiltered or raw cell-by-gene matrix stored 
either in the mtx, csv, txt, or h5ad format.

ddqc

We propose an adaptive thresholding method to perform quality control at the level 
of cell types, thus taking into account differences between them. The first step of this 
method is to cluster the cells using standard scRNA-seq analysis preprocessing and 
clustering steps. We assume that within each cluster, cells are of the same or closely 
related cell type with shared biological properties. In each cluster, we expect out-
liers—cells with the number of UMI counts, number of genes, or percent of mito-
chondrial transcripts significantly different from the cluster average. We assume that 
those differ in quality from other cells in their cluster and remove them by calculat-
ing a cutoff for each cluster based on median absolute deviation and a user-defined 
parameter x. We chose the median absolute deviation (MAD) to be a more robust 
statistic to define outlier thresholds instead of the zscore which assumes normality, 
or IQR which is less permissive. If the cell has a value higher (percent.mito) or lower 
(n_counts, n_genes) than x MADs from the median in its cluster, this cell will be fil-
tered out; all remaining cells will be sent for downstream analysis. If the cluster ddqc 
threshold was bigger than 200 n_genes, or lower than 10% mito, we would set it to 
200 or 10 respectively.

ddqc uses preprocessing and clustering functions provided by the Pegasus (https://​
pegas​us.​readt​hedocs.​io/) for the Python package: https://​github.​com/​ayshw​aryas/​
ddqc. An R package using functions in Seurat is also available: https://​github.​com/​
ayshw​aryas/​ddqc_R.

Our pipeline starts with a loading of the unfiltered cell-by-gene matrix stored either 
in mtx, csv, txt, or h5ad format. Below, we list the Python Pegasus functions with the 
Seurat R functions in parenthesis.

•	 Initial or Empty droplet Filtering: by default, a minimal filtering is conducted 
to remove obvious low-quality cells or empty droplets: cells with less than 100 
genes or with more than 80% of mitochondrial transcripts were removed using the 
Pegasus functions qc_metrics and filter_data (subset in R). Users may choose to 
skip the step, provide their own filters for each QC metric or provide filtered input 
files after applying an empty droplet detection method of their choice. For all anal-
ysis and results, initial filtering was conducted to remove poor-quality cells: cells 
with less than 100 genes or with more than 80% of mitochondrial transcripts and 
genes present in less than 3 cells are removed. The Initial Filtering step is essential 

https://pegasus.readthedocs.io/
https://pegasus.readthedocs.io/
https://github.com/ayshwaryas/ddqc
https://github.com/ayshwaryas/ddqc
https://github.com/ayshwaryas/ddqc_R
https://github.com/ayshwaryas/ddqc_R
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for computational efficiency as otherwise, we may have on the order of a million 
or more barcodes in case of droplet-based scRNA-seq.

•	 Normalization is performed using the function NormalizeData (NormalizeData 
in Seurat): normalize the feature expression measurements for each cell by the 
total expression, multiply by a scale factor (10,000), and log-transform the result 
to get log(TPX+1) values.

•	 We find the top 2000 highly variable genes using the function call highly_varia-
ble_features (FindVariableFeatures in Seurat). We scale the expression matrix of 
highly variable genes: shift the expression of each gene so that the mean expres-
sion across cells is 0 and scale the expression of each gene so that the variance 
across cells is 1 (In Pegasus, scaling is part of pca, in Seurat ScaleData)

•	 Next, dimensionality reduction is performed using principal component analysis 
(PCA) using pca (RunPCA) with the number of principal components set at 50.

•	 Graph-based clustering of cells was performed by first building the k-nearest 
neighbor graph setting k=20 [75], and then the Louvain algorithm for cluster-
ing [76] or community detection with the resolution set at 1.4 using the functions 
neighbors (FindNeighbors) and louvain (FindClusters) functions.

•	 Then we iterate through each of QC metrics to determine the cutoff values:

° First we create a true/false numpy array (vector in R) that would represent 
whether the cells have passed ddqc
° For each cluster, we find lower (for n_counts and n_genes, otherwise set to 
negative infinity) and upper (percent mito, otherwise set to positive infinity) 
cutoff (median ± x × MAD). x is user defined with a default of 2. For number 
of genes: If lower cutoff is more than 200 genes, it would be set to 200 (by 
default)

–  For percent mito: if upper cutoff is less than 10R%, it would be set to 10 
(by default)

° Finally, if the cell is outside the bounds defined by cutoffs, it would be 
marked as false in the ddqc array

•	 We do an AND operation between all ddqc metric-specific arrays. Cells that are 
marked as true in this array have passed ddqc and are retained for downstream 
analysis

In the Pegasus and Seurat workflows, in addition to returning the filtered object, 
ddqc returns a pandas dataframe with the following information for each cell:

•	 True/false value that indicates whether the cell passed the ddqc
•	 Cluster number that was assigned to this cell in the initial clustering
•	 For each QC metric:

° The metric itself
° Lower cutoff (cluster median − 2 cluster MAD) for this metric for the cell’s 
cluster. If there is no cutoff, this field will be equal to None
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° Upper cutoff (cluster median + 2 cluster MAD) for this metric for the cell’s 
cluster. If there is no cutoff, this field will be equal to None
° True/false value that indicates whether the cell passed the ddqc for the 
given metric

In addition, the ddqc workflow displays four plots for exploratory data analysis:

•	 Two boxplots: one shows the percent mito by cluster with a red line at 10% that indi-
cates the standard fixed threshold for percent mito, and the other shows the log2 of 
the n_genes by cluster with a red line at 200 genes (7.64 in log2-scale) that indicates 
the most commonly used fixed threshold for number of genes.

•	 If the MAD was selected as the threshold calculation method and the MAD multi-
plier was set using the threshold parameter of the ddqc_metrics function only, ddqc 
will generate two facet plots that show how the number of cells that are filtered out 
changes depending on the threshold value. These plots will help you to pick a thresh-
old parameter if you want to tune it.

Automated cell‑type annotation

We automated the task of mapping cell type annotations to clusters using the PanglaoDB 
cell-type gene expression signatures as the reference dataset. Using the PanglaoDB cell-
type:marker mappings, cell-type labels were assigned for each cluster as follows:

(1)	 We computed cluster-specific differentially expressed genes (DGE) by testing for 
genes differentially expressed in the cluster of interest vs all else. For the testing, 
we used the default differential expression test used in Seurat for the R version or 
Pegasus for the Python version.

(2)	 We filtered the DEG to retain those genes with at least a log fold change of > 0.25, 
percent expressed in the cluster of interest > 25%, and q_value < 0.05.

(3)	 We iterated through each cluster to assign cell-type scores as follows:

a.	 First, we iterated through the filtered DEG of the current cluster to check for 
matches in PanglaoDB.

	 i.	 If there was an entry that the gene indicates for a particular cell type, the 
average log fold change of that gene was added to the score of the cell type.

	 ii.	 Only cell-type annotations which included at least three such marker 
genes were retained

b.	 The cluster was assigned the cell-type annotation with the highest score. Other-
wise, the cell type would be stated as Unknown.

We note that the accuracy of our method is contingent on the accuracy of markers 
in the PanglaoDB dataset which would get updated on a regular basis. The PanglaoDB 
markers database does not have enough genes for certain cell types, which causes them 
to be assigned to similar but not identical cell types (For example, macrophages which 
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are antigen-presenting cells (APC) are often labeled as dendritic cells, another APC). For 
examples in Figs. 2 and 3, annotations were manually verified.

Automated cell‑type annotation accuracy assessment

In order to assess the accuracy of our cell-type annotations method, we have com-
pared the results of automated annotations with the annotation provided by the pub-
lisher of the dataset, if such annotation was provided. Datasets where the authors 
provided annotations included the Human Tissue Atlas; human adipose (inhouse 
annotated), heart, and lung; Tabula muris (10x), Tabula muris (Smartseq-2), Tabula 
senis 10x 24 and 30 month. The accuracy was calculated using the steps below.

(1)	 First, we annotate the clusters after just the default empty droplet filters. We do it 
by mapping the annotation that is the most frequent among the cells of the clus-
ter. If most of the cells do not have an annotation, the cluster will be marked as 
“unknown”.

(2)	 For accuracy analysis, we are only including the clusters that had an annotation 
(not “unknown”) and where at least 75% of cluster cells had that annotation.

(3)	 For the comparison, we have established a number of pairs of annotations that we 
considered to be the same (Additional file 1: Table S3). Some of these pairs are just 
different in naming between predicted and author-provided annotations (exam-
ple NK cells VS Natural Killer cells), and others were validated by marker genes 
to be more accurately defined using our strategy than the author-defined annota-
tions (e.g., cluster 6 in our analysis of the Tabula Muris Smartseq2 kidney dataset 
were author annotated to be collecting duct cells when they highly expressed loop 
of Henle and distal tubular markers Umod and Slc12a1, and which was correctly 
predicted by our algorithm).

(4)	 Then, we count the number of clusters with a mismatch between automated 
annotation and the annotation provided by the publisher. If the annotation pair is 
included in the table from step 3, it will not be counted as a mismatch. After that, 
we compute the accuracy percentage.

The tables of the same cell types, mismatches, exact numbers, and breakdown by 
the dataset are provided in Additional file 1: Table S3.

Comparison of ddqc with author‑provided annotations

We have compared ddqc with author-provided quality control in Tabula muris tissue 
(Fig. 3):

(1)	 First, the author-provided annotations were downloaded from figshare (https://​
figsh​are.​com/​artic​les/​datas​et/​Single-​cell_​RNA-​seq_​data_​from_​micro​fluid​ic_​emuls​
ion_​v2_/​59689​60?​file=​13088​039).

(2)	 Then we calculated the percent of cells exclusive to ddqc in each cluster after ddqc 
filtering (Additional file 1: Table S6). It was calculated by taking the number of cells 
whose barcodes were not present in author annotations (which means they were 

https://figshare.com/articles/dataset/Single-cell_RNA-seq_data_from_microfluidic_emulsion_v2_/5968960?file=13088039
https://figshare.com/articles/dataset/Single-cell_RNA-seq_data_from_microfluidic_emulsion_v2_/5968960?file=13088039
https://figshare.com/articles/dataset/Single-cell_RNA-seq_data_from_microfluidic_emulsion_v2_/5968960?file=13088039
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not included by the author for final analysis) and dividing it by the total number of 
cells in the cluster.

(3)	 To verify the automated annotation for clusters where the number of cells exclu-
sive to ddqc was 100%, we have computed signature scores for each of the clus-
ters (using the “pegasus.calc_signature_score” function) with cell-type markers 
(Fig. 3E). You can find the signature genes in the Additional file 1: Table S6.

(4)	 We have also generated UMAP plots with cells colored based on percent exclu-
sive of their cluster. We had 2 categories: fully exclusive to ddqc or shared with the 
paper (Fig. 3D)

Comparison of ddqc to the standard cutoff method

We compared ddqc with the standard cutoff or static threshold method (default in most 
pipelines) as a control, and only empty droplet filtering for reference:

(1)	 ddqc using the same steps as described in the ddqc section for loading the data and 
filtering.

(2)	 Standard cutoff or static threshold (cells with number of genes less than 200 and 
mitochondrial transcripts percent higher than 10% are removed regardless of filter-
ing)

(3)	 No QC (done for reference)

First, we evaluated the retained cells in all the three approaches independently by 
graph-based clustering, followed by differential gene expression using de_analysis func-
tion and UMAP visualization using umap the function. Also, additional statistics were 
recorded for future analysis (Information about clusters and cells). Exploratory data 
analysis (EDA) was performed by generating summary plots including boxplots, joy-
plots, and colored UMAP plots.

Next, for comparisons, we performed joint clustering as follows:

(1)	 After QC was performed, each barcode is assigned a label which indicates if it was 
filtered or retained by each method. Possible options are retained by both methods, 
retained by ddqc only, retained by cutoff only, neither (removed by both cutoff and 
ddqc)

(2)	 Barcodes that were marked as “neither” were removed
(3)	 All remaining barcodes were clustered (as above) and visualized using UMAP.
(4)	 Both cluster and filter labels were used to color the UMAPs for exploratory data 

analysis. Barplots were also generated per cluster to visualize the distribution of 
each cluster by cell retained in each method.

(5)	 DGE was performed on the clusters to assign cell identity and to identify cell types 
lost by single-threshold QC.

These plots helped to demonstrate differences between static threshold and ddqc by 
highlighting clusters of cells that were kept by one method but lost by another.
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Unique clusters

To demonstrate differences between static threshold (“cutoff”) and ddqc, we determined 
how many meaningful “unique” clusters ddqc retained. A “unique” cluster was defined as 
a cluster with at least 30 cells, and with at least 85% of its cells retained only by ddqc but 
filtered out by cutoff method. The presence of unique clusters indicates that a popula-
tion of very similar cells was almost entirely filtered by one method, thus suggesting that 
potentially some cell types were exclusive only to the other method. This helped to dem-
onstrate the advantage of ddqc over a static threshold since it had many more unique 
clusters than the static threshold method had. More detailed examples are provided in 
the “Results” section.

Comparisons with miQC

At the time of testing, miQC was installed in R from GitHub using the command 
“remotes::install_github("greenelab/miQC", build_vignettes = TRUE)”. miQC was run 
on the test datasets (Tabula Muris heart and aorta and human olfactory epithelium) 
using the standard steps as described in the vignette: https://​github.​com/​green​elab/​
miQC/​blob/​main/​vigne​ttes/​miQC.​Rmd. Comparison was performed by examining the 
intersection of miQC retained barcodes with those retained by ddqc, leveraging the 
annotations in the ddqc results.

Trends table (Additional file 1: Table S8)

We determined trends in QC metrics by iterating through all ddqc clusters in all tissues 
and recording the clusters which satisfy one of the following criteria to a corresponding 
table:

•	 Median number of genes lower than 200
•	 Median number of genes higher than 2000
•	 Median percent mito higher than 10
•	 Median percent ribo lower than 10
•	 Median percent ribo higher than 20

Comparison of clustering algorithms

In order to assess the performance of ddqc with different clustering algorithms, we have 
used 4 algorithms provided by Pegasus (louvain, leiden, spectral louvain, and spectral lei-
den), and also implemented two additional algorithms: k-means and hierarchical cluster-
ing. For the algorithms within Pegasus, the clustering was performed using the function 
pegasus.louvain, pegasus.leiden, pegasus.spectral_louvain, and pegasus.spectral_leiden 
respectively. The k-means and hierarchical clustering methods were implemented using 
sklearn.cluster.KMeans and sklearn.cluster.AgglomerativeClustering respectively. In both 
algorithms, sklearn.metrics.silhouette_score was used to determine the number of clus-
ters. All functions were used with default parameters.

We ran ddqc using all 6 of those clustering algorithms for both initial and final cluster-
ing on Tabula Muris heart and aorta, and lung tissues. Then, we calculated the number 

https://github.com/greenelab/miQC/blob/main/vignettes/miQC.Rmd
https://github.com/greenelab/miQC/blob/main/vignettes/miQC.Rmd
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of cell barcodes that were retained by ddqc in the results of all six algorithms, as well as 
the number of barcodes in pairwise intersections between different algorithms to deter-
mine if any one algorithm disproportionately retained more barcodes than the others.

Assessment of ddqc performance on the Seurat PBMC dataset

We ran ddqc on the PBMC dataset provided in the Seurat tutorial vignette (https://​satij​
alab.​org/​seurat/​artic​les/​get_​start​ed.​html). To get the clustering labels provided in the 
tutorial, we repeated the tutorial steps in R and recorded the results into a csv file, clus-
ter labels from which were later used as cell annotations for the ddqc run on the same 
data.

After comparing barcodes, we have identified that ddqc retains more cells than the 
Seurat filter, and we have identified those cells and their celltypes. Also, we have looked 
into logs provided by the ddqc to establish the cause of those cells being filtered out by 
ddqc.

Comparison of ddqc with independent cell annotation methods

In order to assess the effectiveness of the graph-based clustering used in ddqc in parsing 
out biological heterogeneity, we compared it with independent classification methods to 
rule out any bias associated with clustering. We have used the following supervised and 
unsupervised methods:

(1)	 SingleR [71]: https://​bioco​nduct​or.​org/​packa​ges/​relea​se/​bioc/​html/​Singl​eR.​html
(2)	 Azimuth [72]: https://​azimu​th.​hubma​pcons​ortium.​org/
(3)	 CellTypist [70]: https://​www.​cellt​ypist.​org/

We have performed a comparison on Seurat PBMC dataset using the steps below:

(1)	 First, we annotated each cell from the PBMC dataset provided in the Seurat tutorial 
vignette (https://​satij​alab.​org/​seurat/​artic​les/​get_​start​ed.​html), following the steps 
described in the respective method (SingleR, Azimuth, CellTypist)’s tutorial.

(2)	 Then, we mapped the annotation results with cell QC statistics and ddqc clustering 
ID using the cell barcodes.

(3)	 Using the table function in R, we have calculated the intersections between ddqc 
initial cluster IDs and automatic annotations (Additional file 1: Table S5)

(4)	 Finally, we did a run of ddqc on PBMC which used automatic annotations instead 
of clustering. It was done similar to the original ddqc, excluding the clustering step 
and grouping cells based on the independent annotation. Then the filtering cutoff 
was calculated for each group using MAD with the threshold of 2. Filtering was 
done on n_genes and percent_mito. We have compiled the results in Additional 
file 1: Table S5:

a.	 ddqc_cluster: the initial clustering ID from original ddqc
b.	 single_r, azimuth, cell_typist: automatic annotation

https://satijalab.org/seurat/articles/get_started.html
https://satijalab.org/seurat/articles/get_started.html
https://bioconductor.org/packages/release/bioc/html/SingleR.html
https://azimuth.hubmapconsortium.org/
https://www.celltypist.org/
https://satijalab.org/seurat/articles/get_started.html
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c.	 %method_name%_passed_qc: whether the cell passed the QC based on a par-
ticular grouping method

All methods (including the independent annotation and the original graph-based clus-
tering using in ddqc) produced identical results.

We did a similar comparison for the Krasnow Lung dataset [47]. We only used Cell-
Typist as SingleR did not have a training dataset for Human Lung, and Azimuth’s web 
interface had problems with processing this dataset. We evaluated results as for the 
PBMC dataset described above.

Comparison of ddqc’s initial filtering for empty droplets and EmptyDrops

In order to assess robustness of the default Inital filtering in ddqc (cells with < 100 
genes and > 80% mito are removed), we have compared it with EmptyDrops. We have 
performed our comparison using the steps below:

(1)	 We downloaded the BAM and BAI files for Tabula Muris heart and lung dataset 
from their S3 storage bucket (https://​s3.​conso​le.​aws.​amazon.​com/​s3/​bucke​ts/​czb-​
tabula-​muris-​senis?​prefix=​10x/3_​month/​&​region=​us-​west-2)

(2)	 We ran EmptyDrops for Tabula Muris heart and lung datasets using the DropletU-
tils [77] R package and followed the directions in the vignette.

(3)	 We have filtered out cells that had FDR more than 0.01 (as recommended in 
theEmptyDrops vignette). We have compared the results of this filtering with ddqc’s 
default by finding the number of common cells and cells that were retained by one 
method and not the other.

Afterwards, we ran ddqc on the EmptyDrops filtering. We then compared its results 
to regular ddqc with default filters by finding matches for each cluster among the 
other method clusters similar to the approach described in “Comparison of ddqc with 
independent cell classifiers section.”

Variable MAD muliplier analysis

We analyzed the performance of ddqc by running it with different thresholds by vary-
ing the MAD multiplier. We ran ddqc for each threshold from 1 to 3.5 with 0.1 incre-
ments and recorded the number and percentage of cells filtered out for each cluster. 
We have also recorded other information, such as the cluster’s median, MAD, stand-
ard deviation, and MAD to SD ratio for n_counts, n_genes, and percent_mito.

Based on these results we have produced several plots:

•	 ggridges joyplot with rug broken down by cluster for each QC metric. Lines rep-
resenting 1 * MAD (red), 2 * MAD (green), and 3 * MAD (blue) for each cluster 
were added to these plots in red, green, and blue colors respectively.

•	 Linechart with number or percentage of cells filtered on y-axis and threshold on 
x-axis faceted by cluster. (this plot was also included in the released version of 
Pegasus implementation of ddqc)

https://s3.console.aws.amazon.com/s3/buckets/czb-tabula-muris-senis?prefix=10x/3_month/&region=us-west-2
https://s3.console.aws.amazon.com/s3/buckets/czb-tabula-muris-senis?prefix=10x/3_month/&region=us-west-2
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As part of this analysis, we have also predicted the modality of the distribution of 
QC metrics for each cluster. For Tabula Muris heart and lung, we have run the follow-
ing functions:

•	 dip.test from diptest (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​dipte​st/​index.​html)
•	 is.unimodal from LaplacesDemon (https://​cran.r-​proje​ct.​org/​web/​packa​ges/​Lapla​

cesDe​mon/​index.​html)

For each cluster, we looked at n_counts, n_genes, and percent_mito and assessed 
whether it was unimodal. We have considered the cluster unimodal if p_value was 
less than 0.05 for diptest and if is.unimodal returned true for LaplacesDemon.

Visualization and plotting

Boxplots, joyplots, and violin plots for each QC metric were generated in R using the 
ggplot2 and ggridges packages. For the tissue summary plots (Fig. 1), only initial or empty 
droplet filtering was performed, and then the QC metrics plotted stratified by tissue. 
For cell-type summary plots (Fig. 2), graph-based clustering was performed after initial 
or empty droplet filtering. A horizontal red line for boxplots and violin plots, and verti-
cal line for joyplots were added to illustrate standard cutoff thresholds (10% for % mito-
chondrial transcripts, 200 for number of genes).

All analysis tasks were performed on the Broad Institute High-Performance Comput-
ing Cluster.
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