
MoDLE: high‑performance stochastic
modeling of DNA loop extrusion interactions
Roberto Rossini1, Vipin Kumar2, Anthony Mathelier2, Torbjørn Rognes3,4 and Jonas Paulsen1,3*    

Background
DNA loop-extrusion, in which DNA is progressively reeled into transient loops, emerges
as a key process in genome structure and function. The growing list of cellular processes
where loop-extrusion plays a critical role now includes transcriptional regulation [1, 2],
DNA repair [3], VDJ-recombination [4], and cell division [5]. Recent single-molecule
imaging experiments have provided direct observations of loop extrusion in vitro [6, 7].

High-throughput chromosome conformation capture sequencing, including Hi-C [8]
and Micro-C [9, 10], has advanced our abilities to map three-dimensional (3D) genome
organization through quantification of spatially proximal genome regions. The resulting
data is usually rendered as a matrix of intrachromosomal and interchromosomal contact
frequencies. These data increasingly deepen our understanding of 3D genome organiza-
tion and show DNA loop extrusion as a key process shaping genome structure [11–13].
In fact, topologically associating domains (TADs), which show up as sub-megabase-
sized domains covering most of higher eukaryote genomes, are formed by loop extru-
sion [12]. TADs are relevant units of gene expression regulation and are associated with
disease when disrupted [14].

Abstract 

DNA loop extrusion emerges as a key process establishing genome structure and
function. We introduce MoDLE, a computational tool for fast, stochastic modeling of
molecular contacts from DNA loop extrusion capable of simulating realistic contact
patterns genome wide in a few minutes. MoDLE accurately simulates contact maps in
concordance with existing molecular dynamics approaches and with Micro-C data and
does so orders of magnitude faster than existing approaches. MoDLE runs efficiently
on machines ranging from laptops to high performance computing clusters and opens
up for exploratory and predictive modeling of 3D genome structure in a wide range of
settings.

Keywords:  Loop extrusion, Stochastic modeling, Hi-C, Micro-C, TAD

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

SOFTWARE

Rossini et al. Genome Biology (2022) 23:247
https://doi.org/10.1186/s13059-022-02815-7

Genome Biology

*Correspondence:
jonas.paulsen@ibv.uio.no

1 Department of Biosciences,
University of Oslo, 0316 Oslo,
Norway
2 Centre for Molecular Medicine
Norway (NCMM), Nordic EMBL
Partnership, University of Oslo,
0318 Oslo, Norway
3 Centre for Bioinformatics,
Department of Informatics,
University of Oslo, 0316 Oslo,
Norway
4 Department of Microbiology,
Oslo University Hospital,
Rikshospitalet, 0424 Oslo,
Norway

http://orcid.org/0000-0002-7918-5495
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02815-7&domain=pdf

Page 2 of 24Rossini et al. Genome Biology (2022) 23:247

DNA loop extrusion is carried out by ring-shaped proteins (including cohesin and
condensin) belonging to the structural maintenance of chromosomes (SMC) family.
These proteins are often referred to as loop extrusion factors (LEFs) [15]. The exact
mechanism of how loop extrusion takes place in interphase is not fully understood.
There is, however, convincing evidence that SMCs bind DNA to perform ATP-
dependent loop extrusion in a symmetric or asymmetric fashion. Recent evidence
suggests that cohesin can extrude DNA with a “swing-and-clamp” mechanism [16]
and in a nontopological configuration where DNA is not encircled by the cohesin ring
[17, 18]. A loop starts extruding when a LEF binds to a genomic region and continues
processively until it is stalled by a DNA-bound CCCTC binding factor (CTCF) ori-
ented with its N-terminus pointing towards the extruding cohesin complex. A pair
of CTCFs arranged in a convergent orientation can thus stall loop growth on both
sides creating semi-stable loops visible in Hi-C as a characteristic "dot" at TAD cor-
ners [19]. Similarly, when extruding loops are stalled only on one side, a “stripe” can
be observed along one or both TAD borders [20]. The protein WAPL transiently
releases cohesin from chromatin, terminating the loop extrusion process [21, 22]. The
resulting loop-extrusion patterns have been found in a range of Hi-C datasets so far,
emphasizing the evolutionary conserved role of loop extrusion in shaping 3D genome
organization [19, 23].

Disrupting any of the key proteins involved in DNA loop extrusion has a dramatic
effect on genome 3D structure. WAPL depletion causes an increase in loop stability,
with an accumulation of axial elements and weakening of compartments [21, 24]. Deple-
tion of cohesin causes a large fraction of TADs and loops to disappear [24–26]. Similarly,
depletion of CTCF induces loss of loops and TADs [24, 27].

Modeling and simulation of DNA-DNA contact patterns is a powerful approach for
understanding underlying molecular mechanisms and for predicting the effect of DNA
perturbations. Polymer simulations and molecular dynamics (MD) have been used for
modeling of TADs to study their structure and dynamics [28–31]. Computational mod-
eling and simulation of loop extrusion has proven useful for predicting the effects of
perturbations to TAD borders and to properly understand patterns seen in Hi-C data.
Initial models [15, 32] of loop extrusion used the Gillespie algorithm to characterize
looping properties and chromatin compaction and did not sample contact maps. Subse-
quent models used HOOMD particle simulation [33] to perform homopolymer simula-
tions where modeled LEFs extrude the polymers and halt at boundaries with properties
defined from CTCF motif instance orientation and ChIP-seq signal strength [11, 25].
Recently, to efficiently simulate larger genome regions, a combination of one-dimen-
sional (1D) simulations with 3D polymer modeling has been applied to sample multiple
conformations combined into contact maps. LEF binding, release, and stalling probabili-
ties are then modeled explicitly [34–36]. These simulations are typically implemented
using the OpenMM molecular simulation framework [37]. The simulations can be used
to explore and rule out molecular mechanisms. For example, Banigan et al. assessed the
level of DNA compaction that can be achieved by different loop extrusion mechanisms
and concluded that one-sided loop extrusion alone fails to achieve the level of compac-
tion observed in large metazoan genomes [36]. Other approaches embed epigenetic data
in combination with crosslinking proteins to model and study conformational variability

Page 3 of 24Rossini et al. Genome Biology (2022) 23:247 	

across complex chromatin regions [38, 39]. To the best of our knowledge, no standalone
software for modeling and simulation of loop extrusion exists.

We introduce MoDLE (modeling of DNA loop extrusion), a high-performance sto-
chastic model of DNA loop extrusion capable of efficiently simulating contacts from
loop extrusion genome wide. In contrast to MD simulation approaches, simulating
loop extrusion contacts using MoDLE is a straightforward process only requiring two
input files and execution through a command line interface (CLI). MoDLE can simulate
a contact matrix with the molecular interactions generated by DNA loop extrusion on
the entire human genome in a matter of minutes using less than 1 GB of RAM. Typical
use cases include predicting Hi-C contact patterns from ChIP-seq (or similar) data and
predicting the effect of alterations, mutations, and structural variation to TAD borders.
MoDLE opens up for rapid simulation and parameter exploration of DNA loop extru-
sion on genomes of any size, including large mammalian genomes.

Results
MoDLE: modeling of DNA loop extrusion

MoDLE uses fast stochastic simulation to sample DNA-DNA contacts generated by loop
extrusion. Binding and release of LEFs and barriers and the extrusion process is mod-
eled as an iterative process (see Fig. 1). At the beginning of a simulation, MoDLE goes
through a burn-in phase where LEFs are progressively bound to DNA, without sam-
pling molecular contacts. The burn-in phase runs until the average loop size has sta-
bilized. Active LEFs are extruded through randomly sampled strides along the DNA in
reverse and forward directions. Each epoch, LEFs are released with a probability based
on the average LEF processivity and extrusion speed. LEFs that are released in the cur-
rent epoch will rebind to randomly sampled DNA regions in the next epoch. Extrusion
barriers (e.g., CTCF binding sites) are modeled using a two-state (bound and unbound)

Fig. 1  Schematic and simplified overview of MoDLE. Input files specify genome regions to be simulated
(e.g., a chrom.sizes file) and their barrier positions (e.g., CTCF binding sites and orientation) in BED format.
Optional parameters control the specifics of a simulation. Loop extruding factors (LEFs) bind to, extrude, and
release from the regions and interact with modeled barriers according to input parameters. Loop extrusion
and intra-TAD contacts of a randomized subset of loops are recorded each epoch and aggregated into an
output cooler file containing the final simulated contact frequencies. Simulation halts when a target number
of epochs or a target number of loop extrusion contacts have been simulated

Page 4 of 24Rossini et al. Genome Biology (2022) 23:247

Markov process. Each extrusion barrier consists of a position, a blocking direction and
the Markov process transition probabilities. The occupancy of each extrusion barrier
can be specified individually through the score field in the input BED file. Alternatively,
users can specify a uniform barrier occupancy that is applied to all extrusion barriers.
MoDLE accepts a large number of optional parameters to specify the model’s behavior.
For example, users can specify the number of LEFs to be instantiated for each Mbp of
simulated DNA using the --lef-density parameter. LEF-barrier and LEF-LEF collisions
are processed each simulation epoch. Collision information is used to update candidate
strides to satisfy the constraints imposed by collision events and to compute how extru-
sion in the next epoch should proceed.

During a simulation, sampled molecular contacts are accumulated into a specialized
contact matrix data structure with low memory overhead. MoDLE execution continues
until a target number of epochs or a target number of loop extrusion contacts are simu-
lated. Finally, contacts generated by all simulation instances for a given chromosome are
written to an output file in cooler format [40] (Fig. 1).

With default settings, MoDLE will run over 500 simulation instances for each chro-
mosome simulated. Thus, simulation instances can run in parallel, making efficient use
of the computational resources of modern multi-core CPUs. We designed MoDLE such
that each simulation instance requires less than 10 MB of memory to simulate loop
extrusion on large mammalian chromosomes, such as chromosome 1 from the human
genome. To achieve high-performance, MoDLE stores most of its data in contiguous
memory. Data is indexed such that extrusion barriers and extrusion units in a simula-
tion instance can be efficiently traversed in 5′-3′ and 3′-5′ directions. This allows MoDLE
to bind/release LEFs, process collisions, register contacts, and extrude DNA in linear
time-complexity.

More design and implementation details are available in Additional file 1 as well as
MoDLE’s GitHub repository github.​com/​pauls​engro​up/​modle.

Comparison with Micro‑C data and MD simulations

To assess MoDLE’s ability to reproduce contact data features known to be stemming
from loop extrusion, we simulated genome-wide DNA-DNA contacts based on avail-
able CTCF and RAD21 ChIP-seq data in H1-hESC cells (see Methods). MoDLE is capa-
ble of simulating loop extrusion molecular contacts and intra-TAD contacts separately
(see Additional file 1: Section 9 for details). A rendering of the resulting loop extrusion
molecular contacts heatmaps show characteristic stripe and dot patterns at TAD borders
(Fig. 2A). Simulated TAD contacts show enrichment of contacts within TADs, including
a nested structure of the TADs (Fig. 2B). In combination, these patterns resemble well-
characterized patterns observed in Micro-C and Hi-C data (Fig. 2C).

Even though no stand-alone software exists for direct side-by-side comparison, we
adapted available code based on OpenMM [36] to systematically compare the output
with that of MoDLE (see Methods). We chose OpenMM for comparison as it is an effi-
cient and widely used system for simulating loop extrusion [12, 34–36, 41].

Using the same input data, we simulated contacts in five different 10 Mbp regions on
five different chromosomes. In general, MoDLE produces contact patterns similar to
OpenMM (Fig. 2D and Additional file 2: Fig. S1), and MoDLE output and OpenMM

http://github.com/paulsengroup/modle

Page 5 of 24Rossini et al. Genome Biology (2022) 23:247 	

Fig. 2  Comparison of MoDLE with OpenMM and Micro-C data. A Simulated MoDLE contact frequencies
solely mediated by LEFs. B Intra-TAD contacts (only) generated with MoDLE. C Lower triangle: Loop extrusion
and intra-TAD contacts from MoDLE in the same region as for A and B. Upper triangle: Micro-C data from the
same region. D Side-by-side comparison of Micro-C data, MoDLE output, and OpenMM output for a region
on chromosome 3 in H1-hESC. E Quantitative comparison of the accuracy (fraction of correctly classified
pixels relative to all pixels) of MoDLE and OpenMM in reproducing stripe and dot pixel-patterns observed
in modeled regions in H1-hESC cells (see the “Methods” section). F In silico simulated molecular contacts
mimicking CTCF and WAPL depletion. Left: Wildtype (WT) output of MoDLE in a region on chromosome 6 in
H1-hESC. Middle: effect on MoDLE output when CTCF barriers weakly associate with their binding sites. Right:
effect on MoDLE output when LEFs are less likely to be released from DNA, thus mimicking WAPL depletion

Page 6 of 24Rossini et al. Genome Biology (2022) 23:247

correlate strongly (Pearson ρ = 0.93; see Additional file 2: Fig. S2). By comparing con-
tacts with corresponding Micro-C and Hi-C data (Fig. 2D), we see a median pixel accu-
racy (i.e., the ability to correctly classify pixels as a dot/stripe or not, relative to all pixels;
see Methods) of 0.69 for MoDLE and 0.68 for OpenMM, signifying that MoDLE indeed
simulates contacts observed in Micro-C similar to OpenMM (Fig. 2E). Note that con-
tacts generated by OpenMM involve 3D polymer modeling and thus, unlike MoDLE,
considers random polymer contacts. As a consequence, contacts not generated by
loop-extrusion will be included in the OpenMM output. Therefore, long-range contacts
(~2–3 Mbp) are generally not as enriched in the MoDLE output as these contacts are
mainly compartmental or dominated by random polymer interactions. This can be seen
when employing a diagonal-by-diagonal correlation between MoDLE and OpenMM,
which shows that the two methods correlate better at short range contacts than at long
range contacts (see Additional file 2: Fig. S3). It implies that MoDLE does not by default
recapitulate the relationship between the distance from the diagonal and the contact fre-
quencies as seen in Hi-C or Micro-C data. However, when LEF processivity is increased,
this trend is gradually approached (see Additional file 2: Fig. S4). Comparing the output
of MoDLE and OpenMM in A and B compartments separately shows minimal differ-
ence of performance between compartments (Additional file 2: Fig. S5).

Altering MoDLE’s input parameters to in silico mimicking depletion of CTCF and
WAPL shows an expected loss of TAD insulation patterns [27] upon in silico depletion
of CTCF and more pronounced stripe and dot patterns [22] when mimicking WAPL
depletion (Fig. 2F). Similarly, altering the parameters specifying LEF density, LEF pro-
cessivity and LEF-LEF collisions shows relevant and predictable consequences in the
data output (see Additional file 2: Fig. S6-10). We conclude that MoDLE is capable of
simulating loop extrusion and TAD contact patterns similar to existing state-of-the-art
molecular dynamics (OpenMM) approaches.

Benchmarking of execution time and memory usage

MoDLE is designed for fast genome-wide simulation of loop extrusion contact pat-
terns. A genome-wide run with default settings, simulating loop extrusion on the
entire human genome using barriers from H1-hESC (38,815 CTCF barriers and
61,766 LEFs; see Methods) takes ~40 s on a compute server (server A; see Table 1)
and ~5 min on a laptop (laptop A; see Table 1), generating over 370 million con-
tacts. To systematically compare MoDLE execution time and memory usage with
OpenMM, we generated synthetic input datasets with increasing genome size (1–500
Mbp) and number of CTCF barriers (4 barriers per Mbp of DNA simulated) (see the
“Methods” section for details). The inputs were identical in MoDLE and OpenMM.
Each measurement was repeated 10 times for MoDLE and 5 times for OpenMM. For
MoDLE, we run benchmarks using 1–52 CPU cores, while for OpenMM, we tested
the CPU (server C; see Table 1) and GPU (server D; see Table 1) implementations.
We computed median elapsed wall clock time and peak memory usage for MoDLE
and OpenMM. The resulting comparisons show that MoDLE simulations using 52
CPU cores complete within 0.7–71 s from the smallest to the largest genome region.
OpenMM requires 2 h and 35 min for the smallest genome region and over 41 h for
a genomic region of 250 Mbp (Fig. 3A). Due to very long execution times, OpenMM

Page 7 of 24Rossini et al. Genome Biology (2022) 23:247 	

runs above 250 Mbp were not performed. For the compared genome regions, MoDLE
is 4000–5000 times faster than OpenMM (Fig. 3A). OpenMM simulations without
GPU acceleration were particularly slow and were only used to simulate genome
regions below 5 Mbp and required up to 35 h and 20 min of execution time (Fig. 3A).
Thus, in practice running OpenMM requires access to GPUs, while MoDLE runs effi-
ciently using CPUs.

Table 1  Hardware specifications of computational resources used for simulation and benchmarking

Identifier CPU model System memory Operating system Accelerator (GPU)

Laptop A Intel Core i9-9880H(8
cores)

64 GB (4x 16 GB, DDR4
UDIMM 2667 MT/s
dual-channel)

Arch Linux (Linux
v5.17.1)

NVIDIA Quadro RTX
4000 (8 GB)

Server A 2x
AMD EPYC 7742 (2x 64
cores)

2048 GB (32x 64 GB,
RDIMM DDR4 2933
MT/s eight-channel)

RHEL 8.5 (Linux v4.18.0-
305)

N/A

Server B 2x
Intel Xeon Gold 6138
(2x 20 cores)

192 GB (12x 16 GB,
RDIMM DDR4 2666
MT/s six-channel)

RHEL 7.9.2009 (Linux
v3.10.0-1160.6.1)

Server C 2x
Intel Xeon Gold 6230R
(2x 26 cores)

192 GB (12x 16 GB,
RDIMM DDR4 2933
MT/s six-channel)

Server D 2x
Intel Xeon Gold 6126
(2x 12 cores)

384 GB (24x 16 GB,
RDIMM DDR4 2666
MT/s six-channel)

4x
NVIDIA Tesla P100
(16 GB)

Fig. 3  Benchmarking MoDLE and OpenMM. A Median memory usage (in MBs) of MoDLE with
multithreading (blue) compared to OpenMM with GPU (orange) for chromosome regions ranging in
size from 1 to 250 Mbp. Inset shows comparison between MoDLE (blue) OpenMM with CPU (gray) for
chromosome regions ranging in size from 1 to 5 Mbp. B Median elapsed execution time (hours) of MoDLE
with multithreading (blue), OpenMM with CPU (gray), OpenMM with GPU (orange), and the ratio of OpenMM
(GPU) to MoDLE. Dotted lines are extrapolated. C Comparison of the median elapsed execution time
(seconds) of MoDLE with (blue) and without (pink) multithreading for chromosome regions ranging in size
from 1 to 500 Mbp. D Comparison of median elapsed execution time (hours) of MoDLE utilizing from 1 to
52 CPU cores. Blue line shows elapsed wall clock time (hours), whereas the orange line shows the CPU time
(hours). The dotted line illustrates the corresponding theoretical perfect scaling of the executing time. Green
line shows median peak memory usage (right axis; MB)

Page 8 of 24Rossini et al. Genome Biology (2022) 23:247

Comparing peak memory usage, MoDLE uses less memory than OpenMM for regions
smaller than 200 Mbp and requires more memory for larger systems. Nevertheless,
memory usage of both MoDLE and OpenMM scales linearly for increasing genome
region sizes and is for all practical purposes within reasonable limits on today’s comput-
ers regardless of genome size (Fig. 3A, B).

Multithreading efficiently reduces MoDLE’s execution time for increasingly large
genome sizes. With multithreading (52 CPU cores on server B; see Table 1), MoDLE
can simulate loop extrusion contacts for a genome size of 500 Mbp in a little over one
minute (Fig. 3C). Using a single thread (1 CPU core on server B; see Table 1), the same
run takes around 12 minutes (Fig. 3C), which is still reasonable from a practical perspec-
tive and much faster than GPU accelerated OpenMM simulations. MoDLE peak mem-
ory usage is only slightly affected by multithreading, as each simulation instance only
requires an additional 1–10 MB of memory (Fig. 3D). When simulating more than one
chromosome, peak memory usage does not follow a simple linear pattern (Fig. 3D), as it
is affected by the order in which simulation tasks are executed. This can lead to scenarios
where, for a brief period, two or more contact matrices are stored in system memory.
We conclude that MoDLE, in contrast to OpenMM, runs efficiently even on systems
with few CPU cores, such as laptop computers.

Further, we analyzed the strong scaling properties of MoDLE by simulating loop extru-
sion on the entire human genome (GRCh38; 3088 Mbp). Increasing the number of CPU
cores from 1 to 52, MoDLE execution time scales close to theoretical optimum (see the
“Methods” section for details) (Fig. 3D; blue lines). Simulating loop extrusion on the
human genome takes from 1 h and 21 min (1 CPU core on server B; see Table 1) to 1
min and 48 s (52 CPU cores on server B; see Table 1). We conclude that MoDLE can effi-
ciently run on machines with a wide range of capabilities, ranging from laptop comput-
ers with 4–8 CPU cores, to multi-socket servers with over 50 CPU cores. Memory usage
increases with the number of CPU cores, but never beyond reasonable limits on modern
computers (Fig. 3D; orange line).

In conclusion, MoDLE is orders of magnitude faster than OpenMM in simulating loop
extrusion contacts and is especially efficient in simulating large genome regions or large
input data sets. MoDLE can run efficiently on machines ranging from low-powered lap-
top computers to powerful multi-socket servers.

Genome wide parameter optimization

Since MoDLE simulates genome-wide loop extrusion in a few minutes, systematic explo-
ration of features underlying loop extrusion becomes feasible. To illustrate this point, we
optimized the parameters underlying the modeled binding kinetics of CTCF. MoDLE
implements this as a Markov process with an “Unbound” and a “Bound” state. With
this model, the self-transition probabilities PUU and PBB specify how stably associated
CTCF is once bound to DNA. The stationary distribution of the Markov chain reflects
the probability of a given CTCF binding site to be bound (πB) in a simulation epoch (see
Fig. 4A). Simulation of loop extrusion contacts using MoDLE or OpenMM can take
advantage of ChIP-seq data from CTCF or cohesin to infer CTCF binding probabilities.
Yet, when ChIP-seq data is not available, it is possible to simulate loop extrusion using
a constant and uniform CTCF binding probability that is chosen to optimize similarity

Page 9 of 24Rossini et al. Genome Biology (2022) 23:247 	

with the Micro-C (or Hi-C) data. To optimize these parameters, we make use of an
approach based on Bayesian optimization using Gaussian processes (see the “Meth-
ods” section). This optimization procedure attempts to minimize an objective function
without making assumptions on its analytic form. To assess MoDLE’s performance, we
devised an objective function representing the similarity in stripe position and length
between two contact matrices using H1-hESC Micro-C data (see the “Methods” section
for details). After convergence (Fig. 4B), the optimization procedure revealed a range
of near-optimal combinations of transition probabilities and CTCF occupancy proba-
bilities instead of a single, optimal combination (Fig. 4C). Comparing the resulting loop
contacts of selected parameter combinations with the optimal combination (πB = 0.747
and PUU = 0.963) confirms that CTCF can occupy its motif instances with probabilities
ranging widely between 0.6 and 0.9 as long as the stability of binding (PUU) is high (>
0.8). However, low binding stabilites (PUU < 0.8) can also yield near-optimal concord-
ance with the Micro-C data when CTCF occupancies >0.9. Notably, the latter parameter

Fig. 4  Genome-wide optimization of CTCF binding kinetics underlying loop extrusion. A A Markov
chain with an Unbound (red) and Bound (blue) state underlies MoDLE loop extrusion barrier modeling.
The self-transition probability for the Bound state (PBB) reflects how stably barrier elements (i.e., CTCF) are
bound to their binding sites. The stationary distribution of the Markov chain (πB) provides the CTCF binding
probability at a given epoch in the simulation. The bottom diagram (red/blue boxes) shows an illustration
of how the binding state (Bound in blue, and Unbound in red) of a single CTCF site would change during
a simulation depending on PUU and PBB. B Convergence of the objective function during the Bayesian
optimization procedure. The objective function is a dissimilarity score comparing the pixels showing stripes
and dots in the observed Micro-C data with the corresponding stripes and dots in the MoDLE output. See
the “Methods” section (part 6) for details. C Comparison of objective function in the parameter search space
of PUU and πB. Optimal, near-optimal, suboptimal and non-optimal combinations are highlighted with a red
star, orange pentagon, blue square and green triangle respectively. D Side-by-side comparison of H1-hESC
Micro-C data (top panel) and progressively less optimal combinations of PUU and πB parameters

Page 10 of 24Rossini et al. Genome Biology (2022) 23:247

combination is compatible with a dynamic exchange model where CTCF transiently
occupies its motif instances but still maintains stable loops [42]. From a selected set
of parameter combinations (Fig. 4C), we simulated genome-wide loop extrusion con-
tacts aiming at comparing these with Hi-C and Micro-C data. The resulting comparison
shows that even uniform, optimized CTCF binding probabilities (Fig. 4C red star) can
recapitulate many of the features seen in Micro-C and Hi-C data (Fig. 4D). Visualiza-
tion of simulated contacts using a near-optimal parameter combination from another
part of the plot (Fig. 4C; orange pentagon) reinforces that a range of parameter combina-
tions can recapitulate the patterns seen in the Hi-C and Micro-C data (Fig. 4D). Select-
ing a suboptimal or non-optimal combination of parameters (Fig. 4C, green triangle and
blue square) results in unrealistic contact patterns (Fig. 4D; Additional file 2: Fig. S11 for
an extensive comparison of different parameter combinations). In conclusion, MoDLE
opens up for efficient exploration of parameters underlying DNA-DNA contact dynam-
ics genome wide.

Predicting effects of TAD border alterations

To illustrate how MoDLE can be used to predict the effects of alterations to borders
between TADs, we picked the well-characterized HoxD cluster which harbors sev-
eral coordinated chromatin looping changes critical for proper limb formation in tet-
rapods [43, 44]. We focused on deletions between the centromeric and telomeric
domain (C-Dom and T-Dom, respectively) known to cause an increase in interactions
between the two domains [43], including a rewiring of multiple enhancers [44]. First,
using the same parameter optimization approach described above, we inferred CTCF
barrier occupancies in the wildtype condition based on JM8.N4 data. Then, we inacti-
vated (in silico) inter-domain barrier elements by setting the occupancy of the CTCF
motif instances to 0 and used MoDLE to simulate the resulting changes to the predicted
loop extrusion contact maps. MoDLE correctly predicts that loops protrude beyond the
deleted borders merging the two (C-Dom and T-Dom) TADs (Fig. 5). We also confirm
that the border is highly resilient and requires a deletion of a large region encompass-
ing the entire HoxD cluster to merge the TADs (see Fig. 5D–E). Inspecting enhancer
signals in the region (Fig. 5E upper panel) confirms that the merging of the two domains
indeed involves a rewiring of interactions of several enhancer elements, and a depletion
of stripes at their borders. In conclusion, MoDLE can be used to predict changes to loop
extrusion contact patterns from in silico alterations of TAD border properties.

Optimization of individual barrier parameters

In the absence of CTCF or Cohesin ChIP-seq data, MoDLE can utilize Micro-C or Hi-C
data in combination with CTCF motif instances to effectively infer the occupancy of each
individual barrier. To illustrate this, we selected a 5 Mb region on chromosome 1 with
2103 CTCF candidate binding sites, corresponding to over 4000 parameters to be inferred.
The large number of parameters for this genome region renders a Gaussian optimiza-
tion approach computationally infeasible and inadequate. Thus, we developed a system
to optimize extrusion barrier parameters using genetic algorithms (GA) (see the “Meth-
ods” section part 10 for details). A comparison of the input Micro-C data (Fig. 6A) and
the corresponding optimized MoDLE output (Fig. 6B) shows that even without ChIP-seq

Page 11 of 24Rossini et al. Genome Biology (2022) 23:247 	

information, MoDLE can be used to infer CTCF barrier occupancies individually to repro-
duce patterns seen in the Micro-C data. Comparing this MoDLE output with the corre-
sponding output from MoDLE based on Rad21 ChIP-seq data (Fig. 6C) shows that TADs
and borders are placed in analogous regions, yet with local differences in barrier strengths
and stripe lengths. From MoDLE data simulated using optimized barrier occupancies
(Fig. 6D), it is possible to compute the modeled binding profile of the LEF during the sim-
ulation (Fig. 6E; see Additional file 1: Section 9 for details). Comparing these with ChIP-
seq profiles of CTCF and Rad21 (Fig. 6F and G, respectively) shows that peaks and valleys
coincide in a large fraction of regions, signifying that MoDLE can indeed infer biologically

Fig. 5  Using MoDLE to predict effects of deletions to TAD borders in the HoxD locus. A Micro-C data in JM8.
N4 mESC WT cells showing the interactions surrounding the HoxD cluster and the centromeric (C-DOM)
and telomeric (T-DOM) domains in a non-mutated wildtype (WT) condition. B MoDLE output from the
same region in the WT condition. C MoDLE output produced with a partial deletion of the border between
the domains. D MoDLE output with a complete deletion of the border between the domains. E Differential
contact map showing the ratio of MoDLE (WT condition; B) vs. MoDLE (full deletion, D). Regions enriched in
MoDLE full deletion are shown in red, whereas regions enriched in MoDLE WT are shown in blue

Fig. 6  Optimization of individual barriers and computation of barrier and LEF profiles. A Micro-C (hESC) data
from a 5Mb region on chromosome 1 (20–25 Mbp). B MoDLE output for the same region, where individual
barriers are optimized from Micro-C data. C MoDLE output for the same region using Rad21 ChIP-seq data
as input, D Computed barrier occupancy profile from MoDLE trained on Micro-C data (normalized with
PUU = 0.7). E Computed LEF occupancy profile from MoDLE trained on Micro-C data. F CTCF ChIP-seq data
from the same region. G Rad21 ChIP-seq data from the same region

Page 12 of 24Rossini et al. Genome Biology (2022) 23:247

meaningful signals from its input data. We conclude that MoDLE, in the absence of ChIP-
seq input data, can reliably infer CTCF occupancies of individual barriers to simulate loop
extrusion contact patterns and to recapitulate binding profiles of CTCF and cohesin ChIP-
seq data.

Discussion
Efficient and realistic simulation of DNA-DNA spatial contacts is increasingly required for
modeling and exploring genome structure and regulation. For example, our ability to reli-
ably predict effects of mutations to TAD borders relies on available tools for simulating and
comparing spatial contact data from normal and pathogenic states [14]. Further, simula-
tions can be invaluable for exploring general genome folding principles [11] or underlying
principles of loop extrusion [12, 35, 36]. Efficient tools for loop extrusion simulation will
contribute to increasing our understanding of mechanisms ranging from gene regulation [1,
2] to DNA repair [3]. MoDLE represents, to the best of our knowledge, the first command-
line tool for high-throughput loop extrusion contact simulation. We expect MoDLE to
supplement, rather than replace existing MD tools; especially in cases where large genome
regions or large data sets need to be analyzed or simulated. This would in particular be the
case for large-scale exploration of parameters underlying genome structure properties, as
exemplified here for the binding kinetics of CTCF. In cases where Hi-C data is not avail-
able, we expect MoDLE to be useful for high-throughput loop extrusion contact prediction
based on ChIP-seq, ATAC-seq, or similar data in combination with CTCF motif instances
(as exemplified in Figs. 2 and 4). In such cases, MoDLE could be useful for prediction of
enhancer-promoter contacts aiding identification of functional regulatory interactions [45].
When Hi-C (or similar) data is available in a wildtype condition, MoDLE can be used for
large scale prediction of mutations or alterations to TAD borders (as shown in Figs. 5 and
6). This would be useful for prioritization of mutations in genome editing settings.

New developments in experimental techniques augmented by integrated computational
modeling will continue to shed light on new genome organization principles at a rapid
pace [46]. With MoDLE’s focus on computational speed and its modular architecture, new
developments and knowledge are expected to easily be integrated into the tool to increase
the complexity and realism of the underlying modeling parameters.

Conclusions
We have developed MoDLE (Modeling of DNA Loop Extrusion), allowing high-perfor-
mance stochastic modeling of DNA loop extrusion. MoDLE simulates loop extrusion
contact matrices on large genome regions in a few minutes, even on low-powered laptop
computers. MoDLE is available as a command line tool and can be accessed at github.​com/​
pauls​engro​up/​modle.

Methods
MoDLE implementation and design overview

MoDLE is implemented in C++17 and is compiled with CMake. MoDLE uses a
producer-consumer architecture where a single producer (a thread) communicates
with multiple consumers through asynchronous message passing. The producer
thread is responsible for reading input files and generating a set of simulation tasks

http://github.com/paulsengroup/modle
http://github.com/paulsengroup/modle

Page 13 of 24Rossini et al. Genome Biology (2022) 23:247 	

to be consumed by a pool of worker threads. Tasks are implemented as light-weight
C++ structs that are computationally cheap to generate and consume. A single task
contains all the information needed for simulating DNA loop extrusion on a single
chromosome in a specific simulation instance. Simulation instances are for the most
part independent from each other and can thus run in parallel. We designed MoDLE
such that each simulation instance requires less than 10 MB of memory to simulate
loop extrusion on large mammalian chromosomes, such as chromosome 1 from the
human genome. The space complexity of the thread–local state is linear with respect
to the number of LEFs or extrusion barriers, whichever is largest. For a more detailed
overview of MoDLE’s implementation, see Additional file 1: Section 1.

Most of MoDLE’s memory budget is used to store molecular contacts generated by
loop extrusion. MoDLE stores one instance of its custom contact matrix data struc-
ture for each chromosome that is being actively simulated. The space complexity of
a contact matrix instance depends on the chromosome length, diagonal width and
bin size. With default settings, representing contacts for chromosome 1 of the human
genome requires approximately 120 MB of memory. Common operations on the con-
tact matrix class are made thread-safe using lock striping implemented through hash-
ing. For more details regarding the specialized contact matrix data structure, refer to
Additional file 1: Section 2.

To achieve high-performance, MoDLE stores most of its data in contiguous mem-
ory using simple data structures such as vectors and bitsets (see Additional file 1:
Section 3). Data is indexed such that extrusion barriers and extrusion units in a simu-
lation instance can be efficiently traversed in 5′-3′ and 3′-5′ directions (see Additional
file 1: Section 8). This allows MoDLE to bind/release LEFs, process collisions, regis-
ter contacts, and extrude DNA in linear time-complexity and with good locality of
reference. The only step relying on an algorithm with super-linear time complexity
is indexing, which has a worst-case time complexity of O(n log n) while approaching
O(n) for the typical case.

More design and implementation details are available in Additional file 1. The lat-
est MoDLE source code can be obtained in MoDLE’s GitHub repository: github.​com/​
pauls​engro​up/​modle

Running a simulation instance

The entire simulation instance is executed by a single worker thread and consists of
the following phases:

•	 Wait until one or more tasks are available on the task queue.
•	 Setup the simulation internal state based on the task specification, this includes

seeding the PRNG and setting the initial state for the extrusion barriers based on
the occupancy (see Additional file 1: Sections 1, 3, and 4).

•	 Run the simulation loop until a stopping criterion is met.

A single simulation epoch is articulated in the following steps:

http://github.com/paulsengroup/modle
http://github.com/paulsengroup/modle

Page 14 of 24Rossini et al. Genome Biology (2022) 23:247

•	 Select (inactive) LEFs that are currently not associated with DNA, and activate them.
This is done by loading LEFs to a random position on the chromosome that is being
simulated. The position is sampled from a uniform distribution (see Additional file 1:
Section 5).

•	 Index extrusion units moving in the same direction so that they can be visited in
5′-3′ and 3′-5′ order (see Additional file 1: Section 8).

•	 Randomly select a subset of the active LEFs and use their position along the chromo-
some to generate molecular contacts in the chromosome contact matrix (see Addi-
tional file 1: Section 9).

•	 Generate candidate moves for each extrusion unit (see Additional file 1: Section 10).
•	 Update the extrusion barrier states by computing the next state in the Markov chain

used to model extrusion barriers (see Additional file 1: Section 6).
•	 Detect collision events between LEFs and extrusion barriers as well as between LEFs

(see Additional file 1: Sections 12b-d and g).
•	 Update the candidate moves for extrusion units involved in collision events to satisfy

the constraints imposed by the collision events (see Additional file 1: Sections 12e-g).
•	 Advance LEFs’ extrusion units by their respective moves (see Additional file 1: Sec-

tion 5). Because of the preceding steps, this will yield a new valid simulation state, as
moves have been updated to satisfy all the constraints imposed by collision events.

•	 Iterate over active LEFs and release them based on the outcome of a Bernoulli trial
whose probability of success is computed based on the average LEF processivity and
LEF state (e.g., LEFs whose extrusion units are involved in collision events with a
pair of extrusion barriers in convergent orientation have a lower probability of being
released). LEFs that are being released go back in the pool of available LEFs and will
be loaded on a new genomic region during the next epoch (see Additional file 1: Sec-
tion 5).

MoDLE will continue iterating through the above steps until one of the simulation
stopping criteria is met:

•	 A given number of epochs have been simulated.
•	 Enough contacts have been registered to reach a target contact density.

Both stopping criteria can be modified by users. By default, MoDLE will simulate loop
extrusion until reaching an average contact density of 1 contact per pixel.

Hardware specifications

Analysis and benchmark code used to generate the data accompanying was run using
the hardware specifications listed in Table 1.

MoDLE simulations

MoDLE’s data used for the heat map comparison shown in Fig. 2 were generated using
the heatmap_comparison_pt1 Nextflow [47] workflow available on GitHub [48] and
archived on Zenodo [49].

Page 15 of 24Rossini et al. Genome Biology (2022) 23:247 	

The list of candidate extrusion barrier positions and directions were generated by run-
ning MAST from the MEME suite [50] on GRCh38.p13 (GCF_000001405.39 [51] using
the CTCF frequency matrix MA0139.1 from JASPAR 2022 [52].

The list of candidate barriers was then filtered using CTCF and RAD21 ChIP-seq data
(fold-change over control and optimal IDR thresholded peaks). In brief, candidate barri-
ers were intersected with the narrow-peak BED files for CTCF and RAD21. Then, each
filtered barrier region was assigned with an occupancy computed by passing the RAD21
fold-change over control signal through a logistic function. Finally, the output of the
logistic function was binned at 1 kbp to yield a barrier occupancy that is proportional
to the number of CTCF motif instances as well as RAD21 fold-change over control sig-
nal. This procedure is largely based on [Fudenberg 2016]. The result of the procedure
outlined above is a list of extrusion barrier occupancies binned at 1 kbp resolution.
CTCF and RAD21 ChIP-seq for H1-hESC data was downloaded from ENCODE [53,
54] (ENCFF255FRL [55], ENCFF473IZV [56], ENCFF821AQO [57], and ENCFF913JGA
[58].

Contact matrices were generated using MoDLE v1.0.0-rc.7 with the parameters from
Additional file 3: Table S1. Parameters not listed in the table were left at default.

Contact matrices produced by MoDLE were then subsampled to an average contact
density of 3 using cooltools random-sample v0.5.1 [59]. The resulting cooler files were
then converted to multi-resolution cooler files using cooler zoomify [40]. Finally, multi–
resolution contact matrices were visualized in HiGlass (v1.11.7) [60].

Molecular dynamics (OpenMM) simulations

Molecular dynamics data used for the heat map comparison in Fig. 2 were generated
using the heatmap_comparison_pt1 Nextflow workflow available on GitHub [48] and
archived on Zenodo [49]. This workflow uses OpenMM [37] to run MD simulations.

Simulation code is largely based on [61]. Simulations were carried out on 10 Mbp
regions from chromosomes 2, 3, 5, 7, and 17 using a monomer size of 1 kbp and 200 kbp
for LEF processivity and separation. Extrusion barrier positions, directions, and occu-
pancy were generated following the procedure outlined in the “Methods” section (part
1).

Contact matrices were generated with Polychrom [62] using a bin size of 5 kbp. The
resulting cooler files were then converted to multi-resolution cooler files using cooler
zoomify v0.8.11 [40].

Assessing loop extrusion feature similarities from contact frequencies

To objectively compare the contact matrices produced by MoDLE with contact matrices
generated from Micro-C experiments and MD simulations, we developed a specialized
scoring algorithm. The algorithm was inspired by Stripenn [63].

The score is computed on rows and columns of a pair of contact matrices of identical
resolutions transformed as follows.

First, both matrices are convolved using the difference of Gaussian (DoG). This high-
lights stripe and dot patterns found in contact matrices. Next, the transformed contact
matrices are discretized using a step function mapping values below a certain threshold
to 0 and all the others to 1. This results in two binary matrices, where non-zero pixels

Page 16 of 24Rossini et al. Genome Biology (2022) 23:247

can be interpreted as part of a stripe or dot. Finally, we take advantage of the fact that
stripes produced by loop extrusion always should start from the matrix diagonal. Thus,
given a row or column of pixels starting on the matrix diagonal, and extending away
from it, we stipulate that the last non-zero pixel in the vector of values represents the
end of a stripe produced by DNA loop extrusion.

Given the above, we can measure the similarity of stripes between two contact matri-
ces by considering the same row of pixels in a pair of contact matrices, computing
the last non-zero pixels in both rows, and counting the number of matches. The same
approach can be applied to columns of pixels. Finally, counting mismatches instead of
matches can be used as a measure of dissimilarity. Contact matrix convolution and dis-
cretization, as well as computing this special score, can be done using MoDLE’s helper
tools (modle_tools transform and modle_tools evaluate respectively).

Contact matrix comparison

For comparison with MoDLE and OpenMM output, we used available Hi-C and Micro-
C data from H1-hESC because these were of high resolution and had accompanying
ChIP-seq data for both CTCF and RAD21 (4DNFIFJH2524 [64], 4DNFI9GMP2J8 [65],
ENCFF255FRL [55], ENCFF473IZV [56], ENCFF821AQO [57], and ENCFF913JGA
[58]). To assess stripe similarity of a pair of contact matrices, we used the scoring algo-
rithm described in the “Methods” section (part 6). The score was computed using
Micro-C data as the ground truth. Pixel accuracy was computed as the ratio of correctly
classified pixels to the total number of pixels in a 3 Mbp subdiagonal window around
each barrier. The Pearson correlation between OpenMM and MoDLE was calculated
based on all corresponding 5 kbp-pixel values in the 3 Mbp subdiagonal window of the
OpenMM simulation regions.

Benchmark methodology

Benchmarks were run on a computing cluster using the run_benchmarks Nextflow
workflow available on GitHub [48] and archived on Zenodo [49].

We ran two suites of benchmarks to assess the performance of MoDLE and compare it
with that of molecular dynamics simulations based on OpenMM.

The first suite (Fig. 3A–C) compared the performance of MoDLE and OpenMM when
simulating loop extrusion on an artificial chromosome with increasing length (ranging
from 1 to 250 Mbp).

This benchmark was run using MoDLE (1 and 52 CPU cores) as well as OpenMM
GPU and CPU implementation (1 CPU core, 1 GPU, and 8 CPU cores respectively).
CPU benchmarks were run on server C while benchmarks relying on GPU acceleration
were run on server D (see Table 1). For OpenMM CPU implementation, we limited the
number of CPU cores to 8 (16 SMT cores) as the CPU implementation is known to not
scale well past 16 threads [66]. OpenMM CPU implementation was used to simulate
chromosome lengths up to 5 Mbp for practical reasons. MoDLE was run with default
settings except for the number of cells, which was set to 104 to match the maximum
number of available SMT cores.

OpenMM simulations were run using a monomer size of 2 kbp and LEF processivity
and separation of 200 kbp.

Page 17 of 24Rossini et al. Genome Biology (2022) 23:247 	

The second suite of benchmarks involved simulating loop extrusion on the human
genome (GRCh38) using MoDLE with a number of CPU cores ranging from 1 to 52.
MoDLE was run with default settings except for the number of cells which was set to
104. The extrusion barrier annotation was generated as described in the “Methods” sec-
tion (part 1).

In both cases, measurements were repeated 10 times for MoDLE and 5 times for
OpenMM.

Genome‑wide extrusion barrier parameter optimization

The genome-wide optimization of parameters affecting extrusion barrier occupan-
cies was carried out using the gw_param_optimization Nextflow workflow available on
GitHub [48] and archived on Zenodo [49].

The first step in the optimization procedure is running Stripenn v1.1.65.7 [63] on the
H1-hESC Micro-C (4DNFI9GMP2J8 [67]) dataset to identify architectural stripes, which
resulted in the identification of 5254 stripes. A small subset of these stripes were visually
validated by comparing the annotated stripes with stripes that are visible from Micro-C
data. Annotated stripes were split into two equally sized datasets by random sampling
without replacement. One dataset was used for parameter optimization while the other
was used for validation.

Parameter optimization is performed through the Bayesian optimization from scikit-
optimize v0.9.0 [68] using an objective function based on the scoring metric described in
Methods (part 6).

The parameters that are being optimized are the extrusion barrier occupancy (πB) and
PUU, the self-transition probability of the unbound state.

The evaluation of the objective function proceeds as follows:

•	 A new genome-wide simulation is performed using the parameters proposed by the
optimizer.

•	 The resulting cooler file is transformed with modle_tools transform by applying the
difference of Gaussians followed by a binary discretization step, where pixel values
above a certain threshold are discretized to 1 and all the others to 0.

•	 The score described in Methods (part 6) is then computed row and column-wise
on the entire genome using modle_tools eval, producing two BigWig files. Here, the
transformed Micro-C 4DNFI9GMP2J8 [67] dataset is used as reference.

•	 Scores are intersected with the extrusion barrier dataset for optimization and valida-
tion considering stripe direction (i.e., vertical stripes are intersected with column-
wise scores while horizontal stripes are intersected with row-wise scores).

•	 Scores resulting from the intersection are then averaged, producing a floating-point
number that is then returned to the optimizer, which will try to minimize this num-
ber.

In the transformation step, a σ of 1.0 and 1.6 are used to generate the less and more
blurry contact matrices to subtract when computing the difference of Gaussians. For the
binary discretization of the Micro-C data, a threshold of 1.5 was used, while simulated
data was discretized using 0.75 as threshold.

Page 18 of 24Rossini et al. Genome Biology (2022) 23:247

The optimizer evaluated the objective function 400 times, each time computing the
average score for the training and validation datasets.

Finally, the parameters that yielded the best score on the training dataset were used
to generate a contact matrix in cooler format (see Fig. 4D, bottom panel).

Local extrusion barrier parameter optimization

The local extrusion barrier parameter optimization was carried out using the extru-
sion_barrier_param_optimization Nextflow workflow available on GitHub [48] and
archived on Zenodo [49].

In brief, this workflow takes as input an extrusion barrier annotation consisting of
barrier position and direction, and then optimizes the parameters for each individual
barrier to maximize similarities with a reference HiC matrix.

The optimization approach is based on evolutionary algorithms (EAs) and was
developed using primitives from the DEAP library [69].

Optimization was performed on a 5 Mbp region of the human chromosome 1 (20–
25 Mbp, GRCh38) using the list of candidate CTCF binding sites overlapping this
region as extrusion barrier annotation, for a total of 2103 extrusion barriers. Candi-
date CTCF binding sites were annotated using MAST as described in Methods (part
4). The H1-hESC Micro-C (4DNFI9GMP2J8 [65]) matrix was used as reference.

At a high level, the optimization workflow consists of running the same optimiza-
tion script three times, using the output of an optimization run as input for the next
run. The first run is tuned to favor exploration over exploitation, while the second and
third runs used more conservative optimization parameters to progressively reduce
the rate of exploration and favor exploitation.

The following is an overview of how the optimization strategy was developed:

–	 The optimization uses μ, λ as evolution strategy, where μ is the population size
and λ is the number of offspring produced each generation. With this strategy,
offspring that make it through the selection stage replace the previous population
entirely. By default, μ = 256 and λ = 512.

–	 Individuals are represented as two lists of real numbers of size N, where N is the
number of extrusion barriers to be optimized. The first list of numbers represent s
extrusion barrier occupancies (πB), while the second list represents the self-transi-
tion probability of the unbound state (PUU).

–	 Individuals are mutated by adding a relatively small offsets to −→πB and
−−→

PUU . Offsets
are drawn from a normal distribution with μ = 0 and σ set based on the desired
degree of exploration. Values are clamped between 0.0 and 1.0, so mutating an
individual always leads to another valid individual.

–	 The two-point crossover operator is used for mating.
–	 During selection, offsprings are sorted based on their fitness, and the top μ off-

springs are selected to proceed to the next generation.
–	 The population is initialized differently depending on whether results from a pre-

vious optimization run are available.

Page 19 of 24Rossini et al. Genome Biology (2022) 23:247 	

–	 Results from previous optimization are available: population initialized through
random sampling with replacement from the set of fittest individuals that ever
lived in the previous optimization run.

–	 Otherwise, population is randomly initialized by generating μ individuals with πB
and PUU set to random numbers drawn from the uniform distribution U(0.0,1.0).

–	 Fitness is computed using a slightly modified version of the scoring function
f
(

−→
x
)

described in Methods (part 6). Function f
(

−→
x
)

 is not effective at guiding the
optimization when occupancy is relatively low (e.g., < 0.5), and there are no stripes
or dots in the reference matrix, as any parameter combination resulting in such a
low occupancy produces no visible stripe or dot. To this end, we define a penalty
function p(πB) that returns a coefficient between 1.0 and 2.0. The returned coeffi-
cient is close to 2.0 when πB approaches 0.5 and rapidly falls to 1.0 when πB moves
towards 0.0 or 1.0. πB very close to 1.0 are also penalized. See Additional file 2: Fig.
S12 for more details regarding the penalty function p(πB).

–	 The output of the scoring function f −→
x and penalty function p(πB) are multiplied

together to produce the score used to compute the fitness of an individual s
(

−→
x  ,

πB

)

= f
(

−→
x
)

· p(πB) . The fitness of an individual is computed as the average of the

scores s
(

−→
x  , πB) computed in correspondence of each extrusion barrier object of the

optimization.
–	 The optimization runs until one of the following conditions is met:

–	 A target number of generations have been simulated (i.e., 1000 generations).
–	 Optimizer failed to significantly improve the population fitness (e.g., less than

1% fitness improvement over the last 25 generations).
–	 The population variability approaches 0.

To improve the performance of the optimizer on these regions, we split the popula-
tion into mainland population and one or more insular populations and change some
aspects of the optimization strategy.

First, we initialize and optimize the mainland population (μ = 256 and λ = 512).
When one of the stopping criteria is met, the fittest individuals from mainland are
used to initialize the population of m islands. For each island, we randomly select and
mask k consecutive alleles or barriers. k is generated by rounding a number drawn
from a normal distribution with μ = 25 and σ = 5.0. Crucially, masked barriers are
inactive and are not allowed to mutate.

For one of the m islands, instead of masking a random stretch of extrusion barri-
ers, we inactivate all weak barriers when initializing the population. Thus, we replace
alleles with πB < 0.5 with the πB = 0.0; PUU = 1.0 allele. In this case, all loci are allowed
to mutate. Islands have μ = 128 and λ = 256. Islands evolve independently from each
other and from the mainland and follow the same stopping criteria used for the
mainland.

Once all islands have been optimized, half of the mainland individuals are replaced
with individuals from any of the islands. Island individuals are selected using fitness
proportionate selection (i.e., random sampling with replacement, weighted by fitness).

Page 20 of 24Rossini et al. Genome Biology (2022) 23:247

Mainland and island optimization continue alternating until a total target number of
mainland generations have been simulated, or when an optimization cycle fails to sig-
nificantly improve the average mainland population fitness.

Simulations to predict the effect of TAD border alterations

Data for this section was generated using the comparison_with_mut Nextflow workflow
available on GitHub [48] and archived on Zenodo [49].

Simulations were carried out using GRCm38.p6 as reference genome
(GCF_000001635.26 [70].

CTCF and RAD21 ChIP-seq fold-change over control for JM8.N4 was generated by
processing data from GSE90994 [71] (SRR5085152 [72], SRR5085153 [73], SRR5085154
[74], SRR5085155 [75], SRR5085156 [76], SRR5085157 [77]) using the ENCODE ChIP-
seq pipeline v2 [78] and using ENCODE4 genomic datasets for GRCm38.

The wild-type extrusion barrier annotation was generated following the procedure
outlined in the “Methods” section (part 4).

The barrier annotation was further refined using the parameter optimization strategy
described in the “Methods” section (part 10) using a JM8.N4 Micro-C dataset as refer-
ence (4DNFINNZDDXV [79]).

The optimized extrusion barrier annotation was then mutated by removing extrusion
barriers overlapping the del1-13d9lac and delattP-Rel5d9lac regions from Rodríguez-
Carballo 2017 [43].

Supplementary Information
The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s13059-​022-​02815-7.

Additional file 1. Supplementary text. Detailed description of MoDLE’s underlying simulation model and implemen-
tation [16, 88, 89].

Additional file 2. Supplementary figures. Supplementary Figures 1-12.

Additional file 3. Supplementary tables. Supplementary Tables 1-2 [90–93].

Additional file 4. Review history.

Acknowledgements
Simulations and data analyses were performed on resources provided by Sigma2 - the National Infrastructure for High
Performance Computing and Data Storage in Norway, with account number NN8041K.
Data produced by simulations and data analyses are stored in the NIRD Research Data Archive with the DOI:
10.11582/2022.00056.
We thank the ENCODE Consortium and the labs of Peter Park and Job Dekker for contributing with ENCODE data used as
part of this study.

Peer review information
Andrew Cosgrove was the primary editor of this article and managed its editorial process and peer review in collabora-
tion with the rest of the editorial team.

Review history
The review history is available as Additional file 4.

Authors’ contributions
JP and RR conceived and designed the study; RR developed the software and the analysis code; RR performed bench-
marking analysis and genome wide and local parameter optimization as well as the comparative analysis for the HoxD
mutants; JP performed comparison analyses of MoDLE with OpenMM and Micro-C data; JP and RR wrote the original
draft; AM helped with the manuscript revising; VK, AM, and TR provided critical feedback and assisted in the improve-
ment of the tool and analyses; JP supervised the project. All authors read and approved the final manuscript.

Funding
JP acknowledges funding from the Norwegian Research Council (project 324137).

https://doi.org/10.1186/s13059-022-02815-7

Page 21 of 24Rossini et al. Genome Biology (2022) 23:247 	

Availability of data and materials
Project name: MoDLE
Project home page: https://​github.​com/​pauls​engro​up/​modle
Archived version: 10.5281/zenodo.6424697
License: MIT
Operative system(s): UNIX-like (Platform independent when using containers)
Programming language: C++
Other requirements:
• C++17 compiler (e.g., GCC 8+, Clang8+, AppleClang 10+)
• CMake 3.18 or newer
• Conan 1.50 or newer
• Python3 (to install and run Conan)
• Scipy (Python3 package, required to run unit tests)
• wCorr (R package, required to run unit tests)
The complete list of MoDLE dependencies is available in Additional file 3: Table S2. Dependency installation is automated
using CMake and Conan.
MoDLE source code is available on GitHub at https://​github.​com/​pauls​engro​up/​modle [80] and is archived on Zenodo
at https://​doi.​org/​10.​5281/​zenodo.​64246​97 [81]. MoDLE’s version used throughout the manuscript is MoDLE v1.0.0-rc.7
[82], except for performance benchmarks which used MoDLE v1.0.0-rc.3 [83].
Code used for the data analysis is available on GitHub at https://​github.​com/​pauls​engro​up/​2021-​modle-​paper-​001-​data-​
analy​sis [48] and is archived on Zenodo at https://​doi.​org/​10.​5281/​zenodo.​70729​39 [49].
Data produced by running the runme.sh script from the data analysis code repository, including simulated contact
matrices in cooler format were archived on the NIRD research data archive at DOI 10.11582/2022.00056 [84].
Reference genome assembly and assembly report for GCF_000001405.39_GRCh38.p13 [51] and GCF_000001635.26 [70]
were downloaded through the NCBI FTP server [85].
ChIP-seq data for the following accession numbers were downloaded from the ENCODE portal [53, 54]: ENCFF255FRL
[55], ENCFF473IZV [56], ENCFF821AQO [57], and ENCFF913JGA [58].
ChIP-seq data for the following accession number was downloaded from the Gene Expression Omnibus: GSM4665702
[86].
ChIP-seq sequencing data for GSE90994 [71] were downloaded from EBI’s mirror of the SRA: SRR5085152 [72],
SRR5085153 [73], SRR5085154 [74], SRR5085155 [75], SRR5085156 [76], and SRR5085157 [77].
H1-hESC Hi-C and Micro-C data as well as JM8.N4 Micro-C data in multi-resolution cooler format (4DNFIFJH2524 [64],
4DNFI9GMP2J8 [67], 4DNFINNZDDXV [79]) were downloaded from the 4DNucleome Data Portal [87].
The frequency matrix in MEME format for the CTCF motif (MA0139.1) was downloaded from JASPAR 2022 CORE non-
redundant database [52].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 13 April 2022 Accepted: 17 November 2022

References
	1.	 Braccioli L, de Wit E. CTCF: a Swiss-army knife for genome organization and transcription regulation. Essays Biochem.

2019;63:157–65.
	2.	 Razin SV, Gavrilov AA, Vassetzky YS, Ulianov SV. Topologically-associating domains: gene warehouses adapted to

serve transcriptional regulation. Transcription. 2016;7:84–90.
	3.	 Arnould C, Rocher V, Finoux A-L, Clouaire T, Li K, Zhou F, et al. Loop extrusion as a mechanism for formation of DNA

damage repair foci. Nature. 2021;590:660–5.
	4.	 Peters J-M. How DNA loop extrusion mediated by cohesin enables V(D)J recombination. Curr Opin Cell Biol.

2021;70:75–83.
	5.	 Goloborodko A, Marko JF, Mirny LA. Chromosome compaction by active loop extrusion. Biophys J. 2016;110:2162–8.
	6.	 Ganji M, Shaltiel IA, Bisht S, Kim E, Kalichava A, Haering CH, et al. Real-time imaging of DNA loop extrusion by con-

densin. Science. 2018;360:102–5.
	7.	 Golfier S, Quail T, Kimura H, Brugués J. Cohesin and condensin extrude DNA loops in a cell cycle-dependent man-

ner. Elife. 2020:9. https://​doi.​org/​10.​7554/​eLife.​53885.
	8.	 Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of

long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–93.
	9.	 Hsieh T-HS, Weiner A, Lajoie B, Dekker J, Friedman N, Rando OJ. Mapping nucleosome resolution chromosome fold-

ing in yeast by Micro-C. Cell. 2015;162:108–19.

https://github.com/paulsengroup/modle
https://github.com/paulsengroup/modle
https://doi.org/10.5281/zenodo.6424697
https://github.com/paulsengroup/2021-modle-paper-001-data-analysis
https://github.com/paulsengroup/2021-modle-paper-001-data-analysis
https://doi.org/10.5281/zenodo.7072939
https://doi.org/10.7554/eLife.53885

Page 22 of 24Rossini et al. Genome Biology (2022) 23:247

	10.	 Krietenstein N, Abraham S, Venev SV, Abdennur N, Gibcus J, Hsieh T-HS, et al. Ultrastructural details of mammalian
chromosome architecture. Mol Cell. 2020;78:554–65.e7.

	11.	 Sanborn AL, Rao SSP, Huang S-C, Durand NC, Huntley MH, Jewett AI, et al. Chromatin extrusion explains key features
of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci U S A. 2015;112:E6456–65.

	12.	 Fudenberg G, Imakaev M, Lu C, Goloborodko A, Abdennur N, Mirny LA. Formation of chromosomal domains by
loop extrusion. Cell Rep. 2016;15:2038–49.

	13.	 Brandão HB, Ren Z, Karaboja X, Mirny LA, Wang X. DNA-loop-extruding SMC complexes can traverse one another
in vivo. Nat Struct Mol Biol. 2021;28:642–51.

	14.	 Lupiáñez DG, Spielmann M, Mundlos S. Breaking TADs: How alterations of chromatin domains result in disease.
Trends Genet. 2016;32:225–37.

	15.	 Alipour E, Marko JF. Self-organization of domain structures by DNA-loop-extruding enzymes. Nucleic Acids Res.
2012;40:11202–12.

	16.	 Bauer BW, Davidson IF, Canena D, Wutz G, Tang W, Litos G, et al. Cohesin mediates DNA loop extrusion by a “swing
and clamp” mechanism. Cell. 2021;184:5448–64.e22.

	17.	 Golov AK, Golova AV, Gavrilov AA, Razin SV. Sensitivity of cohesin-chromatin association to high-salt treatment cor-
roborates non-topological mode of loop extrusion. Epigenetics Chromatin. 2021;14:36.

	18.	 Pradhan B, Barth R, Kim E, Davidson IF, Bauer B, van Laar T, et al. SMC complexes can traverse physical roadblocks
bigger than their ring size [Internet]. bioRxiv. 2021:2021.07.15.452501 Available from: https://​www.​biorx​iv.​org/​conte​
nt/​10.​1101/​2021.​07.​15.​45250​1v1.​abstr​act. [Cited 2022 Apr 11].

	19.	 Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at
kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80.

	20.	 Vian L, Pękowska A, Rao SSP, Kieffer-Kwon K-R, Jung S, Baranello L, et al. The energetics and physiological impact of
cohesin extrusion. Cell. 2018;173:1165–78.e20.

	21.	 Tedeschi A, Wutz G, Huet S, Jaritz M, Wuensche A, Schirghuber E, et al. Wapl is an essential regulator of chromatin
structure and chromosome segregation. Nature. 2013;501:564–8.

	22.	 Haarhuis JHI, van der Weide RH, Blomen VA, Yáñez-Cuna JO, Amendola M, van Ruiten MS, et al. The cohesin release
factor WAPL restricts chromatin loop extension. Cell. 2017;169:693–707.e14.

	23.	 Nakamura R, Motai Y, Kumagai M, Wike CL, Nishiyama H, Nakatani Y, et al. CTCF looping is established during gastru-
lation in medaka embryos. Genome Res. 2021;31:968–80.

	24.	 Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, et al. Topologically associating domains and chroma-
tin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins. EMBO J. 2017;36:3573–99.

	25.	 Rao SSP, Huang S-C, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon K-R, et al. Cohesin loss eliminates all loop
domains. Cell. 2017;171:305–20.e24.

	26.	 Liu NQ, Magnitov M, Schijns M, van Schaik T, van der Weide RH, Teunissen H, et al. Rapid depletion of CTCF and
cohesin proteins reveals dynamic features of chromosome architecture [Internet]. bioRxiv. 2021:2021.08.27.457977
Available from: https://​www.​biorx​iv.​org/​conte​nt/​10.​1101/​2021.​08.​27.​45797​7v1.​full. [Cited 2022 Apr 11].

	27.	 Nora EP, Goloborodko A, Valton A-L, Gibcus JH, Uebersohn A, Abdennur N, et al. Targeted degradation of CTCF
decouples local insulation of chromosome domains from genomic compartmentalization. Cell. 2017;169:930–44.
e22.

	28.	 Barbieri M, Chotalia M, Fraser J, Lavitas L-M, Dostie J, Pombo A, et al. Complexity of chromatin folding is captured by
the strings and binders switch model. Proc Natl Acad Sci U S A. 2012;109:16173–8.

	29.	 Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA, et al. Organization of the mitotic chromosome.
Science. 2013;342:948–53.

	30.	 Jost D, Carrivain P, Cavalli G, Vaillant C. Modeling epigenome folding: formation and dynamics of topologically
associated chromatin domains. Nucleic Acids Res. 2014;42:9553–61.

	31.	 Benedetti F, Dorier J, Burnier Y, Stasiak A. Models that include supercoiling of topological domains reproduce several
known features of interphase chromosomes. Nucleic Acids Res. 2014;42:2848–55.

	32.	 Goloborodko A, Imakaev MV, Marko JF, Mirny L. Compaction and segregation of sister chromatids via active loop
extrusion. Elife. 2016:5. https://​doi.​org/​10.​7554/​eLife.​14864.

	33.	 Anderson JA, Glaser J, Glotzer SC. HOOMD-blue: a Python package for high-performance molecular dynamics and
hard particle Monte Carlo simulations. Comput Mater Sci. 2020;173:109363.

	34.	 Schwarzer W, Abdennur N, Goloborodko A, Pekowska A, Fudenberg G, Loe-Mie Y, et al. Two independent modes of
chromatin organization revealed by cohesin removal. Nature. 2017;551:51–6.

	35.	 Nuebler J, Fudenberg G, Imakaev M, Abdennur N, Mirny LA. Chromatin organization by an interplay of loop extru-
sion and compartmental segregation. Proc Natl Acad Sci U S A. 2018;115:E6697–706.

	36.	 Banigan EJ, van den Berg AA, Brandão HB, Marko JF, Mirny LA. Chromosome organization by one-sided and two-
sided loop extrusion. Elife. 2020:9. https://​doi.​org/​10.​7554/​eLife.​53558.

	37.	 Eastman P, Swails J, Chodera JD, McGibbon RT, Zhao Y, Beauchamp KA, et al. OpenMM 7: Rapid development of high
performance algorithms for molecular dynamics. PLoS Comput Biol. 2017;13:e1005659.

	38.	 Buckle A, Brackley CA, Boyle S, Marenduzzo D, Gilbert N. Polymer simulations of heteromorphic chromatin predict
the 3D folding of complex genomic loci. Mol Cell. 2018;72:786–97.e11.

	39.	 Zhang S, Übelmesser N, Josipovic N, Forte G, Slotman JA, Chiang M, et al. RNA polymerase II is required for spatial
chromatin reorganization following exit from mitosis. Sci Adv. 2021;7:eabg8205.

	40.	 Abdennur N, Mirny LA. Cooler: scalable storage for Hi-C data and other genomically labeled arrays. Bioinformatics.
2020;36:311–6.

	41.	 Gabriele M, Brandão HB, Grosse-Holz S, Jha A, Dailey GM, Cattoglio C, et al. Dynamics of CTCF and cohesin mediated
chromatin looping revealed by live-cell imaging [Internet]. bioRxiv. 2021:2021.12.12.472242 Available from: https://​
www.​biorx​iv.​org/​conte​nt/​10.​1101/​2021.​12.​12.​47224​2v1. [Cited 2022 Apr 11].

	42.	 Hansen AS, Pustova I, Cattoglio C, Tjian R, Darzacq X. CTCF and cohesin regulate chromatin loop stability with
distinct dynamics. Elife. 2017:6. https://​doi.​org/​10.​7554/​eLife.​25776.

https://www.biorxiv.org/content/10.1101/2021.07.15.452501v1.abstract
https://www.biorxiv.org/content/10.1101/2021.07.15.452501v1.abstract
https://www.biorxiv.org/content/10.1101/2021.08.27.457977v1.full
https://doi.org/10.7554/eLife.14864
https://doi.org/10.7554/eLife.53558
https://www.biorxiv.org/content/10.1101/2021.12.12.472242v1
https://www.biorxiv.org/content/10.1101/2021.12.12.472242v1
https://doi.org/10.7554/eLife.25776

Page 23 of 24Rossini et al. Genome Biology (2022) 23:247 	

	43.	 Rodríguez-Carballo E, Lopez-Delisle L, Zhan Y, Fabre PJ, Beccari L, El-Idrissi I, et al. The HoxD cluster is a dynamic
and resilient TAD boundary controlling the segregation of antagonistic regulatory landscapes. Genes Dev.
2017;31:2264–81.

	44.	 Rodríguez-Carballo E, Lopez-Delisle L, Willemin A, Beccari L, Gitto S, Mascrez B, et al. Chromatin topology and the
timing of enhancer function at the HoxD locus. Proc Natl Acad Sci U S A. 2020;117:31231–41.

	45.	 Xu H, Zhang S, Yi X, Plewczynski D, Li MJ. Exploring 3D chromatin contacts in gene regulation: The evolution
of approaches for the identification of functional enhancer-promoter interaction. Comput Struct Biotechnol J.
2020;18:558–70.

	46.	 Di Stefano M, Paulsen J, Jost D, Marti-Renom MA. 4D nucleome modeling. Curr Opin Genet Dev. 2021;67:25–32.
	47.	 Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notredame C. Nextflow enables reproducible computa-

tional workflows. Nat Biotechnol. 2017;35:316–9.
	48.	 2021-modle-paper-001-data-analysis: Data analysis code for the first paper about MoDLE (preprint available soon)

[Internet]. Github. Available from: https://​github.​com/​pauls​engro​up/​2021-​modle-​paper-​001-​data-​analy​sis. [Cited
2022 Apr 11].

	49.	 Rossini R, Kumar V, Mathelier A, Rognes T, Paulsen J. Data analysis code for: “MoDLE: High-performance stochastic
modeling of DNA loop extrusion interactions.” 2022. Available from: https://​zenodo.​org/​record/​70729​39. [Cited 2022
Sep 13].

	50.	 Bailey TL, Gribskov M. Combining evidence using p-values: application to sequence homology searches. Bioinfor-
matics. 1998;14:48–54.

	51.	 GRCh38.p13 - hg38 - Genome - Assembly - NCBI [Internet]. Available from: https://​ident​ifiers.​org/​assem​bly:​GCF_​
00000​1405.​39. [Cited 2022 Apr 12].

	52.	 Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I, Lemma RB, Turchi L, Blanc-Mathieu R, et al. JASPAR
2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res.
2022;50:D165–73.

	53.	 ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature.
2012;489:57–74.

	54.	 Davis CA, Hitz BC, Sloan CA, Chan ET, Davidson JM, Gabdank I, et al. The Encyclopedia of DNA elements (ENCODE):
data portal update. Nucleic Acids Res. 2018;46:D794–801.

	55.	 ENCFF255FRL – ENCODE [Internet]. Available from: https://​ident​ifiers.​org/​encode:​ENCFF​255FRL. [Cited 2022 Apr 12].
	56.	 ENCFF473IZV – ENCODE [Internet]. Available from: https://​ident​ifiers.​org/​encode:​ENCFF​473IZV. [Cited 2022 Apr 12].
	57.	 ENCFF821AQO – ENCODE [Internet]. Available from: https://​ident​ifiers.​org/​encode:​ENCFF​821AQO. [Cited 2022 Apr

12].
	58.	 ENCFF913JGA – encode [Internet]. Available from: https://​ident​ifiers.​org/​encode:​ENCFF​913JGA. [Cited 2022 Apr 12].
	59.	 Venev S, Abdennur N, Goloborodko A, Flyamer I, Fudenberg G, Nuebler J, et al. open2c/cooltools: v0.5.1 [Internet].

2022. Available from: https://​zenodo.​org/​record/​63242​29.
	60.	 Kerpedjiev P, Abdennur N, Lekschas F, McCallum C, Dinkla K, Strobelt H, et al. HiGlass: web-based visual exploration

and analysis of genome interaction maps. Genome Biol. 2018;19:125.
	61.	 Banigan EJ, Mirny LA. The interplay between asymmetric and symmetric DNA loop extrusion. Elife. 2020:9. https://​

doi.​org/​10.​7554/​eLife.​63528.
	62.	 Imakaev M, Goloborodko A, hbbrandao. mirnylab/polychrom: v0.1.0 [Internet]. 2019. Available from: https://​zenodo.​

org/​record/​35794​73. [Cited 2022 Sep 13].
	63.	 Yoon S, Chandra A, Vahedi G. Stripenn detects architectural stripes from chromatin conformation data using com-

puter vision. Nat Commun. 2022;13:1602.
	64.	 4DNFIFJH2524.mcool – 4DN Data Portal [Internet]. Available from: https://​ident​ifiers.​org/​4dn:​4DNFI​FJH25​24. [Cited

2022 Sep 13].
	65.	 4DNFI9GMP2J8.mcool – 4DN Data Portal [Internet]. Available from: https://​ident​ifiers.​org/​4dn:​4DNFI​9GMP2​J8.

[Cited 2022 Sep 13].
	66.	 openmm [Internet]. Github. Available from: https://​github.​com/​openmm/​openmm/​issues/​3267. [Cited 2022 Apr

11].
	67.	 4DNFI9GMP2J8.Mcool – 4DN data portal [Internet]. Available from: https://​ident​ifiers.​org/​4dn:​4DNFI​9GMP2​J8. [Cited

2022 Apr 12].
	68.	 scikit-optimize: Sequential model-based optimization with a `scipy.optimize` interface [Internet]. Github. Available

from: https://​github.​com/​scikit-​optim​ize/​scikit-​optim​ize. [Cited 2022 Apr 11].
	69.	 Fortin F-A, De Rainville F-M, Gardner M-A, Parizeau M, Gagné C. DEAP: evolutionary algorithms made easy. J Mach

Learn Res. 2012;13:2171–5.
	70.	 GRCm38.p6 - Genome - Assembly - NCBI [Internet]. Available from: https://​ident​ifiers.​org/​assem​bly:​GCF_​00000​1635.​

26. [Cited 2022 Sep 13].
	71.	 GEO Accession viewer [Internet]. Available from: https://​ident​ifiers.​org/​GEO:​GSE90​994. [Cited 2022 Sep 13].
	72.	 GSM2418858: WT_IgG_ChIPSeq; Mus musculus; ChIP-Seq - SRA - NCBI [Internet]. Available from: https://​ident​ifiers.​

org/​insdc.​sra:​SRR50​85152. [Cited 2022 Sep 13].
	73.	 GSM2418858: WT_IgG_ChIPSeq; Mus musculus; ChIP-Seq - SRA - NCBI [Internet]. Available from: https://​ident​ifiers.​

org/​insdc.​sra:​SRR50​85153. [Cited 2022 Sep 13].
	74.	 GSM2418859: WT_Rad21_ChIPSeq; Mus musculus; ChIP-Seq - SRA - NCBI [Internet]. Available from: https://​ident​

ifiers.​org/​insdc.​sra:​SRR50​85154. [Cited 2022 Sep 13].
	75.	 GSM2418859: WT_Rad21_ChIPSeq; Mus musculus; ChIP-Seq - SRA - NCBI [Internet]. Available from: https://​ident​

ifiers.​org/​insdc.​sra:​SRR50​85155. [Cited 2022 Sep 13].
	76.	 GSM2418860: WT_CTCF_ChIPSeq; Mus musculus; ChIP-Seq - SRA - NCBI [Internet]. Available from: https://​ident​ifiers.​

org/​insdc.​sra:​SRR50​85156. [Cited 2022 Sep 13].
	77.	 GSM2418860: WT_CTCF_ChIPSeq; Mus musculus; ChIP-Seq - SRA - NCBI [Internet]. Available from: https://​ident​ifiers.​

org/​insdc.​sra:​SRR50​85157. [Cited 2022 Sep 13].

https://github.com/paulsengroup/2021-modle-paper-001-data-analysis
https://zenodo.org/record/7072939
https://identifiers.org/assembly:GCF_000001405.39
https://identifiers.org/assembly:GCF_000001405.39
https://identifiers.org/encode:ENCFF255FRL
https://identifiers.org/encode:ENCFF473IZV
https://identifiers.org/encode:ENCFF821AQO
https://identifiers.org/encode:ENCFF913JGA
https://zenodo.org/record/6324229
https://doi.org/10.7554/eLife.63528
https://doi.org/10.7554/eLife.63528
https://zenodo.org/record/3579473
https://zenodo.org/record/3579473
https://identifiers.org/4dn:4DNFIFJH2524
https://identifiers.org/4dn:4DNFI9GMP2J8
https://github.com/openmm/openmm/issues/3267
https://identifiers.org/4dn:4DNFI9GMP2J8
https://github.com/scikit-optimize/scikit-optimize
https://identifiers.org/assembly:GCF_000001635.26
https://identifiers.org/assembly:GCF_000001635.26
https://identifiers.org/GEO:GSE90994
https://identifiers.org/insdc.sra:SRR5085152
https://identifiers.org/insdc.sra:SRR5085152
https://identifiers.org/insdc.sra:SRR5085153
https://identifiers.org/insdc.sra:SRR5085153
https://identifiers.org/insdc.sra:SRR5085154
https://identifiers.org/insdc.sra:SRR5085154
https://identifiers.org/insdc.sra:SRR5085155
https://identifiers.org/insdc.sra:SRR5085155
https://identifiers.org/insdc.sra:SRR5085156
https://identifiers.org/insdc.sra:SRR5085156
https://identifiers.org/insdc.sra:SRR5085157
https://identifiers.org/insdc.sra:SRR5085157

Page 24 of 24Rossini et al. Genome Biology (2022) 23:247

•

fast, convenient online submission

 •

thorough peer review by experienced researchers in your field

•

rapid publication on acceptance

•

support for research data, including large and complex data types

•

gold Open Access which fosters wider collaboration and increased citations

maximum visibility for your research: over 100M website views per year •

 At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research ? Choose BMC and benefit from: ? Choose BMC and benefit from:

	78.	 GitHub - ENCODE-DCC/chip-seq-pipeline2: ENCODE ChIP-seq pipeline [Internet]. GitHub. Available from: https://​
github.​com/​ENCODE-​DCC/​chip-​seq-​pipel​ine2. [Cited 2022 Sep 13].

	79.	 4DNFINNZDDXV.mcool – 4DN Data Portal [Internet]. Available from: https://​ident​ifiers.​org/​4dn:​4DNFI​NNZDD​XV.
[Cited 2022 Sep 13].

	80.	 modle: High-performance stochastic modeling of DNA loop extrusion interactions [Internet]. Github. Available
from: https://​github.​com/​pauls​engro​up/​modle. [Cited 2022 Apr 11].

	81.	 Rossini R, Kumar V, Mathelier A, Rognes T, Paulsen J. MoDLE [Internet]. Zenodo; 2022. Available from: https://​zenodo.​
org/​record/​64246​97.

	82.	 Rossini R, Kumar V, Mathelier A, Rognes T, Paulsen J. MoDLE. 2022. Available from: https://​zenodo.​org/​record/​69925​
33. [Cited 2022 Sep 13].

	83.	 Rossini R, Vipin K, Mathelier A, Rognes T, Paulsen J. MoDLE: High-performance stochastic modeling of DNA loop
extrusion interactions [Internet]. 2022. Available from: https://​doi.​org/​10.​5281/​zenodo.​64248​90.

	84.	 Nird research data archive [Internet]. https://​doi.​org/​10.​11582/​2022.​00056. [Cited 2022 Nov 2].
	85.	 O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at

NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44:D733–45.
	86.	 GEO Accession viewer [Internet]. Available from: https://​ident​ifiers.​org/​GEO:​GSM46​65702. [Cited 2022 Sep 13].
	87.	 Reiff SB, Schroeder AJ, Kirli K, Cosolo A, Bakker C, Mercado L, et al. The 4D Nucleome Data Portal: a resource for

searching and visualizing curated nucleomics data [Internet]. bioRxiv. 2021 . 2021.10.14.464435. Available from:
https://​www.​biorx​iv.​org/​conte​nt/​10.​1101/​2021.​10.​14.​46443​5v1. [Cited 2022 Apr 11].

	88.	 Blackman D, Vigna S. Scrambled linear pseudorandom number generators. ACM Trans Math Softw. New York, NY,
USA: Association for Computing Machinery; 2021;47:1–32.

	89.	 Levcopoulos C, Petersson O. Splitsort—an adaptive sorting algorithm. Inf Process Lett. 1991;39:205–11.
	90.	 The HDF Group. Hierarchical Data Format, version 5 [Internet]. Available from: http://www.hdfgroup.org/HDF5/.

[Cited 2022 Apr 11].
	91.	 Fan B, Andersen DG, Kaminsky M. MemC3: Compact and concurrent MemCache with dumber caching and smarter

hashing. Proceedings of the 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI
13). 2013; 371–84.

	92.	 Xiaozhou Li Princeton University, David G. Andersen Carnegie Mellon University, Labs MKI, Michael J. Freedman
Princeton University. Algorithmic improvements for fast concurrent Cuckoo hashing [Internet]. ACM Conferences.
https://​doi.​org/​10.​1145/​25927​98.​25928​20. [Cited 2022 Sep 13].

	93.	 Shoshany B. A C++17 thread pool for high-performance scientific computing [Internet]. arXiv [cs.DC]. 2021. Avail-
able from: http://​arxiv.​org/​abs/​2105.​00613. [Cited 2022 Sep 13].

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://github.com/ENCODE-DCC/chip-seq-pipeline2
https://github.com/ENCODE-DCC/chip-seq-pipeline2
https://identifiers.org/4dn:4DNFINNZDDXV
https://github.com/paulsengroup/modle
https://zenodo.org/record/6424697
https://zenodo.org/record/6424697
https://zenodo.org/record/6992533
https://zenodo.org/record/6992533
https://doi.org/10.5281/zenodo.6424890
https://doi.org/10.11582/2022.00056
https://identifiers.org/GEO:GSM4665702
https://www.biorxiv.org/content/10.1101/2021.10.14.464435v1
https://doi.org/10.1145/2592798.2592820
http://arxiv.org/abs/2105.00613

	MoDLE: high-performance stochastic modeling of DNA loop extrusion interactions
	Abstract
	Background
	Results
	MoDLE: modeling of DNA loop extrusion
	Comparison with Micro-C data and MD simulations
	Benchmarking of execution time and memory usage
	Genome wide parameter optimization
	Predicting effects of TAD border alterations
	Optimization of individual barrier parameters

	Discussion
	Conclusions
	Methods
	MoDLE implementation and design overview
	Running a simulation instance
	Hardware specifications
	MoDLE simulations
	Molecular dynamics (OpenMM) simulations
	Assessing loop extrusion feature similarities from contact frequencies
	Contact matrix comparison
	Benchmark methodology
	Genome-wide extrusion barrier parameter optimization
	Local extrusion barrier parameter optimization
	Simulations to predict the effect of TAD border alterations

	Acknowledgements
	References

