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Background
DNA loop-extrusion, in which DNA is progressively reeled into transient loops, emerges 
as a key process in genome structure and function. The growing list of cellular processes 
where loop-extrusion plays a critical role now includes transcriptional regulation [1, 2], 
DNA repair [3], VDJ-recombination [4], and cell division [5]. Recent single-molecule 
imaging experiments have provided direct observations of loop extrusion in vitro [6, 7].

High-throughput chromosome conformation capture sequencing, including Hi-C [8] 
and Micro-C [9, 10], has advanced our abilities to map three-dimensional (3D) genome 
organization through quantification of spatially proximal genome regions. The resulting 
data is usually rendered as a matrix of intrachromosomal and interchromosomal contact 
frequencies. These data increasingly deepen our understanding of 3D genome organiza-
tion and show DNA loop extrusion as a key process shaping genome structure [11–13]. 
In fact, topologically associating domains (TADs), which show up as sub-megabase-
sized domains covering most of higher eukaryote genomes, are formed by loop extru-
sion [12]. TADs are relevant units of gene expression regulation and are associated with 
disease when disrupted [14].

Abstract 

DNA loop extrusion emerges as a key process establishing genome structure and 
function. We introduce MoDLE, a computational tool for fast, stochastic modeling of 
molecular contacts from DNA loop extrusion capable of simulating realistic contact 
patterns genome wide in a few minutes. MoDLE accurately simulates contact maps in 
concordance with existing molecular dynamics approaches and with Micro-C data and 
does so orders of magnitude faster than existing approaches. MoDLE runs efficiently 
on machines ranging from laptops to high performance computing clusters and opens 
up for exploratory and predictive modeling of 3D genome structure in a wide range of 
settings.
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DNA loop extrusion is carried out by ring-shaped proteins (including cohesin and 
condensin) belonging to the structural maintenance of chromosomes (SMC) family. 
These proteins are often referred to as loop extrusion factors (LEFs) [15]. The exact 
mechanism of how loop extrusion takes place in interphase is not fully understood. 
There is, however, convincing evidence that SMCs bind DNA to perform ATP-
dependent loop extrusion in a symmetric or asymmetric fashion. Recent evidence 
suggests that cohesin can extrude DNA with a “swing-and-clamp” mechanism [16] 
and in a nontopological configuration where DNA is not encircled by the cohesin ring 
[17, 18]. A loop starts extruding when a LEF binds to a genomic region and continues 
processively until it is stalled by a DNA-bound CCCTC binding factor (CTCF) ori-
ented with its N-terminus pointing towards the extruding cohesin complex. A pair 
of CTCFs arranged in a convergent orientation can thus stall loop growth on both 
sides creating semi-stable loops visible in Hi-C as a characteristic "dot" at TAD cor-
ners [19]. Similarly, when extruding loops are stalled only on one side, a “stripe” can 
be observed along one or both TAD borders [20]. The protein WAPL transiently 
releases cohesin from chromatin, terminating the loop extrusion process [21, 22]. The 
resulting loop-extrusion patterns have been found in a range of Hi-C datasets so far, 
emphasizing the evolutionary conserved role of loop extrusion in shaping 3D genome 
organization [19, 23].

Disrupting any of the key proteins involved in DNA loop extrusion has a dramatic 
effect on genome 3D structure. WAPL depletion causes an increase in loop stability, 
with an accumulation of axial elements and weakening of compartments [21, 24]. Deple-
tion of cohesin causes a large fraction of TADs and loops to disappear [24–26]. Similarly, 
depletion of CTCF induces loss of loops and TADs [24, 27].

Modeling and simulation of DNA-DNA contact patterns is a powerful approach for 
understanding underlying molecular mechanisms and for predicting the effect of DNA 
perturbations. Polymer simulations and molecular dynamics (MD) have been used for 
modeling of TADs to study their structure and dynamics [28–31]. Computational mod-
eling and simulation of loop extrusion has proven useful for predicting the effects of 
perturbations to TAD borders and to properly understand patterns seen in Hi-C data. 
Initial models [15, 32] of loop extrusion used the Gillespie algorithm to characterize 
looping properties and chromatin compaction and did not sample contact maps. Subse-
quent models used HOOMD particle simulation [33] to perform homopolymer simula-
tions where modeled LEFs extrude the polymers and halt at boundaries with properties 
defined from CTCF motif instance orientation and ChIP-seq signal strength [11, 25]. 
Recently, to efficiently simulate larger genome regions, a combination of one-dimen-
sional (1D) simulations with 3D polymer modeling has been applied to sample multiple 
conformations combined into contact maps. LEF binding, release, and stalling probabili-
ties are then modeled explicitly [34–36]. These simulations are typically implemented 
using the OpenMM molecular simulation framework [37]. The simulations can be used 
to explore and rule out molecular mechanisms. For example, Banigan et al. assessed the 
level of DNA compaction that can be achieved by different loop extrusion mechanisms 
and concluded that one-sided loop extrusion alone fails to achieve the level of compac-
tion observed in large metazoan genomes [36]. Other approaches embed epigenetic data 
in combination with crosslinking proteins to model and study conformational variability 
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across complex chromatin regions [38, 39]. To the best of our knowledge, no standalone 
software for modeling and simulation of loop extrusion exists.

We introduce MoDLE (modeling of DNA loop extrusion), a high-performance sto-
chastic model of DNA loop extrusion capable of efficiently simulating contacts from 
loop extrusion genome wide. In contrast to MD simulation approaches, simulating 
loop extrusion contacts using MoDLE is a straightforward process only requiring two 
input files and execution through a command line interface (CLI). MoDLE can simulate 
a contact matrix with the molecular interactions generated by DNA loop extrusion on 
the entire human genome in a matter of minutes using less than 1 GB of RAM. Typical 
use cases include predicting Hi-C contact patterns from ChIP-seq (or similar) data and 
predicting the effect of alterations, mutations, and structural variation to TAD borders. 
MoDLE opens up for rapid simulation and parameter exploration of DNA loop extru-
sion on genomes of any size, including large mammalian genomes.

Results
MoDLE: modeling of DNA loop extrusion

MoDLE uses fast stochastic simulation to sample DNA-DNA contacts generated by loop 
extrusion. Binding and release of LEFs and barriers and the extrusion process is mod-
eled as an iterative process (see Fig. 1). At the beginning of a simulation, MoDLE goes 
through a burn-in phase where LEFs are progressively bound to DNA, without sam-
pling molecular contacts. The burn-in phase runs until the average loop size has sta-
bilized. Active LEFs are extruded through randomly sampled strides along the DNA in 
reverse and forward directions. Each epoch, LEFs are released with a probability based 
on the average LEF processivity and extrusion speed. LEFs that are released in the cur-
rent epoch will rebind to randomly sampled DNA regions in the next epoch. Extrusion 
barriers (e.g., CTCF binding sites) are modeled using a two-state (bound and unbound) 

Fig. 1  Schematic and simplified overview of MoDLE. Input files specify genome regions to be simulated 
(e.g., a chrom.sizes file) and their barrier positions (e.g., CTCF binding sites and orientation) in BED format. 
Optional parameters control the specifics of a simulation. Loop extruding factors (LEFs) bind to, extrude, and 
release from the regions and interact with modeled barriers according to input parameters. Loop extrusion 
and intra-TAD contacts of a randomized subset of loops are recorded each epoch and aggregated into an 
output cooler file containing the final simulated contact frequencies. Simulation halts when a target number 
of epochs or a target number of loop extrusion contacts have been simulated
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Markov process. Each extrusion barrier consists of a position, a blocking direction and 
the Markov process transition probabilities. The occupancy of each extrusion barrier 
can be specified individually through the score field in the input BED file. Alternatively, 
users can specify a uniform barrier occupancy that is applied to all extrusion barriers. 
MoDLE accepts a large number of optional parameters to specify the model’s behavior. 
For example, users can specify the number of LEFs to be instantiated for each Mbp of 
simulated DNA using the --lef-density parameter. LEF-barrier and LEF-LEF collisions 
are processed each simulation epoch. Collision information is used to update candidate 
strides to satisfy the constraints imposed by collision events and to compute how extru-
sion in the next epoch should proceed.

During a simulation, sampled molecular contacts are accumulated into a specialized 
contact matrix data structure with low memory overhead. MoDLE execution continues 
until a target number of epochs or a target number of loop extrusion contacts are simu-
lated. Finally, contacts generated by all simulation instances for a given chromosome are 
written to an output file in cooler format [40] (Fig. 1).

With default settings, MoDLE will run over 500 simulation instances for each chro-
mosome simulated. Thus, simulation instances can run in parallel, making efficient use 
of the computational resources of modern multi-core CPUs. We designed MoDLE such 
that each simulation instance requires less than 10 MB of memory to simulate loop 
extrusion on large mammalian chromosomes, such as chromosome 1 from the human 
genome. To achieve high-performance, MoDLE stores most of its data in contiguous 
memory. Data is indexed such that extrusion barriers and extrusion units in a simula-
tion instance can be efficiently traversed in 5′-3′ and 3′-5′ directions. This allows MoDLE 
to bind/release LEFs, process collisions, register contacts, and extrude DNA in linear 
time-complexity.

More design and implementation details are available in Additional file  1 as well as 
MoDLE’s GitHub repository github.​com/​pauls​engro​up/​modle.

Comparison with Micro‑C data and MD simulations

To assess MoDLE’s ability to reproduce contact data features known to be stemming 
from loop extrusion, we simulated genome-wide DNA-DNA contacts based on avail-
able CTCF and RAD21 ChIP-seq data in H1-hESC cells (see Methods). MoDLE is capa-
ble of simulating loop extrusion molecular contacts and intra-TAD contacts separately 
(see Additional file 1: Section 9 for details). A rendering of the resulting loop extrusion 
molecular contacts heatmaps show characteristic stripe and dot patterns at TAD borders 
(Fig. 2A). Simulated TAD contacts show enrichment of contacts within TADs, including 
a nested structure of the TADs (Fig. 2B). In combination, these patterns resemble well-
characterized patterns observed in Micro-C and Hi-C data (Fig. 2C).

Even though no stand-alone software exists for direct side-by-side comparison, we 
adapted available code based on OpenMM [36] to systematically compare the output 
with that of MoDLE (see Methods). We chose OpenMM for comparison as it is an effi-
cient and widely used system for simulating loop extrusion [12, 34–36, 41].

Using the same input data, we simulated contacts in five different 10 Mbp regions on 
five different chromosomes. In general, MoDLE produces contact patterns similar to 
OpenMM (Fig.  2D and Additional file  2: Fig. S1), and MoDLE output and OpenMM 

http://github.com/paulsengroup/modle
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Fig. 2  Comparison of MoDLE with OpenMM and Micro-C data. A Simulated MoDLE contact frequencies 
solely mediated by LEFs. B Intra-TAD contacts (only) generated with MoDLE. C Lower triangle: Loop extrusion 
and intra-TAD contacts from MoDLE in the same region as for A and B. Upper triangle: Micro-C data from the 
same region. D Side-by-side comparison of Micro-C data, MoDLE output, and OpenMM output for a region 
on chromosome 3 in H1-hESC. E Quantitative comparison of the accuracy (fraction of correctly classified 
pixels relative to all pixels) of MoDLE and OpenMM in reproducing stripe and dot pixel-patterns observed 
in modeled regions in H1-hESC cells (see the “Methods” section). F In silico simulated molecular contacts 
mimicking CTCF and WAPL depletion. Left: Wildtype (WT) output of MoDLE in a region on chromosome 6 in 
H1-hESC. Middle: effect on MoDLE output when CTCF barriers weakly associate with their binding sites. Right: 
effect on MoDLE output when LEFs are less likely to be released from DNA, thus mimicking WAPL depletion
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correlate strongly (Pearson ρ = 0.93; see Additional file  2: Fig. S2). By comparing con-
tacts with corresponding Micro-C and Hi-C data (Fig. 2D), we see a median pixel accu-
racy (i.e., the ability to correctly classify pixels as a dot/stripe or not, relative to all pixels; 
see Methods) of 0.69 for MoDLE and 0.68 for OpenMM, signifying that MoDLE indeed 
simulates contacts observed in Micro-C similar to OpenMM (Fig. 2E). Note that con-
tacts generated by OpenMM involve 3D polymer modeling and thus, unlike MoDLE, 
considers random polymer contacts. As a consequence, contacts not generated by 
loop-extrusion will be included in the OpenMM output. Therefore, long-range contacts 
(~2–3 Mbp) are generally not as enriched in the MoDLE output as these contacts are 
mainly compartmental or dominated by random polymer interactions. This can be seen 
when employing a diagonal-by-diagonal correlation between MoDLE and OpenMM, 
which shows that the two methods correlate better at short range contacts than at long 
range contacts (see Additional file 2: Fig. S3). It implies that MoDLE does not by default 
recapitulate the relationship between the distance from the diagonal and the contact fre-
quencies as seen in Hi-C or Micro-C data. However, when LEF processivity is increased, 
this trend is gradually approached (see Additional file 2: Fig. S4). Comparing the output 
of MoDLE and OpenMM in A and B compartments separately shows minimal differ-
ence of performance between compartments (Additional file 2: Fig. S5).

Altering MoDLE’s input parameters to in silico mimicking depletion of CTCF and 
WAPL shows an expected loss of TAD insulation patterns [27] upon in silico depletion 
of CTCF and more pronounced stripe and dot patterns [22] when mimicking WAPL 
depletion (Fig. 2F). Similarly, altering the parameters specifying LEF density, LEF pro-
cessivity and LEF-LEF collisions shows relevant and predictable consequences in the 
data output (see Additional file 2: Fig. S6-10). We conclude that MoDLE is capable of 
simulating loop extrusion and TAD contact patterns similar to existing state-of-the-art 
molecular dynamics (OpenMM) approaches.

Benchmarking of execution time and memory usage

MoDLE is designed for fast genome-wide simulation of loop extrusion contact pat-
terns. A genome-wide run with default settings, simulating loop extrusion on the 
entire human genome using barriers from H1-hESC (38,815 CTCF barriers and 
61,766 LEFs; see Methods) takes ~40 s on a compute server (server A; see Table 1) 
and ~5 min on a laptop (laptop A; see Table  1), generating over 370 million con-
tacts. To systematically compare MoDLE execution time and memory usage with 
OpenMM, we generated synthetic input datasets with increasing genome size (1–500 
Mbp) and number of CTCF barriers (4 barriers per Mbp of DNA simulated) (see the 
“Methods” section for details). The inputs were identical in MoDLE and OpenMM. 
Each measurement was repeated 10 times for MoDLE and 5 times for OpenMM. For 
MoDLE, we run benchmarks using 1–52 CPU cores, while for OpenMM, we tested 
the CPU (server C; see Table  1) and GPU (server D; see Table  1) implementations. 
We computed median elapsed wall clock time and peak memory usage for MoDLE 
and OpenMM. The resulting comparisons show that MoDLE simulations using 52 
CPU cores complete within 0.7–71 s from the smallest to the largest genome region. 
OpenMM requires 2 h and 35 min for the smallest genome region and over 41 h for 
a genomic region of 250 Mbp (Fig. 3A). Due to very long execution times, OpenMM 
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runs above 250 Mbp were not performed. For the compared genome regions, MoDLE 
is 4000–5000 times faster than OpenMM (Fig.  3A). OpenMM simulations without 
GPU acceleration were particularly slow and were only used to simulate genome 
regions below 5 Mbp and required up to 35 h and 20 min of execution time (Fig. 3A). 
Thus, in practice running OpenMM requires access to GPUs, while MoDLE runs effi-
ciently using CPUs.

Table 1  Hardware specifications of computational resources used for simulation and benchmarking

Identifier CPU model System memory Operating system Accelerator (GPU)

Laptop A Intel Core i9-9880H(8 
cores)

64 GB (4x 16 GB, DDR4 
UDIMM 2667 MT/s 
dual-channel)

Arch Linux (Linux 
v5.17.1)

NVIDIA Quadro RTX 
4000 (8 GB)

Server A 2x
AMD EPYC 7742 (2x 64 
cores)

2048 GB (32x 64 GB, 
RDIMM DDR4 2933 
MT/s eight-channel)

RHEL 8.5 (Linux v4.18.0-
305)

N/A

Server B 2x
Intel Xeon Gold 6138 
(2x 20 cores)

192 GB (12x 16 GB, 
RDIMM DDR4 2666 
MT/s six-channel)

RHEL 7.9.2009 (Linux 
v3.10.0-1160.6.1)

Server C 2x
Intel Xeon Gold 6230R 
(2x 26 cores)

192 GB (12x 16 GB, 
RDIMM DDR4 2933 
MT/s six-channel)

Server D 2x
Intel Xeon Gold 6126 
(2x 12 cores)

384 GB (24x 16 GB, 
RDIMM DDR4 2666 
MT/s six-channel)

4x
NVIDIA Tesla P100 
(16 GB)

Fig. 3  Benchmarking MoDLE and OpenMM. A Median memory usage (in MBs) of MoDLE with 
multithreading (blue) compared to OpenMM with GPU (orange) for chromosome regions ranging in 
size from 1 to 250 Mbp. Inset shows comparison between MoDLE (blue) OpenMM with CPU (gray) for 
chromosome regions ranging in size from 1 to 5 Mbp. B Median elapsed execution time (hours) of MoDLE 
with multithreading (blue), OpenMM with CPU (gray), OpenMM with GPU (orange), and the ratio of OpenMM 
(GPU) to MoDLE. Dotted lines are extrapolated. C Comparison of the median elapsed execution time 
(seconds) of MoDLE with (blue) and without (pink) multithreading for chromosome regions ranging in size 
from 1 to 500 Mbp. D Comparison of median elapsed execution time (hours) of MoDLE utilizing from 1 to 
52 CPU cores. Blue line shows elapsed wall clock time (hours), whereas the orange line shows the CPU time 
(hours). The dotted line illustrates the corresponding theoretical perfect scaling of the executing time. Green 
line shows median peak memory usage (right axis; MB)
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Comparing peak memory usage, MoDLE uses less memory than OpenMM for regions 
smaller than 200  Mbp and requires more memory for larger systems. Nevertheless, 
memory usage of both MoDLE and OpenMM scales linearly for increasing genome 
region sizes and is for all practical purposes within reasonable limits on today’s comput-
ers regardless of genome size (Fig. 3A, B).

Multithreading efficiently reduces MoDLE’s execution time for increasingly large 
genome sizes. With multithreading (52 CPU cores on server B; see Table  1), MoDLE 
can simulate loop extrusion contacts for a genome size of 500 Mbp in a little over one 
minute (Fig. 3C). Using a single thread (1 CPU core on server B; see Table 1), the same 
run takes around 12 minutes (Fig. 3C), which is still reasonable from a practical perspec-
tive and much faster than GPU accelerated OpenMM simulations. MoDLE peak mem-
ory usage is only slightly affected by multithreading, as each simulation instance only 
requires an additional 1–10 MB of memory (Fig. 3D). When simulating more than one 
chromosome, peak memory usage does not follow a simple linear pattern (Fig. 3D), as it 
is affected by the order in which simulation tasks are executed. This can lead to scenarios 
where, for a brief period, two or more contact matrices are stored in system memory. 
We conclude that MoDLE, in contrast to OpenMM, runs efficiently even on systems 
with few CPU cores, such as laptop computers.

Further, we analyzed the strong scaling properties of MoDLE by simulating loop extru-
sion on the entire human genome (GRCh38; 3088 Mbp). Increasing the number of CPU 
cores from 1 to 52, MoDLE execution time scales close to theoretical optimum (see the 
“Methods” section for details) (Fig.  3D; blue lines). Simulating loop extrusion on the 
human genome takes from 1 h and 21 min (1 CPU core on server B; see Table 1) to 1 
min and 48 s (52 CPU cores on server B; see Table 1). We conclude that MoDLE can effi-
ciently run on machines with a wide range of capabilities, ranging from laptop comput-
ers with 4–8 CPU cores, to multi-socket servers with over 50 CPU cores. Memory usage 
increases with the number of CPU cores, but never beyond reasonable limits on modern 
computers (Fig. 3D; orange line).

In conclusion, MoDLE is orders of magnitude faster than OpenMM in simulating loop 
extrusion contacts and is especially efficient in simulating large genome regions or large 
input data sets. MoDLE can run efficiently on machines ranging from low-powered lap-
top computers to powerful multi-socket servers.

Genome wide parameter optimization

Since MoDLE simulates genome-wide loop extrusion in a few minutes, systematic explo-
ration of features underlying loop extrusion becomes feasible. To illustrate this point, we 
optimized the parameters underlying the modeled binding kinetics of CTCF. MoDLE 
implements this as a Markov process with an “Unbound” and a “Bound” state. With 
this model, the self-transition probabilities PUU and PBB specify how stably associated 
CTCF is once bound to DNA. The stationary distribution of the Markov chain reflects 
the probability of a given CTCF binding site to be bound (πB) in a simulation epoch (see 
Fig.  4A). Simulation of loop extrusion contacts using MoDLE or OpenMM can take 
advantage of ChIP-seq data from CTCF or cohesin to infer CTCF binding probabilities. 
Yet, when ChIP-seq data is not available, it is possible to simulate loop extrusion using 
a constant and uniform CTCF binding probability that is chosen to optimize similarity 
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with the Micro-C (or Hi-C) data. To optimize these parameters, we make use of an 
approach based on Bayesian optimization using Gaussian processes (see the “Meth-
ods” section). This optimization procedure attempts to minimize an objective function 
without making assumptions on its analytic form. To assess MoDLE’s performance, we 
devised an objective function representing the similarity in stripe position and length 
between two contact matrices using H1-hESC Micro-C data (see the “Methods” section 
for details). After convergence (Fig.  4B), the optimization procedure revealed a range 
of near-optimal combinations of transition probabilities and CTCF occupancy proba-
bilities instead of a single, optimal combination (Fig. 4C). Comparing the resulting loop 
contacts of selected parameter combinations with the optimal combination (πB = 0.747 
and PUU = 0.963) confirms that CTCF can occupy its motif instances with probabilities 
ranging widely between 0.6 and 0.9 as long as the stability of binding (PUU) is high (> 
0.8). However, low binding stabilites (PUU < 0.8) can also yield near-optimal concord-
ance with the Micro-C data when CTCF occupancies >0.9. Notably, the latter parameter 

Fig. 4  Genome-wide optimization of CTCF binding kinetics underlying loop extrusion. A A Markov 
chain with an Unbound (red) and Bound (blue) state underlies MoDLE loop extrusion barrier modeling. 
The self-transition probability for the Bound state (PBB) reflects how stably barrier elements (i.e., CTCF) are 
bound to their binding sites. The stationary distribution of the Markov chain (πB) provides the CTCF binding 
probability at a given epoch in the simulation. The bottom diagram (red/blue boxes) shows an illustration 
of how the binding state (Bound in blue, and Unbound in red) of a single CTCF site would change during 
a simulation depending on PUU and PBB. B Convergence of the objective function during the Bayesian 
optimization procedure. The objective function is a dissimilarity score comparing the pixels showing stripes 
and dots in the observed Micro-C data with the corresponding stripes and dots in the MoDLE output. See 
the “Methods” section (part 6) for details. C Comparison of objective function in the parameter search space 
of PUU and πB. Optimal, near-optimal, suboptimal and non-optimal combinations are highlighted with a red 
star, orange pentagon, blue square and green triangle respectively. D Side-by-side comparison of H1-hESC 
Micro-C data (top panel) and progressively less optimal combinations of PUU and πB parameters
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combination is compatible with a dynamic exchange model where CTCF transiently 
occupies its motif instances but still maintains stable loops [42]. From a selected set 
of parameter combinations (Fig.  4C), we simulated genome-wide loop extrusion con-
tacts aiming at comparing these with Hi-C and Micro-C data. The resulting comparison 
shows that even uniform, optimized CTCF binding probabilities (Fig. 4C red star) can 
recapitulate many of the features seen in Micro-C and Hi-C data (Fig.  4D). Visualiza-
tion of simulated contacts using a near-optimal parameter combination from another 
part of the plot (Fig. 4C; orange pentagon) reinforces that a range of parameter combina-
tions can recapitulate the patterns seen in the Hi-C and Micro-C data (Fig. 4D). Select-
ing a suboptimal or non-optimal combination of parameters (Fig. 4C, green triangle and 
blue square) results in unrealistic contact patterns (Fig. 4D; Additional file 2: Fig. S11 for 
an extensive comparison of different parameter combinations). In conclusion, MoDLE 
opens up for efficient exploration of parameters underlying DNA-DNA contact dynam-
ics genome wide.

Predicting effects of TAD border alterations

To illustrate how MoDLE can be used to predict the effects of alterations to borders 
between TADs, we picked the well-characterized HoxD cluster which harbors sev-
eral coordinated chromatin looping changes critical for proper limb formation in tet-
rapods [43, 44]. We focused on deletions between the centromeric and telomeric 
domain (C-Dom and T-Dom, respectively) known to cause an increase in interactions 
between the two domains [43], including a rewiring of multiple enhancers [44]. First, 
using the same parameter optimization approach described above, we inferred CTCF 
barrier occupancies in the wildtype condition based on JM8.N4 data. Then, we inacti-
vated (in silico) inter-domain barrier elements by setting the occupancy of the CTCF 
motif instances to 0 and used MoDLE to simulate the resulting changes to the predicted 
loop extrusion contact maps. MoDLE correctly predicts that loops protrude beyond the 
deleted borders merging the two (C-Dom and T-Dom) TADs (Fig. 5). We also confirm 
that the border is highly resilient and requires a deletion of a large region encompass-
ing the entire HoxD cluster to merge the TADs (see Fig.  5D–E). Inspecting enhancer 
signals in the region (Fig. 5E upper panel) confirms that the merging of the two domains 
indeed involves a rewiring of interactions of several enhancer elements, and a depletion 
of stripes at their borders. In conclusion, MoDLE can be used to predict changes to loop 
extrusion contact patterns from in silico alterations of TAD border properties.

Optimization of individual barrier parameters

In the absence of CTCF or Cohesin ChIP-seq data, MoDLE can utilize Micro-C or Hi-C 
data in combination with CTCF motif instances to effectively infer the occupancy of each 
individual barrier. To illustrate this, we selected a 5  Mb region on chromosome 1 with 
2103 CTCF candidate binding sites, corresponding to over 4000 parameters to be inferred. 
The large number of parameters for this genome region renders a Gaussian optimiza-
tion approach computationally infeasible and inadequate. Thus, we developed a system 
to optimize extrusion barrier parameters using genetic algorithms (GA) (see the “Meth-
ods” section part 10 for details). A comparison of the input Micro-C data (Fig.  6A) and 
the corresponding optimized MoDLE output (Fig. 6B) shows that even without ChIP-seq 
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information, MoDLE can be used to infer CTCF barrier occupancies individually to repro-
duce patterns seen in the Micro-C data. Comparing this MoDLE output with the corre-
sponding output from MoDLE based on Rad21 ChIP-seq data (Fig. 6C) shows that TADs 
and borders are placed in analogous regions, yet with local differences in barrier strengths 
and stripe lengths. From MoDLE data simulated using optimized barrier occupancies 
(Fig. 6D), it is possible to compute the modeled binding profile of the LEF during the sim-
ulation (Fig. 6E; see Additional file 1: Section 9 for details). Comparing these with ChIP-
seq profiles of CTCF and Rad21 (Fig. 6F and G, respectively) shows that peaks and valleys 
coincide in a large fraction of regions, signifying that MoDLE can indeed infer biologically 

Fig. 5  Using MoDLE to predict effects of deletions to TAD borders in the HoxD locus. A Micro-C data in JM8.
N4 mESC WT cells showing the interactions surrounding the HoxD cluster and the centromeric (C-DOM) 
and telomeric (T-DOM) domains in a non-mutated wildtype (WT) condition. B MoDLE output from the 
same region in the WT condition. C MoDLE output produced with a partial deletion of the border between 
the domains. D MoDLE output with a complete deletion of the border between the domains. E Differential 
contact map showing the ratio of MoDLE (WT condition; B) vs. MoDLE (full deletion, D). Regions enriched in 
MoDLE full deletion are shown in red, whereas regions enriched in MoDLE WT are shown in blue

Fig. 6  Optimization of individual barriers and computation of barrier and LEF profiles. A Micro-C (hESC) data 
from a 5Mb region on chromosome 1 (20–25 Mbp). B MoDLE output for the same region, where individual 
barriers are optimized from Micro-C data. C MoDLE output for the same region using Rad21 ChIP-seq data 
as input, D Computed barrier occupancy profile from MoDLE trained on Micro-C data (normalized with 
PUU = 0.7). E Computed LEF occupancy profile from MoDLE trained on Micro-C data. F CTCF ChIP-seq data 
from the same region. G Rad21 ChIP-seq data from the same region
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meaningful signals from its input data. We conclude that MoDLE, in the absence of ChIP-
seq input data, can reliably infer CTCF occupancies of individual barriers to simulate loop 
extrusion contact patterns and to recapitulate binding profiles of CTCF and cohesin ChIP-
seq data.

Discussion
Efficient and realistic simulation of DNA-DNA spatial contacts is increasingly required for 
modeling and exploring genome structure and regulation. For example, our ability to reli-
ably predict effects of mutations to TAD borders relies on available tools for simulating and 
comparing spatial contact data from normal and pathogenic states [14]. Further, simula-
tions can be invaluable for exploring general genome folding principles [11] or underlying 
principles of loop extrusion [12, 35, 36]. Efficient tools for loop extrusion simulation will 
contribute to increasing our understanding of mechanisms ranging from gene regulation [1, 
2] to DNA repair [3]. MoDLE represents, to the best of our knowledge, the first command-
line tool for high-throughput loop extrusion contact simulation. We expect MoDLE to 
supplement, rather than replace existing MD tools; especially in cases where large genome 
regions or large data sets need to be analyzed or simulated. This would in particular be the 
case for large-scale exploration of parameters underlying genome structure properties, as 
exemplified here for the binding kinetics of CTCF. In cases where Hi-C data is not avail-
able, we expect MoDLE to be useful for high-throughput loop extrusion contact prediction 
based on ChIP-seq, ATAC-seq, or similar data in combination with CTCF motif instances 
(as exemplified in Figs. 2 and 4). In such cases, MoDLE could be useful for prediction of 
enhancer-promoter contacts aiding identification of functional regulatory interactions [45]. 
When Hi-C (or similar) data is available in a wildtype condition, MoDLE can be used for 
large scale prediction of mutations or alterations to TAD borders (as shown in Figs. 5 and 
6). This would be useful for prioritization of mutations in genome editing settings.

New developments in experimental techniques augmented by integrated computational 
modeling will continue to shed light on new genome organization principles at a rapid 
pace [46]. With MoDLE’s focus on computational speed and its modular architecture, new 
developments and knowledge are expected to easily be integrated into the tool to increase 
the complexity and realism of the underlying modeling parameters.

Conclusions
We have developed MoDLE (Modeling of DNA Loop Extrusion), allowing high-perfor-
mance stochastic modeling of DNA loop extrusion. MoDLE simulates loop extrusion 
contact matrices on large genome regions in a few minutes, even on low-powered laptop 
computers. MoDLE is available as a command line tool and can be accessed at github.​com/​
pauls​engro​up/​modle.

Methods
MoDLE implementation and design overview

MoDLE is implemented in C++17 and is compiled with CMake. MoDLE uses a 
producer-consumer architecture where a single producer (a thread) communicates 
with multiple consumers through asynchronous message passing. The producer 
thread is responsible for reading input files and generating a set of simulation tasks 

http://github.com/paulsengroup/modle
http://github.com/paulsengroup/modle
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to be consumed by a pool of worker threads. Tasks are implemented as light-weight 
C++ structs that are computationally cheap to generate and consume. A single task 
contains all the information needed for simulating DNA loop extrusion on a single 
chromosome in a specific simulation instance. Simulation instances are for the most 
part independent from each other and can thus run in parallel. We designed MoDLE 
such that each simulation instance requires less than 10 MB of memory to simulate 
loop extrusion on large mammalian chromosomes, such as chromosome 1 from the 
human genome. The space complexity of the thread–local state is linear with respect 
to the number of LEFs or extrusion barriers, whichever is largest. For a more detailed 
overview of MoDLE’s implementation, see Additional file 1: Section 1.

Most of MoDLE’s memory budget is used to store molecular contacts generated by 
loop extrusion. MoDLE stores one instance of its custom contact matrix data struc-
ture for each chromosome that is being actively simulated. The space complexity of 
a contact matrix instance depends on the chromosome length, diagonal width and 
bin size. With default settings, representing contacts for chromosome 1 of the human 
genome requires approximately 120 MB of memory. Common operations on the con-
tact matrix class are made thread-safe using lock striping implemented through hash-
ing. For more details regarding the specialized contact matrix data structure, refer to 
Additional file 1: Section 2.

To achieve high-performance, MoDLE stores most of its data in contiguous mem-
ory using simple data structures such as vectors and bitsets (see Additional file  1: 
Section 3). Data is indexed such that extrusion barriers and extrusion units in a simu-
lation instance can be efficiently traversed in 5′-3′ and 3′-5′ directions (see Additional 
file 1: Section 8). This allows MoDLE to bind/release LEFs, process collisions, regis-
ter contacts, and extrude DNA in linear time-complexity and with good locality of 
reference. The only step relying on an algorithm with super-linear time complexity 
is indexing, which has a worst-case time complexity of O(n log n) while approaching 
O(n) for the typical case.

More design and implementation details are available in Additional file 1. The lat-
est MoDLE source code can be obtained in MoDLE’s GitHub repository: github.​com/​
pauls​engro​up/​modle

Running a simulation instance

The entire simulation instance is executed by a single worker thread and consists of 
the following phases:

•	 Wait until one or more tasks are available on the task queue.
•	 Setup the simulation internal state based on the task specification, this includes 

seeding the PRNG and setting the initial state for the extrusion barriers based on 
the occupancy (see Additional file 1: Sections 1, 3, and 4).

•	 Run the simulation loop until a stopping criterion is met.

A single simulation epoch is articulated in the following steps:

http://github.com/paulsengroup/modle
http://github.com/paulsengroup/modle
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•	 Select (inactive) LEFs that are currently not associated with DNA, and activate them. 
This is done by loading LEFs to a random position on the chromosome that is being 
simulated. The position is sampled from a uniform distribution (see Additional file 1: 
Section 5).

•	 Index extrusion units moving in the same direction so that they can be visited in 
5′-3′ and 3′-5′ order (see Additional file 1: Section 8).

•	 Randomly select a subset of the active LEFs and use their position along the chromo-
some to generate molecular contacts in the chromosome contact matrix (see Addi-
tional file 1: Section 9).

•	 Generate candidate moves for each extrusion unit (see Additional file 1: Section 10).
•	 Update the extrusion barrier states by computing the next state in the Markov chain 

used to model extrusion barriers (see Additional file 1: Section 6).
•	 Detect collision events between LEFs and extrusion barriers as well as between LEFs 

(see Additional file 1: Sections 12b-d and g).
•	 Update the candidate moves for extrusion units involved in collision events to satisfy 

the constraints imposed by the collision events (see Additional file 1: Sections 12e-g).
•	 Advance LEFs’ extrusion units by their respective moves (see Additional file 1: Sec-

tion 5). Because of the preceding steps, this will yield a new valid simulation state, as 
moves have been updated to satisfy all the constraints imposed by collision events.

•	 Iterate over active LEFs and release them based on the outcome of a Bernoulli trial 
whose probability of success is computed based on the average LEF processivity and 
LEF state (e.g., LEFs whose extrusion units are involved in collision events with a 
pair of extrusion barriers in convergent orientation have a lower probability of being 
released). LEFs that are being released go back in the pool of available LEFs and will 
be loaded on a new genomic region during the next epoch (see Additional file 1: Sec-
tion 5).

MoDLE will continue iterating through the above steps until one of the simulation 
stopping criteria is met:

•	 A given number of epochs have been simulated.
•	 Enough contacts have been registered to reach a target contact density.

Both stopping criteria can be modified by users. By default, MoDLE will simulate loop 
extrusion until reaching an average contact density of 1 contact per pixel.

Hardware specifications

Analysis and benchmark code used to generate the data accompanying was run using 
the hardware specifications listed in Table 1.

MoDLE simulations

MoDLE’s data used for the heat map comparison shown in Fig. 2 were generated using 
the heatmap_comparison_pt1 Nextflow [47] workflow available on GitHub [48] and 
archived on Zenodo [49].
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The list of candidate extrusion barrier positions and directions were generated by run-
ning MAST from the MEME suite [50] on GRCh38.p13 (GCF_000001405.39 [51] using 
the CTCF frequency matrix MA0139.1 from JASPAR 2022 [52].

The list of candidate barriers was then filtered using CTCF and RAD21 ChIP-seq data 
(fold-change over control and optimal IDR thresholded peaks). In brief, candidate barri-
ers were intersected with the narrow-peak BED files for CTCF and RAD21. Then, each 
filtered barrier region was assigned with an occupancy computed by passing the RAD21 
fold-change over control signal through a logistic function. Finally, the output of the 
logistic function was binned at 1 kbp to yield a barrier occupancy that is proportional 
to the number of CTCF motif instances as well as RAD21 fold-change over control sig-
nal. This procedure is largely based on [Fudenberg 2016]. The result of the procedure 
outlined above is a list of extrusion barrier occupancies binned at 1 kbp resolution. 
CTCF and RAD21 ChIP-seq for H1-hESC data was downloaded from ENCODE [53, 
54] (ENCFF255FRL [55], ENCFF473IZV [56], ENCFF821AQO [57], and ENCFF913JGA 
[58].

Contact matrices were generated using MoDLE v1.0.0-rc.7 with the parameters from 
Additional file 3: Table S1. Parameters not listed in the table were left at default.

Contact matrices produced by MoDLE were then subsampled to an average contact 
density of 3 using cooltools random-sample v0.5.1 [59]. The resulting cooler files were 
then converted to multi-resolution cooler files using cooler zoomify [40]. Finally, multi–
resolution contact matrices were visualized in HiGlass (v1.11.7) [60].

Molecular dynamics (OpenMM) simulations

Molecular dynamics data used for the heat map comparison in Fig.  2 were generated 
using the heatmap_comparison_pt1 Nextflow workflow available on GitHub [48] and 
archived on Zenodo [49]. This workflow uses OpenMM [37] to run MD simulations.

Simulation code is largely based on [61]. Simulations were carried out on 10 Mbp 
regions from chromosomes 2, 3, 5, 7, and 17 using a monomer size of 1 kbp and 200 kbp 
for LEF processivity and separation. Extrusion barrier positions, directions, and occu-
pancy were generated following the procedure outlined in the “Methods” section (part 
1).

Contact matrices were generated with Polychrom [62] using a bin size of 5 kbp. The 
resulting cooler files were then converted to multi-resolution cooler files using cooler 
zoomify v0.8.11 [40].

Assessing loop extrusion feature similarities from contact frequencies

To objectively compare the contact matrices produced by MoDLE with contact matrices 
generated from Micro-C experiments and MD simulations, we developed a specialized 
scoring algorithm. The algorithm was inspired by Stripenn [63].

The score is computed on rows and columns of a pair of contact matrices of identical 
resolutions transformed as follows.

First, both matrices are convolved using the difference of Gaussian (DoG). This high-
lights stripe and dot patterns found in contact matrices. Next, the transformed contact 
matrices are discretized using a step function mapping values below a certain threshold 
to 0 and all the others to 1. This results in two binary matrices, where non-zero pixels 
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can be interpreted as part of a stripe or dot. Finally, we take advantage of the fact that 
stripes produced by loop extrusion always should start from the matrix diagonal. Thus, 
given a row or column of pixels starting on the matrix diagonal, and extending away 
from it, we stipulate that the last non-zero pixel in the vector of values represents the 
end of a stripe produced by DNA loop extrusion.

Given the above, we can measure the similarity of stripes between two contact matri-
ces by considering the same row of pixels in a pair of contact matrices, computing 
the last non-zero pixels in both rows, and counting the number of matches. The same 
approach can be applied to columns of pixels. Finally, counting mismatches instead of 
matches can be used as a measure of dissimilarity. Contact matrix convolution and dis-
cretization, as well as computing this special score, can be done using MoDLE’s helper 
tools (modle_tools transform and modle_tools evaluate respectively).

Contact matrix comparison

For comparison with MoDLE and OpenMM output, we used available Hi-C and Micro-
C data from H1-hESC because these were of high resolution and had accompanying 
ChIP-seq data for both CTCF and RAD21 (4DNFIFJH2524 [64], 4DNFI9GMP2J8 [65], 
ENCFF255FRL [55], ENCFF473IZV [56], ENCFF821AQO [57], and ENCFF913JGA 
[58]). To assess stripe similarity of a pair of contact matrices, we used the scoring algo-
rithm described in the “Methods” section (part 6). The score was computed using 
Micro-C data as the ground truth. Pixel accuracy was computed as the ratio of correctly 
classified pixels to the total number of pixels in a 3 Mbp subdiagonal window around 
each barrier. The Pearson correlation between OpenMM and MoDLE was calculated 
based on all corresponding 5 kbp-pixel values in the 3 Mbp subdiagonal window of the 
OpenMM simulation regions.

Benchmark methodology

Benchmarks were run on a computing cluster using the run_benchmarks Nextflow 
workflow available on GitHub [48] and archived on Zenodo [49].

We ran two suites of benchmarks to assess the performance of MoDLE and compare it 
with that of molecular dynamics simulations based on OpenMM.

The first suite (Fig. 3A–C) compared the performance of MoDLE and OpenMM when 
simulating loop extrusion on an artificial chromosome with increasing length (ranging 
from 1 to 250 Mbp).

This benchmark was run using MoDLE (1 and 52 CPU cores) as well as OpenMM 
GPU and CPU implementation (1 CPU core, 1 GPU, and 8 CPU cores respectively). 
CPU benchmarks were run on server C while benchmarks relying on GPU acceleration 
were run on server D (see Table 1). For OpenMM CPU implementation, we limited the 
number of CPU cores to 8 (16 SMT cores) as the CPU implementation is known to not 
scale well past 16 threads [66]. OpenMM CPU implementation was used to simulate 
chromosome lengths up to 5 Mbp for practical reasons. MoDLE was run with default 
settings except for the number of cells, which was set to 104 to match the maximum 
number of available SMT cores.

OpenMM simulations were run using a monomer size of 2 kbp and LEF processivity 
and separation of 200 kbp.
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The second suite of benchmarks involved simulating loop extrusion on the human 
genome (GRCh38) using MoDLE with a number of CPU cores ranging from 1 to 52. 
MoDLE was run with default settings except for the number of cells which was set to 
104. The extrusion barrier annotation was generated as described in the “Methods” sec-
tion (part 1).

In both cases, measurements were repeated 10 times for MoDLE and 5 times for 
OpenMM.

Genome‑wide extrusion barrier parameter optimization

The genome-wide optimization of parameters affecting extrusion barrier occupan-
cies was carried out using the gw_param_optimization Nextflow workflow available on 
GitHub [48] and archived on Zenodo [49].

The first step in the optimization procedure is running Stripenn v1.1.65.7 [63] on the 
H1-hESC Micro-C (4DNFI9GMP2J8 [67]) dataset to identify architectural stripes, which 
resulted in the identification of 5254 stripes. A small subset of these stripes were visually 
validated by comparing the annotated stripes with stripes that are visible from Micro-C 
data. Annotated stripes were split into two equally sized datasets by random sampling 
without replacement. One dataset was used for parameter optimization while the other 
was used for validation.

Parameter optimization is performed through the Bayesian optimization from scikit-
optimize v0.9.0 [68] using an objective function based on the scoring metric described in 
Methods (part 6).

The parameters that are being optimized are the extrusion barrier occupancy (πB) and 
PUU, the self-transition probability of the unbound state.

The evaluation of the objective function proceeds as follows:

•	 A new genome-wide simulation is performed using the parameters proposed by the 
optimizer.

•	 The resulting cooler file is transformed with modle_tools transform by applying the 
difference of Gaussians followed by a binary discretization step, where pixel values 
above a certain threshold are discretized to 1 and all the others to 0.

•	 The score described in Methods (part 6) is then computed row and column-wise 
on the entire genome using modle_tools eval, producing two BigWig files. Here, the 
transformed Micro-C 4DNFI9GMP2J8 [67] dataset is used as reference.

•	 Scores are intersected with the extrusion barrier dataset for optimization and valida-
tion considering stripe direction (i.e., vertical stripes are intersected with column-
wise scores while horizontal stripes are intersected with row-wise scores).

•	 Scores resulting from the intersection are then averaged, producing a floating-point 
number that is then returned to the optimizer, which will try to minimize this num-
ber.

In the transformation step, a σ of 1.0 and 1.6 are used to generate the less and more 
blurry contact matrices to subtract when computing the difference of Gaussians. For the 
binary discretization of the Micro-C data, a threshold of 1.5 was used, while simulated 
data was discretized using 0.75 as threshold.
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The optimizer evaluated the objective function 400 times, each time computing the 
average score for the training and validation datasets.

Finally, the parameters that yielded the best score on the training dataset were used 
to generate a contact matrix in cooler format (see Fig. 4D, bottom panel).

Local extrusion barrier parameter optimization

The local extrusion barrier parameter optimization was carried out using the extru-
sion_barrier_param_optimization Nextflow workflow available on GitHub [48] and 
archived on Zenodo [49].

In brief, this workflow takes as input an extrusion barrier annotation consisting of 
barrier position and direction, and then optimizes the parameters for each individual 
barrier to maximize similarities with a reference HiC matrix.

The optimization approach is based on evolutionary algorithms (EAs) and was 
developed using primitives from the DEAP library [69].

Optimization was performed on a 5 Mbp region of the human chromosome 1 (20–
25 Mbp, GRCh38) using the list of candidate CTCF binding sites overlapping this 
region as extrusion barrier annotation, for a total of 2103 extrusion barriers. Candi-
date CTCF binding sites were annotated using MAST as described in Methods (part 
4). The H1-hESC Micro-C (4DNFI9GMP2J8 [65]) matrix was used as reference.

At a high level, the optimization workflow consists of running the same optimiza-
tion script three times, using the output of an optimization run as input for the next 
run. The first run is tuned to favor exploration over exploitation, while the second and 
third runs used more conservative optimization parameters to progressively reduce 
the rate of exploration and favor exploitation.

The following is an overview of how the optimization strategy was developed:

–	 The optimization uses μ, λ as evolution strategy, where μ is the population size 
and λ is the number of offspring produced each generation. With this strategy, 
offspring that make it through the selection stage replace the previous population 
entirely. By default, μ = 256 and λ = 512.

–	 Individuals are represented as two lists of real numbers of size N, where N is the 
number of extrusion barriers to be optimized. The first list of numbers represent s 
extrusion barrier occupancies (πB), while the second list represents the self-transi-
tion probability of the unbound state (PUU).

–	 Individuals are mutated by adding a relatively small offsets to −→πB and 
−−→

PUU . Offsets 
are drawn from a normal distribution with μ = 0 and σ set based on the desired 
degree of exploration. Values are clamped between 0.0 and 1.0, so mutating an 
individual always leads to another valid individual.

–	 The two-point crossover operator is used for mating.
–	 During selection, offsprings are sorted based on their fitness, and the top μ off-

springs are selected to proceed to the next generation.
–	 The population is initialized differently depending on whether results from a pre-

vious optimization run are available.
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–	 Results from previous optimization are available: population initialized through 
random sampling with replacement from the set of fittest individuals that ever 
lived in the previous optimization run.

–	 Otherwise, population is randomly initialized by generating μ individuals with πB 
and PUU set to random numbers drawn from the uniform distribution U(0.0,1.0).

–	 Fitness is computed using a slightly modified version of the scoring function 
f
(

−→
x
)

described in Methods (part 6). Function f
(

−→
x
)

 is not effective at guiding the 
optimization when occupancy is relatively low (e.g., < 0.5), and there are no stripes 
or dots in the reference matrix, as any parameter combination resulting in such a 
low occupancy produces no visible stripe or dot. To this end, we define a penalty 
function p(πB) that returns a coefficient between 1.0 and 2.0. The returned coeffi-
cient is close to 2.0 when πB approaches 0.5 and rapidly falls to 1.0 when πB moves 
towards 0.0 or 1.0. πB very close to 1.0 are also penalized. See Additional file 2: Fig. 
S12 for more details regarding the penalty function p(πB).

–	 The output of the scoring function f −→
x  and penalty function p(πB) are multiplied 

together to produce the score used to compute the fitness of an individual s
(

−→
x  , 

πB

)

= f
(

−→
x
)

· p(πB) . The fitness of an individual is computed as the average of the 

scores s
(

−→
x  , πB) computed in correspondence of each extrusion barrier object of the 

optimization.
–	 The optimization runs until one of the following conditions is met:

–	 A target number of generations have been simulated (i.e., 1000 generations).
–	 Optimizer failed to significantly improve the population fitness (e.g., less than 

1% fitness improvement over the last 25 generations).
–	 The population variability approaches 0.

To improve the performance of the optimizer on these regions, we split the popula-
tion into mainland population and one or more insular populations and change some 
aspects of the optimization strategy.

First, we initialize and optimize the mainland population (μ = 256 and λ = 512). 
When one of the stopping criteria is met, the fittest individuals from mainland are 
used to initialize the population of m islands. For each island, we randomly select and 
mask k consecutive alleles or barriers. k is generated by rounding a number drawn 
from a normal distribution with μ = 25 and σ = 5.0. Crucially, masked barriers are 
inactive and are not allowed to mutate.

For one of the m islands, instead of masking a random stretch of extrusion barri-
ers, we inactivate all weak barriers when initializing the population. Thus, we replace 
alleles with πB < 0.5 with the πB = 0.0; PUU = 1.0 allele. In this case, all loci are allowed 
to mutate. Islands have μ = 128 and λ = 256. Islands evolve independently from each 
other and from the mainland and follow the same stopping criteria used for the 
mainland.

Once all islands have been optimized, half of the mainland individuals are replaced 
with individuals from any of the islands. Island individuals are selected using fitness 
proportionate selection (i.e., random sampling with replacement, weighted by fitness).
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Mainland and island optimization continue alternating until a total target number of 
mainland generations have been simulated, or when an optimization cycle fails to sig-
nificantly improve the average mainland population fitness.

Simulations to predict the effect of TAD border alterations

Data for this section was generated using the comparison_with_mut Nextflow workflow 
available on GitHub [48] and archived on Zenodo [49].

Simulations were carried out using GRCm38.p6 as reference genome 
(GCF_000001635.26 [70].

CTCF and RAD21 ChIP-seq fold-change over control for JM8.N4 was generated by 
processing data from GSE90994 [71] (SRR5085152 [72], SRR5085153 [73], SRR5085154 
[74], SRR5085155 [75], SRR5085156 [76], SRR5085157 [77]) using the ENCODE ChIP-
seq pipeline v2 [78] and using ENCODE4 genomic datasets for GRCm38.

The wild-type extrusion barrier annotation was generated following the procedure 
outlined in the “Methods” section (part 4).

The barrier annotation was further refined using the parameter optimization strategy 
described in the “Methods” section (part 10) using a JM8.N4 Micro-C dataset as refer-
ence (4DNFINNZDDXV [79]).

The optimized extrusion barrier annotation was then mutated by removing extrusion 
barriers overlapping the del1-13d9lac and delattP-Rel5d9lac regions from Rodríguez-
Carballo 2017 [43].
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Availability of data and materials
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Archived version: 10.5281/zenodo.6424697
License: MIT
Operative system(s): UNIX-like (Platform independent when using containers)
Programming language: C++
Other requirements:
• C++17 compiler (e.g., GCC 8+, Clang8+, AppleClang 10+)
• CMake 3.18 or newer
• Conan 1.50 or newer
• Python3 (to install and run Conan)
• Scipy (Python3 package, required to run unit tests)
• wCorr (R package, required to run unit tests)
The complete list of MoDLE dependencies is available in Additional file 3: Table S2. Dependency installation is automated 
using CMake and Conan.
MoDLE source code is available on GitHub at https://​github.​com/​pauls​engro​up/​modle [80] and is archived on Zenodo 
at https://​doi.​org/​10.​5281/​zenodo.​64246​97 [81]. MoDLE’s version used throughout the manuscript is MoDLE v1.0.0-rc.7 
[82], except for performance benchmarks which used MoDLE v1.0.0-rc.3 [83].
Code used for the data analysis is available on GitHub at https://​github.​com/​pauls​engro​up/​2021-​modle-​paper-​001-​data-​
analy​sis [48] and is archived on Zenodo at https://​doi.​org/​10.​5281/​zenodo.​70729​39 [49].
Data produced by running the runme.sh script from the data analysis code repository, including simulated contact 
matrices in cooler format were archived on the NIRD research data archive at DOI 10.11582/2022.00056 [84].
Reference genome assembly and assembly report for GCF_000001405.39_GRCh38.p13 [51] and GCF_000001635.26 [70] 
were downloaded through the NCBI FTP server [85].
ChIP-seq data for the following accession numbers were downloaded from the ENCODE portal [53, 54]: ENCFF255FRL 
[55], ENCFF473IZV [56], ENCFF821AQO [57], and ENCFF913JGA [58].
ChIP-seq data for the following accession number was downloaded from the Gene Expression Omnibus: GSM4665702 
[86].
ChIP-seq sequencing data for GSE90994 [71] were downloaded from EBI’s mirror of the SRA: SRR5085152 [72], 
SRR5085153 [73], SRR5085154 [74], SRR5085155 [75], SRR5085156 [76], and SRR5085157 [77].
H1-hESC Hi-C and Micro-C data as well as JM8.N4 Micro-C data in multi-resolution cooler format (4DNFIFJH2524 [64], 
4DNFI9GMP2J8 [67], 4DNFINNZDDXV [79]) were downloaded from the 4DNucleome Data Portal [87].
The frequency matrix in MEME format for the CTCF motif (MA0139.1) was downloaded from JASPAR 2022 CORE non-
redundant database [52].
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