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Abstract 

Background:  Degradation rate is a fundamental aspect of mRNA metabolism, and 
the factors governing it remain poorly characterized. Understanding the genetic and 
biochemical determinants of mRNA half-life would enable more precise identification 
of variants that perturb gene expression through post-transcriptional gene regulatory 
mechanisms.

Results:  We establish a compendium of 39 human and 27 mouse transcriptome-wide 
mRNA decay rate datasets. A meta-analysis of these data identified a prevalence of 
technical noise and measurement bias, induced partially by the underlying experimen-
tal strategy. Correcting for these biases allowed us to derive more precise, consensus 
measurements of half-life which exhibit enhanced consistency between species. We 
trained substantially improved statistical models based upon genetic and biochemical 
features to better predict half-life and characterize the factors molding it. Our state-
of-the-art model, Saluki, is a hybrid convolutional and recurrent deep neural network 
which relies only upon an mRNA sequence annotated with coding frame and splice 
sites to predict half-life (r=0.77). The key novel principle learned by Saluki is that the 
spatial positioning of splice sites, codons, and RNA-binding motifs within an mRNA is 
strongly associated with mRNA half-life. Saluki predicts the impact of RNA sequences 
and genetic mutations therein on mRNA stability, in agreement with functional meas-
urements derived from massively parallel reporter assays.

Conclusions:  Our work produces a more robust ground truth for transcriptome-wide 
mRNA half-lives in mammalian cells. Using these revised measurements, we trained 
Saluki, a model that is over 50% more accurate in predicting half-life from sequence 
than existing models. Saluki succinctly captures many of the known determinants of 
mRNA half-life and can be rapidly deployed to predict the functional consequences of 
arbitrary mutations in the transcriptome.

Keywords:  mRNA stability, mRNA half-life, Deep neural networks, Post-transcriptional 
gene regulation
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Introduction
The steady-state level of RNA is governed by two opposing forces: the rate of transcrip-
tion and the rate of decay. While much headway has been made in the problem of pre-
dicting steady-state mRNA abundances through the lens of DNA-encoded features that 
influence transcription rates [1–5], relatively less is known about the mRNA-encoded 
determinants that govern decay rates. Models to predict half-life from mRNA sequence 
in mammals (achieving r2=0.20 and r2=0.39) [6, 7] have severely lagged behind the per-
formance of those in yeast (achieving r2=0.59) [8]. Integrating the modeling of tran-
scription and mRNA decay into a unified model to predict steady-state mRNA levels 
[2] from genetic sequences would elucidate the full spectrum of regulatory functions of 
untranslated regions (UTRs) within mRNA, synonymous codon mutations, and non-
coding DNA regions such as promoters. Consequently, this would advance the goals of 
providing a mechanistic explanation for evolutionary constraint in conserved sequences 
[9–11], identifying causal eQTLs [12, 13], diagnosing pathogenic non-coding genetic 
variants [14], and designing more stable and effective mRNA therapeutics [15].

The rate of RNA decay is experimentally measured as its half-life, or the time elapsed 
until the initial RNA concentration has decreased by half. Experimental measurement of 
transcriptome-wide half-life can be achieved by one of two strategies: (i) the application 
of transcriptional inhibitors [e.g., Actinomycin D (ActD) and α-Amanitin] to cells, or (ii) 
a pulse labeling-based method of pulsing modified nucleosides (e.g., 4sU, 5EU, and BrU), 
optionally followed by chasing with unmodified nucleosides (i.e., a pulse-chase strategy) 
to distinguish newly synthesized RNA from pre-existing RNA [16]. Both strategies are 
followed by the profiling of RNA levels over a time course, and data for each gene are fit 
to an exponential decay curve to ascertain the gene’s half-life. Although it has long been 
appreciated that different methods induce measurement bias [16–18], many modern 
studies that deploy these methodologies fail to acknowledge the prevalence and impact 
of these biases on result interpretation.

Measurement biases emerge for a multitude of reasons. Transcriptional inhibitors are 
convenient, but do not necessarily enter all cells to fully block transcription [16]. More-
over, such drugs can lead to cytotoxicity [17] or impact unintended pathways such as 
translation, thus preventing the attachment of mRNA to ribosomes and resulting in arti-
ficially altered mRNA metabolism [16, 18]. Pulse-chase methods are inaccurate in the 
scenario in which the half-life is shorter than the chase period, and cellular parameters 
such as doubling time and drug uptake further bias half-life measurement [18]. Finally, 
the incorporation of uridine analogs is thought to be a stochastic process that is propor-
tional to the number of Us in an mRNA, leading to mRNA-length-dependent labeling 
and enrichment biases [19, 20]. Collectively, the ultimate consequence of these biases is 
the disagreement between different methods in the physiologically relevant estimate of 
half-life [16].

It has been postulated that considering an ensemble of different methods would 
empower a more precise measurement of half-life, providing a path towards circumvent-
ing the tradeoffs and limitations among any individual method [18]. While a meta-anal-
ysis of half-life datasets in yeast revealed surprisingly discordant results among half-lives 
measured by different research groups [21], the consistency among half-life datasets in 
mammalian organisms remains largely uncharacterized. Collecting such a compendium 
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of datasets would potentially enable the derivation of consensus measurements of cel-
lular mRNA half-life in a fashion that is less obfuscated by technical noise and methodo-
logical bias.

A precise measurement of mRNA half-life would enable a clear-eyed examination of 
how different molecular pathways modulate half-life relative to one another. Numerous 
RNA-binding proteins (RBPs) and sequence-encoded features have been implicated in 
regulating half-life. Examples include (i) generic features of an mRNA such as its GC 
content [22], length, and ORF exon junction density (i.e., the number of exon junctions 
per kilobase of ORF sequence) [6, 7]; (ii) the presence of microRNA (miRNA) binding 
sites [23–25]; (iii) codon frequencies and interactions with the translation machinery [8, 
26–30]; (iv) mRNA structure [31, 32]; (v) Pumilio binding elements [33]; (vi) AU-rich 
elements (AREs) [16, 34]; and (vii) YTHDF proteins [35] via m6A recognition [36, 37].

Attempts to examine the relative contribution of sequence and biochemical features 
to the specification of half-life [6–8, 38–40] have been undermined by half-life measure-
ment biases, and have not exhaustively considered all of the known pathways that affect 
RNA stability. In this study, we assembled a compendium of 39 human and 27 mouse 
mRNA half-life datasets to derive more precise, consensus measurements of mRNA 
stability in mammalian cells. Using our enhanced measurements, we derived improved 
genetic and biochemical models towards the goals of quantifying the relative influence 
of different pathways and improving the predictability of half-life from such features. 
Our state-of-the-art model Saluki, a hybrid convolutional and recurrent neural network, 
is capable of predicting the effects of mRNA sequences and genetic variants therein on 
mRNA stability, in agreement with functional measurements derived from massively 
parallel reporter assays.

Results
Comparison of study concordance in the mammalian half‑life compendium

To generate a compendium of mammalian half-life datasets, we mined the literature for 
published human and mouse half-life data. In total, we identified 33 publications report-
ing transcriptome-wide half-lives, with 16 submitting human data, 14 submitting mouse 
data, and 3 submitting data from both species (Table 1). Counting individual replicates, 
this led to a total of 54 human and 27 mouse half-life measurements. The human stud-
ies encompassed 10 cell types and 5 measurement procedures, while the mouse stud-
ies encompassed 8 cell types and 3 procedures (Table  1). Each of the human studies 
reported half-lives for between ~2500 and 13,000 genes (Additional file 1: Fig. S1), while 
those from the mouse reported half-lives for between ~500 and 18,000 genes (Additional 
file 1: Fig. S2a) (Additional file 2: Table S1).

In order to evaluate the consistency among studies, we computed the pairwise Spear-
man correlations of all datasets, using the subset of common genes measured by each 
pair of studies. Most pairs of human datasets exhibited strong (i.e., ≥0.6) correlations 
(Fig. 1). However, the datasets segregated largely into two clusters; the first encompassed 
a diverse array of studies, cell types, and procedures, and the second encompassed data-
sets from only five studies [27, 44, 46, 47, 53] which appeared to be outliers in that they 
exhibited poor (i.e., ≤0.5) correlation to most studies other than to those from their own 
batch (Fig. 1). Most subclusters did not cleanly segregate by cell type or experimental 
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method; rather, they tended to cluster closely by their study or laboratory of origin. This 
indicated the likely presence of batch effects which masked the cell-type-specific signal 
captured by the data. Datasets from the mouse exhibited similar patterns of clustering, 
except that only two studies [60, 64] appeared to be the greatest outliers due to their 
poor correlation to most other studies (Additional file 1: Fig. S2b).

Comparison of methodological bias and cell‑type specificity captured in the mammalian 

half‑life compendium

Given the wide disparity in reported genes (Additional file 1: Fig. S1 and S2a) and poten-
tial existence of outliers in some samples, we pre-processed our gene × sample (i.e., rep-
resenting rows × columns) human and mouse half-life matrices to improve our ability 

Table 1  Overview of studies compiled for meta-analysis, listing each publication by a GroupID, the 
method of determining half-lives, the species of origin (M: mouse, H: human), the cell type of origin, 
and number of samples (comma-separated when listing human and mouse, respectively)

GroupID Method Species Cell types Samples Reference

Akimitsu BrU (BRIC-seq) H HeLa 1 [41]

Akimitsu2 BrU+4sU (Dyrec-seq) H HeLa 1 [42]

Bazzini 4sU (SLAM-seq), ActD H K562, RPE, HeLa, HEK293 4 [29]

Cramer 4sU (TT-seq) H K562 1 [43]

Cramer2 4sU (TT-seq) H K562 1 [44]

Darnell ActD H HepG2 1 [38]

Dieterich 4sU H HEK293, MCF-7 4 [45]

Gejman 4sU H LCLs (7 lines) 15 [46]

He ActD H HeLa 2 [36]

Jaffrey ActD H HEK293 1 [47]

Marks ActD H HeLa 1 [48]

Mortazavi 4sU (Long-TUC-seq) H GM12878 1 [49]

Oberdoerffer BrU (BRIC-seq) H HeLa 1 [50]

Rinn ActD H K562, H1-ESC 6 [51]

Rissland 4sU H HEK293 4 [27]

Shendure 4sU H A549 1 [52]

Rissland2 4sU, ActD, α-Amanitin H, M HEK293, 3T3 6, 2 [53]

Simon 4sU (TimeLapse-seq) H, M K562, MEF 2, 2 [54]

Zimmer ActD H, M B cell, 3T3 1, 1 [55]

Ameres 4sU (SLAM-seq) M mESC 1 [56]

Bartel ActD M 3T3 1 [7]

Bartel2 5EU M 3T3 2 [57]

Darnell ActD M mESC 1 [58]

Dolken 4sU (SLAM-seq) M M2-10B4 (bone marrow) 1 [59]

Hanna ActD M mESC, mEB 2 [60]

Hu ActD M mESC (E14Tg2a) 1 [61]

Ko ActD M mESC 4 [6]

Koszinowski 4sU M 3T3 1 [62]

Mattick ActD M Neuro-2a 1 [41]

Regev 4sU M Dendritic cells 1 [63]

Regev2 4sU M Dendritic cells 1 [64]

Selbach 4sU M 3T3 2 [65]

Wilusz ActD M C2C12 3 [66]
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to evaluate sample relatedness and examine possible sources of measurement bias. We 
standardized the samples in each matrix, used iterative PCA to impute missing gene 
measurements, and performed quantile-normalization to align the samples into simi-
lar distributions. In total, we recovered 13,921 human genes and 14,463 mouse genes in 
our matrices (Additional file 3: Table S2). Finally, we performed PCA on our sample × 
gene matrix (i.e., the transpose of our imputed matrix) to evaluate the relatedness among 
the 54 human samples. As observed previously (Fig. 1), PC1 identified samples from a 
single study [46] to be the greatest outliers relative to all other studies (Additional file 1: 
Fig. S3). We therefore found it parsimonious to assume that measurements from this 
study were severely biased, and henceforth excluded samples from this study from fur-
ther analysis.

Reperforming the PCA analysis on the remaining 39 human samples revealed 
weak to non-existent clustering by cell type, and stronger clustering by measurement 
method (Fig.  2a). Specifically, PC2 seemed to segregate samples derived from pulse 
labeling experiments (i.e., those using 4sU, BrU, and BrU4sU) with those derived from 

Fig. 1  Comparison of half-lives in a compendium of human datasets. Heatmap of the absolute value of the 
Spearman correlations measured between half-lives derived from each pair of 54 human samples. Absolute 
values were used to accommodate five samples from four studies [29, 38, 42, 48] whose data were deposited 
as degradation rates rather than half-lives. Samples are clustered using hierarchical clustering according to 
the indicated dendrogram. Rows are labeled by the study of origin (Table 1) and colored by the cell type of 
origin and measurement approach



Page 6 of 28Agarwal and Kelley ﻿Genome Biology          (2022) 23:245 

transcriptional shutoff experiments (i.e., those using ActD and α-Amanitin). After aver-
aging the PC2 values among replicates, we observed a statistically significant difference 
between the PC2 distributions for these two methodological classes (Fig. 2b), revealing a 
fundamental inconsistency in these techniques.

To ascertain whether the human data captured cell-type-specific half-lives, we 
evaluated all pairwise Pearson correlations between half-lives from samples derived 
from different studies (in order to minimize the influence of inflated correlations 
among replicates of the same study), but assessed on either the same cell type or 
different cell types. We hypothesized that we should see stronger correlations 
among samples evaluating the same cell type; however, we did not observe statis-
tical support for this hypothesis (Fig.  2c), indicating that there was no detectable 

Fig. 2  Assessment of measurement bias and cell-type specificity present in half-life data. a PCA of all human 
samples except those from an outlier study [46], with sample names colored according to cell type and 
corresponding data point colored according to measurement approach. Axes are labeled according to the 
percentage of variance among samples explained by the first two PCs. See also Additional file 1: Fig. S3 for 
the same analysis using all samples. b Boxplot of sample distributions along PC2, partitioned according to the 
measurement method (i.e. pulse labeling or transcriptional shutoff ). Replicates for the same study were first 
averaged according to their PC2 value prior to assessing differences between the methods, with statistical 
differences between distributions evaluated using a two-sided Wilcoxon rank-sum test. c Evaluation of the 
Pearson correlations between pairs of half-life samples. Considered in this plot were the subset of pairs of 
two different studies that interrogated half-lives in either the same cell type or different cell types. Statistical 
differences between the distributions were evaluated using a one-sided Wilcoxon rank-sum test to assess 
whether correlations from the same cell type exceeded those from a different cell type. d, e These panels 
are the same as those in a and c, respectively, except compare mouse samples. f Comparison of consensus, 
cell-type agnostic (i.e., methodology and cell-type independent) measurements of human and mouse 
half-lives among one-to-one orthologous genes. Half-lives for each species were computed as PC1 of the 
respective gene × sample matrix. Also indicated are the Pearson (r) and Spearman (rho) correlation values as 
well as sample size (n) of genes considered. Shown in all boxplots are the median value (bar), 25th and 75th 
percentiles (box), and 1.5 times the interquartile range (whiskers)
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cell-type-specific signal for half-lives in human cells. Nearly identical results were 
achieved using Spearman correlations instead of Pearson correlations (data not 
shown). To account for the possibility that our imputation procedure influenced 
these results, we repeated these analyses by computing correlations from the subset 
of genes measured between each pair of samples (i.e., prior to imputation). Although 
the magnitudes of the correlations were slightly lower for all sample pairs, we again 
observed no cell-type-specific signal for half-lives in human cells. Given the known 
tissue-specific roles of miRNAs [67] and other post-transcriptional RBP regulators, 
we find it more plausible that technical noise and methodological bias obscure the 
cell-type specificity of half-life measurements relative to the possibility that none 
exists biologically.

Next, we again used PCA to evaluate the relatedness among the 27 mouse samples. 
In the mouse, there appeared to be stronger clustering by cell type and measure-
ment methodology along both PC1 and PC2 (Fig. 2d). Indeed, Pearson correlations 
between pairs of half-life measurements from the same cell type and different study 
exceeded those from different cell types and different studies (Fig.  2e), suggesting 
the detection of a cell-type-specific signature. Although this observation is encour-
aging, the limited sample size, coupled with the confounded nature of measurement 
methodology and cell type, makes it ultimately impossible to decompose the rela-
tive influence of methodological bias and cell-type specificity in the measurement of 
mouse half-lives. In the future, a controlled study measuring half-lives in a number 
of different cell types with multiple experimental approaches would help to more 
accurately assess this.

Given our lack of success in identifying clear cell-type-specific measurements of 
half-life in the human and mouse samples, we instead focused on deriving cell-type-
agnostic (i.e., universal) measures of half-life which integrate information across all 
methodologies and cell types. Towards this end, we computed the first PC in each of 
our gene × sample matrices to derive consensus measurements of half-life for each 
gene from each species. The PC1s explained 62.4 and 62.6% of variance among genes 
in each species, respectively, while PC2s explained merely 6.6 and 9.8% of variance, 
so were henceforth not used. When performing robustness tests of PC1 with the 
human data, we found that it was highly correlated (Pearson correlation > 0.99) to 
the computation of a gene’s half-life simply as the mean across samples and was 
also robust to the loss of random sets of ten samples (Pearson correlation > 0.99, 
data not shown). Given that the PC1s were computed independently in each spe-
cies, we would expect that any artifacts induced by the procedure would corrupt the 
evolutionary relationship of measurements between species. However, we instead 
observed a strong concordance between our consensus half-life measurements 
among one-to-one orthologs between the two species (Fig.  2f ). Our interspecies 
Pearson correlation of 0.78 greatly exceeds that of 0.61 reported previously in the 
literature [6]. This indicates that mRNA half-life has been more strongly conserved 
than previously appreciated between mammalian species separated by ~75 million 
years of evolutionary time. Moreover, this finding also demonstrates our ability to 
recover a highly precise measurement of half-life that successfully ameliorates the 
impact of technical noise and methodological bias.
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A genetic model of mRNA half‑life

Given our consensus measurements of mRNA half-life, we sought to determine whether 
it was possible to improve the predictability of half-life from mRNA sequence. Towards 
this end, we engineered groups of features (Table 2) with the goal of deriving a machine 
learning (ML)-based regression model to automatically select the subset of pertinent 
features. Our sequence-derived feature groups consisted of (i) basic mRNA features 
such as the length and G/C content of different functional regions and ORF exon junc-
tion density [2, 6, 7]; (ii) k-mer frequencies of length 1–7 in the 5′ UTR, ORF, or 3′ 
UTR; (iii) codon frequencies; (iv) predicted repression scores of mammalian-conserved 
miRNA families [24]; and (v) predicted binding of various RBPs to the mRNA sequence 
by SeqWeaver [69] and DeepRiPE [68]. RBP binding was predicted separately for the 5′ 
UTR, ORF, and 3′ UTR because it has previously been observed from cross-linking and 
immunoprecipitation sequencing (CLIP-seq) that RBPs have a tendency to bind in spe-
cific functional regions [72].

Next, we sought to determine which of these sequence-derived groups of features 
would be useful for predicting half-life. Because of the hierarchical association of each 
feature to a group (Table 2), we thus evaluated a series of nested models which iteratively 
considered additional groups of features. Each feature set was fed into a lasso regres-
sion model, and the relative model performance was compared between a simpler and 
more complex group on different folds of held-out data using a 10-fold cross-validation 
(CV) strategy. This helped to establish whether the inclusion of additional groups was 
justified. Evaluating the model series on our human half-life data, we observed that (i) 
5′ UTR k-mers did not improve the model, (ii) ORF k-mers did not improve the model 

Table 2  Summary of features considered in models trained to predict mRNA half-life, with a 
description of the features considered, feature type (i.e., sequence or biochemical), data source, and 
number of features in the category. Sequence features were calculated identically for both human 
and mouse. Biochemical features were calculated only with respect to human data

Feature description Feature type Data source # features

Basic mRNA features such as length and G/C 
content of 5′ UTR, ORF, and 3′ UTR; intron length; 
ORF exon junction density

Sequence-derived Custom Perl scripts 8

Codon frequencies (excluding stop codons) Sequence-derived Custom R scripts 61

1- to 7-mer frequencies in the 5′ UTR​ Sequence-derived Custom R scripts 21,844

1- to 7-mer frequencies in the ORF Sequence-derived Custom R scripts 21,844

1- to 7-mer frequencies in the 3′ UTR​ Sequence-derived Custom R scripts 21,844

Target predictions for mammalian microRNAs Sequence-derived TargetScan predictions [24] 319

Predicted average binding score of human RBPs 
(in each of 5′ UTR, ORF, and 3′ UTR)

Sequence-derived DeepRiPe predictions [68] 177

Predicted average binding score of human and 
mouse RBPs (in each of 5′ UTR, ORF, and 3′ UTR)

Sequence-derived SeqWeaver predictions [69] 780

Number of CLIP peaks for various RBPs Biochemical ENCORI database [70] 133

Number of eCLIP peaks for various RBPs (K562, 
HepG2, and adrenal gland)

Biochemical ENCORE database [71] 225

Number of PAR-CLIP peaks Biochemical [72] 146

Number of CLIP peaks for m6A pathway compo-
nents (a6A, m6Am, YTHDF2, METTL3, METTL14, 
and WTAP)

Biochemical [37, 47, 73–77] 13

RIP-seq of diverse RBPs and translational efficiency Biochemical [36, 78–80] 34
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beyond the simpler consideration of codons, (iii) both 3′ UTR k-mers and predicted 
miRNA repression scores improved the model, and (iv) SeqWeaver predictions of RBP 
binding improved the model more than those from DeepRiPE (Fig. 3a). Our final model 
that optimally balanced the tradeoff between complexity and performance was the 
“BC3MS” model, which considered basic mRNA features, codon frequencies, 3′ UTR 
k-mers, miRNA repression scores, and SeqWeaver predictions.

Concatenating the predictions across all folds of held-out data, we observed a cor-
relation of 0.67 between the BC3MS model predictions and observed human half-lives 

Fig. 3  Prediction of human half-lives using sequence-encoded features. a Performance of trained lasso 
regression models on each of 10 held-out folds of data. Compared is the relative performance between 
pairs of nested models which iteratively consider greater numbers of features. Each model is described by 
a code indicating the features considered. A description of the code is provided in the key, along with the 
corresponding number of features considered listed in parentheses. An improvement in a more complex 
model relative to a simpler model was evaluated with a one-sided, paired t-test, adjusted with a Bonferroni 
correction to account for the total number of hypothesis tests. Features which were ultimately determined 
to contribute to performance improvement are colored, or are left black if they did not improve the model. b 
Shown are the final predictions for the optimal model (i.e., BC3MS) after concatenating the observations for 
all 10 folds of held-out data. Also indicated are the Pearson (r) and Spearman (rho) correlation values. c The 
top 30 ranked model coefficients corresponding to the BC3MS model, trained on the full dataset. Features 
are colored according to the same key as that in panel a. d Pearson correlation matrix between the union of 
all top 30 features from c, shown as rows, and other features sharing a Pearson correlation either ≤ −0.8 or 
≥ 0.8, shown as columns. Feature names are colored according to the origin of the feature as shown in the 
same key as panel a. Hierarchical clustering was used to group features exhibiting similar correlation patterns
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(Fig. 3b). We retrained this model on the full dataset to assess which features contrib-
uted most significantly to half-life prediction. The top-30 ranked features of the model 
consisted primarily of basic mRNA properties, codon frequencies, and predicted 
miRNA/RBP binding sites (Fig. 3c). Consistent with previous work [2, 6, 7], ORF exon 
junction density was the dominant feature. Moreover, the signs of coefficients associated 
with codon frequencies are consistent with previously published human codon stability 
coefficients (CSCs) [26, 27, 29, 30], which were computed based upon an isolated Pear-
son or Spearman correlation between the codon frequencies and half-lives [28]. CSCs 
have been previously established as a quantitative metric that captures the association 
between a codon and mRNA stability [26–30]. Our model contextualized relative codon 
influence with respect to other sequence features in a multiple linear regression frame-
work, and re-ranked their utility in the prediction task.

Next, despite considering over 20,000 possible 3′ UTR k-mers, the model automati-
cally discovered highly conserved regulatory motifs such as UAU​UUA​U, the core AU-
rich element (ARE) [16, 34]; UGU​AAA​U and its variant UGU​AUA​, Pumilio binding 
elements [33]; and AAU​AAA​, the cleavage and polyadenylation motif involved in alter-
native polyadenylation [81, 82]. A potential explanation for the emergence of AAU​AAA​ 
as a predictive feature is that its presence is associated with the choice of a proximal 3′ 
UTR isoform, leading to 3′ UTR shortening and the subsequent evasion of binding to 
repressive RBPs [83]. The binding of four RBPs also emerged as the most useful features, 
including that of SAFB2 and RBM22 in the ORF as well as HNRNPUL1 and SRSF3 in 
the 3′ UTR. Finally, consistent with previous work showing that miRNAs weakly impact 
half-life [7], the model predicted light repressive roles for two miRNAs, miR-19a and 
miR-25.

Although we find these factors to be promising candidates, we caution that the inter-
pretation of feature selection and coefficient-based ranking is inherently limited by the 
substantial degree of multicollinearity among features. To guard against the possibility 
of lasso regression selecting one feature over another through its spuriously higher cor-
relation to half-life, we examined the full set of features strongly correlated to the top 30 
selected features (Fig. 3d). While the majority of features were not strongly correlated 
to other features, we indeed found that SeqWeaver predicted a similar degree of bind-
ing among numerous alternative factors such as MTPAP, XRCC6, AKAP8L, RBM15, 
BUD13, SLTM, SRSF9, HNRNPU, TAF15, BCCIP, CSTF2T, TIA1, LSM11, MBNL, and 
SRSF4. We consider this full set of RBPs, in conjunction with our earlier set, as candidate 
post-transcriptional regulators for future experimental investigation.

We repeated the same analyses independently for the mouse, with the goal of devis-
ing a genetic model to predict mouse half-lives. While most findings were highly simi-
lar between the two species, key differences include (i) DeepRiPE features significantly 
boosted performance, leading to the optimality of the “BC3MSD” model (Additional 
file 1: Fig. S4a); (ii) the model achieved a slightly lower Pearson correlation of 0.61 (Addi-
tional file 1: Fig. S4b); (iii) the feature ranking varied, with the inclusion of FMR1, SRSF4, 
HNRNPM, RBM15, IGF2BP3, KHSRP, MBNL, miR-27a, and FXR2 in the top 30 coef-
ficients (Additional file  1: Fig. S4c); and additional factors correlated with the top 30 
features, such as HNRNPM, SFPQ, SRSF3, TRA2A, SRSF1, EIF3D, DDX6, XRCC6, and 
SRSF7 (Additional file 1: Fig. S4d).
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Finally, we evaluated the ability of the models trained in each species to generalize to 
the opposite species. Our interspecies comparisons revealed that models tested in the 
opposite species performed competitively, albeit slightly worse, than models trained 
within the same species, for both the human and mouse (Additional file 1: Fig. S4e). This 
indicates that the learned half-life-associated features have predictive value more gener-
ally across the mammalian phylogeny.

A biochemical model of mRNA half‑life

Given the recent trove of biochemical data evaluating RBP binding, we attempted 
to identify experimentally supported features that are predictive of mRNA half-life. 
Towards this goal, we assembled an array of several large-scale datasets measuring RBP 
binding to develop an ML-based regression model analogous to our genetic model. Our 
biochemical feature groups consisted of (i) the number of CLIP peaks in an mRNA for 
various RBPs in the ENCORI database [70], (ii) the number of eCLIP peaks for vari-
ous RBPs in the ENCORE database [71], (iii) the number of PAR-CLIP peaks for various 
RBPs [72], (iv) the number of CLIP peaks for m6A pathway components [37, 47, 73–77], 
and (v) RIP-seq of diverse RBPs and translational efficiency [36, 78–80] (Table 2). We 
evaluated these feature groups in conjunction with our basic mRNA features in order 
to protect against the possibility that certain biochemical features were chosen due to 
their trivial association to simple mRNA properties such as the GC contents and lengths 
of different functional regions. Implementing the same strategy as before to compare 
nested models with 10-fold CV, we observed that (i) PAR-CLIP data did not improve the 
model, (ii) RIP-seq data did not improve the model after jointly considering eCLIP and 
m6A CLIP data, and (iii) the remaining datasets all improved the model, with the great-
est benefit emerging from considering the ENCORI database (Fig. 4a). “BEeM” was our 
best model, which considered basic mRNA features, ENCORI CLIP, eCLIP, and m6A 
CLIP data.

We observed a global correlation of 0.77 between the BEeM model’s held-out predic-
tions and observed human half-lives (Fig. 4b). The top-30 ranked features of the model 
(i.e., retrained on the full dataset) consisted primarily of the ORF exon junction den-
sity and dozens of RBPs (Fig. 4c). A number of RBPs consistently emerged between our 
genetic (Fig.  3c, d and Additional file  1: Fig. S4c, d) and biochemical models, includ-
ing BUD13, BCCIP, HNRNPM, FMR1, PUM1 (i.e., a Pumilio-element binding protein), 
ELAVL1 (i.e., an ARE-binding protein), TAF15, IGF2BP3, FXR2, and RBM15. Novel 
components that were not previously captured by the genetic model include LIN28A/B, 
SND1, PRPF8, FUS, RC3H1, U2AF2, RBFOX2, LARP4, YTHDF1 and its ligand m6A, 
DDX3X, UPF1, YBX3, CNBP, HNRNPA1, and SUB1 (Fig.  4c). Collectively, these fac-
tors were strongly correlated to others which serve as candidate regulators of mRNA 
stability (Fig. 4d). However, we caution that many of these candidates arose from CLIP 
datasets which were not appropriately normalized to control for input mRNA levels, and 
thus their association to mRNA half-life might be more parsimoniously explained by the 
association between their respective CLIP peak counts and mRNA abundances.

Finally, we tested the possibility that a joint genetic and biochemical model might out-
perform either individually. A lasso regression model jointly trained upon BC3MS (i.e., 
genetic) and BEeM (i.e., biochemical) features modestly outperformed our BEeM model 
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alone (Additional file  1: Fig. S5a), achieving a Pearson correlation of 0.78 (Additional 
file 1: Fig. S5b). The biochemical features were dominantly used in this model, although 
several codons were selected, along with the ARE 7-mer, which minimized the effect size 
of the coefficient attributable to ELAVL1 (Additional file 1: Fig. S5c, d). Putative novel 
regulators which emerged in the top features of this analysis include QKI, m6Am, and 
ZFP36, with most of the relative feature rankings similar to those previously detected.

A deep learning‑based genetic model of mRNA half‑life

Having compared the performance of genetic and biochemical models, we sought to 
evaluate whether an alternative learning paradigm might be able to automatically deci-
pher sequence-based rules that are more predictive of mRNA half-life. Towards this 
goal, we trained a hybrid convolutional and recurrent deep neural network architecture, 
called Saluki, which has the advantage of potentially uncovering nonlinear (e.g., coopera-
tive) relationships among motifs and spatial principles with respect to motif positioning. 
The input to our model was a binary encoding of the mRNA sequence (i.e., up to a maxi-
mum of 12,288 nt), concatenated with binary variables for each nucleotide indicating the 
presence or absence of the first reading frame of a codon and splice site (Fig. 5a). This 

Fig. 4  Prediction of human half-lives using biochemical features. This figure is organized in the same fashion 
as Fig. 3, except it evaluates features derived from biochemical experiments. All CLIP data is computed as the 
number of peaks on the full-length transcript, while RIP-seq is represented as a continuous measurement of 
the enrichment of RBP binding relative to a control IP
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matrix was fed in to a neural network comprised of 64 1D convolutions (width 5), a max 
pooling layer (width 2), 6 additional blocks of these aforementioned layers, a recurrent 
layer consisting of a gated recurrent unit (GRU), and a densely connected layer (“Meth-
ods,” Fig. 5a, and Additional file 1: Fig. S6a). Given that mRNA sequences are variable in 

Fig. 5  State-of-the-art prediction of half-lives and genetic variant functional effects using a sequence-based 
deep learning model. a A hybrid convolutional/recurrent neural network architecture to predict half-life from 
an input of the RNA sequence, an encoding of the first frame of each codon, and 5′ splice site junction(s). 
The deep learning model, called Saluki, was jointly trained on mouse and human half-life data to predict 
species-specific half-lives. b Performance of the trained Saluki models on each of 10 held-out folds of data, 
relative to the corresponding performances from our best genetic (i.e., “BC3MS” for human and “BC3MSD” 
for mouse, respectively) and biochemical (i.e., “BEeM”) lasso regression models. An improvement relative 
to another model was evaluated with a two-sided, paired t-test. c Shown are the final predictions after 
concatenating the observations for all 10 folds of held-out data. Also indicated are the Pearson (r) and 
Spearman (rho) correlation values. d Metagene plot of ISM scores across all mRNAs for percentiles along the 
5′ UTR, ORF, and 3′ UTR. mRNAs were grouped into one of 4 bins according to their predicted half-lives. For 
the set of mRNAs within each bin, we plotted the average of the absolute value of the mean predicted effect 
size (i.e., of the three possible alternative mutations). e ISM results of two 3′ UTR segments from TUBGCP3 and 
PI4K2B. Partial matches to the AU-rich element (ARE, or “UAU​UUA​U”) and Pumilio/FBF (PUF, or “UGUAHAUA”) 
binding element consensus sequences are boxed. For each motif, single point mutations resulting in 
particularly severe or opposite phenotypes are shown alongside annotations reflecting the corresponding 
ARE and PUF consensus gain or loss events. f Insertional analysis of motifs discovered by TF-MoDISco [84]. 
Each motif was inserted into one of 50 positional bins along the 5′ UTR, ORF, and 3′ UTR of each mRNA. 
Indicated is the average predicted change in half-life for each bin plotted along a metagene. g This panel is 
the same as panel f, except it performs analysis of 61 codons (excluding the 3 stop codons) inserted into the 
first reading frame along the length of the ORF. Selected codons are colored, with the rest shown in gray. h 
Scatter plot showing the relationship between the mean influence of each codon along the length of the 
ORF, as predicted by Saluki in panel g, and the mean codon stability coefficient over a set of cell types as 
observed previously [26]. Also indicated are the Pearson (r) and Spearman (rho) correlation values
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length, the 3′ end of each mRNA was padded with Ns after the transcriptional end site. 
To account for this property of the input, we left-justified the input matrix, and the GRU 
was oriented to pass information from the right to left such that the sequence was still 
most recently considered by the network (i.e., as opposed to the padded Ns) when inte-
grating information from the full sequence to make a prediction. The parameters com-
prising this common “trunk” of the network were jointly trained on human and mouse 
data in alternating batches of species-specific data, with two “heads” to predict human 
and mouse half-lives, respectively [4, 5].

We performed an ablation analysis in which the model was evaluated after train-
ing it with only sequence as input; sequence and reading frame tracks; and sequence, 
reading frame, and splice site tracks. This analysis revealed that all forms of informa-
tion were utilized by the network for Saluki to achieve optimal performance (Additional 
file 1: Fig. S6b). Training our Saluki model with the identical folds of data as our lasso 
regression models enabled us to directly compare their respective performances on each 
of the 10 folds of held-out data. Averaging the predictions using models derived from 
each of five independent training runs for each fold, Saluki’s performance exceeded that 
of the genetic lasso regression models for each species (i.e., “BC3MS” for human and 
“BC3MSD” for mouse), and it performed nearly identically with the human biochemical 
regression model (i.e., “BEeM”) (Fig. 5b). The final human and mouse models displayed 
correlations of 0.77 and 0.73, respectively (Fig. 5c and Additional file 1: Fig. S6c), sug-
gesting that Saluki potentially learned novel principles of post-transcriptional gene regu-
lation which our simpler linear models were unable to capture.

In the hopes of revealing such principles, we tested the predictive behavior of Saluki in 
different contexts. First, we performed an in silico mutagenesis (ISM) for every human 
mRNA in our dataset, mutating each reference nucleotide of an mRNA into every alter-
native allele to evaluate the predicted change in half-life [1, 4, 5, 85]. We generated a 
metagene plot using these scores, evaluating the absolute value of the mean effect size 
(i.e., of the three possible alternative mutations) in percentiles along the length of each 
functional region (Fig.  5d). This analysis revealed that the model predicts a relatively 
modest influence for the 5′ UTR relative to the ORF and 3′ UTR. Moreover, the termini 
of functional regions, such as the 3′ terminus of the 5′ UTR as well as the 5′ and 3′ ter-
mini of the ORF and 3′ UTR, were revealed to harbor the most informative positions 
along an mRNA that contribute to half-life (Fig. 5d).

We further interrogated our ISM scores to identify the most pertinent motifs asso-
ciated with changes in half-life using TF-MoDISco [84]. The poly-A binding ele-
ment (“AAA​AAA​A”), ARE (“UAU​UUA​U”), PUF element (“UGUAHAUA”), putative 
ELAVL1/2 element (“UUUAU”), polyadenylation element (“AAU​AAA​”), and m6A motif 
(“GGACU”) were enriched as significant motifs in the 3′ UTR. Of these, the m6A motif 
and PUF element were also enriched in the ORF and 5′ UTR, and the putative ELAVL1/2 
and polyadenylation elements were enriched in the 5′ UTR (Additional file 1: Fig. S6d). 
Visualizing ISM scores for two random examples, the 3′ UTR segments from TUB-
GCP3 and PI4K2B, illustrates several learned properties involving these motifs (Fig. 5e). 
Broadly speaking, a mutation ablating a core ARE or PUF element led to a predicted 
increase in mRNA half-life. Conversely, several point mutations led to a gain of a motif, 
leading to a predicted decrease in half-life. While a subset of these mutations generated 
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novel motifs, others changed an existing motif closer to its consensus sequence. In some 
cases, a mutation caused a dual loss of overlapping PUF/ARE motifs, leading to a more 
severe predicted change in half-life relative to the loss of each individual motif (Fig. 5e).

Next, we evaluated how the model would behave if we inserted either a splice site or 
one of our five enriched motifs along the full length of each mRNA. We performed this 
insertional analysis for most human mRNAs in our dataset, and then averaged the result 
according to the spatial bin of the insertion along each functional region. Consistent 
with their known roles, we observed that insertion of an m6A site, ARE, or PUF element 
reduced mRNA stability, with the greatest effect size arising from a 3′ UTR insertion 
(Fig. 5f ). In contrast, insertion of a splice site or polyadenylation element led to enhanced 
mRNA stability. Consistent with the lasso regression model, the presence of a splice site 
led to at least a fourfold enhancement in half-life relative to alternative motifs. The most 
novel property captured in the deep learning model—yet absent from our lasso model—
is the strong dependence between the spatial coordinate of the motif along the mRNA 
and its predicted impact on mRNA half-life, both across and within functional regions 
(Fig. 5f ). For instance, ARE and PUF sites are predicted to most strongly repress mRNA 
stability if they occur at the 5′ or 3′ terminus of the 3′ UTR, reminiscent of a well-known 
property of microRNA-mediated repression [24, 86]. In contrast, the m6A element is 
predicted to most destabilize mRNA immediately after the stop codon, mirroring the 
known relationship between m6A deposition and mRNA stability [58].

Given the mechanistic link between codon usage and mRNA half-life [8, 26–30], we 
sought to ascertain whether Saluki has also learned this property. We therefore reiter-
ated our insertional analysis, this time using 61 codons (excluding the 3 stop codons) 
inserted into the first reading frame along the length of each ORF. As before, the model 
attributed substantially different effect sizes to codons depending upon their position 
along an ORF, with the greatest predicted effects occurring close to the start and stop 
codons (Fig. 5g). Although most codons had the greatest predicted effect when inserted 
closer to the stop codon, several codons such as “CUG,” “UUC,” “GAA,” and “GAC” were 
predicted to have a modest effect when inserted into most regions except near the start 
codon (Fig.  5g). We sought to compare our predicted codon effects to existing meas-
ures of codon influence, such as the aforementioned CSCs [26–30]. We therefore inves-
tigated the relationship between the mean codon influence across an ORF, as predicted 
by Saluki, relative to the mean CSC across numerous cell types as quantified previously 
[26]. Reassuringly, there was a strong relationship between the two metrics (Pearson 
correlation = 0.68, Fig. 5g), suggesting that Saluki successfully captures the influence of 
codon usage.

Prediction of 3′ UTR regulatory function and genetic variant effects

Given Saluki’s strong performance in predicting endogenous half-lives, we sought to 
evaluate its ability to predict the effect of mRNA sequence and genetic variants therein 
on mRNA stability in a more controlled context. Massively parallel reporter assays 
(MPRAs) provide an ideal setting to test causal relationships, because they can directly 
assess how specific sequences influence reporter expression. Several studies have 
deployed MPRAs to test the functional impact of thousands of 3′ UTR fragments and 
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genetic variants therein on mRNA stability [87–89]. We performed in silico versions of 
these MPRA experiments to evaluate their consistency with in vivo experiments.

The first study performed three types of MPRA experiments: (i) evaluating the 
impact of mutation on 8-nt intervals tiling the CXCL2 3′ UTR, (ii) performing a sat-
uration mutagenesis of a specific region within the same 3′ UTR to measure vari-
ant effects, and (iii) testing the effect of 3000 highly conserved 3′ UTR segments on 
RNA stability [87]. To compare our predictions to the first of the three MPRA exper-
iments, we compared our pre-computed ISM scores for the CXCL2 3′ UTR to those 
observed in the experiment (Fig.  6a). We observed a general agreement between 
model predictions and experiment in the 3′ UTR regions showing high activity, 
which typically overlapped conserved and ARE-containing regions (Fig. 6a, Pearson 
correlation = 0.29 and Spearman correlation = 0.31 across all positions). However, 
there were several novel elements detected by the assay which were conserved but 
not predicted by the model, indicating several false negatives among the predictions. 
Next, we evaluated how well our predictions agree with saturation mutagenesis data 
from the tested CXCL2 3′ UTR region. To more closely simulate this experiment in 
silico, we integrated each of the measured oligonucleotide fragments into the 3′ UTR 
of eGFP within the corresponding BTV vector tested in the experiment [87]. Then, 
for each mutation, we calculated the predicted variant effect as the divergence of 
predicted half-lives between the reference and alternative sequence. We observed a 
strong agreement between the observed and predicted variant effects, in which both 
methods highlighted a strong effect for a set of upstream AREs and a weaker effect 
for a downstream ARE (Fig.  6b). Collectively, the variant effect predictions agreed 
with those observed with a Spearman correlation of 0.69 (Fig. 6c), marginally better 

Fig. 6  Concordance of Saluki predictions and functional data from massively parallel reporter assays. a Effect 
of mutation on RNA stability, as measured by an MPRA [87], for tiles along the CXCL2 3′ UTR separated by 
8-nt intervals. Also shown are variant effect predictions from Saluki (smoothed along a local 8-nt window) for 
the same region, and vertebrate base conservation as measured by PhyloP [90]. Predicted AREs are boxed in 
red, and novel elements detected by the MPRA are boxed in orange. b Saturation mutagenesis of a segment 
of the CXCL2 3′ UTR, boxed in purple in part a. Shown are the observed variant effects (top) and Saluki’s 
predicted variant effects (bottom). The reference sequence is shown for each, in which the nucleotide height 
is scaled according to the mean observed or predicted effect for that position. c Scatter plot of the observed 
and predicted variant effects shown in panel b. d Scatter plot of the observed and predicted 3′ UTR effects 
for each of 3000 conserved 3′ UTRs profiled by fastUTR [87]. e Scatter plot of the observed and predicted 
variant effects, as measured in Beas2B cells [88]. Also indicated are the Pearson (r) and Spearman (rho) 
correlation values for panels c–e 
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than the corresponding correlation of 0.64 achieved by CADD v1.6 [14]. We also 
compared our performance to that of scores from 100-way phyloP [90], which does 
not distinguish between alternative SNPs in each position. While phyloP achieved 
a Spearman correlation of 0.26 to the mean mutation effect size among positions, 
Saluki achieved a correlation of 0.80. Finally, we assessed how well we could predict 
the observations of an MPRA testing the effect of 3000 highly conserved 3′ UTR 
segments on RNA stability. We achieved a Spearman correlation of 0.63 between 
our model predictions and experiment (Fig. 6d), suggesting that our model is able to 
integrate the causal relationship between RNA sequence and RNA stability.

To further evaluate the generality of our model, we turned to other MPRAs testing 
both 3′ UTR and variant effects in Jurkat and Beas2B cells; the elements tested were 
heavily enriched in ARE-containing regions [88]. We observed Spearman correlations of 
0.42 and 0.49 between our model predictions and observed 3′ UTR effects in Jurkat and 
Beas2B cells, respectively (Additional file 1: Fig. S7a, b). These predictions were similar 
to the observed 3′ UTR effects between both cell types (Spearman correlation = 0.52, 
Additional file 1: Fig. S7c), suggesting that the model was about as predictive as the same 
MPRA experiment performed in different cell types. Similarly, when evaluating variant 
effects in both cell types, we achieved Spearman correlations of 0.31 and 0.36 between 
our model predictions and observed variant effects in Jurkat and Beas2B cells, respec-
tively (Fig. 6e and Additional file 1: Fig. S7d, e). Yet again, this predictive performance 
was on par with the agreement of observed variant effects between the two cell types 
(Spearman correlation = 0.26, Additional file 1: Fig. S7f ).

Next, we evaluated MPRAs that measured the functional effect of 12,173 3′ UTRs 
in six cell types [89]. While the observed values agreed well between any pair of cell 
types (Spearman correlations from 0.60 to 0.83), our predictions agreed a bit more 
modestly (Spearman correlations from 0.26 to 0.50, Additional file 1: Fig. S7f ), sug-
gesting that they partially captured the causal factors linking RNA sequence to sta-
bility in this dataset.

As a final test for the model, we asked whether Saluki variant effect predictions 
are relevant and informative for gene expression QTL analysis. To assess this, we 
developed a benchmark task in which genetic variants that have been fine-mapped 
as very likely causal must be distinguished from a negative set, following previous 
studies [4, 13]. We ranked variants by the absolute value of the difference between 
half-life predictions for transcripts containing each allele. Our Saluki predictions 
achieved an AUROC of 0.55 and 0.59 for variants overlapping ORFs and 3′ UTRs, 
respectively, which was significantly greater than random predictions’ 0.5 (Addi-
tional file  1: Fig. S8a). Moreover, Saluki was able to predict greater magnitudes of 
effect sizes for variants in the positive vs negative sets for both the ORF and 3′ UTRs 
(Additional file 1: Fig. S8b). However, the relatively weak AUROCs and the poor dis-
criminatory power between sets indicates several possibilities: (i) the variant effects 
have not been properly learned, (ii) the variants function through other mechanisms 
besides the modulation of half-life, or (iii) compensatory mechanisms might lead to 
poor concordance between RNA half-life and eQTLs [12, 91], thereby abolishing a 
detectable signal.
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Discussion
Since the emergence of the first transcriptome-wide measurements, there have been 
numerous efforts to understand the sequence-encoded determinants of mRNA half-
life [6–8, 38–40, 92–94]. Despite the diversity of modeling approaches developed to 
predict half-life, the quality of the predictive engines has been severely limited by the 
quality of the measurement itself. It has long been recognized that different method-
ologies suffer from biased measurement [16, 17], leading to an inconsistent portrait 
of transcriptome-wide half-lives. Indeed, nearly three decades ago, it was theorized 
that considering an ensemble of different methods would ultimately lead to a more 
precise definition of half-life [18]. In this study, we aimed to establish a more precise 
“ground truth” of mammalian mRNA half-lives, empowered by the systematic collec-
tion and subsequent meta-analysis of a large cohort of mammalian half-life datasets. 
As anticipated, this exercise revealed inconsistencies among data derived from differ-
ent research groups and experimental protocols (e.g., pulse labeling vs transcriptional 
shutoff ). We therefore derived consensus measurements of mRNA half-life which 
were less susceptible to technical noise and methodological bias.

Importantly, these bias-adjusted measurements led to several favorable outcomes. 
First, there was an improved interspecies agreement between the half-lives of orthol-
ogous human and mouse genes, indicating a greater conservation of this molecular 
trait than previously appreciated. Next, there was a substantial improvement in quan-
titative efforts to predict half-life from genetic and biochemical features. Finally, the 
relative importance of the heterogeneous mechanisms influencing half-life could be 
better delineated. Our lasso regression and deep learning models captured most of 
the known determinants of half-life, integrating the influence of AREs, PUF elements, 
YTHDF1-binding elements, splice sites, microRNA binding sites, and codon compo-
sition. While our lasso models implicate novel roles for several additional RBPs, our 
deep learning models propose novel properties of gene regulation such as the posi-
tion-dependent effects of codons, motifs, and splice sites. During the course of our 
work, we also investigated the role of RNA secondary structure in its influence on 
mRNA stability, as previous work had implicated a role for RNA secondary struc-
tural motifs in the regulation of mRNA stability [95]. However, we found that neither 
summary metrics of secondary structure (e.g., average predicted structural accessibil-
ity) nor the previously implicated structural motifs contributed to improved model 
performance. These findings suggest that more sophisticated methods of capturing 
RNA structural features are needed to improve the model, or alternatively that RNA 
structure might have a modest role with respect to regulating decay due to its largely 
unfolded state in vivo [96].

Aside from its improved accuracy, one of the key advantages of our deep learning 
model relative to our lasso regression models is its ability to rapidly generate predic-
tions given arbitrary sequences, obviating the need to compute hundreds to thousands 
of features for each mRNA. This property makes Saluki amenable to the rapid predic-
tion of variant effects, enabling us to produce a global map of predicted changes in 
half-life for all possible mutations in the exons of protein-coding genes. Given the con-
cordance between our in silico predictions as well as in vivo MPRA measurements of 
regulatory element and variant function, our work offers a promising initial foray into 



Page 19 of 28Agarwal and Kelley ﻿Genome Biology          (2022) 23:245 	

the problem of predicting the post-transcriptional consequences of genetic mutation in 
exonic sequences.

Conclusions
In this study, we demonstrated our ability to predict mRNA half-life from sequence with 
an r2 of 0.59, which represents nearly a 50% performance improvement relative to exist-
ing models in mammals (r2=0.20 and r2=0.39) [6, 7]. Among the biggest reasons for this 
improvement is simply the derivation of a more precise measurement of mRNA half-life 
from a meta-analysis of transcriptome-wide half-life datasets. Given our encouraging 
results in the auxiliary tasks of sequence and variant effect prediction, as quantified by 
the consistency between model predictions and MPRA data, we foresee several practical 
applications for Saluki.

First, there is a critical need to bioengineer stable RNAs for vaccine development 
and gene therapy applications. Despite the recent success of mRNA vaccines targeting 
Covid-19, they are inherently unstable and prone to degradation due to the prevalence 
of intracellular and extracellular RNases [97]. Problems surrounding mRNA instability 
and inefficient protein expression have been partially overcome through the incorpo-
ration of stabilizing mRNA structures [15], a 5′-cap, modified nucleosides, and codon 
optimality rules [97]. In the context of adeno-associated virus (AAV)-based gene therapy 
vectors, codon optimality rules have also been engineered to encourage greater mRNA 
stabilities and higher translation rates for several therapeutic proteins [98]. Neverthe-
less, the global sequence has not yet been jointly optimized for the mRNA to exhibit 
a longer half-life. Deep learning models have been successfully coupled to generative 
models, such as generative adversarial networks, to engineer nucleic acids to obey cer-
tain properties. This is exemplified by the design of 5′ UTRs to improve translation rate 
[99], 3′ UTRs to enhance cleavage and polyadenylation [100, 101], and coding sequences 
to evolve antimicrobial peptides [102]. Similarly, we envision Saluki’s use as an external 
function analyzer, or “oracle,” to engineer mRNAs with desired half-life properties.

Given the widespread roles of mRNA decay in the genetics of human health and dis-
ease [12, 89, 103], Saluki is also poised to provide insight into whether a genetic variant 
functions through post-transcriptional gene regulatory mechanisms. Towards this goal, 
it could help to fine-map causal eQTLs through the integration of its score into super-
vised learning frameworks [13]. Such scores could also be integrated into tools intended 
to identify pathogenic non-coding variants in the human genome [14] to further unravel 
the genetic basis of disease.

Methods
mRNA half‑life data collection and pre‑processing

We manually collected the processed half-life values from all of the studies indicated 
(Table  1). In cases in which genes were provided as gene names or RefSeq IDs, the 
names were converted to their corresponding Ensembl IDs using information from the 
Ensembl BioMart. Half-life measurements were log-transformed after adding a pseudo-
count of 0.1 or 1, depending upon whether the unit of the provided half-life was meas-
ured in hours or minutes, respectively. Duplicated IDs were then averaged to compute 
a single half-life measurement for each gene. Five human datasets from four studies 
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provided data as degradation rates rather than half-lives [29, 38, 42, 48], so their trans-
formed half-life values were negated. Finally, we generated a sparse matrix of half-lives 
for all genes × samples, containing missing values for genes in which the sample did not 
provide a measured half-life (Additional file 2: Table S1).

To evaluate the relatedness between samples, we first extracted the subset of genes 
in the aforementioned matrix for which ≥10 human samples (or ≥5 mouse samples) 
reported non-missing values. We then z-score transformed the half-lives from each sam-
ple to standardize the scale of each sample. To impute the missing values of the matrix, 
we used the estim_ncpPCA function in the missMDA R package to estimate the appro-
priate number of principal components (PC) for the imputePCA function, considering 
between 0 and 20 components for the human samples (or 0 and 10 components for the 
mouse samples). Finally, the data was quantile normalized using the normalize.quantiles 
function in the preprocessCore R package. The first PC of this imputed matrix (as com-
puted by the prcomp function in R) was used as a robust cell-type-independent meas-
urement of mRNA half-life, and computed for human and mouse species separately. For 
human, the samples from a single study [46] were removed prior to computing the PC 
because the samples from this study represented large outliers relative to all other sam-
ples (Additional file 3: Table S2). During the course of this study, we also explored the 
utility of PC2 and PC3. Although we found that our Saluki model could learn to explain 
variance in these PCs (Pearson correlation of 0.634 and 0.372 for PC2 and PC3, respec-
tively), we were unable to detect biologically relevant signals in these PCs and found that 
they did not appear to improve downstream variant effect prediction tasks.

For evolutionary comparisons between species, one-to-one human-to-mouse 
orthologs were acquired from the Ensembl v90 BioMart [104] by extracting the “Mouse 
gene stable ID” and “Mouse homology type” with respect to each human gene.

To examine sample relatedness, the first two PCs were computed using the transpose 
of the imputed (gene × sample) matrix, and samples were annotated and colored by their 
cell type of origin, study of origin, and half-life measurement technique.

Gene annotation set

Gene annotations for protein-coding genes were derived from Ensembl v83 (hg38 
genome build) and v90 (mm10 genome build) for human and mouse, respectively [104]. 
Only protein-coding genes were carried forward for analysis. Out of all transcripts cor-
responding to each gene, the one with the longest ORF, followed by the longest 5′ UTR, 
followed by the longest 3′ UTR was chosen as the representative transcript for that gene 
[2, 24, 25].

Basic mRNA features to predict half‑life

The G/C content and lengths of each of these functional regions (i.e., 5′ UTRs, ORFs, 
and 3′ UTRs), intron length, and ORF exon junction density (computed as the number of 
exon junctions per kilobase of ORF sequence) were gathered as “basic” mRNA features 
associated with mRNA half-life [2, 6, 7]. All length-related features were transformed 
such that: x̂ ← log10(x + 0.1) to reduce the right skew [2].
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Sequence features to predict mRNA half‑life

All genetically encoded features are summarized in Table  2. Codon frequencies were 
extracted from ORF sequences using the oligonucleotideFrequency function (param-
eters width=3, step=3) in the Biostrings R package, and normalizing the counts for each 
codon by the sum of all codon counts for the gene. K-mer frequencies were computed 
similarly from each of the 5′ UTR, ORF, and 3′ UTR sequences (parameters width={1..7} 
depending on the size of the k-mer, step=1).

MicroRNA features were collected for mammalian-conserved miRNA families using 
TargetScanHuman7.2 and TargetScanMouse7.2 [24]. We computed a miRNA target 
binding score by negating the “cumulative weighted context++ score” for each miRNA 
family.

The degree of predicted binding to a number of RBPs was computed for 5′ UTR, 
ORF, and 3′ UTR sequences separately using SeqWeaver [69] and DeepRiPE [68]. For 
SeqWeaver, we generated predictions on each 50-nt window, padding the sequence 
with its neighboring 475 nt upstream and downstream sequence (or Ns in the case of 
sequences at the boundary of a region) to generate a 1000-nt input sequence. For Dee-
pRiPE, we generated predictions on each 50-nt window, padding the sequence with its 
neighboring 50-nt upstream and downstream sequence (or Ns in the case of sequences 
at the boundary of a region) to generate a 150-nt input sequence. DeepRiPE additionally 
required information about the functional region of interest, which we provided accord-
ing to the functional region being considered. After generating predictions for all human 
and mouse RBPs for each functional region and gene, we computed the average value of 
the binding by normalizing the sum of values for each predicted RBP to the total length 
of the functional region.

Biochemical features

All biochemical features are summarized in Table 2. The number of CLIP peaks associ-
ated with each gene for each of 133 RBPs was downloaded from the ENCORI database 
[70]. eCLIP peaks were collected from the ENCORE browser as narrowPeak BED files 
[71]. The peaks for each RBP were intersected with gene body annotations and counted 
for each gene using “bedtools intersect” (parameters -s -c) [105]. PAR-CLIP peaks 
were downloaded from a previous study [72] and processed similarly to count the total 
peaks overlapping the gene body. m6A pathway (i.e., a6A, m6Am, YTHDF2, METTL3, 
METTL14, and WTAP) CLIP peaks were collected from an assortment of previous 
studies [37, 47, 73–77], and if not already provided, the number of peaks intersecting 
gene bodies was computed. For all CLIP assays, genes with missing values (i.e., those 
without an annotated peak) were considered to have zero peaks. All peak counts were 
transformed as such: x̂ ← log10(x + 1) to reduce the right skew of the distributions.

Processed RIP-seq and translational efficiency data was downloaded from previous 
studies [36, 78–80]. Merging these values with half-lives resulted in missing values; 
these were imputed using the impute function of the imputeR R package (parameter 
lmFun=“plsR”) when considered alongside the “basic” continuous features describing 
mRNA properties.
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Lasso regression modeling

All features being considered in a model (i.e., basic, genetic, biochemical, and/or a sub-
set within each category) and half-life values were concatenated together and z-score 
normalized by subtracting their respective mean values and dividing by their standard 
deviations. We trained a lasso regression model on each of 10 folds of the data. A lasso 
regression model was chosen specifically because it employs an L1 regularization pen-
alty, which leads to the selection of the fewest features that maximally explain the data. 
The strength of the regularization was controlled by a single λ parameter, which was 
optimized using 10-fold CV on the entire dataset. To evaluate the usefulness of differ-
ent subsets of features in improving predictive performance, we evaluated the Pearson 
correlation of the predictions of the lasso regression model on each of the 10 held-out 
folds of data, and performed paired t-tests to evaluate significant improvements in per-
formance. To interpret the best model, we trained the lasso regression model on the full 
dataset and visualized the top 30 coefficients with the greatest magnitude.

Saluki model architecture and training

We trained a hybrid convolutional and recurrent deep neural network to predict half-
life from its spliced mRNA sequence with several important gene structure annotations. 
Following previous work on applying such models to DNA/RNA sequence, we one-hot 
encoded the nucleotide sequence to four input tracks. Due to the strong influence of 
splicing on RNA stability, we added a fifth binary track to mark the positions of exon 
junctions at each exon’s 5′ nucleotide. Due to the strong influence of mRNA codon 
composition, we added a sixth binary track to mark the beginning nucleotide of each 
codon, which implicitly labels the 5′ and 3′ UTRs due to their absence of codon mark-
ers. Although a nucleotide-only strategy may be preferable for mutation effect predic-
tion, these mRNA features are important and could not easily be predicted by the model 
without adding substantial auxiliary training information.

Because mRNA lengths vary by orders of magnitude, we designed a model architec-
ture to work with variable length sequences. We capped the length of an input mRNA 
to the model at 12,288 nt for practical purposes, finding that consideration of longer 
sequences led to equal performance at the cost of slower training speed. To accommo-
date the rare scenario in which an mRNA exceeded 12,288 nt, we truncated such cases 
from the 5′ end, restricting the model to access the 3′-most 12,288 nt. Conversely, for the 
common scenario in which an mRNA was shorter, we padded such cases with zeros at 
their 3′ ends, representing “N”s. We made use of the ten folds of human genes described 
above and divided the mouse genes into ten folds that maintain the closest homologous 
genes in the same fold across species based on Ensembl annotations [104].

Our model architecture, which we refer to as Saluki, consists of a “tower” of six 
convolution blocks to reach a resolution for which each position represents 128 nt 
(Fig. 5a and Additional file 1: Fig. S6a). Each block includes the following operations: 
(i) layer normalization [106], (ii) ReLU activation, (iii) 1D convolution with kernel 
width 5, (iv) dropout, and (v) max pooling with width 2. Overall, the model consists 
of 155,521 learnable parameters. We chose layer normalization over batch normali-
zation because most of the 3′ positions are zero padded and would confuse the batch 



Page 23 of 28Agarwal and Kelley ﻿Genome Biology          (2022) 23:245 	

statistics. In contrast, layer normalization is computed independently at each posi-
tion and simply maintains a zero vector for the padded regions.

To make a single numeric prediction for each sequence, we must aggregate infor-
mation across the variable lengths. To achieve this, we use a common recurrent 
neural network block called the gated recurrent unit (GRU) [107]. After layer nor-
malization and ReLU activation, the GRU runs backward from the often-padded 3′ 
end to the information dense 5′ end. We take the final GRU hidden representation 
from the most 5′ position as a summary of the entire sequence. We apply a sub-
sequent dense block, consisting of batch normalization, ReLU, and a dense layer. 
Finally, we apply one more block of batch normalization, ReLU, and a final dense 
transformation to produce the half-life prediction.

We trained with the MSE loss function using the Adam optimizer on batches of 64 
examples and learning rate 0.001, beta1 0.9, and beta2 0.98. We clipped gradients to a 
global norm of 0.5. We used dropout probability 0.3 throughout and added L2 regulari-
zation on all convolution, GRU, and dense layer weights with coefficient 0.001. We used 
skopt to optimize these hyperparameters as well as the number of channels throughout 
the model. The hyperparameters specified here and 64 channels achieved the greatest 
validation set accuracy and compose our final model. For model training, we performed 
early stopping after 25 epochs without improvement and took the final parameters that 
achieved the greatest Pearson correlation on the validation set.

We trained models using both the human and mouse data using a published 
approach [5], in which all parameters are shared except for two separate final dense 
blocks for human and mouse. During training, we iterate between interwoven 
batches of human and mouse genes.

Our ten folds of genes allowed us to train multiple models, in which each fold 
was held out as a test set (and another was held out as a validation set). Because we 
observed variance from training run to training run, we trained five replicate models 
for each held-out test fold, producing a total of fifty trained parameter settings. After 
preliminary analyses to examine the predictions’ variance, we averaged the predic-
tions of the five replicates per test set as an ensemble, which improves accuracy and 
robustness. For all downstream analyses involving Saluki predictions on third-party 
test sets, we averaged the predictions from all fifty models.

In silico mutagenesis with Saluki

We performed in silico saturation mutagenesis (ISM) to predict the effect on mRNA 
half-life of all transcriptomic nucleotides. For each position, we ran three Saluki for-
ward passes, mutating the reference nucleotide to each of the three possible alterna-
tive alleles. For each mutation, we compared the half-life prediction to the reference.

For mutations that modify stop codons, we optionally set the coding track 3′ 
onwards to zeros. This mode creates disproportionately large effect predictions 
for these mutations, which can be inconvenient for analyses focused on alternative 
aspects. We therefore decided not to modify the coding track downstream of the 
stop codon.
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Insertional motif analysis with Saluki

Using our ISM scores as input, we ran TF-MoDISco [83] on each functional region 
(i.e., 5′ UTR, ORF, and 3′ UTR) independently to identify the enriched motifs associ-
ated with changes in half-life. We selected several of the resulting PWMs to perform 
an insertional analysis, choosing the consensus sequence as a representative k-mer to 
insert. We inserted each k-mer into one of 50 evenly divided positional bins along each 
functional region of a valid mRNA, replacing the reference sequence with the inserted 
k-mer to preserve the length of the mRNA. A valid mRNA was defined as one whose 
5′ UTR length was ≥100nt, ORF length was ≥500nt, and 3′ UTR length was ≥500nt. 
For each insertion, we recorded the predicted change in half-life relative to the corre-
sponding wild-type mRNA. Finally, for each of the 150 positional bins, we averaged the 
predicted changes in half-lives across all valid mRNAs to calculate the average influence 
of the motif across heterogeneous sequence contexts. We performed insertional analysis 
identically with the 61 non-stop codons, except that each codon was inserted into the 
first reading frame within the ORF in which it was inserted.

eQTL classification analysis with Saluki

We formulated a positive set from variants with posterior inclusion probability (PIP) 
>0.9 via SuSIE fine-mapping of GTEx v8 eQTL associations [108, 109]. We filtered for 
variants that overlap mRNA exons and removed nonsense variants and those within 
1000 bp of a TSS to focus on those that are more likely to function via RNA stability. In 
total, 893 eQTL variants remained, consisting of 352 and 541 ORF and 3′ UTR variants, 
respectively. We chose a matching negative example for each causal variant by selecting 
one with fine-mapping PIP <0.01 from the same transcript region (ORF or 3′ UTR) for a 
different gene with the closest gene expression to the positive variant’s gene.
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