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Background
Changes in gene expression are one mechanism in plants for tolerating changing envi-
ronmental conditions [1]. Heat is an abiotic stress that can affect plants in many ways. 
Minor changes in average temperatures can result in lower average yield [2]. Severe heat 
stress events during reproductive periods can result in major changes in the seed set 
[3, 4]. Heat stress events at earlier vegetative stages can result in leaf senescence and 
reduced growth rate [5, 6].

Transcriptome profiling in plants has identified many genes that exhibit altered tran-
script abundance in response to abiotic stress [7–11]. The heat shock factor (HSF) tran-
scription factors (TFs) are activated in response to heat stress [12] and can regulate the 

Abstract 

Background:  Many plant species exhibit genetic variation for coping with environ-
mental stress. However, there are still limited approaches to effectively uncover the 
genomic region that regulates distinct responsive patterns of the gene across multiple 
varieties within the same species under abiotic stress.

Results:  By analyzing the transcriptomes of more than 100 maize inbreds, we reveal 
many cis- and trans-acting eQTLs that influence the expression response to heat stress. 
The cis-acting eQTLs in response to heat stress are identified in genes with differential 
responses to heat stress between genotypes as well as genes that are only expressed 
under heat stress. The cis-acting variants for heat stress-responsive expression likely 
result from distinct promoter activities, and the differential heat responses of the alleles 
are confirmed for selected genes using transient expression assays. Global footprinting 
of transcription factor binding is performed in control and heat stress conditions to 
document regions with heat-enriched transcription factor binding occupancies.

Conclusions:  Footprints enriched near proximal regions of characterized heat-
responsive genes in a large association panel can be utilized for prioritizing functional 
genomic regions that regulate genotype-specific responses under heat stress.

Keywords:  Maize, Heat stress, Response eQTL, Response eGene, Chromatin footprints

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​
creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​mmons.​org/​publi​
cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

RESEARCH

Liang et al. Genome Biology          (2022) 23:234  
https://doi.org/10.1186/s13059-022-02807-7

Genome Biology

*Correspondence:   
liang795@umn.edu; 
springer@umn.edu

1 Department of Plant 
and Microbial Biology, University 
of Minnesota, Saint Paul, MN 
55108, USA
2 Department of Horticulture, 
University of Minnesota, Saint 
Paul, MN 55108, USA
3 Present address: Agricultural 
Technical Institute, The Ohio 
State University, Wooster, OH 
44691, USA
4 Max Planck Institute 
for Plant Breeding Research, 
50829 Cologne, Germany
5 Heinrich-Heine University, 
40225 Dusseldorf, Germany

https://orcid.org/0000-0002-9963-8631
https://orcid.org/0000-0002-7225-0290
https://orcid.org/0000-0003-2483-5013
https://orcid.org/0000-0002-6680-3012
https://orcid.org/0000-0002-2707-2771
http://orcid.org/0000-0002-7301-4759
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-022-02807-7&domain=pdf


Page 2 of 25Liang et al. Genome Biology          (2022) 23:234 

expression level of many genes through interactions with cis-acting elements. Prior stud-
ies have found evidence for enrichment of the HSF binding site motif at upregulated 
genes in Arabidopsis [13], maize [14], and rice [15]. Some HSFs are stably expressed and 
become activated in response to heat stress, while many other members of this family 
are themselves transcriptionally activated in response to heat stress [12, 16, 17]. Sev-
eral other transcription factors and cis-regulatory elements have also been implicated 
in the response to heat stress [18]. The prior knowledge of potential mechanisms that 
create altered gene expression in response to heat stress makes this a good system to 
study variable responses to heat stress. In addition, this provides a useful system to con-
sider genotype x environment (GxE) interactions for a specific molecular response. GxE 
interactions are important for developing crop varieties with high levels of productivity 
in fluctuating environments but our understanding of the molecular mechanisms that 
drive GxE for specific environments is often limited.

One difficulty in elucidating the mechanisms of gene expression regulation has been 
our ability to identify and annotate cis-regulatory elements that influence gene expres-
sion patterns and levels. In some cases, researchers simply utilize all regions upstream of 
the transcriptional start site (typically 1–2kb) to search for potential motifs or regulatory 
elements. Comparisons among related species are also utilized to identify conserved 
noncoding sequences (CNSs) that may be important for regulation [19, 20]. Recently, 
many groups have focused on using chromatin properties to identify putative cis-regula-
tory elements [21–24]. Specifically, regions of accessible chromatin or particular histone 
modifications can be useful in documenting functionally important cis-regulatory ele-
ments [25]. However, for gene expression responses to abiotic stress, it is unclear what 
proportion of cis-regulatory elements are premarked (accessible prior to the stress) or 
only exhibit altered accessibility following the stress exposure.

Local adaptation in wild species and breeding to improve the resilience of crop plants 
likely utilize natural variation in gene expression responses to abiotic stresses [26]. This 
variation can be attributed to varying activity of trans-acting factors such as transcrip-
tion factors or due to cis-acting regulatory variation that can alter how specific genes 
are regulated. Our understanding of the evolutionary sources of variable cis-regulatory 
elements is limited. The mechanisms by which genes gain, or lose, responsiveness to an 
environmental stimulus is unclear. It is assumed that a large portion of cis-regulatory 
information is provided through transcription factor binding sites (TFBSs). While sin-
gle-nucleotide polymorphisms (SNPs) can change TFBS sequences resulting in altered 
cis-regulatory information (reviewed by [27]) it is less clear how novel TFBSs and regu-
latory circuits for response to specific environments are created. It is also possible that 
insertion / deletion (InDel) polymorphisms, including transposable element (TE) inser-
tions, play a major role in changing the composition of cis-regulatory elements. Several 
studies have compared the gene expression responses to heat stress in different geno-
types [8, 14, 28–30]. While many genes exhibit similar responses to heat stress in differ-
ent genotypes, there are also examples of genes that exhibit significant allelic variation 
for responses [8, 14]. The use of hybrid genotypes and allele-specific expression anal-
yses has found evidence for both cis- and trans-regulatory variation. A comparison of 
the alleles suggests that structural variation may play important roles in driving variable 
responsiveness but this has not been investigated in detail.
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In this study, we utilized a panel of 102 resequenced maize genotypes grown in con-
trol and heat stress conditions to study variation of gene expression and associated reg-
ulatory genomic elements in response to heat. Both genomic and transcriptomic data 
were utilized to document eQTLs and their regulated genes. In particular, cis-eQTL 
that influence variable responsiveness to heat stress were identified to document allelic 
variation for heat-induced expression. This approach was demonstrated as an efficient 
way to document hundreds of cis-allelic variations for heat stress response. The analy-
sis of cis-regulatory variation for heat responses using eQTL was complemented with a 
genome-wide transcription factor footprinting assay in B73. MNase-defined cistrome-
Occupancy Analysis (MOA-seq) data [24] was generated in both control and heat stress 
conditions to document regions with altered chromatin accessibility and transcription 
factor occupancy. We find that many heat-responsive genes exhibit changes in chroma-
tin accessibility and transcription factor occupancy in the heat stress condition relative 
to control. The combination of these two approaches provided opportunities to iden-
tify high-quality candidate causal regions that could explain the allelic variation for heat 
responsiveness.

Results
Genome‑wide markers associated with photosynthetic parameters

A subpanel of 102 diverse maize genotypes including stiff stalk, non-stiff stalk, and 
iodent sub-populations representing the Wisconsin Diversity Panel (WiDiv) in maize 
[31, 32] were selected for characterizing genotype responses to heat stress (Fig. 1a). 
A set of 1,132,322 variants (1,032,834 SNPs + 99,488 InDels) was employed for this 

Fig. 1  Phenotypic responses to heat stress within a maize diversity panel. a Genotypic variants segregated 
102 genotypes (including 5 flint/popcorn, 9 iodent, 9 mixed, 32 non-stiff stalk, 20 stiff stalk, 3 tropical, and 
24 unknown) employed in this study using principal component analysis. b Plants showed a distinct pattern 
using two photosynthetic parameters—Y(NO) and Y(II)—measured under control and heat conditions. c 
Associated loci were detected under control and heat conditions using GWAS for Y(NPQ). Two thresholds 
including 2.2e−6 (blue) and 1.1e−7 (red) were applied for detecting significantly associated loci; d Same as c 
for Y(NO); e Same as c for Y(II)
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population (see “Methods” for filtering details). The genotypes that we used for this 
study include 3 to 32 inbred lines in each of seven previously characterized sub-pop-
ulations of maize (Fig. 1a). The selection criteria used to select the subset of inbreds 
from the larger WiDiv panel retains high levels of diversity while reducing the over-
all population structure. The first two principal components (PCs) did provide some 
separation based on these known sub-populations. In total, the first five PCs calcu-
lated from the genotype matrix explained 17.1% of population structure variation 
in the selected 102 genotypes and were used as covariates to control for population 
structure in subsequent analyses. Seedlings (14 days after sowing) for each of these 
genotypes were subjected to a 4-h heat stress at 40 °C. The third leaf for each plant 
was also assessed for three chlorophyll fluorescence-based parameters including (1) 
light-adapted effective quantum yield of PSII [Y(II)], and two non-photochemical 
dissipation routes, (2) non-regulated energy dissipation at PSII [Y(NO)], and (3) 
regulated energy dissipation at PSII [Y(NPQ)] in control and heat stress conditions. 
Higher Y(II) values indicated less photosynthetic stress, high Y(NPQ) values indi-
cated ongoing photochemical stress that was being mitigated through carotenoid-
based energy dissipation, and high Y(NO) values indicated ongoing photochemical 
stress that was not being mitigated. On average, plants exhibited lower Y(NO) val-
ues and higher Y(II) values under the heat stress condition compared to the con-
trol condition, while the center of recorded Y(NPQ) did not show a significant shift 
between control and heat conditions (Fig.  1b; Additional file  1: Fig. S1). All three 
traits [Y(II), Y(NPQ), and Y(NO)] exhibited higher broad-sense heritability (H2) in 
control (0.692, 0.682, and 0.716) compared to heat-stressed plants (0.538, 0.563, and 
0.642), indicating more variation for these traits in heat stress condition compared 
to control plants.

The BLUP (best linear unbiased predictor) was applied to represent the pheno-
typic value of each genotype per trait in each condition in order to remove under-
lying variation. BLUPs from the chlorophyll fluorescence-based traits (Additional 
file 2: Table S1) were used to perform GWAS (genome-wide association study) using 
the same set of >1M variants in this population. We identified candidate associa-
tion loci under two levels of thresholds (2.2e−6 and 1.1e−7, see “Methods”) using the 
FarmCPU model [33]. Distinct patterns of GWAS significant hits were observed for 
traits taken from control and heat stress conditions (Fig. 1c–e). In total, 20 candidate 
genes were identified to be associated with at least one of the significant loci (Addi-
tional file  2: Table  S2). Several interesting candidate hits included SNPs located 
within introns of the farl8 (FAR1-like transcription factor 8, Zm00001d017164) 
gene that were associated with Y(NO) under the control condition. Orthologs of 
Zm00001d017164 in Arabidopsis—AT1G52520 and AT1G80010—were demon-
strated to show visible phenotypes under abiotic stress [34]. A SNP located ~1kb 
downstream of the transcription factor—bbr3 (BBR/BPC-transcription factor 3, 
Zm00001d049800)—was uniquely identified to be significantly associated with Y(II) 
measured under the heat condition. Zm00001d049800 encoded as a member of the 
BASIC PENTACYSTEINE (BPC) proteins and its ortholog AT1G14685 in Arabidop-
sis was found to be involved in the salt stress response regulation [35].
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Transcriptome responses to heat stress in a subset of WiDiv panel

We proceeded to evaluate the transcriptional response to a heat stress event in the same 
panel of genotypes. Seedlings (14 days after sowing) were subjected to control conditions 
or 4 h of heat stress (40 °C) and leaf tissue collected from a pool of 2–3 individuals for 
each treatment / genotype combination was used for RNA-seq. The RNA-seq data was 
aligned to the maize B73 AGPv4 reference genome and all samples exhibited high overall 
alignment rates, ranging from 84.5 to 98.6% (Additional file 2: Table S3). After removing 
genes with no read counts in any samples, we obtained a gene count matrix with reads 
assigned to a set of 39,511 maize AGPv4 gene models. In order to assess the consistency 
between samples during the collection, three biological replicates of B73 were separately 
collected at early, middle, and late collection time points in each condition. The aver-
age pairwise Spearman correlations between replicates were 0.987 and 0.972 in control 
and heat respectively (Additional file 1: Fig. S2), indicating a high repeatability of sam-
ples during collections. The overall variability in the transcriptomes of all samples were 
assessed using a principal component analysis (Fig. 2a). The first principal component 
separated samples based on treatment, suggesting a significant impact from the heat 
stress (Fig. 2a). The second principal component provided a modest separation based on 
genotypes but did not suggest major contributions of the known population structure 

Fig. 2  Transcriptomic diversity of studied maize genotypes between heat and control conditions. a The PCA 
analysis separated expressions of identical genotypes in control and heat conditions using normalized read 
counts of expressed genes. b Genotypes with variable levels of absolute PC1 differences were split into three 
classes: large, medium, and small. The correlation of BLUPs generated from Y(II) in control and heat condition 
was separately calculated. c Across 102 studied genotypes, we identified upregulated genes based on the 
fold change of median expression value between heat and control. We then visualized these upregulated 
genes based on their coefficient of variations and log2 fold change of heat to control. Heat shock proteins 
were labeled in this graph and the blocking area demonstrated a clustered region with heat shock proteins. 
d Distributions of log2 fold changes of heat-to-control normalized expression values for heat shock factors 
identified in this study
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(Fig. 2a). We hypothesized genotypes with less transcriptome shift (based on principal 
component 1) in response to heat stress might exhibit a more similar distribution of 
BLUPs for photosynthetic parameters between control and heat condition. The absolute 
difference of PC1 between control and heat conditions reflected the transcriptome plas-
ticity of each genotype and could be used to classify genotypes as having large, medium, 
or small transcriptome responses. The BLUP for each genotype was determined as the 
genotypic effect after controlling experimental factors for the measured phenotype from 
either of conditions. We calculated correlations between BLUPs in both control and heat 
conditions for genotypes with large, medium, or small transcriptome responses to heat 
stress (Fig. 2b). Overall, for each measured phenotype, we observed an increased corre-
lation coefficient with a larger transcriptome plasticity, suggesting a positive correlation 
between phenotypic and transcriptomic response in this study (Fig. 2b; Additional file 1: 
Fig. S3). A GO (Gene Ontology) enrichment analysis on genes with significant upreg-
ulation in response to heat in B73 revealed several significant GO enrichments that 
were associated with heat-responsive functions (i.e., GO:0009408 “response to heat”; 
GO:0010286 “heat acclimation”; GO:0031072 “heat shock protein binding”) (Additional 
file 2: Table S4), providing evidence of a strong heat stress response in the B73 samples. 
In addition to these enrichments for some terms expected for a heat response, there 
were also a number of other GO terms with significant enrichments, including some 
without apparent connections to heat stress responses (Additional file 2: Table S4).

The analysis of the full dataset revealed 2628 genes that exhibited consistent upreg-
ulation in response to heat in the majority of genotypes (see “Methods” for details). A 
comparison of the mean response to heat stress and the coefficient of variation (CV) 
for expression level in heat stress for the 2628 genes highlighted a subset of genes 
with strong expression response and limited variability in the response for different 
genotypes (Fig. 2c). Many of the genes with the highest expression response and rela-
tively low variation among genotypes were previously identified as heat shock pro-
teins (HSPs). There were 40 HSPs identified in the maizeGDB database (https://​www.​
maize​gdb.​org) and 25 of these HSPs were detected to be consistently upregulated 
with high expression values and low CVs under the heat stress (Fig. 2c). Six additional 
genes (Zm00001d004243, Zm00001d022630, Zm00001d031436, Zm00001d033990, 
Zm00001d039933, and Zm00001d048592) that were not annotated as HSPs also 
exhibited strong and consistent responses to heat stress and might play impor-
tant roles in response to heat stress. The heat shock factors (HSFs) were a class of 
transcription factors that were known to play important roles in gene expression 
responses to heat stress and activated HSPs. Of 31 previously reported non-redun-
dant HSFs in maize [17], 17 of them exhibited detectable expression in our dataset. 
Eight of these HSFs (ZmHsf02, ZmHsf25, ZmHsf05, ZmHsf08, ZmHsf26, ZmHsf11, 
ZmHsf03, and ZmHsf13) were consistently upregulated in response to heat stress 
across a hundred of genotypes (Fig.  2d). Interestingly, ZmHsf06 was downregulated 
across all genotypes used in this study and also exhibited reduced expression in 
response to heat stress at multiple timepoints in B73 in a previous study [36] (Addi-
tional file  1: Fig. S4). The results suggested that the heat stress event resulted in a 
robust response to heat stress in this diverse panel and provided an opportunity to 
further examine variable responses in more diverse genotypes.

https://www.maizegdb.org
https://www.maizegdb.org
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Characterization of variable gene expression responses to heat stress

To map regulatory variants that might influence gene expression levels or responses to 
heat stress in this panel, we retained genes with counts per million (CPM) > 1 in at least 
10% genotypes, resulting in 20,255 and 20,306 genes expressed in control and heat con-
ditions, respectively. Of these genes, 19,642 genes were commonly expressed in both 
conditions, while 613 and 664 genes were uniquely detected as expressed in control or 
heat conditions. Of 664 genes uniquely detected in heat condition, three were heat shock 
factors (ZmHsf03, ZmHsf11, and ZmHsf26). We performed eQTL mapping separately 
using control or heat expression data to map the genomic elements influencing tran-
script levels of expressed genes. Significantly associated SNPs located within 1Mb dis-
tance from the targeted gene were classified as cis-eQTL, while SNPs located >1Mb from 
the target gene were classified as trans-eQTL. The 1Mb cut-off for cis-eQTL has been 
used in prior studies of maize eQTL [37, 38] and is far enough to have quite low linkage 
disequilibrium (r2<0.05) in our population. Potential trans-eQTL hotspots were assessed 
by counting the number of significant trans-interactions for each 10-kb window in the 
genome (Additional file 1: Fig. S5). Several chromosomal regions with at least 10 trans-
interactions were commonly detected for both heat and control conditions. Three 10-kb 
regions on chromosomal 9 were detected to be interacted with gene expression distantly 
under heat stress. However, the detected “hotspots” had somewhat limited numbers of 
targets (<20) and the power to detect trans-eQTL hotspots in this study might be limited 
by our sample size. Consistent with prior studies [39], identified cis-eQTLs in this study 
could explain more variance of gene expression than identified trans-eQTLs in both 
control and heat conditions (Additional file 1: Fig. S6). The cis-eQTL analysis identified 
10,548 and 10,391 significant cis-eQTL regulated genes (eGenes) for control and heat 
condition, respectively. The cis-eQTLs detected for genes that were only expressed in 
heat stress conditions were particularly interesting, as they reflected variable levels of 
gene expression activation under heat stress. There were 518 of 664 heat expressed only 
(heo) genes that had significant cis-eQTL (heo-cis-eQTL) and we subsequently referred 
to these as heo-eGenes (Additional file 2: Table S5; Additional file 1: Fig. S7). The heo-
eGenes included a number of transcription factors, such as zhd20, iaa37, abi33, gata17, 
sbp18, wrky35, bhlh110, dof27, and ereb196. In addition, two heat shock factors—
ZmHsf03 and ZmHsf26—were detected as heo-eGenes.

To identify cis-regulatory variation associated with heat responsiveness per gene 
in 19,642 commonly expressed genes under both control and heat conditions, a linear 
mixed model was incorporated with covariates to detect the interaction effect between 
each pair of cis-eQTL and eGene. To avoid redundancy testing, only the most significant 
cis-eQTLs in either condition (control or heat) were retained for each gene (two differ-
ent cis-eQTLs might be selected for testing if they had equivalently significant p-values; 
see “Methods”), resulting in 15,588 tested gene/cis-eQTL pairs. Of tested cis-eQTLs, 
the majority had positive correlations for effects between control and heat conditions 
(Fig. 3a). However, a set of 273 cis-eQTLs with significant differences in effects between 
control and heat conditions were defined as responsive eQTLs (reQTLs) (Fig. 3a). These 
reQTLs provided examples of genes with significant differences in response to heat stress 
due to cis-regulatory variation for responsiveness. Compared to all cis-eQTLs identified 
in either of conditions or selected top significant cis-eQTLs for reQTLs identification, 
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reQTLs per se tend to be distributed around TSS (transcriptional start site) regions of 
regulated genes (Fig. 3b).

The reQTL regulated genes (reGenes) were further assessed and classified into two cat-
egories based on the strength of responsiveness under heat stress: reference alleles with 
greater response or alternative allele with greater response to heat stress. Both of these 
groups could be further subdivided based on whether the more responsive allele was up- 
or downregulated in response to heat stress. Of total 258 identified reGenes (Additional 
file 2: Table S6), 54.4% of these reGenes were examples with reference alleles that have 
consistently higher response to heat compared to the alternate allele while the other 

Fig. 3  Detected responsive genes and eQTLs in the studied maize diversity panel. a Correlation of effect sizes 
of selected top significant cis-eQTLs versus identified responsive eQTLs (reQTLs). b Distribution of cis-eQTLs 
nearby annotated genes. Control cis-eQTLs represented cis-eQTLs identified using control expression data 
and heat cis-eQTLs represented cis-eQTLs identified using heat expression data. The y-axis indicated the 
proportion of each cis-eQTL class. TSS: transcription start sites; TTS: transcription terminal sites. c Log2 fold 
changes between heat and control for identified responsive genes (reGenes). The x-axis indicated log2 fold 
changes of expressions of genes carrying reference allele between heat and control. The y-axis indicated 
log2 fold changes of expressions of gene carrying alternative alleles between heat and control. The CPM of 
1 was added to both denominator and numerator to the ratio to enable the calculation. Based on the ratio 
of median expression in heat to control, reGenes were subclassified into RefControl, RefHeat, AltControl, and 
AltHeat. d–g Four cases show different responsive genes. Associated SNP in each subpanel was indicated as 
“SChr_Pos.” For example, “S4_80278057” was the SNP located on 80,278,057 bp position of chromosome 4. 
h Connected curve indicates the significant p-value of interacted term between SNPs and targeted reGene 
(bold). The heatmap shows the pairwise correlation of SNPs in the displayed genomic region. Blue star 
indicates the top selected cis-eQTL for genome-wide reQTL identification analysis. i Same as the panel h, but 
showing gene Zm00001d030549 
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45.6% exhibited consistently higher response for the alternate allele (Fig. 3c). Four genes 
related to heat responses (hsp1, hsp22, hsp101, and ZmHsf06) were identified, suggest-
ing potential cis-regulatory elements involved in the regulation of heat responsiveness of 
these genes. Only limited number of cis-eQTL overlapped with GWAS hits and perhaps 
this was due to the distinct categories of SNPs could be enriched between GWAS and 
eQTL mapping [40]. However, the transcription factor—farl8 with SNPs inside its intron 
regions was significantly associated with Y(II) in control-specific condition and was also 
identified as a reGene to be regulated by a reQTL within its intron. Given the responsive 
difference per reGene between genotypes with reference alleles and alternative alleles, 
responsive patterns of reGenes could be classified into different scenarios according to 
the median expression value. There were 165 reGenes that exhibited stronger upregu-
lation response for either the reference allele (78) or the alternate allele (87) and these 
included examples in which both alleles were upregulated (but to different levels) as 
well as examples in which only one allele was upregulated. For example, an altered InDel 
from ATA to TACTC in the putative 3′ UTR region of Zm00001d050304 was associated 
with higher expression under heat stress (Fig. 3d). Similarly, a SNP in the ~1kb promoter 
region of Zm00001d046322 (Fig. 3e) was strongly associated with higher heat response 
upregulation in genotypes with reference alleles compared to genotypes with alternative 
alleles. More distinct regulation patterns were observed as opposite regulations between 
genotypes with reference and alternative allele (Fig. 3f,g).

One of our goals was to identify sequence variation that might contribute to vari-
able gene responsiveness under heat stress. However, only the most significant eQTL 
SNPs were selected for performing the analysis to detect the reQTL and its associated 
reGene. Although the multiple testing burden could be ameliorated this way, the tested 
reQTL might not reflect a direct causal relationship. Haplotype analysis revealed large 
haplotype blocks that could be associated with variable responses of most reGenes. 
For example, Zm00001d042183 was annotated as being involved in the triacylglycerol 
degradation pathway and we located a significant cis-eQTL on 1443 bp upstream from 
its TSS for reQTL mapping. The analysis of all SNPs near this gene revealed multiple 
highly associated SNPs that exhibited high levels of linkage disequilibrium (Fig. 3h). The 
reGene Zm00001d030549 that was putatively involved in the chlorophyll degradation 
pathway provides another example of multiple highly associated SNPs within a large 
haplotype block (Fig.  3i). Even though reGenes and heo-eGenes identified from our 
approach showed variable responsiveness between genotypes associated with different 
alleles, multiple SNPs exhibited similar correlations with gene expression responsiveness 
that fall in a large haplotype region that complicated the ability to determine the under-
lying causal variant.

Changes in chromatin structure associated with heat responsiveness in maize

Chromatin accessibility provided an additional avenue to document candidate cis-regu-
latory elements under heat stress. To document changes in accessible chromatin regions 
with evidence of DNA binding protein footprints in response to heat stress in maize, 
we generated MNase-defined cistrome-Occupancy Analysis (MOA-seq) data for three 
biological replicates of B73 plants grown in control and heat stress (4 h at 40 °C). We 
initially identified peaks of accessible regions using the full MOA-seq reads. Prior work 
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found that using only the middle 20bp of each MOA-seq read provided likely TF foot-
prints based on known binding sites [24]. The analysis of the high-resolution (center 
20bp of each read only) MOA-seq data resulted in a set of smaller peaks (median size 
of 34bp compared to 179bp for full MOA-seq reads). Over 130,000 MOA-seq footprints 
were identified in each of the biological replicates in either control or heat condition 
(Additional file  2: Table  S7 and Data S1). TF footprints were frequently identified in 
regions near the TSS of many genes (Additional file 1: Fig. S8). Three biological repli-
cates of control and heat MOA-seq samples in B73 were compared to identify 13,792 
TF footprints that exhibited significant (adjusted p-value <0.05) difference between 
conditions (Additional file  2: Data S1). These differential TF footprints likely revealed 
regions of the genome with differential occupancy of TFs or other DNA binding pro-
teins in heat-stressed samples relative to the control samples. The analysis of genes that 
exhibited heat-stress-inducible expression revealed examples in which there was a dis-
tinct difference in MOA-seq coverage shape (Fig.  4a) as well as examples with quan-
titative differences in TF footprints (Fig.  4b), but there were relatively few truly novel 
peaks that were only present in heat-stressed samples. There were 4943 differential 
TF footprints located in putative promoter regions (−2000bp from the TSS per gene) 

Fig. 4  Utilization of TF footprints to identify heat response cis-regulatory elements. a An example of 
differential TF footprints near a B73 heat-responsive gene. Raw read coverages were normalized by RPGC 
(reads per genomic content) methods. b Same as a, but for another heat-responsive gene, Zm00001d016255 
(ZmHSF13). c Normalized MOA-seq signals near 1kb extended regions of putative summits of heat-enriched 
TF footprints in three biological replicates under control and heat conditions. d Compared 793 commonly 
upregulated genes with 11,501 background genes for presence and absence of heat-enriched TF footprints. 
e Comparisons of interaction terms between SNPs located inside and outside of defined TF footprints located 
within different categories of reGenes and their 1-kb flanking regions. The definition of RefControl, RefHeat, 
AltControl, and AltHeat were the same as Fig. 3c. ** indicates p-value < 1e−2 and ns indicates insignificant
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and another 1486 located within gene regions. The differential TF footprints included 
more regions with increased accessibility in heat stress (11,140) compared to regions 
with reduced accessibility in heat stress compared to controls (2,652). The regions with 
increased MOA-seq coverage in heat stress compared to control might reflect increased 
binding or occupancy of transcription factors activated by heat stress. A metaplot of 
MOA-seq read depth at the heat-enriched TF footprints revealed that these regions 
already exhibited MOA-seq coverage in control samples but had substantially stronger 
signals in heat-stressed samples (Fig.  4c). Heat-enriched TF footprints were detected 
within 2000bp of the TSS in 8 HSFs and 18 HSPs. Interestingly, 1353 of 13,792 differ-
ential TF footprint regions were located within annotated transposable elements. Some 
transposable elements with heat-enriched TF footprints were also detected to be upreg-
ulated under heat stress in a previous study [30], such as RLG00007Zm00001d00242 
(Gypsy retrotransposon), RLC00002Zm00001d10560 (Copia retrotransposon), and 
RLX06576Zm00001d00001 (unknown retrotransposon) (Additional file  2: Table  S8). 
The regions that contained heat-enriched MOA-seq footprint peaks were used to per-
form motif enrichment analysis to identify potential TF binding sites. We identified 
26 motifs with putative TF binding activities in the cis-BP database [41] (e.g. AP2, E2F, 
Myb/SANT, GATA, Dof, bHLH, NAC/NAM) and another 24 motifs that do not contain 
previously characterized TF binding sites (Additional file 2: Table S9). Prior work had 
shown that HSFs played important roles in regulation of gene expression in response to 
heat stress and variants of the HSF binding motif were often enriched near heat-respon-
sive genes [14]. We identified an enriched sequence (GAA​GCT​TC) matching HSF 
motif—HSFB2A—in the heat-enriched TF footprints.

The same tissue samples that were used for B73 MOA-seq were also used to generate 
B73 RNA-seq data in the same conditions. To eliminate the experimental batch effect for 
comparing the changes in chromatin accessibility and potential variable regulatory ele-
ments in the panel of diverse genotypes, we focused on a subset of 793 genes that were 
commonly identified as upregulated genes and 11,501 genes that were commonly identi-
fied as expressed (mean CPM > 1) but not DEG in both RNA-seq datasets (the matched 
MOA-seq samples and the three biological replicates of B73 sampled as part of the popu-
lation study). These 793 genes and 11,501 genes were classified as differentially expressed 
genes and control genes, respectively. We found that the differentially expressed genes 
exhibit significant enrichment (p-value < 2.2e−16) for heat-enriched TF footprints within 
their 2-kb flanking regions compared with control genes (Fig.  4d). We noted that the 
2-kb flanking regions of six HSFs (ZmHsf03, ZmHsf05, ZmHsf08, ZmHsf11, ZmHsf25, 
ZmHsf26) that were consistently upregulated across genotypes contained heat-enriched 
TF footprints, suggesting potential regulatory regions of these HSFs. This suggested that 
the heat-enriched TF footprints were often associated with gene activation under heat 
stress. However, it was noteworthy that 42% of 793 genes that were upregulated in heat 
stress did not contain heat-enriched TF footprints. These included many examples of 
quite strong upregulation without evidence for altered TF footprints. The vast majority 
(>99%) of the 793 upregulated genes had TF footprints within 2kb. This revealed that 
differential TF footprints were enriched at upregulated genes but that some upregulated 
genes had consistent TF footprints even with altered expression levels. Together, these 
results suggested that identified chromatin accessibility changes near heat-upregulated 
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genes could highlight particular cis-regulatory elements (CREs) that might be involved 
in transcriptional responses to heat stress.

Application of B73 TF footprints to identify candidate causal eQTL variants

We sought to utilize the MOA-seq data to prioritize candidate variants near the reGenes 
as potential causative changes. There were 258 reGenes that were expressed in many 
genotypes in both control and heat conditions that exhibited significant variation for 
heat responsiveness as well as another 518 heo-eGenes that were only expressed in 
heat-stressed samples that exhibited significant cis-eQTL suggesting variable activation 
of these genes in response to heat stress. The reGenes were classified into four groups 
as RefControl (n=42), RefHeat (n=78), AltControl (n=56), and AltHeat (n=87) based 
on which haplotype exhibited a strong response to heat stress (Alt / Ref ) and whether 
the more responsive allele was up- (Heat) or down- (Control) regulated in response to 
heat stress (Fig.  3c). Similarly, the heo-eGenes could be classified as RefHeat (n=313) 
and AltHeat (n=205) based on whether the reference or alternate allele exhibited greater 
expression in heat-stressed samples. The RefHeat or AltHeat groups of reGenes or heo-
eGenes all exhibited upregulation in response to heat and many of these genes (30–37%) 
have a heat-enriched MOA-seq footprint within 2kb of the gene (Additional file  2: 
Table S10). These were enriched relative to other expressed genes. In contrast, the Ref-
Control and AltControl genes that did not necessarily show upregulation in response to 
heat stress have only 14–18% of genes with a heat-enriched MOA-seq footprint, which 
was similar to all expressed genes.

In most cases, there were multiple variants that were significantly associated with the 
heat response (for reGenes) (Fig.  3h,i) or expression levels in heat stress samples (for 
heo-eGenes). We assessed whether at least one of the most highly associated (top 3 
p-values) variants was located within a heat-enriched MOA-seq footprint for the subset 
of genes that contained these footprints. Among the genes that had decreased expres-
sion in response to stress (RefControl or AltControl) with a heat-enriched MOA-seq 
footprint there were only 12.5% with a highly associated variant located within the small 
footprint region. In contrast, 24% of the RefHeat and 30% of the AltHeat reGenes with 
heat-enriched TF footprints had at least one highly associated variant that was located 
in the footprint region (Additional file  2: Table  S10). There were 21.7% and 22.6% of 
the RefHeat and AltHeat heo-eGenes, respectively, that had a highly associated variant 
within the heat-enriched TF footprints. Through rerunning the reQTL mapping using 
all variants located in reGenes and their flanking regions, it revealed that significant dif-
ference of interaction effects for variants located inside of heat-enriched TF footprints 
and variants outside of the TF footprints for either RefHeat (Wilcox-test, p=8.67e−3) or 
AltHeat reGenes (Wilcox-test, p=2.07e−3; Fig. 4e; Additional file 2: Table S11). For both 
reGenes and heo-eGenes, our findings suggested a robust power of heat-enriched MOA-
seq signals derived from a single genotype on predicting responsive genomic regions. It 
was worth noting that in many of the AltHeat genes there was a significant response to 
heat stress for both the reference and alternate allele, but the alternate allele had a signif-
icantly stronger response. In these cases, the B73 allele might still have a heat-enriched 
footprint and the alternate allele might have a variant that allows for enhanced TF bind-
ing. Together, our results suggested overlaps between heat-enriched TF footprints and 
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identified responsive variants might pinpoint regulatory genomic regions in maize under 
heat stress.

Transient expression assays confirm allelic variation for heat response

We were interested in determining whether the 2-kb proximal regions of the refer-
ence and alternate alleles of reGenes would be sufficient to recapitulate the variable 
responses to heat stress. We selected three pairs of alleles—Zm00001d005114 (B73) / 
Zm00014a020759 (Mo17), Zm00001d017187 (B73) / Zm00035ab255850 (MS71), and 
Zm00001d042183 (B73) / Zm00039ab143500 (Oh43) for these experiments. Two of 
these examples exhibited significant differences for TF footprints in response to heat 
stress (Fig. 5a,b) while the other gene had ~19.4% increased signals in the TF footprints 
under heat stress but did not pass the significance filter (Fig. 5c). The two genes with sig-
nificant differences in the footprints Zm00001d005114 and Zm00001d017187 showed 
differential response to heat stress for the reference and alternate alleles (Fig.  5d,e). 
For both of these genes, the reference allele had a much weaker response to heat stress 
as compared to the alternate allele. The third gene, Zm00001d042183, exhibited no 

Fig. 5  Validations of allele-specific regulatory genomic regions for reGenes. a–c The genome 
browsers showed MOA-seq signals of reGenes between heat and control in B73 genome coordinates. 
MOA-seq genome coverage was normalized using the RPGC methods to make tracks comparable. 
a Zm00001d005114; b Zm00001d017187; c Zm00001d042183; d–f Expressions of assessed reGenes in 
genotypes associated with the detected reQTL as reference allele or alternative allele under control 
and heat condition. d Zm00001d005114; e Zm00001d0171873; f Zm00001d04218; g–h Raw read ratios of 
g Mo17- or h Oh43-specific allele to B73-specific allele of Zm00001d005114 or Zm00001d042183 in the 
hybrid MB or OB under control and heat condition (n=3). i–k Around 2kb putative promoter region per 
reGene was amplified separately from B73 genotypes and relative alternative genotypes for the dual 
luciferase assay (n=3). i Promoters amplified from Zm00001d005114 and Zm00014a020759. j Promoters 
amplified from Zm00001d017187 and Zm00035ab255850. k Promoters amplified from Zm00001d042183 and 
Zm00039ab143500 
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significant response to heat stress in genotypes carrying the reference allele, but had sig-
nificant upregulation in genotypes with the alternate allele (Fig.  5f ). A comparison of 
the allele-specific expression in three biological replicates of B73xMo17 or B73xOh43 
F1 hybrids was used to validate the allelic ratio in control and heat stress plants for 
Zm00001d005114 and Zm00001d042183 that were heterozygous for the reference and 
alternate alleles in these hybrids (Fig. 5g,h). Both of these genes showed a significant dif-
ference in the ratio of reference:alternate allele expression in heat stress samples com-
pared to plants grown in control conditions, confirming the cis-allelic variation for heat 
responses for these alleles.

The 2-kb promoter sequences (including the transcription start site and 5′ UTR) were 
cloned and fused to a luciferase reporter construct for assessing segregations of their 
activation roles for reGenes under heat stress. Alignments of the two promoters revealed 
significant conservation in the region immediately upstream of the transcription start 
site, but in each case the more upstream regions were not alignable, often due to poly-
morphic transposon insertions (Additional file 1: Fig. S9). Two of the examples included 
a differential heat-enriched MOA-seq footprint that overlaps the transcription start site 
(Additional file 1: Fig. S9a-b). The third example had several MOA-seq footprints that 
were only detected in heat-stressed samples but these were not identified as significantly 
heat-enriched (Additional file 1: Fig. S9c). Each of the three pairs of promoters exhib-
ited differences in the level of heat activation using the dual luciferase reporter assay 
that mirrored the RNA-seq data for the reference and alternate alleles (Fig.  5i–k). In 
each case, the reference allele had a much smaller response to heat relative to the alter-
nate allele. It is worth noting that the level of activation in response to heat stress was 
highly variable for the three different promoters with Zm00001d017187 exhibiting much 
stronger heat response than the other two promoters.

Discussion
Plants frequently encounter abiotic stresses and there is evidence for variable stress 
responses in many species [42]. This study focused on characterizing the sources of 
natural variation for gene expression responses to a heat stress event. Our characteriza-
tion focused on a moderate (non-lethal) 4 h heat stress treatment at 40 °C. While many 
genes respond rapidly (<30 min) to heat stress, there are quite dynamic changes in the 
response at early time points [14]. In order to minimize potential complications due to 
sampling over a ~15-min period for a full population, we focused on an intermediate 
4 h heat stress treatment. There are many genes with highly conserved responses to a 
heat stress in the population that we surveyed. Many of the genes with strong, consistent 
responses to the heat stress event are heat stress proteins that likely act as chaperones. 
This confirms that the panel of genotypes that was used in this study were all able to 
generate a strong heat response. While the genotypes can also respond to a heat stress, 
there are many genes with variable responses and these provide opportunities to study 
genotype by environment (GxE) interactions in the context of a specific abiotic stress.

Gene expression levels were highly variable within the population that was used for 
this study. Prior studies have documented many examples of cis- and trans-eQTL in 
maize [37, 43–45]. We find similar trends in terms of the proportion of cis- and trans-
eQTL as well as the relative magnitude of effects. Relatively few major trans-eQTL 
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hotspots were identified in our analysis. There are a handful of genomic loci that influ-
ence expression of 10–20 other genes but no loci with hundreds of trans-eQTLs. Given 
that our population consists of maize inbreds that have been subject to artificial selec-
tion and are phenologically restricted this may not be all that surprising. It is also likely 
that our experiment was under-powered to detect trans-eQTL [46].

Mapping sources of cis‑variation for heat stress response

A primary goal of our study was to document variation in cis-regulatory elements that 
provide variable gene expression responses to heat stress. In order to document genes 
with cis-eQTL for heat responses, we implemented response eQTL analysis that was 
largely adapted in human studies [47–49]. Other than assessing gene responsive varia-
tions between a few genotypes, our approach employed hundreds of genotypes to sub-
stantially increase the power of statistical testing for pinpointing potential responsive 
regulatory regions and avoid transcriptomic instability of a single genotype in response 
to external heat stress stimuli. This approach identified 258 reGenes that exhibit differ-
ential responses to heat stress. While this is a promising approach to document genes 
with significant variation in responsiveness that is associated with nearby genetic vari-
ation, there are a class of genes that cannot be identified using this approach. The set 
of genes that do not exhibit detectable expression in control conditions that are acti-
vated by heat stress (heat stress expressed only by genes) cannot be assessed for vari-
ation. We found another set of 518 heat-expressed only genes that have cis-eQTLs in 
heat stress, suggesting differential activation in response to the heat stress. These two 
sets of genes represented examples of cis-variable responses to heat stress. We found 
similar numbers of genes for which the reference or alternative allele exhibited a strong 
response to the heat stress and the genes include examples of both variable activation 
and variable repression in response to heat stress. It is worth noting that similar to all 
GWAS approaches there are limitations in detection of rare alleles that exhibit variable 
responses. We restricted our analyses to sequence variants with a minor allele frequency 
of at least 0.10 in this panel. However, the reQTLs that exhibited significant effect had a 
median minor allele frequency as 0.33.

Applying TF footprinting and transient assays to characterize cis‑variable responses

The approaches to document genes with variable response often focus on using the 
most highly associated sequence variant in either control or heat expression data. How-
ever, many studies have shown that there are often multiple sequence variants present 
together in a haplotype with high levels of linkage disequilibrium [50] and it can be quite 
challenging to resolve which of these variants are causal for the expression difference. 
The majority of reGenes and heo-eGenes have multiple nearby genetic variants that are 
highly associated with variable expression responses. In order to develop prioritized 
candidate variants that might be responsible for the variable stress-responsive expres-
sion, we utilized a recently developed method [24] to perform genome-wide transcrip-
tion factor footprinting searching.

MOA-seq was performed for B73 in both control and heat stress conditions. This 
approach identifies ~100,000 regions with TF binding for each replicate in either of 
conditions. However, ~60% peaks commonly presented in both control and heat TF 
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footprints using the merged data. A comparison of the control and heat-stressed samples 
using replicates identified over 13,000 TF footprints with significant variation in heat 
stress and control conditions with ~80% of these exhibiting increase in heat compared 
to control. Genes that are upregulated in response to heat exhibit a significant enrich-
ment for TF footprints that are significantly increased in heat stress. However, there 
are several observations that should limit the simplistic view of novel TF binding being 
associated with heat-responsive gene expression. First, we found very few examples of 
truly novel TF footprints in heat stress compared to control. Instead the majority of sig-
nificant differences in MOA-seq data represent examples in which there is quantitative 
variation such that a footprint is present in control conditions but becomes stronger in 
heat stress tissues. This likely suggests changes in average TF occupancy in a cell popu-
lation following heat stress rather than novel binding events that are not detectable in 
control conditions. Similar observations were made regarding chromatin accessibility 
changes in rice plants subjected to varying water availability [51] or in maize plants sub-
jected to heat stress conditions [52]. Second, there are many genes that are upregulated 
in response to heat stress, including some that are only expressed in response to heat 
that do not have evidence for variable TF footprints in surrounding regions. Many of 
these genes have consistent TF footprints in control and heat stress samples. This may 
suggest that TF occupancy does not change in response to heat stress. Instead, there 
may be variable activity of the TFs due to post-translational modifications that provide 
altered regulation.

The MOA-seq data generated from B73 provided insights into one allele that was pre-
sent in our population. When B73 is the more responsive allele, we can use the MOA-
seq data to prioritize potential genetic variants that exhibit significant association with 
expression responses. All of the reGenes for which B73 has the more responsive allele 
have at least one highly associated SNP or InDel within their 2-kb flanking regions that 
is located within a TF footprint. A subset of these are located within TF footprints that 
exhibit significant differences between heat stress and control samples.

In order to provide further evidence for causal variants that influence heat-responsive 
gene expression, it is necessary to perform functional assays. We developed a transient 
protoplast expression system to assess the heat-responsive activity of promoters. We 
initially focused on utilizing the 2-kb promoter region for the reference and alternate 
haplotypes to drive expression of a reporter. The dual luciferase assay was then used to 
compare the relative expression in control and heat-stressed protoplasts. We found that 
we could recapitulate the allelic variation observed in plants in these assays. In the exam-
ples tested to date, we have used the full haplotype of the promoter region and this has 
included multiple sequence variants. However, this assay can be further utilized to per-
form targeted sequence changes to monitor the functional impact for each of the spe-
cific sequence variants. This system will be useful as we seek to document the molecular 
basis allelic variation in gene expression responses to a heat stress event.

Heat stress is one of the abiotic stresses that plants encounter regularly. In this study, 
we have developed approaches to document and characterize natural genomic variation 
that can regulate heat stress responses of genes at the transcriptomic level. Changes in 
gene expression are one important mechanism plants utilize to survive abiotic stresses 
whereas we have limited understanding of the molecular mechanisms that generate 
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natural variation for allelic responses. Our study provides further insights into the prev-
alence and characterizing sources of natural variation for gene expression responses to 
heat stress in maize or other plant species.

Conclusions
Two complementary approaches, population transcriptomics and chromatin footprints, 
were utilized to identify genomic regions that generate allelic variation of gene expres-
sion responses to heat stress in maize. This allelic variation for regulating different heat 
stress responsiveness was confirmed using dual luciferase assays. A better understand-
ing of the allelic variation that can create variable gene expression responses to heat 
stress provides avenues to improve our predictions of crop responses to abiotic stress 
and engineer novel gene expression responses to environmental stresses within species. 
These approaches also provide opportunities to better characterize the transcriptome 
responses that might produce significant genotype by environment interactions.

Methods
Plant materials, growth, and treatment

We implemented an approach to select a subset of 120 genotypes from the 509 inbreds 
from the WiDiv (Wisconsin Diversity) Panel that would retain most of the diversity rep-
resented in this panel while reducing the level of population structure. A set of SNPs for 
this population was retrieved from a previous publication [32] for genotype subtraction. 
Biallelic SNPs were retained upon multiple thresholdings (no missing data across 509 
inbreds; MAF > 0.05; heterozygosity ≤ 0.2). To reduce the computational cost, we ran-
domly selected 1000 SNPs per chromosome for each inbred. The entire set of selected 
SNPs were used to calculate Euclidean distances between inbreds. Ward’s method of 
hierarchical clustering was then employed to determine the initial 120 clusters. One 
representative genotype was subtracted from each of 120 clusters (full list in Additional 
file 2: Table S1). This subset of 120 genotypes retains high levels of diversity but reduces 
the overall population structure. All genotypes were grown in the growth chamber 
for 14 days in 30 °C/20 °C 12h/12h day/night cycle. Positions of plants in the growth 
chamber were randomly shuffled during the plant growth to minimize the microenvi-
ronmental effect. On the 14th day, plants subjected to heat stress were treated for 4 h 
under 40 °C and plants from corresponding genotypes were under control conditions 
of 30 C in parallel. Control and heat environments were separately implemented in two 
identical growth chambers. Once the heat treatment was completed, the third leaf per 
plant was collected and 2–3 plants per genotype were merged to represent one genotype 
for RNA-seq data generation in each condition. Three biological replicates of B73 were 
separately inserted into the panel during sample collections for checking experimental 
repeatability.

Phenotypic measurements

The same set of genotypes used in RNA-seq data collection with three replicates were 
subjected to the same control and heat conditions for chlorophyll fluorescence meas-
urement. Chlorophyll fluorescence parameters including photochemical and non-pho-
tochemical quenching were analyzed using a pulse-amplitude modulated chlorophyll 
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fluorescence camera (MAXI Version IMAGING-PAM M-Series, Heinz Walz, Germany) 
with a blue (450 nm peak λ) actinic and measuring light-emitting diode (LED) array and 
an IMAGE-K7 CCD camera with a Cosmicar-Pentax zoom objective lens. All data was 
acquired in a dark room. Whole-plant samples were dark adapted for 15 min, and the 
third leaf was detached for a given sample and was directly taped to a non-fluorescent 
background underneath the LED array with near-infrared LEDs on only. Zoom and 
focus were adjusted to acquire data on four samples in one image, a control and heat-
treated sample from two different genotypes. The camera aperture was set to 1.0 for all 
samples and the measuring light intensity and gain were at settings of 2 and 3 respec-
tively (frequency = 1.0) to maintain a current fluorescence yield (Ft) between 0.100 and 
0.180. Once Ft came to equilibrium (10–20 s after turning on the non-actinic blue light 
source), a saturation light pulse was applied and the minimum fluorescence yield (Fo) 
and maximal fluorescence yield (Fm) were recorded. Samples were then exposed to 3 
min of actinic light of approximately 950 μmol m−2s−1 to determine photochemical YII 
and non-photochemical quenching parameters YNPQ. The other non-photochemical loss 
YNO was determined using the equation of YII + YNPQ + YNO = 1 [53]. Data was col-
lected within an area of interest outlining the entire leaf. The maximum value of YNPQ at 
2 min following actinic light treatment was used for treatment comparisons. Due to the 
capacity of measurement, the entire genotypes were split into 4 blocks using a split block 
experimental design with B73 as checks in each block under either control or heat con-
dition. BLUPs (best linear unbiased predictions) of YNPQ, YII, and YNO were separately 
estimated for control and heat data using a linear mixed model with all effects (geno-
type, block, replicate) treated as random. In addition, the broad-sense heritability (H2) of 
each chlorophyll fluorescence parameter per condition was estimated as the proportion 
of genotypic variation to the total variation.

Genome‑wide association study

The same set of filtered genomic variants in the studies and BLUPs estimated from 
phenotype data were used for genome-wide association study (GWAS). The GWAS 
association model FarmCPU was employed using rMVP v1.0.6 [54] to detect genotype-
phenotype association signals. The effective number of variants was determined as 
453,641 using GECv2.0 [55] with default settings. Two levels of Bonferroni correction 
were applied to set the cut-off at 1.10e−7 (0.05/453,641) and 2.20e−6 (1/453,641).

RNA‑seq data generation and data processing

RNA-seq data were generated using NovaSeq 6000 in paired-end 150bp mode. Raw 
reads per library were preprocessed using Trim-galore (Babraham Bioinformatics) with 
default settings. Preprocessed reads were aligned against the indexed B73 AGPv4 refer-
ence genome [56] using HISAT2 [57]. Alignment files were sorted and indexed using 
SAMtools (v1.9) [58]. The longest transcript was used to represent the individual gene 
model in the B73 AGPv4.41 version (downloaded from Ensemble). Raw counts per gene 
were calculated using HTSeq-count (v0.11.2) [59] and normalized into CPM (counts per 
million mapped reads) value per gene by library sequencing depth using DESeq2 [60]. 
Genes with absolute log2 fold change greater than 1 and adjusted p-value less than 0.05 
were considered as differentially expressed genes (DEGs) in B73 samples.
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To confirm identities of accessions employed in this study, we employed Broad’s 
Genome Analysis Toolkit (GATK) [61]—“RNA-seq short variant discovery” pipeline 
to call SNPs using alignment files generated from HISAT2. Comparing nucleotides on 
same SNPs generated from RNA-seq and whole-genome resequencing data of identical 
accessions, we retained accessions with a consistent SNP rate greater than 80% in the 
study, resulting in 102 genotypes for further analysis.

Comparing gene expressions between control and heat conditions across genotypes

Genes with CPM > 1 in at least 10% genotypes in the panel in either control or heat con-
dition were retained for the analysis. A paired Wilcoxon test was performed to compare 
expressions between control and heat conditions. The p-value per gene was adjusted 
for multiple testing corrections using the Benjamin-Hochberg methods. Genes with 
adjusted p-value < 0.01 were considered statistically significant. Significant genes with 
log2 transformed heat/control greater than 1 were considered as upregulated genes and 
less than 1 were considered as downregulated genes. Genes with the median value of 
log2 transformed ratio of heat to control greater than 0 and 90% quantile of the log2 
transformed ratio of heat to control greater than 0 were considered as genes with con-
sistent upregulation in the population.

GO enrichment analysis

Upregulated genes identified in B73 replicates inserted into the panel transcriptomic 
experiment were considered as the tested gene set. GO terms per gene were retrieved 
from the maize GAMER dataset [62] for maize AGPv4 gene models. GOATOOLS [63] 
was implemented to perform the GO enrichment analysis. Any GO term with a Bonfer-
roni-corrected p-value less than 0.05 was considered significant.

Genotyping and eQTL mapping analysis

Missing genotype SNP calls of 509 inbreds were imputed using Beagle (version 
05.Apr.21) [64]. SNPs of the subset inbreds consisting of 102 genotypes employed in this 
study were subtracted and retained with minor allele frequency (MAF) ≥ 0.1 and het-
erozygous rate ≤ 0.1. Highly correlated SNPs were pruned using PLINK [65] (--indep-
pairwise 50 5 0.99). InDels from the same prior study were retrieved and only InDels 
with no missing data on studied genotypes were retained to merge with filtered SNPs 
together as the final set of 1,132,322 genotype variants. The first five principal compo-
nents (PCs) were calculated using the R function prcomp. Each gene with CPM > 1 in at 
least 10% genotypes was retained for analysis in either control or heat condition. CPM 
values per gene under control or heat condition were transformed into a normal distri-
bution using the R package bestNormalize (https://​github.​com/​peter​sonR/​bestN​ormal​
ize) separately. Twenty-five hidden factors were separately inferred from control and 
heat expression data using PEER [66] for controlling variance. SNPs located nearby 1Mb 
of gene regions were classified as cis-eQTLs, otherwise as trans-eQTLs similar to cut-
offs used in prior maize eQTL studies [37, 38]. The R package MatrixeQTL [67] was used 
for eQTL mapping in controlling 5 PCs and 25 hidden factors in either control or heat 
conditions. SNPs with Benjamini-Hochberg-corrected p-value < 0.01 in each condition 
were considered as eQTLs. Genes with significantly associated eQTLs were considered 

https://github.com/petersonR/bestNormalize
https://github.com/petersonR/bestNormalize


Page 20 of 25Liang et al. Genome Biology          (2022) 23:234 

as eGenes. The proportion of variance explained by each identified eQTL was calculated 
based upon the MatrixeQTL manual.

Trans‑eQTL hotspot identification

Trans-eQTLs identified by eQTL mapping in each condition were used for detecting 
trans-eQTL hotspots. The maize genome was equally segmented into 10-kb bins. Any 
SNP within each 10-kb bin targeted greater or equal to 3 genes remotely (>1Mb) was 
considered as candidate trans-eQTL. Each 10kb bin with more than 10 targeted unique 
gene sets was considered as a trans-eQTL hotspot. Based on genes targeted by trans-
eQTLs in control and heat conditions, we split the number of targeted genes by trans-
eQTL hotspots into common targeted genes by two conditions, uniquely targeted genes 
by control and uniquely targeted genes by heat.

Response eQTL (reQTL) detection

We modified a prior published method [49] for priorizing candidate cis-eQTLs for 
reQTL detections in this data. Specifically, we focused on genes that were commonly 
expressed in both of conditions and narrowed candidate cis-eQTLs for reducing mul-
tiple testing burden based on following criteria: (1) For each eGene per condition, we 
selected the top significant cis-eQTL. If multiple top significant cis-eQTLs existed, we 
randomly picked one for testing; (2) for eGene with the identical cis-eQTL in both con-
ditions, we retained it for testing; (3) for eGene with non-overlapped cis-eQTLs between 
two conditions, we picked one cis-eQTL randomly if two cis-eQTLs from control and 
heat are in high LD (> 0.8), or we retained both of cis-eQTLs if they are in low LD (≤ 
0.8, 4) for eGene with only detected cis-eQTL in one condition but not the other, we 
retained this cis-eQTL for the analysis. Selected candidate cis-eQTLs were input into a 
linear mixed model below for detecting reQTLs using the R package lmerTest [68]:

where i was the ith sample, Ei was considered as the normalized expression value for 
the ith sample, di was the cis-eQTL allele dosage for ith sample, ci was experimental con-
dition for the ith sample (control or heat), di

1 to di
30 represented 30 covariates employed 

in this study (5 principal components + 25 PEER hidden factors), di x ci was the inter-
action between cis-eQTL and condition and (1|Gi) was the random effect of individual 
genotype. The p-value of the interaction term was estimated using the Satterthwaite 
and Kenward-Roger methods and then adjusted using the Bonferroni methods. The cis-
eQTL relative to its targeted gene with adjusted p-value less than 0.01 were considered 
as reQTLs.

MOA‑seq library construction and data processing

To assess the changeable chromatin accessibility under heat stress, we collected leaf 
tissues from plants grown in the same growth stage under the same control and 4 h 
40 °C heat conditions as the large panel experiment. Collected tissues were processed 
for MOA-seq library constructions following a previous protocol [24]. For B73 sam-
ples, the genome index of the reference genome was built using STAR (v2.7.9a) [69]. 
Raw reads of MOA-seq data were preprocessed using SeqPurge (v2019_09) [70] with 

Ei = di + ci + d
1

i + · · · + d
30

i + d
1

i x ci + · · · + d
30

i x ci + di x ci + (1|Gi)
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parameters of “-min_len 20 -threads 20 -qcut 0 -prefetch 50000.” Overlapping paired 
reads were merged into single reads using FLASH (v1.2.11) [71]. Processed reads were 
aligned against the indexed reference genome using STAR (v2.7.9a) [69]. As STAR 
is designed to map RNA, we set the flag --alignIntronMax 1 for DNA, this presence 
and Introns from being allowed / expected by STAR. Alignment files were converted 
into bam formats using SAMtools (v1.9) [58]. Alignment fragments with less than 81 
bp and MAPQ as 255 were retained for further analysis. To generate high-resolution 
maps, each read was shortened to 20bp centered around the middle of the read. Read 
shortening was performed using awk: for reads with uneven number of bases, the 
middle base was taken and then read extended 10bp to each site. For reads with even 
numbers of bases, one of the two middle bases was chosen randomly and the reads 
were extended 10bp to each site. Each filtered alignment file was converted into bigwig 
format using bedtools v2.29.2 [72]. The effective genome size was determined using 
the k-mer size of 60. Coverage of alignment files were normalized to visualize using 
bamCoverage RPGC (reads per genome coverage) normalization function. MOA-seq 
TF footprints were determined using the “macs3 callpeak” function (https://​github.​
com/​macs3-​proje​ct/​MACS) with parameters of “-s 20 --min-length 20 --max-gap 40 
--nomodel --extsize 20 --keep-dup all --buffer-size 10000000.” Distance of TF foot-
prints to TSS was calculated using annotatePeak.pl function [73]. We then employed 
the “DiffBind” (v2.12.0) function in R [74] to detect differential footprints between 
control and heat in B73 samples with FDR < 0.05.

Motif discoveries

Summits of heat-enriched TF footprints were redefined using the “macs3 refinepeak” 
function and merged B73 replicates in heat condition. For each summit, flanking 
regions were extended according to the median length of TF footprints and nucleotide 
sequences were extracted from the B73 AGPv4 genome in the given region. Identified 
heat-enriched MOA-seq footprint sequences were input for STREME (v5.4.1) [75] to 
identify enriched motifs with shuffled genomic sequences as the background. Identified 
motifs were compared with PWMs (position weight matrix) in cis-BP public TF data-
base [38] using tomtom (version 5.0.5) [76]. Searched motifs with p-value less than 0.05 
were considered as significant and only the most significant motif matching the database 
was considered as the target motif for the query PWM.

RNA‑seq data generation and processing in maize hybrids

To evaluate allele-specific gene expression, we generated RNA-seq data of two selected 
maize hybrids including Mo17 × B73 and Oh43 × B73 grown together with B73 samples 
for MOA-seq data generation. All parental lines were also included in our heat stress 
panel experiment. SNPs between two alleles in one hybrid were retrieved from the raw 
SNP sets employed in the subpanel. The SNP set per hybrid was separately employed to 
mask the B73 AGPv4 reference genome using bedtools v2.29.2 [72]. Raw RNA-seq reads 
generated from each hybrid were aligned to the respective masked reference genome in 
B73 AGPv4 coordinates using the same steps as above. Allele-specific alignments per 
sample were then split using the SNPsplit (v0.5.0) [77] and allele-specific read counts 
were calculated for each split alignment file using HTSeq-count (v0.11.2) [59].

https://github.com/macs3-project/MACS
https://github.com/macs3-project/MACS
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Dual luciferase reporter assay for candidate reQTLs/reGenes

We amplified 2-kb regions upstream of the start codon for reGenes pairs that displayed 
differential heat responsiveness between alleles. These regions were cloned into a mini-
mal vector driving a Firefly Luciferase reporter through a combination of NEBuilder 
HiFi Assembly (E5520S) and traditional restriction enzyme/ligation-based approaches. 
Both approaches leveraged a backbone double-digested with SpeI-HF (R3133S) and 
SacI-HF (R3156S), dephosphorylated (Quick CIP, M0525S), and gel extracted (Omega 
E.Z.N.A. Gel Extraction kit, D2500-01) prior to ligation or HiFi assembly. HiFi reactions 
were designed and conducted as suggested in the product manual. Traditional clones 
were generated by amplifying regions of interest and creating corresponding SpeI/SacI 
restriction enzyme sites. PCR products were then purified (Zymo DNA Clean & Con-
centrator-5 kit, D4013), double-digested with SpeI/SacI, and ligated (T4 DNA Ligase, 
M0202S) into the prepared backbone. Colonies were screened and sequenced through 
Primordium plasmid sequencing (www.​primo​rdium​labs.​com) prior to further use.

The conditional reporter was co-transformed into maize leaf protoplasts alongside a 
Renilla Luciferase driven by a constitutive 35S reporter in three separate transforma-
tion events, using ~200k protoplasts per transformation. Protoplasts were generated as 
previously described [78], were transformed with a total of 10μg of plasmid DNA (8μg 
conditional reporter, 2μg constitutive reporter), allowed to recover for 16 h following 
transformation, and then evenly split and either subjected to a +10°C heat stress in a 
water bath or left at room temperature for 3 h. Protoplasts were spun down and snap 
frozen at the end of the stress event. Dual luciferase assays were conducted per manufac-
turer instructions (Promega Dual-Luciferase Reporter Assay System, E1960), and meas-
urements were taken on a Promega GloMax Explorer Plate Reader (GM3500).
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