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Background
Pseudogenes are defined as genomic regions that resemble functional genes, con-
tain gene-disabling mutations, and lack regulatory elements required by transcription 
or translation [1]. Different pseudogenes are categorized based on their origination 
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Background:  Pseudogenes are excellent markers for genome evolution, which are 
emerging as crucial regulators of development and disease, especially cancer. However, 
systematic functional characterization and evolution of pseudogenes remain largely 
unexplored.

Results:  To systematically characterize pseudogenes, we date the origin of human 
and mouse pseudogenes across vertebrates and observe a burst of pseudogene gain 
in these two lineages. Based on a hybrid sequencing dataset combining full-length 
PacBio sequencing, sample-matched Illumina sequencing, and public time-course 
transcriptome data, we observe that abundant mammalian pseudogenes could be 
transcribed, which contribute to the establishment of organ identity. Our analyses 
reveal that developmentally dynamic pseudogenes are evolutionarily conserved and 
show an increasing weight during development. Besides, they are involved in complex 
transcriptional and post-transcriptional modulation, exhibiting the signatures of func‑
tional enrichment. Coding potential evaluation suggests that 19% of human pseudo‑
genes could be translated, thus serving as a new way for protein innovation. Moreover, 
pseudogenes carry disease-associated SNPs and conduce to cancer transcriptome 
perturbation.

Conclusions:  Our discovery reveals an unexpectedly high abundance of mammalian 
pseudogenes that can be transcribed and translated, and these pseudogenes rep‑
resent a novel regulatory layer. Our study also prioritizes developmentally dynamic 
pseudogenes with signatures of functional enrichment and provides a hybrid sequenc‑
ing dataset for further unraveling their biological mechanisms in organ development 
and carcinogenesis in the future.
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mechanisms: (1) unprocessed pseudogenes which are derived from segmental duplica-
tion and subsequent mutations; (2) processed pseudogenes which are formed through 
retrotransposition of processed mRNA; (3) unitary pseudogenes which are directly orig-
inated from inactivated functional genes through mutations; (4) polymorphic pseudo-
genes which segregate in the population both as a pseudogenised and an intact allele.

Moreover, pseudogenes are precious markers of genome remodeling and dynamics. 
This would be exemplified by processed pseudogenes which offer a perspective into the 
evolution of ancient transcriptome and activity of transposable elements [2–4]. The pre-
vious study has deduced the historical expression levels of the parent genes in human 
and mouse and found that 3% of them have been prominently changed during the evolu-
tion course [5]. Unprocessed pseudogenes disclose the gene duplication process which 
is the main source of the generation of new genes [6]. Nevertheless, pseudogenization is 
the eventual fate for the majority of duplicated genes, and certain copies can be retained 
in the genome to sustain ancestral function or obtain new function [7, 8]. Besides, uni-
tary pseudogenes not only represent natural loss-of-function events that silence ances-
tral genes, but also elucidate gain-of-function mutations that confer novel function [9]. 
Polymorphic pseudogenes represent a relaxed selection, and they are highly likely to be 
fixed as unitary pseudogenes.

Since the “pseudogene” was first introduced to describe a truncated ribosomal gene 
in Xenopus laevis in 1977 [10], this term has been gradually regarded as genomic relics 
and non-functional fossils. Pioneering works have rehabilitated a processed Adh gene 
(jingwei) as a functional copy [11, 12], instead of a defective pseudogene as previously 
reported. With the availability of high-throughput sequencing recently, a growing body 
of evidence has uncovered the functions of some pseudogenes under physiological and 
pathological conditions [13–18]. For example, some studies showed that pseudogenes 
played important roles in cancer progression and could stratify the subtype of kidney 
cancer [19, 20]. Furthermore, pseudogenes were reported to exhibit tissue-specific 
expression, suggesting their distinct regulatory programs [21, 22]. Nevertheless, the 
studies of pseudogene transcription were precluded by the limited capacity of short-read 
sequencing. A recent work applied long-read PacBio sequencing to identify functional 
human pseudogenes and provided the evidence that pseudogenes regulated the cellu-
lar transcriptomes [23]. Although above findings significantly advanced our knowledge 
about pseudogene functions, the majority of these studies focused on the function of 
pseudogenes in the disease context. Also, most of them were limited to the interplay 
between pseudogenes and their parent coding genes like competing endogenous RNAs 
(ceRNA) behavior, where pseudogene transcripts could regulate parent mRNAs by 
competing for identical microRNAs [18, 24]. Moreover, only a subset of tissue expres-
sion data were covered in their analysis, which might unavoidably underrate pseudo-
gene expression abundance due to the spatiotemporal gene expression pattern [25, 26]. 
Meanwhile, there were limited systematic functional characterizations of mammalian 
pseudogenes. In particular, the contribution of pseudogenes to organ development is 
largely unknown. Here, we thus systematically inferred the origin time of human and 
mouse pseudogenes and characterized their evolutionary pattern. Using PacBio full-
length sequencing data, we identified full-length pseudogene transcripts. In combina-
tion with deep Illumina sequencing data and public developmental RNA-seq data [25], 
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we dramatically expanded the analyzed dataset and profiled genome-wide pseudogene 
expression patterns. Additionally, we prioritized developmentally dynamic pseudogenes 
(DDPs) with signatures of functional enrichment, found that they might represent an 
additional regulatory layer, and determined their implications in disease. Coding poten-
tial evaluation showed that over 19% of all pseudogenes were translated and encoded 
potentially functional peptides. Taken together, our hybrid sequencing data and a mul-
titude of expressed pseudogenes with functional features will provide resources and 
reference for determining biological relevance and biomedical application of these pseu-
dogenes, especially the DDPs.

Results
Accelerated acquisition of pseudogenes in human and mouse lineage

We dated the origin time of pseudogenes and assigned 14,136 human and 13,685 mouse 
pseudogenes annotated by GENCODE project [27] into different branches based on the 
presence and absence of orthologs in the vertebrate phylogenetic tree (Fig. 1a, b) (See 
“Methods”). In line with the previous report, we identified 2069 orthologous pseudo-
genes between human and mouse, and the sensitivity was similar (2069 vs 2237 from 
Gentree) [28]. Meanwhile, we observed the age distribution of pseudogenes with one 

Fig. 1  Phylogenetic distribution and genomic characteristics of pseudogenes. a, b show the assignments of 
pseudogenes to the branches of phylogenetic tree of human and mouse, respectively. Scatter plot represents 
the relationship between evolution branch and the corresponding number of pseudogenes in this branch. 
The evolutionary time (myr) is defined as the middle point of each branch. c Sequence conservations of 
randomly shuffled intergenic regions, pseudogenes with different ages, CDS, and untranslated terminal 
regions. d Genomic profile of the chromosome q33.1 locus. The enlarged picture depicts a highly conserved 
exon from the pseudogene METTL21EP. The Multiz alignment of 28 vertebrate species, the per-base 
phastCons, and the phyloP conservation scores are presented. e Proportions of X-linked pseudogenes 
originating in each phylogenetic branch
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peak at the dawn of primate lineage, which might mainly result from retrotransposition 
events (Fig. 1a) [29]. There was an accelerated acquisition of pseudogenes in rodent line-
age (Fig. 1b), which was confirmed by one previous report on a recent successive burst 
of mouse processed pseudogenes based on the analysis of transposable elements [9]. The 
results recapitulated the above peak of pseudogenes when we only focused on processed 
pseudogenes (Additional file 1: Fig. S1). The larger proportion of inferred young pseu-
dogenes might be due to fast sequence evolution. Alternatively, it might be due to the 
possibility that the phylogenetic distribution of species used skewed the distribution of 
estimated ages. To investigate these two possibilities, we examined the sequence conser-
vation of human pseudogenes across vertebrates. We found that conservation was cor-
related with evolutionary age estimates and that the oldest pseudogenes had the highest 
levels of sequence conservation (median score ~ 0.78) (Fig.  1c), supporting that the 
recent gain of pseudogenes was owing to fast evolution. Notably, although young pseu-
dogenes (evolutionary age < 18 myr) had lowest sequence conservation (median 0.1) 
among all pseudogenes with different ages, they still were more conserved than random 
intergenic regions (median 0.08, Wilcoxon test, P < 2 × 10−16), indicating the evolution-
ary constraint of these young pseudogenes. For example, METTL21EP, a duplicated 
pseudogene derived from methyltransferase METTL21E, originated prior to the diver-
gence of tetrapods and teleost and harbored conserved exons in nearly all vertebrates 
including zebrafish (Fig. 1d).

We next tracked the chromosomal distribution of pseudogene within 450 myr prior 
to divergence between tetrapod and teleost, and observed one peak on the X chromo-
some (Fig.  1e, indicated by red arrow). This burst of pseudogenes occurred after the 
divergence of eutherian and marsupial (195 myr), which coincided with the first burst 
of protein-coding genes [30]. Besides, the contribution of this burst of X-linked pseu-
dogenes to the genome (8.65% for human and 8.36% for mouse) was similar to that of 
protein-coding genes (8~14%). The consistency in time and size of burst between pro-
tein-coding genes and pseudogenes suggested that similar to protein-coding genes, 
some pseudogenes might have function, and this burst might be attributed to the emer-
gence of X chromosome and subsequent recruitment of genes [30, 31]. Additionally, we 
found an accelerated accumulation of pseudogenes in rodent lineage instead of primate 
lineage, presumably due to the faster evolution of rodent genome [32]. Based on the dis-
tribution of the parent coding genes of pseudogenes, we found an excess recruitment of 
pseudogenes on the X chromosome (Fisher’s exact test, P < 1.6 × 10−5, Additional file 2: 
Table  S1), which probably accounted for the burst of X-linked pseudogenes. Consist-
ently, this gene recruitment pattern has also been reported in some previous studies of 
protein-coding genes [33, 34]. In all, above features including such nonrandom chromo-
somal distribution imply their functionality and inspire us for further analysis.

Expressed pseudogenes contribute to organ identity

Although the high-throughput RNA sequencing (RNA-seq) has revolutionized the man-
ner of biological study, the short-read lengths hind their application in pseudogene tran-
scriptome [1]. To accurately characterize and quantify the pseudogene transcription, we 
conducted PacBio Isoform Sequencing (Iso-seq) and sample-matched RNA-seq by using 
C57BL/6J male and female adult mouse tissues, including brain, cerebellum, heart, colon, 
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and gonad (Fig. 2a). As expected, the transcripts detected by Iso-seq were longer than those 
annotated by ENSEMBL (Fig. 2b). We identified 177 pseudogenes, each of which was sup-
ported by at least one full-length read (Additional file 3: Table S2). Among them, 114 (64%) 
were processed pseudogenes (Fig. 2c). In line with previous report [23], most transcribed 
pseudogenes identified by Iso-seq were absent from GENCODE annotation and only 56 
(31.6%) pseudogenes were shared between them (Fig. 2d). Illustrative examples were the 
transcribed pseudogenes 4933401B06Rik, Gm13857, and 4632415L05Rik, which do not 
overlap with any other gene structures. The first two were exclusively expressed in testis, 
while the third one (4632415L05Rik) exhibited a higher expression level in brain and ovary 
than in other tissues (Fig. 2e, Additional file 1: Fig. S2). A small number of pseudogenes 
was detected by Iso-seq, which might be due to the high tissue specificity of pseudogenes 
and the low throughput of Iso-seq [1]. Therefore, we combined our RNA-seq data with 

Fig. 2  Tissue specificity of pseudogene expression. a Tissue samples from mouse. Somatic tissues were 
pooled into one sample for library preparation for each sex. b Length distribution of transcripts in ENSEMBL 
annotation and PacBio sequencing. c Biotype of pseudogenes detected by Iso-seq. d Venn plot shows the 
overlap between Iso-seq detected pseudogenes and transcribed pseudogenes annotated by GENCODE. e 
Expression pattern of Iso-seq detected pseudogene 4933401B06Rik. f Expression level of Iso-seq detected 
pseudogenes and other pseudogenes. g Proportion of expressed pseudogenes under different thresholds. h 
Principal component analysis (PCA) of human pseudogenes. i PCA of 1:1 orthologous pseudogenes between 
human and mouse. j Proportion of human expressed pseudogenes with different evolutionary ages. k Tissue 
specificity of human pseudogene expression. l Distribution of the tissue with maximum expression level of 
human pseudogenes
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developmental transcriptome data [25] and integrated Iso-seq transcripts with ENSEMBL-
annotated transcripts to systematically characterize pseudogenes. Interestingly, the pseudo-
genes detected by Iso-seq (median FPKM value, 8.5) showed significantly higher expression 
level than other pseudogenes (median, 0.33) (P = 2.2 × 10−16) (Fig. 2f). To further evaluate 
the accuracy of quantification, we compared the expression level between pseudogenes and 
their parent coding cognates and found that the correlation between them was negligible 
(Additional file 1: Fig. S3), which was consistent with the previous study [20]. Given that 
most pseudogenes have no expression, the expression correlation between pseudogenes 
and coding genes might be underrated when using all pseudogenes. Therefore, we per-
formed the same analysis with only expressed ones and still observed only weak expression 
correlation (Additional file 1: Fig. S4). We further examined the correlation between these 
two types of genes in different tissues separately and obtained the similar results (Additional 
file 1: Fig. S5), demonstrating that the pseudogenes have acquired independent transcrip-
tion programs. Given that the abundance of rRNA and mRNA led to the relatively small 
number of sequencing reads in pseudogenes and other non-coding RNAs, we applied a 
series of expression cutoffs to estimate the proportion of expressed pseudogenes (Fig. 2g). 
Our data showed that even we set FPKM ≥ 2 as cutoff, the proportion of detected pseudo-
genes was far higher than that pseudogenes expressed in human (16.8 vs 10%) and mouse 
(17 vs 5%) in ENSEMBL [35]. We next determined whether the expression of these pseu-
dogenes was non-autonomous or function-driven. We performed a principle component 
analysis (PCA) and found that the tissue samples at different development stages clustered 
by the germ layer from which the tissues originate in human (Fig. 2h). In mouse, the tissues 
at early stage were clustered, suggesting strong commonalities, while these tissues gradu-
ally showed divergence with development (Additional file 1: Figs. S6-S7). The mature testis 
was separated from other tissues in both human and mouse. These observations suggested 
that the expressed pseudogenes contributed to organ development and identity. Although 
there was no noteworthy difference in pseudogene expression between male and female, 
the pseudogenes contributed considerable proportion to sex differential transcriptome 
(Additional file 1: Fig. S8). To our surprise, PCA analysis of orthologous pseudogenes sepa-
rated the samples by species (50% explained variance) (Fig. 2i), and differences in organs 
and developmental stages among samples were less striking. Such pattern of pseudogenes 
was different from that of protein-coding genes (Additional file 1: Fig. S9) [25], but similar 
to that of lncRNAs [36], indicating rapid evolution of pseudogene expression.

Besides, the expression proportion of pseudogenes exhibited an age-dependent man-
ner (Fig. 2j), suggesting a gradual acquisition of expression regulation after birth and the 
old pseudogene preservation in the genome induced by selective constraints at the tran-
scriptional level. We further investigated pseudogene expression by origination mecha-
nism and found that a higher proportion of pseudogenes were expressed in unitary type 
than in other types in both human and mouse (Additional file  1: Fig. S10), implying 
that some of them retained residual transcriptional activity. Although large fraction of 
expressed human unitary pseudogenes were detected based on the expression dataset 
covering successive development stages across multiple tissues, few vomeronasal and 
olfactory receptor-related unitary pseudogenes were expressed (3 out of 39, Fisher’s 
exact test, P = 2 × 10−11), demonstrating permanent loss of some olfactory function in 
human at the transcriptional level, which corroborated the previous observations at the 
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DNA level [37]. In addition, the pseudogene-parent coding genes showed pronouncedly 
higher expression levels than non-pseudogene-generating coding genes in all tissues and 
developmental stages, which was more remarkable when only processed pseudogenes 
were considered (Additional file 1: Fig. S11), implying that the pseudogenes were more 
likely to be generated by highly expressed genes. These results were in line with previ-
ous studies [3, 9]. In addition, there was no difference in the generation of pseudogene 
between X chromosome (1.9 per protein-coding gene) and autosomes (2.1 per protein-
coding gene) (P = 0.72), which agreed with our previous report of balanced expression 
level between X chromosome and autosomes [38].

To gain a preliminary expression profile of pseudogenes, we applied two indexes: (1) 
tissue specificity, which was to determine whether a pseudogene was broadly expressed 
across tissues or expressed tissue specifically; (2) developmental stage specificity, which 
was to determine whether a pseudogene in a certain tissue was expressed only at a spe-
cific developmental stage or successively expressed throughout development. In coinci-
dence with previous study [21], the pseudogenes showed higher tissue specificity than 
protein-coding genes in human and mouse (Wilcoxon test, P < 2.2 × 10−16) (Fig.  2k, 
Additional file 1: Fig. S12). It should be noted that the tissue specificity of pseudogenes 
was significantly lower than that of lncRNAs, suggesting the strong tissue specificity of 
lncRNAs. We further explored the distribution of tissues in which highest pseudogene 
expression was observed, and we found that the pseudogenes pronouncedly preferred 
testis in both human and mouse (Fig. 2l, Additional file 1: Fig. S13), which might be due 
to the leaky expression caused by extensive chromatin remodeling [39]. In mouse, over 
13% of pseudogenes were distributed in the liver and brain. The accuracy of the observa-
tions would increase with the larger number of samples. To validate our results, we inte-
grated multiple datasets into our analysis, including Genotype Tissue Expression (GTEx), 
ENCODE, and an RNA-seq data containing those of about 30 healthy human tissues 
[40–42]. The results illustrated that human testis was the most distinctive tissue (Fig. 3a, 
Additional file 1: Fig. S14) with the significantly higher expression level of pseudogenes 
(35% ) than the other tissues, which might be due to the biological relevance of pseudo-
gene to the testis, alternatively due to accessible chromatin environment of testis [26]. 
Interestingly, the mouse pseudogenes were preferentially expressed in all brain-related 
tissues, followed by placenta, liver, and testis, suggesting potential roles of pseudogenes in 
mouse brain development and evolution (Additional file 1: Figs. S15-S16). As for develop-
mental stage specificity, we observed that pseudogenes showed the higher stage specific-
ity than protein-coding genes and lncRNAs across nearly all tissues in both human and 
mouse (Fig. 3b, Additional file 1: Fig. S17). Overall, the strong spatiotemporal expression 
specificity of pseudogenes demonstrated strict transcription regulation programs rather 
than non-autonomous expression, which provided a new strategy for the development of 
biomarkers.

DDPs mirror developmental trajectory

To get a comprehensive understanding of pseudogene expression during develop-
ment, we implemented pairwise differential expression analysis to determine the stage 
with the greatest differential expression. Remarkably, the periods when pseudogenes 
showed the greatest differential expression coincided with those periods with the greater 
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transcriptional changes (Fig. 3c), and the periods were related to the establishment of 
organ identity and organ-specific functions during development [25]. Although com-
pared with differentially expressed (DE) coding genes, fewer DE pseudogenes were 
detected between neighboring stages, more DE pseudogenes were detected when com-
paring the older stages with 4 weeks post-conception (Fig. 3d), as observed for protein-
coding genes, indicating that gradual and cumulative changes in pseudogene expression 
were identifiable only after sufficient time.

To prioritize functional candidates, we next investigated DDPs with significant dif-
ferential expression throughout development based on a regression approach [43]. 
Although dynamic expression is not essential for a functional transcript, we ratioci-
nated that it allows functionally relevant pseudogenes to be enriched, as some studies 
suggested [44–46]. Further, we identified 2741 and 2283 DDPs in human and mouse, 
respectively (Fig. 4a), and the proportion of DDPs (18%) was similar between the two. 
The comparable proportion of DDPs to that of developmentally dynamic lncRNAs 
(16–38%) [26] demonstrated equivalent functional importance of pseudogenes to that 
of lncRNAs, which has been largely ignored. The majority of the DDPs were processed 
pseudogenes, accounting for 56.8% (1558) human DDPs and 77.0% (1758) mouse DDPs. 
Representative IGV views of DDPs were displayed in Fig. 4b, a processed pseudogene 
A930017M01Rik exhibited gradually increased expression abundance during brain 
development while another unprocessed pseudogene Cyp4f41-ps were only expressed at 
early stages. We showed a non-dynamic pseudogene 4632415L05Rik as control, which 
was broadly expressed among all stages investigated. We also analyzed the expression 

Fig. 3  Development stage specificity of pseudogene expression. a Heatmap for human pseudogenes 
expression level based on GTEx data. b Developmental stage specificity of pseudogene expression. 
Protein-coding genes and lncRNAs are compared with pseudogenes separately. *, P < 0.05; **, P < 0.01; ***, P 
< 0.001. c Number of differentially expressed (DE) protein-coding genes and pseudogenes between adjacent 
developmental stages. Positive and negative values indicate upregulated and downregulated genes, 
respectively. To make the trend of pseudogenes clear, the number of protein-coding genes is divided by 10. 
d Number of DEGs in pairwise comparisons, referenced to tissues the 4th week post conception. The number 
of protein-coding genes is also divided by 10
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correlation between DDPs and their parent coding genes (Additional file  1: Fig. S18) 
and found that the median positive and negative correlation coefficient (R) was 0.33 and 
−0.08, respectively. To avoid any potential mis-mapping, we excluded 254 DDPs with a 
high correlation coefficient (R ≥ 0.6) from further analyses.

The transcriptomes exhibited strong similarity among different tissues at the earli-
est stages, and then showed increasing molecular and morphological differences with 
development [26, 47]. In agreement with such differences in development programs, the 
number of expressed DDPs was gradually increased in most tissues (Fig. 4c). Moreover, 
the proportion of recently evolved pseudogenes that might confer lineage-specific inno-
vation was increased with time (Fig. 4d), which was consistent with one previous study 
of protein-coding genes [48]. Taken together, the expression of pseudogenes recapitu-
lated gene expression programs during tissue development, suggesting that they might 
play roles in timing of gene expression.

DDPs represent an additional regulatory layer

Considering the potential role of DDPs in organ development, we then characterized 
these DDPs and investigated their functional clues. We found that the transcripts 
of DDPs were longer than those of non-dynamic pseudogenes (Fig.  5a, Additional 
file 1: Fig. S19), suggesting natural selection against premature polyadenylation sig-
nals to harbor more function RNA domains. By contrast, there was no difference 
in parent coding genes between DDPs and non-dynamic pseudogenes (Additional 
file 1: Fig. S20), suggesting longer length of DDPs was not conferred by their parent 
coding genes. Given that transcription factors (TFs) can cooperate with epigenetic 

Fig. 4  Expression patterns of dynamic pseudogenes. a Number of dynamic pseudogenes in human 
and mouse. b Representative IGV views of expression level of two DDPs in brain, A930017M01Rik and 
Cyp4f41-ps, and a non-dynamic one as control, 4632415L05Rik. “e,” “dpb,” and “wpb” means embryonic day, day 
post-birth, and week post-birth, respectively. c Proportion of expressed dynamic pseudogenes during tissue 
development. d Proportion of lineage-specific expressed dynamic pseudogenes
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modifications to remodel local chromatin state [49] and direct organ develop-
ment, we further determined whether there was interplay between TFs and DDPs. 
As expected, significantly more abundant and diverse TFs bound to the promot-
ers of DDPs than to those of non-dynamic ones and to randomly shuffled inter-
genic regions (Fig.  5b, Additional file  1: Figs. S21-S22), indicating a more complex 
transcriptional regulation. An expository locus was a DDP, 1700031M16Rik, which 
showed a remarkable enrichment of TF binding sites at it proximal promoter region 
(Additional file  1: Fig. S23). Surprisingly, we observed that DDPs detected by Iso-
seq showed more diverse TFs binding than other DDPs. Moreover, DDPs were cov-
ered by more chromHMM epigenetic signals (median 6) than non-dynamic ones 
(median 4) (Wilcoxon test, P < 2 × 10−16) (Fig.  5c), but they were overlapped less 

Fig. 5  Regulatory layer of dynamic pseudogenes. a Distribution of transcript length for dynamic 
and non-dynamic human pseudogenes. b Diversity of TF binding sites overlapping the promoters 
of protein-coding genes, lncRNAs, Iso-seq detected dynamic pseudogenes, dynamic pseudogenes, 
non-dynamic pseudogenes, and randomly shuffled intergenic regions in mouse. c Number of chromHMM 
states overlapping protein-coding genes, dynamic pseudogenes, and non-dynamic pseudogenes. d, e 
Roadmap ChIP-seq signal of H3K27ac and DNase I hypersensitivity (DHS) at 10-kb intervals surrounding 
TSSs, respectively. f Density distribution of the distance from m6A modification sites to TSSs. g Number 
of RNA-binding proteins (RBPs) overlapping the promoter regions. h Circos plot showing genome-wide 
pseudogene–protein-coding gene contacts based on their pairwise-interacting RNAs. The first track (shown 
by coding) indicates protein-coding genes, and second track (shown by pseudo) represents pseudogenes. 
Green line, interaction between protein-coding genes and non-dynamic pseudogenes; grey line, interaction 
between protein-coding genes and dynamic pseudogenes. i GO enrichment (biological processes) of 
protein-coding genes significantly correlated with dynamic and non-dynamic pseudogenes. j Proportions of 
four types of genes interacting with mRNAs
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with quiescent state (15_Quies) (Additional file 1: Fig. S24), suggesting that diverse 
epigenetic states contributed to the dynamic expression of DDPs as well. To further 
validate the active transcription of DDPs, we intersected transcription start sites 
(TSSs) with ChIP-seq data including histone 3 lysine 27 acetylation (H3K27ac) and 
DNase I hypersensitivity sites (DHS). More H3K27ac and DHS signals were enriched 
at TSSs of DDPs than at TSSs of non-dynamic pseudogenes and randomly shuffled 
regions (Fig. 5d, e), suggesting that the DDPs possessed actively regulatory enhanc-
ers or promoters. Besides, the TSSs of DDPs were closer to m6A modification signals 
(Fig. 5f ), and the transcripts of DDPs carried more RNA-binding proteins (Fig. 5g), 
alluding to the involvement of DDPs, especially Iso-seq detected DDPs, in post-
transcription regulation or acting as scaffolds for RNA-binding proteins. We also 
observed the DDPs were more conserved than non-dynamic ones and exhibited a 
remarkable increase in the proportion of evolutionarily old pseudogenes (Spearman 
correlation rho = 0.94, P < 2 × 10−16) (Additional file 1: Figs. S25-S26), indicating 
that it took time, albeit short, for pseudogenes to acquire dynamic expression and to 
interact with more genes, thus integrating into pre-existing networks after birth [50, 
51]. Overall, the above patterns across multiple regulatory layers provided functional 
evidences for DDPs.

We further mined two metrics to elucidate the function of these dynamic pseudo-
genes. First, we constructed a co-expression network between pseudogenes and pro-
tein-coding genes, via which functional associations or regulatory relationships could 
be inferred. The network connectivity relied on several factors such as increased 
functional interaction and expression abundance. Due to the accessible chromatin 
context and disproportionate RNA expression in adult testis [52], we excluded tes-
tis samples in this analysis. At strict P < 0.01 and absolute Pearson correlation coef-
ficient R > 0.90, a total of 10,623 co-expression pairs were identified between 1268 
coding genes and 463 pseudogenes (Fig. 5h, Additional file 4: Table S3). As expected, 
transcripts of DDPs were connected with more mRNAs than non-dynamic ones 
(Additional file  1: Fig. S27). The DDPs were significantly enriched in the metabolic 
process, meiotic process, and DNA modification, while non-dynamic pseudogenes 
were enriched in the inflammatory response and regulation of immune cells (Fig. 5i, 
Additional file 5: Table S4, Additional file 6: Table S5), indicating different functional 
properties between them.

Since the potential spurious co-expression might be generated, we then took advan-
tage of RNA in  situ conformation sequencing (RIC-seq) data to directly detect RNA–
RNA interactions in vivo [53]. We observed that 1093 RNAs with trans interactions were 
from dynamic loci, accounting for 48.9% of all DDPs, which was significantly higher than 
that of non-dynamic ones (2377, 19.9%) (Fig. 5j) (Fisher’s exact test, P < 2.2 × 10−16). 
The DDPs possessed markedly more interacted mRNAs (an average of 7), compared 
with non-dynamic pseudogenes (average, 3), suggesting again that DDPs were involved 
in extensive and intricate transcription regulation. Three of the top 5 trans interacted 
RNAs from pseudogenes (connectivity > 90) were dynamic, including AC004980.7, 
SUZ12P, and GUSBP1. GUSBP1 had large structural variation in HepG2, and its copy 
number variation was observed in 14% of colorectal cancer patient cohort [54, 55]. 
Besides, the hazard ratios of copy number variation within GUSBP1 fluctuated over time 
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and exhibited a significant association only early after diagnosis (first ~3 years), indicat-
ing that GUSBP1 was a potential early-relapse biomarker.

DDPs are more likely to be translated

In sporadic cases, several translated pseudogenes were identified from human by prot-
eomics data [56–59] and their evolutionary constraints were observed [60]. We specu-
lated that some pseudogenes might have the ability to generate “pseudoproteins,” but 
few pseudoproteins were actually detected due to the limited coverage and resolution of 
proteomic mass spectrometry (MS). The ribosome-profiling technique with high sensi-
tivity made up for the shortage of MS method. One previous study evaluated the transla-
tion of pseudogenes with ribo-seq data and identified 426 and 81 expressed pseudogenes 
with their translated peptides longer than 10 and 100 aa, respectively [61]. This work 
might underestimate the number of expressed pseudogenes since only a limited number 
of cell lines were investigated. To gain a deep insight into pseudogene translation, we 
combined in silico prediction and public ribo-seq data to assess their coding capabil-
ity. First, we subjected 15,244 human pseudogenes to CPC2 [62] and CPAT [63], and 
a pseudogene with at least one transcript passing the above two filters was treated as 
a translated candidate. To ascertain our results, we set protein-coding genes and lncR-
NAs as a positive or negative control, respectively. As expected, about 94% of protein-
coding genes were identified as translated candidates, whereas only 6% of lncRNAs were 
identified (Fig. 6a), indicating that the non-coding dataset was well-annotated and that 
some lncRNAs were able to encode functional peptides [64]. Meanwhile, we found that 
3645 (24%) pseudogenes were identified as potential translated candidates. The higher 
translation potential of pseudogenes than lncRNAs (Fisher’s exact test, P < 2.2 × 10−16) 
could be retained from their parent protein-coding genes. If a pseudogene harbored an 
open reading frame generating proteins or peptides, it would be occupied by the ribo-
some and captured by ribosome-profiling experiments when the tested samples were 
large enough. Accordingly, we collected public ribo-seq data to validate these translated 
candidates. The mapping specificity of Ribo-seq short reads to pseudogenes could be 
exemplified by two loci, AL589987.1 (DDP) and NDUFB4P8 (non-dynamic), to which 18 
and 15 unique mapped reads (MAPQ > 30) were aligned, respectively (Additional file 1: 
Figs. S28-S29). Among those potentially translated pseudogenes, 2941 of them exhibited 
the FPKM ≥ 1.

To further screen the actively translated pseudogenes instead of randomly co-purified 
with the ribosome, we collected 24,724,526 transcripts with actively translated open 
reading frames (ORF) detected by RibORF [61], which used Ribo-seq data and combines 
alignment of ribosomal A-sites, characteristic 3-nt periodicity, and uniformity across 
codons. The pseudogenes with FPKM ≥ 1 in ribo-seq data and harbored at least one 
ORF were considered to be translated. Among the 2941 pseudogenes with FPKM ≥ 1, 
2286 of them contained at least one active ORF (Fig. 6b) (Additional file 7: Table S6), 
accounting for 15% of all pseudogenes, notably surpassing previous estimates (4, 155, 
140, and 272 pseudogenes reported to be translated, respectively in 4 different studies) 
[35, 57, 61, 65]. Besides, GENCODE annotated four translated pseudogenes using MS 
data (AC113404.3, PMS2P2, AC092128.1, and CYP2G1P) and a recent study generated 
a quantitative proteome across 29 human tissues and detected peptide evidence of four 
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pseudogenes (WASH9P, GPX1, GBA3, and PNLIPRP2) [41]. Among the 8 translated 
pseudogenes with peptide evidence, 4 (50%) of them were determined as translated in 
our analysis (AC113404.3, GPX1, GBA3, and PNLIPRP2).

However, one previous study has revealed that translation per se cannot ensure func-
tionality based on the comparison between synonymous and nonsynonymous changes 
[60]. To address this issue, we investigated the relationship between translation and 
expression dynamics since the DDPs were enriched with functional features. The DDPs 
were covered by significantly more ribosome fragments than non-dynamic ones (Fig. 6c), 
and non-dynamic pseudogenes still contained more reads than lncRNAs, demonstrat-
ing that a number of translated pseudogenes might have function. Next, we compared 

Fig. 6  Coding potential of pseudogenes. a Proportion of translated RNA candidates of protein-coding genes, 
pseudogenes, and lncRNAs predicted by CPC2 and CPAT. b Proportion of translated RNA candidates validated 
by ribo-seq data. c Translation level of protein-coding genes, (non-)dynamic pseudogenes, and lncRNAs in 
Ribo-seq data. d Sequence conservation of translated and non-translated pseudogenes. e Proportion of 
translated pseudogenes with different evolutionary ages
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the sequence conservation of pseudogenes and found that the translated pseudogenes 
validated by ribo-seq were more conserved than others (Fig. 6d). Moreover, we observed 
a remarkable increase in the proportion of translated pseudogenes in older groups 
(Fig. 6e), suggesting a gradual acquisition of coding capability for pseudogenes and sub-
sequent functional constraints on the preservation of old translated ones in the genome.

DDPs conduce to cancer transcriptome alterations

To survey the association between pseudogenes and disease-associated regions, we 
overlapped pseudogenes with 141,418 unique disease-associated SNPs from the GWAS 
Catalog [66]. Pseudogene transcripts contained 3538 SNPs (0.07/kb). Of them, 2762 
SNPs (0.18/kb) were located in their promoter regions, and the enrichment of SNPs sug-
gested that these SNPs could play regulatory roles in their expression. In addition, rela-
tive to 65% of protein-coding genes overlapped with SNPs, 15.1% of DDPs harbored at 
least one SNP, which were significantly higher than non-dynamic ones (4.6%) (Fisher’s 
exact test, P < 2.2 × 10−16).

Motivated by this data, we extended our scope to cancer. We found that compared 
with ubiquitously expressed pseudogenes (20%), more cancer type-specific pseudogenes 
(35%) were DDPs (Fig. 7a, Additional file 1: Figs. S30-S31) (See Methods). These cancer 
type-specific pseudogenes might have specific functions and stand for novel elements 
unique to a certain type of cancer type [19]. Such type-specific pseudogene enrichment 
supported the notion that tissue development and tumorigenesis were intertwined [67]. 
Considering that some cancer type-specific pseudogenes might only represent biological 
features unique to a certain type of cancer type rather than play pivotal roles in cancero-
genesis [20], we subsequently explored the differentially expressed pseudogenes between 
cancer samples and benign ones. A total of 173 to 2182 differentially expressed pseudo-
genes were identified from 17 cancer types, accounting for 9.2 to 32% of all differentially 
expressed (DE) genes (Fig.  7b), indicating the prominent contribution of pseudogenes 
to cancer transcriptome changes. Among these DE pseudogenes, more upregulated 
pseudogenes were detected than downregulated ones, and the upregulated ones have 
the potential to be used as therapeutic targets. An example of upregulated DDPs was 
ABCC13, which exhibited remarkably a higher expression level in colorectal cancer than 
in normal adjacent tissue (Additional file  1: Fig. S32). Interestingly, we also observed 
that the cancer types with identical organ origin showed similar pseudogene expression 
changes such as colon adenocarcinoma (COAD) and rectum adenocarcinoma (READ) 
(Fig. 7c). Such molecular features could be exploited to develop surrogate markers for 
cancer early screening and detection. We observed a high overlapping between DDPs 
and DE pseudogenes in 16 out of 17 cancer types (Fig. 7d). These results indicated that 
a rigorous investigation of dynamic pseudogenes identified in this study will provide 
informative insights into human disease and cancer biology in the future.

Discussion
Much work has been done on non-coding RNAs, including long non-coding RNAs and 
circular RNAs [68–71], while the investigation on pseudogenes is still in its infancy. 
Here, we identified and characterized an expanded landscape of pseudogene tran-
scription by adopting a hybrid sequencing method and integrating large-scale public 
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transcriptome data. The unprecedented developmental stage span and depth enabled 
the sensitive detection of pseudogene transcription. The transcribed pseudogene pro-
portion in our results far outnumbered that in current pseudogene databases (10% and 
5% in human and mouse, respectively) [27, 35]. Such a difference might be attributed 
to strong tissue and stage specificities of pseudogenes, and the difference may increase 
with the growing number of samples and cell types studied. Likewise, we found that over 
19% of pseudogenes could encode peptides, which eclipses previous reports. With the 
increased resolution, sensitivity, and sample size (including more tissues and develop-
mental stages) in the future, MS technique could be used to systematically determine 
the translation ability and products of pseudogenes. Considering that some translated 
pseudogenes have been re-annotated as functional protein-coding genes (e.g., PGK2, 
NANOGP8, and POU5F1B) [18], we speculated that although not all translated pseu-
dogenes carried functions, some of them might encode parent-independent functional 
proteins and contributed to phenotypic innovation.

Multiple evidence supported functions of pseudogenes including high conserva-
tion, robust expression, tissue and stage specificity, developmental dynamics, enriched 

Fig. 7  Differentially expressed pseudogenes in various cancer types. a Proportion of DDPs in cancer 
type-specific and ubiquitously expressed pseudogenes. b Proportion of differentially expressed (DE) 
pseudogenes in 17 cancer types. The left and middle panels represent the proportion and number of DE 
pseudogenes, respectively. The right panel indicates the proportion of up- and downregulated pseudogenes, 
respectively. c Correlation coefficient in pseudogene expression changes between cancer types. The order 
is based on hierarchical clustering. d The left heat map shows the proportion of differentially expressed 
pseudogenes in all pseudogenes and DDPs. The right panel represents the odds ratios in each cancer type. P 
< 0.01 except for COAD in two-sided Fisher’s exact tests
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TF binding, active regulation at promoters, proximity to m6A modification, frequent 
trans interactions, and involvement in cancer transcriptome changes (Additional file 8: 
Table S7). In addition, many pseudogenes regarded as functional candidates in this study 
have been previously experimentally verified to be related to important biological pro-
cesses [72]. The unexpectedly high abundance of transcribed and translated pseudo-
genes we nominated highlighted that they might serve as a “gene or protein repository” 
and further investigations are needed to determine their effects on human biology and 
disease. We anticipate that the full-length PacBio sequencing data and sample-matched 
Illumina data of six major tissues in both sexes generated in this study would facilitate 
further functional studies.

Theoretical terms are the foundation for the development of scientific theories. Since 
the term “pseudogene” was introduced, this overhasty classification was assumed as 
“similar but defective” copies that were not able to be transcribed or translated. How-
ever, the emergence of high-throughput data and advanced experiment methods shed 
the light on the expression and function of pseudogenes, thus challenging the conven-
tional opinion [18]. Moreover, unexpressed pseudogenes could contain cis-regulatory 
elements, and they might act as important regulators in human biology and health [1]. 
Therefore, one study has proposed the term “exapted pseudogene” to represent the 
functional renewal of a pseudogene and to eliminate this controversy. In this study, we 
put forward “awake paralogs” as an alternative description of expressed processed and 
unprocessed pseudogenes since the descriptive term should not make any functional 
inference without functional or biological validation. Meanwhile, the “asleep paralogs” 
(unexpressed pseudogenes) could serve as a “gene repository,” and they might wake up 
and confer fitness to the organism due to the changes in environment or genetic back-
ground in the future.

Conclusions
Here, we analyzed the evolution and expression of mammalian pseudogenes within a 
developmental framework and provided a comprehensive expression profile of pseudo-
gene transcriptomes by integrating PacBio long-read sequencing and large-scale RNA-
seq data. We also identified the DDPs with enrichment of functional features, provided 
proof-of-principle evidence that DDPs contributed to organ development and might 
represent a new regulatory layer, and associated these DDPs with putative functions 
(i.e., metabolic process and DNA modification). Future studies combining experiments 
and emerging sequencing technologies will further uncover the regulatory profiles of 
these DDPs and elucidate their phenotypic consequences and underlying molecular 
mechanisms.

Methods
Pipeline for dating pseudogene age

The human and mouse pseudogene annotations, including their coordinates and bio-
types (processed, unprocessed, unitary, and polymorphic pseudogene) generated 
and manually curated by GENCODE project [27], were downloaded from ENSEMBL 
compara [35]. We dated human and mouse pseudogenes based on synteny-based 
method [28]. First, we excluded the Y chromosome-located pseudogenes since the Y 
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chromosome was largely invaded by transposable elements, and we also excluded the 
pseudogenes with more than 70% exonic regions covered by repeats. Afterwards, a total 
of 14,136 (92.7%) pseudogenes in human and 13,685 (96.8%) in mouse were retained for 
further analysis. We identified reciprocal best region of pseudogene’s each exon in other 
species based on whole genome alignment files generated by UCSC Genome Browser 
[73] and assigned phylogenetic distribution according to the most ancient exon follow-
ing a parsimony rule. The divergence time was estimated from TimeTree [74]. Computa-
tional codes for dating age of pseuodgenes were uploaded to github. The parent coding 
genes of pseudogenes were obtained from Pseudogene.org [75]. Genome browser for 
METTL21EP was obtained from UCSC. For gene traffic analysis, we assumed that each 
chromosome would generate pseudogenes in proportion to the number of protein-cod-
ing genes on this chromosome and that chromosomes received pseudogenes in propor-
tion to the size of the chromosome. We then calculated the difference between observed 
and expected number of pseudogenes on autosomes and X chromosome, and we con-
ducted statistics analysis using Fisher’s exact test.

Illumina sample preparation

Total RNAs from mouse (C57BL/6J) adult brain, cerebellum, heart, colon, and gonad 
in both sexes were extracted and were subsequently treated with Ribo-off rRNA Deple-
tion Kit to remove ribosome RNA (rRNA). Then the VAHTS TM Stranded mRNA-seq 
Library Prep Kit for Illumina was used for strand-specific library construction. After-
wards, the library was sequenced on the Illumina Nova platform.

Expression analysis

Developmental transcriptome data of human and mouse were downloaded from EBI Array-
Express under accession number E-MTAB-6814 and E-MTAB-6798, respectively, which 
covered the developmental stages from organogenesis to adulthood including six major 
tissues (brain, heart, cerebellum, liver, kidney, and gonad in both sexes) [25]. For human 
data, we applied STAR (v2.6.1) [76], which is accurate in distinguishing similar paralogs [21] 
(Additional file 1: Figs. S33-S35), for mapping reads and featureCounts (v2.0.0) for quantify-
ing mapped reads, respectively [77]. We combined our PacBio annotation with ENSEMBL 
reference annotation to quantify mouse data. Considering the high sequence similarity 
between pseudogenes and their parent coding cognates, we only retained uniquely mapped 
reads for quantification to achieve an unbiased analysis. We determined the gene expres-
sion level using FPKM (reads per kilobase million), and introduced tau value to estimate the 
tissue specificity of genes [78]. The tau value was calculated in the following formula:

where xi indicates the expression level of gene x in tissue i. Likewise, the same calcula-
tion formula was applied to developmental stage specificity. Both and tissue and stage 
specificity tau values ranged from 0 (broad expression) to 1 (highly specific expression).
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PacBio sequencing

The RNAs were extracted from adult mouse brain, cerebellum, heart, colon, and gonad 
in both sexes, and somatic tissues were pooled into one sample in each sex. The samples 
were used to prepare cDNA library using P Clontech SMARTer PCR cDNA Synthesis 
Kit and PrimeSTAR GXL DNA Polymerase, followed by library construction by using 
SMRTbellTM Template prep and sequencing on the Pacific Biosciences Sequel I plat-
form. Specifically, we sequenced high-quality RNA from somatic and gonad tissues of 
two sexes of the mouse on a Sequel I platform, including 4 RNA libraries (6 Pacbio flow-
cells), and produced 1,946,228 raw reads.

PacBio data processing

The raw data were subjected to SmrtLink Pipeline ccs (v5.0.0) for self-correction to 
obtain full-length circular consensus sequencing (CCS) reads based on PacBio recom-
mended pipeline. We applied the SmrtLink Pipeline Cluster subprogram to cluster the 
full-length non-chimeric sequences into full-length transcripts (longer than 300bp) and 
retained 899,237 full-length transcripts supported by at least one full-length non-chi-
meric sequence through Isoseq 3 [79]. The LoRDEC program (v0.7) [80] was leveraged to 
correct the full-length transcripts based on the results of Illumina RNA-seq to improve 
the accuracy of the third generation transcripts. After being corrected by LoRDEC using 
next-generation RNA-seq data, the third generation transcripts were mapped to refer-
ence genome (Ensembl 98) through minimap2 (version, 2.17-r954-dirty) [81]. Then the 
redundant transcripts model (GFF3 format) for each high-quality non-chimeric CCS 
read from minimap2 output were collapsed using the Python script (collapse_isoforms_
by_sam.py) from cDNA_cupcake ((https://​github.​com/​Magdo​ll/​cDNA_​Cupca​ke) to 
generate a non-redundant set of transcript model (termed as Iso set). Gffcompare (GFF 
Utilities, v0.11.2) [82] was used to compare each isoform in Iso set with existing mouse 
Ensembl gene models (termed as reference set). Among the 49,914 full-length tran-
scripts, 332 were derived from pseudogene loci. The genes annotated in the reference set 
but not overlapped with Iso-seq annotation at the same strand were merged with Iso-seq 
annotation to form the final annotation. The pseudogene transcripts were identified and 
classified as those assigned the name of reference pseudogenes by Gffcompare.

Identification and characterization of DDPs

In each tissue, DDPs were identified using an R package masigPro, which was designed 
for time-course transcriptome data [43]. In general, the CPM (counts per million) was 
used to calculate a goodness-of-fit (R2) metric. We ran maSigPro using the log-trans-
formed time after conception with a degree = 3. A pseudogene with R2 >0.3 in a tissue 
was defined as DDP in this tissue. The pseudogenes exhibiting developmentally dynam-
ics in at least one tissue were finally classified as DDPs. The lists of DDPs in each tis-
sue in human and mouse are provided in Additional file 9: Table S8, Additional file 10: 
Table S9, Additional file 11: Table S10, Additional file 12: Table S11, Additional file 13: 
Table  S12, Additional file  14: Table  S13 and Additional file  15: Table  S14. DESeq2 
(v1.30.1) was applied for differential expression analysis [83].

We characterized the DDPs using different metrics. The length of pseudogenes and 
parent coding genes was measured through non-redundent exonic regions. Promoter 

https://github.com/Magdoll/cDNA_Cupcake
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regions were defined as the regions 2kb upstream to 1kb downstream of the transcrip-
tion start sites (TSSs). To enable comparison between protein-coding genes and pseudo-
genes, their TSSs were defined as the starting coordinate of the first exon of each gene. 
The intergenic regions (matched length, 3kb) were randomly selected as negative control. 
The transcription factor (TF) binding information was retrieved from GTRD, a database 
collecting more than 5000 ChIP-seq experiment data of human and mouse TFs [84]. Bed-
tools intersect was utilized to detect the overlapping of TF binding sites and promoter 
regions [85]. Diversity of TFs in a region was defined as the number of types of different 
TFs. Number and diversity of TFs were used for evaluating transcriptional complexity.

Epigenetic data from Roadmap Epigenomics Project were obtained from the data 
portal (http://​egg2.​wustl.​edu/​roadm​ap/). A total of 127 consolidated epigenomes were 
included in this work. A promoter with more than 1 base pair overlapping with a chrom-
HMM state was defined as annotated by this state. The whole genome sequences were 
plotted as background. We intersected the gene body regions with H3k27ac and DHS 
(DNase hypersensitivity) data. The distribution profile of H3K27ac and DHS peaks 
relative to transcription start site (TSS) was generated by deepTools [86]. The random 
regions were acquired from randomly shuffled intergenic regions without any overlap-
ping with known gene regions. The N6-methyladenosine methylome data were obtained 
from REPIC, a publicly available dataset with 10 million peaks called from m6A-seq and 
MeRIP-seq data [87]. We retrieved RNA-binding proteins (RBPs) data of human and 
mouse from oRNAment [88]. Post-transcription complexity was determined based on 
the number and enrichment of m6A and RBPs. For RIC-seq (RNA in situ conformation 
sequencing) data, we calculated the interaction pairs including mRNA-mRNA, mRNA-
dynamic pseudogene, and mRNA-non-dynamic pseudogene. Poly(A) signals were 
obtained from PolyASite [89]. GO analysis was performed using clusterProfiler [90].

Identification of disease‑ and cancer‑related pseudogenes

A detailed list of GWAS SNPs was obtained from the National Human Genome 
Research Institute’s (NHGRI) GWAS catalog [66]. And unique SNPs were retained for 
further analysis. Gene expression datasets were generated by TCGA project for cancer-
associated analysis. A total of 33 cancer types were included in this work. Gene expres-
sion profile (raw read count files) was downloaded by the R package TCGAbiolinks [91]. 
Next, we excluded the protein-coding genes and pseudogenes with zero read in all sam-
ples. The genes defined as cancer type-specific needed to meet two criteria: (1) the ratio 
of the gene expression level in a certain cancer type to the sum of that in all 33 cancer 
types was more than 15%; (2) the ratio of gene expression level in any of the rest 32 can-
cer types to the sum of that in all 33 cancer types was less than 5%. In contrast, the genes 
defined as ubiquitous pseudogenes met two criteria: (1) the ratio of the gene expression 
level in a certain cancer type to the sum of that in all 33 cancer types was more than 
less than 30%, and (2) the ratio of gene expression level in each of top 5 cancer types 
to the sum of that in all 33 cancer types was more than 5%. To avoid the dominance of 
tumor or normal tissues in differential expression analysis by DESeq2, only 17 cancer 
types with more than 5 normal and 5 tumor samples were retained. Colorectal cancer 
and adjacent samples for IGV were obtained from Li et al. [92].

http://egg2.wustl.edu/roadmap/
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Coding potential assessment of pseudogene transcripts

The coding potential of pseudogenes was assessed by using CPC2 (0.1) [62] and CPAT 
(v.1.2.4) [63]. CPC2 is a fast coding potential calculator based on sequence intrinsic fea-
tures. CPAT uses an alignment-free logistic regression model to recognize coding poten-
tial based on sequence features, and recommended cutoff (> 0.364) was used to identify 
the pseudogene transcripts with coding potential. We downloaded Ribo-seq data and 
ORF information from RPFdb [93] collecting the most comprehensive ribosome-profil-
ing data to verify the coding potential of all candidates. The maximum FPKM of a given 
gene among all Ribo-seq samples was defined as its FPKM value and a pseudogene can-
didate with FPKM >1 was validated as a translated one.
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