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Abstract

Background: Regulation of gene expression plays an essential role in controlling the
phenotypes of plants. Brassica napus (B. napus) is an important source for the vegetable
oil in the world, and the seed oil content is an important trait of B. napus.

Results: We perform a comprehensive analysis of the transcriptional variability in the
seeds of B. napus at two developmental stages, 20 and 40 days after flowering (DAF).
We detect 53,759 and 53,550 independent expression quantitative trait loci (eQTLs)

for 79,605 and 76,713 expressed genes at 20 and 40 DAF, respectively. Among them,
the local eQTLs are mapped to the adjacent genes more frequently. The adjacent gene
pairs are regulated by local eQTLs with the same open chromatin state and show a
stronger mode of expression piggybacking. Inter-subgenomic analysis indicates that
there is a feedback regulation for the homoeologous gene pairs to maintain partial
expression dosage. We also identify 141 eQTL hotspots and find that hotspot87-88 co-
localizes with a QTL for the seed oil content. To further resolve the regulatory network
of this eQTL hotspot, we construct the XGBoost model using 856 RNA-seq datasets and
the Basenji model using 59 ATAC-seq datasets. Using these two models, we predict the
mechanisms affecting the seed oil content regulated by hotspot87-88 and experimen-
tally validate that the transcription factors, NAC13 and SCL31, positively regulate the
seed oil content.

Conclusions: We comprehensively characterize the gene regulatory features in the
seeds of B. napus and reveal the gene networks regulating the seed oil content of B.
napus.

Keywords: Brassica napus, eQTL, Subgenome, Machine learning, Regulatory network,
Seed oil content
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Background

Genetic variants affect gene expression and thereby impact multiple phenotypes [1-3].
Expression quantitative trait locus (eQTL) studies associate genomic variations and
transcriptomic datasets and have been widely used to reveal the molecular mechanisms
of target trait-associated genomic variations [4]. In recent years, this approach has also
played an important role in the resolution of key genes and regulatory networks for
plant traits, such as resolving that Abscisic acid 8’ -hydroxylase plays a negative role in
maize drought tolerance [5], GRHRK]I is a negative regulator in cotton high-temperature
stress [6], and Aradu.10025440 was identified as a novel gene that may control the pea-
nut purple testa [7]. In addition, imbalanced regulation is prevalent among subgenomes
of polyploid crops [8—15]. The overall gene expression of the cotton Dn subgenome was
stronger than the An subgenome, and the bias of DNA methylation levels can influence
the expression bias of homologous gene pairs in the subgenomes [16, 17]. Moreover, B.
napus gene expression levels and various active epigenetic signal modifications were
significantly stronger on the An subgenome than on the Cn subgenome, with a higher
proportion of SNPs also observed on the An subgenome [11, 18]. eQTL is also a good
approach to explore the characteristics and regulatory mechanisms among subgenomes
of polyploid plants [19-21]. In cotton, for example, eQTL analysis revealed the imbal-
anced genetic regulation patterns between An and Dn subgenomes and indicated the
important role of the Dn subgenome in fiber development [19].

eQTL mapping is a potentially powerful method for revealing gene regulatory rela-
tionships. However, the identification of gene regulatory relationships directly from
eQTL remains challenging [22]. On the one hand, there are often dozens or hundreds of
candidate genes in an eQTL interval and it is difficult to determine which gene plays a
regulatory role [23, 24]. On the other hand, significant variants do not definitely repre-
sent regulatory variants (RVs), and uncovering regulatory elements (REs) and RVs from
numerous significant variants is still very difficult at the present stage [25, 26]. eQTLs
combined with machine learning can assist to investigate the causal interactions across
genes [27-29]. A previous study used a large amount of transcriptome data to construct
XGBoost models to predict gene regulatory networks (GRNs) and combined eQTL
information to find the key transcription factors (TFs) in different GRNs [30]. Further-
more, REs are enriched in open chromatin regions (OCRs) and the identification of REs
in OCRs as well as high-impact variants can help identify RVs in eQTL study [31, 32].
Assay for transposase-accessible chromatin sequencing (ATAC-seq) can provide insights
into genomic patterns of open chromatin [33]. Deep learning network-based models can
automatically extract complex features from genomic sequences to accurately and effi-
ciently learn the OCR information and predict the RVs in non-coding regions [34—38].
The development of these methods has greatly facilitated the identification of regulatory
relationships in eQTL studies. More importantly, examination of how RVs affect gene
expression can help bridge the gap between genomic variations and phenotype.

As an important oil crop, improvement of seed oil content (SOC) is one of the major
breeding goals for Brassica napus (AACC, 2n = 38) [39]. As we know, there is a complex
network of transcriptional regulation in plant lipid metabolism [40, 41]. Among them,
several TFs such as WRINKLED1 (WRI1), LEAFY COTYLEDON2 (LEC2), FUSCA3
(FUS3), ABSCISIC ACID-INSENSITIVE 3 (ABI3), LEAFY COTYLEDONI (LECI),
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GLABRA2 (GL2), and TRANSPARENT TESTA2 (TT2) were shown to play important
functions in the regulation of seed oil content [42—49]. As an allotetraploid oil crop, B.
napus is formed by natural hybridization between Brassica rapa (AA, 2n = 20) and Bras-
sica oleracea (CC, 2n = 18). And with the development of whole-genome sequencing
technology, a series of QTLs and genes regulating SOC have been identified in B. napus
using the genome-wide association study (GWAS) and transcriptome-wide association
study (TWAS) [50, 51]. There are complex regulatory networks between subgenomes
[52, 53], previous studies lacked the analysis of regulatory networks using the omics data
at the population level, and prediction methods of regulatory networks also need to be
further developed in the face of new high-throughput sequencing technologies. eQTL
mapping from rapeseed population, epigenetic landscapes constructed by ATAC-seq
[54], and the well-established machine learning prediction models can help explore the
key TFs and corresponding gene regulatory networks involved in seed oil synthesis.

Here, we applied the genomic data of 505 B. napus accessions and the corresponding
583 transcriptomes for eQTL identification. We characterized the gene regulatory fea-
tures between two seed developmental stages and subgenomes. To further obtain accu-
rate regulatory relationships and regulatory elements, we also constructed XGBoost
and Basenji models using 856 ZS11 RNA-seq data and 59 ATAC-seq data to predict
the key TFs and regulatory mechanisms affecting SOC. Finally, combining the eQTL
mapping and the constructed machine learning models, we successfully predicted 141
regulatory hotspots and identified key transcription factors NAC13 and SCL31 impact-
ing SOC and their corresponding regulatory network. Meanwhile, in order to facili-
tate researchers to query and use this resource, we constructed the Bn-eQTL database
(http://yanglab.hzau.edu.cn/BneQTL/), from which the regulatory relationships can be
easily accessed (Additional file 1: Fig. S1).

Results

Static and dynamic eQTLs underpin regulatory landscapes at two stages of seed
development in B. napus

We mapped the genome sequences of 505 B. napus accessions re-sequenced in our pre-
vious study [50] to the ZS11 reference genome [55] and identified 11,700,689 genomic
variants. In addition, a total of 583 transcriptomes from two seed development stages
(309 accessions at 20 DAF and 274 accessions at 40 DAF) which were collected previ-
ously [50] were used for eQTL mapping. The transcriptome data were aligned to the
ZS11 reference genome and identified 80,122 and 78,404 expressed genes at 20 DAF and
40 DAF, respectively. Based on genome-wide mapping, we identified 53,759 and 53,550
eQTLs for 79,605 and 76,713 genes (representing 99.35% and 97.84% of expressed genes)
at two stages (Fig. 1a; Additional file 1: Fig. S2; Additional file 2: Tables S1 and S2). An
average of six eQTLs were mapped per gene, with 53.7% and 44.1% of mapped genes
having more than ten eQTLs affecting their expression at 20 DAF and 40 DAF, respec-
tively (Fig. 1b; Additional file 2: Tables S3 and S4), possibly indicating a relatively com-
plex regulatory mechanism for expression variation in B. napus. Based on whether an
eQTL regulates gene expression nearby or distantly, all eQTLs were designated into local
(most act as cis) eQTLs and distant (trans) eQTLs at 20 DAF and 40 DAF (local eQTLs,,
pag: 15,250, distant eQTLsy, pag: 38,509, local eQTLsyy pap: 14,679, distant eQTLsy, pag:
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Fig. 1 Genome-wide eQTL dynamic changes and characterization. a The proportion of static and dynamic
distribution of genome-wide local and distant eQTLs at 20 and 40 DAF. b The number of eQTLs for each gene.
The x-axis and y-axis represent the number of eQTLs mapped for each gene and the number of genes in
each group, respectively. ¢ Comparison of the explained variance (%) of local and distant eQTLs for expression
at 20 and 40 DAF. d Manhattan plot of BnaA07.WRIT eGWAS at 20 DAF and 40 DAF. Gene names related to
lipid metabolism are labeled on the plot. FUS3, FUSCA3; CD1, CUTIN DEFICIENT T; SHN3, SHINE3; MYB30, MYB
DOMAIN PROTEIN 30; LECT, LEAFY COTYLEDON 1; PDAT, PHOSPHOLIPID: DIACYLGLYCEROL ACYLTRANSFERASE;
ROD1, REDUCED OLEATE DESATURATION 1; TED4, TRACHEARY ELEMENT DIFFERENTIATION-RELATED 4; TGD4,
TRIGALACTOSYLDIACYLGLYCEROL 4. e The distribution of overlapping ATAC peaks and eQTLs after randomly
permuting the positions of ATAC peaks and eQTLs on the whole genome 1000 times at 20 DAF and 40
DAF. The inverted triangle represents the actual number of eQTLs in OCRs. The dashed lines indicate 95%
confidence interval (Cl) values

38,871). Overall, 75.00% and 75.15% of the local eQTLs explained more than 20% of the
expression variation at both stages of seed development, but the values were 45.53% and
50.04% in the distant eQTLs, respectively (Fig. 1c). We also noted that 32,002 eQTLs
(73.72% and 75.67% distant eQTLs and 62.21% and 74.77% local eQTLs at 20 and 40
DAEF, respectively) were detected at both stages (Fig. 1a), suggesting that the genetic
effects on gene expression remain stable between two stages.

Although most of the eQTLs were consistently observed at both stages, we also found
some stage-specific eQTLs. WRII is a key regulator involved in the oil biosynthesis
pathway and mainly plays a function in the initial stage of seed maturation [56]. BnaA0?7.
WRII had 11 eQTLs at 20 DAF and some known TFs regulating WRII, such as FUS3 and

LECI, were successfully identified. However, all these eQTLs were no longer detected at
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40 DAF (Fig. 1d). In addition, we also found that some genes were only expressed at 40
DAF and eQTLs were detected at this time, such as BnaA05.FAD7 (Additional file 1: Fig.
S3), which is responsible for the synthesis of C16:3 and C18:3 fatty acids in galactolip-
ids, sulfolipids, and phosphatidylglycerols [57, 58]. We further characterized the genes
predicted to be regulated by eQTLs at a certain stage (eGene, defined as a gene in which
the expression is significantly associated with an eQTL) and there were average of 8.64
eQTLs per eGene at 20 DAF and 8.19 eQTLs per eGene at 40 DAF. The GO enrichment
analysis showed that eGenes at 20 DAF were involved in a variety of biological processes,
such as substance synthesis, transport, and transcriptional activity. However, the eGenes
at 40 DAF were significantly enriched in response to various stresses and metabolism
processes (Additional file 2: Tables S5 and $6), indicating that these eGenes are under
different genetic regulation at different developmental stages and are thus involved in
the corresponding biological processes.

OCRs are enriched for eQTL significant variants

Several lines of evidence suggest that genomic variations affect gene expression by
perturbing cis-regulatory elements and altering the chromatin accessibility [37, 38].
To further investigate how genomic variations affect gene expression, we selected six
representative accessions (ZS11, Westar, No2127, Zheyou7, Gangan, and Shengli) of
B. napus for ATAC-seq using developing seeds at four stages (20, 26, 34, and 40 DAF)
(Additional file 1: Fig. S4). A total of 59 ATAC-seq datasets were collected and 646,675
OCRs were identified across the genome (Additional file 2: Table S7). Correlation
analysis showed clustering of samples was consistent with their origin, samples from
the same accession clustered together (Additional file 1: Fig. S5). To assess whether
eQTLs were enriched in OCRs or not, we investigated the significance of the overlap
between OCRs and lead SNPs of eQTLs using a permutation-based approach. There
were 9742 and 4626 lead SNPs located within the OCRs at 20 and 40 DAF, respec-
tively, while the values of 95% confidence interval based on 1000 permutations were
7209 and 3442 (P < 0.01, Fig. 1e). For example, BnaA08.TGD1, which is involved in
lipid transfer, had a stable local eQTL in the OCRs of ZS11 (Additional file 1: Fig. S6).
Besides, an investigation of the contribution of eQTLs to explain phenotypic variation
revealed that the eQTLs in OCRs had a greater impact (P = 1.16 x 10~ ', Kolmogorov-
Smirnov test) (Additional file 1: Fig. S7). These results are consistent with expecta-
tions under the assumption that OCRs harbor REs and the lead SNPs of eQTL are
expected to be located in or near REs, and the combination of this resource allows
further understanding of the regulatory mechanisms of eQTL.

Local eQTL and chromatin states reveal expression piggybacking of adjacent genes

To investigate the characteristics of local regulatory variants in the B. napus genome,
we extracted the location information of genes with any local eQTLs and analyzed
their distribution in the genome. Among 38,614 genes with any local eQTLs, 20,928
adjacent gene pairs were formed, which was significantly greater than the number
expected by random chance (P < 0.001, with 1000 permutations; Fig. 2a), indicat-
ing that local eQTLs appear to be in adjacent genes more frequently. We also found
that the correlation of all adjacent genes’ expression was significantly higher than
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Fig. 2 Local eQTL characterization. a Genes with local eQTLs occur more frequently at adjacent positions
than expected by chance. The x-axis indicates the number of intervening genes between two genes in the
7511 genome. The light red triangles indicate the number of gene pairs observed with local eQTL mapping.
The blue histograms indicate the distribution of gene pairs from 1000 random permutations. The green
histogram in the inset indicates the distribution of adjacent gene pairs based on 1000 random permutations.
b CDF plots show that all adjacent gene pairs with any local eQTLs exhibit the highest expression correlation.
Class I indicates the correlation coefficient distribution of adjacent genes with any local eQTLs. Class I
indicates the correlation coefficient distribution of adjacent genes with local eQTLs detected on either gene.
Class lll indicates the correlation coefficient distribution of adjacent genes that do not map local eQTLs on
both genes. Class IV indicates the correlation coefficient distribution of non-adjacent genes with local eQTLs
mapped on both genes. ¢ The violin plot depicts the highest correlation of expression of adjacent genes
when local eQTLs regulating two class | adjacent genes which are in the same chromatin open state. In
the horizontal axis, “Both open”indicates that the local eQTLs for both class | genes are located in the ATAC
chromatin open region;“One open”indicates that the local eQTLs for only one class | gene are located in the
ATAC chromatin open region. “Both closed”indicates that the local eQTLs of both class | genes are not located
in the open region of ATAC chromatin. ***P < 0.001 compared with “One open”in Student’s t test

that of randomly sampled gene pairs (P < 0.001, Kolmogorov-Smirnov test; Addi-
tional file 1: Fig. S8). Furthermore, we investigated whether the expression correla-
tion of adjacent gene pairs was influenced by local eQTL and divided the adjacent
gene pairs into three classes: (I) two genes both have local eQTLs, (II) only one gene
has local eQTL, and (III) two genes have no local eQTL. We also randomly selected
gene pairs in the whole genome for correlation analysis. In adjacent gene pairs, the
expression correlation was the highest when two genes have local eQTLs, and the
lowest when two genes have no local eQTL (Fig. 2b). These results suggest that the
expression changes of one gene are closely related to the expression of its adjacent
gene in B. napus, and this expression piggybacking is stronger when two genes have
local eQTLs in adjacent gene pairs. Interestingly, this phenomenon also occurred in
maize [59].

To explore the effect of chromatin states of local eQTLs on expression piggyback-
ing, we classified adjacent gene pairs both with local eQTLs into three types (eQTLs
both in OCRs, only one in OCRs, and none in the OCRs) based on the chroma-
tin opening states of the lead SNP for local eQTL. The analysis showed that gene
expression correlations were significantly higher in the same chromatin state (i.e.,
eQTLs both in OCRs or none in the OCRs) than those with different chromatin
states (P < 0.01; Fig. 2¢c). These results indicate that chromatin states influenced the
local eQTLs, thus impacting the expression piggybacking effect of adjacent genes.

The above results indicate that expression piggybacking occurs widely in B. napus
and is stronger when adjacent genes are both regulated by eQTLs in the same chro-
matin state. Therefore, comparing with the results in maize [59], we speculate that
the phenomenon of expression piggybacking may be widespread in plants.
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Feedback regulation of homoeologous genes in B. napus

The mapping of distant eQTLs provides a wealth of information for dissecting inter-
subgenomic genetic regulation of polyploid plants and understanding the response of
gene expression to allopolyploidy [10, 20]. We found that higher eQTL density on the
An subgenome (55.83% and 56.15% of eQTL at 20 and 40 DAF, respectively) could be
observed in the B. napus genome and that An gene expression was usually regulated
by more eQTLs (average of 8.14 eQTLs per An genes and 7.77 eQTLs per Cu genes;
Additional file 1: Fig. S9). Our analysis showed that nearly 60% of genes were regulated
by the eQTL located in the An subgenome (Fig. 3a). These results indicate that regula-
tion between subgenomes is unbalanced between An and Cn subgenomes, with the An
subgenome having more abundant variations.
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To explore the effect of imbalanced regulation between subgenomes on gene expres-
sion, we defined the mutually most similar gene pairs (sequence similarity reciprocates
for best hit) between subgenomes as homoeologous gene pairs (HGPs) and a total of
27,689 HGPs were identified in B. napus (Additional file 2: Table S8). We assumed that if
a gene was in the distant eQTL of its homoeologous gene (150 kb before and after TSS),
then it was likely to regulate the homoeologous gene. Based on this, when only one gene
in the HGP was regulated by a homoeologous gene, the HGPs were considered as asym-
metrically regulated homoeologous gene pairs (aHGPs). In addition to this, HGPs that
were not mutually regulated, or regulated by each other, were defined as symmetrically
regulated homoeologous gene pairs (sHGPs; Fig. 3b). Subsequently, an expression trend
analysis of all HGPs suggested that HGPs had imbalanced expression between subge-
nomes with adjusted P value (padj) < 0.05 and demonstrated that aHGPs had a much
higher percentage of gene imbalance expression than sHGPs (Fig. 3c; Additional file 1:
Fig. S10; Additional file 2: Tables S9 and S10). This indicates that imbalanced regulation
is more likely to result in imbalanced gene expression between Az and Cn subgenomes.

Subsequently, we investigated the expression levels of HGPs in the subgenome at 20
and 40 DAF and found that in aHGPs with An eQTL regulating Cn gene, the Cn genes of
aHGPs tend to be highly expressed and in aHGPs with Cn eQTL regulating An gene, the
An genes of aHGPs tend to be highly expressed (Fig. 3d). These results show that aHGPs
tend to be highly expressed in genes regulated by homoeologous genes. To explain this
phenomenon, we analyzed HGPs with stable regulatory eQTLs at two stages. In aHGPs
with An eQTL regulating Cn genes, aHGPs tend to be expressed in Cn genes when An
genes were regulated by cis-variants. Conversely, aHGPs without local eQTLs tended
to have a higher expression for An genes (Fig. 3e). The opposite phenomenon was also
found for aHGPs with Cn eQTL regulating An genes (Additional file 1: Fig. S11). These
results suggest that local eQTLs in aHGPs can influence the direction of expression
propensity.

In addition, we performed gene expression correlation analysis between the An gene
and Cn gene in aHGPs. We found that the correlation of aHGPs with local eQTLs had
a significant decrease compared to aHGPs without local eQTLs, showing a negative
correlation (Fig. 3f; Additional file 1: Fig. S12). These results suggest that aHGPs with
local eQTLs have feedback regulation to maintain partial expression dosage between
homoeologous genes. We also found aHGPs were mainly TFs (permutation-based test,
P < 0.01; Additional file 1: Fig. S13). In summary, these results showed that the imbal-
anced regulation at the transcriptional level between subgenomes leads to unbalanced
gene expression and the direction of expression propensity can be influenced by local
eQTL. Moreover, it also suggested that there is a regulatory mechanism to maintain
partial gene expression dosage among HGPs when the regulated genes in aHGPs have
local eQTLs.

Abundant distant eQTL hotspots exist in the genome

When observing the genomic distribution of distant eQTLs, we found that a large num-
ber of eQTLs clustered in certain regions, forming eQTL hotspots (Additional file 1:
Figs. S9 and S14). Finally, we identified a total of 141 significant eQTL hotspots at 20 and
40 DAF (Additional file 2: Tables S11 and S12). Interestingly, most of these regulatory
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hotspots were distributed on the An subgenome (An:Cn = 97:45). Comparison of the
eQTL hotspots at two stages showed only 21 hotspots were completely specific (9 hot-
spots at 20 DAF, 12 hotspots at 40 DAF), which accounted for 14.89% of the total num-
ber of eQTL hotspots (Fig. 4a). These results indicate that the distant eQTL distribution
is relatively stable during seed development of B. napus.

To further investigate whether these eQTL hotspots were involved in the regulation
of seed traits, we performed the enrichment analysis between genes regulated by eQTL
hotspots and trait-associated genes identified by TWAS. The published phenotype data
of SOC, seed glucosinolate content (SGC), and seed coat content (SCC) [50, 51, 60] were
used to perform TWAS (Additional file 2: Tables S13 and S14). Subsequently, we found
that the SOC-, SGC-, and SCC-related hotspots were mainly located in the An subge-
nome (Fig. 4a). SOC-related aHGPs with local eQTLs were able to maintain a partial
homoeolog expression dosage, such as ADDS and PDATI (Pearson’s correlation coeffi-
cient [PCC] R,pps = —0.75, PCC Rpp 471 = —0.35). However, the HGP of WRI1 without
local eQTL does not maintain homoeolog expression dosage, showing that expression is
highly correlated (PCC Ryyz,; = 0.84; Additional file 1: Fig. S15). Interestingly, there were
two adjacent hotspots (hotspot 87, hotspot 88) on chromosome A09 that could regulate
69.73% TWAS significant genes of SOC (Additional file 1: Fig. S16). We combined these
two hotspots and named it Hotspot87-88. These results suggest that Hotspot87-88 on
AO09 plays an important role in regulating SOC (Additional file 2: Tables S15 and S16).

Combining distant eQTL hotspots and XGBoost module to identify key TFs affecting SOC
Although we have identified important regulatory hotspots that regulate SOC, the iden-
tification of regulatory genes in hotspot regions remains challenging. It is known that
TFs play an important role in gene regulatory networks. There are often some key TFs in
eQTL regulatory hotspots that influence the phenotype by regulating the expression of
a series of downstream genes [5, 30]. To find the key TFs affecting SOC regulatory genes
in Hotspot87-88, we constructed an XGBoost model to prioritize possible upstream TFs
based on a gradient boosting decision tree (Additional file 1: Fig. S17). Based on this, we
performed upstream TF prediction for TWAS significant genes of SOC whose eQTLs
were located in Hotspot87-88. For each TWAS significant gene of SOC, the top 3 TFs
ranked were extracted as possible upstream TFs by the XGBoost model. Afterwards, we
ranked all genes predicted to be upstream TFs according to the number of occurrences,
and the TFs that were predicted to regulate more TWAS significant genes of SOC were
ranked higher. Thus, we predicted BnaA09.SCL31 (BnaA09G0670500ZS) to be the key
TF regulating TWAS significant genes of SOC in Hotspot87-88 (Fig. 4b, c). BnaA09.
SCL31 located in Hotspot87-88 and its different genotypes of eQTL lead SNP signifi-
cantly associated with its own gene expression, TWAS-SOC significant gene expression,
and SOC (Additional file 1: Fig. S18).

Interestingly, GWAS for SOC showed that BnaA09.SCL31 was also located within
the SOC QTL gOC.A09.5 in our previous study [50]. By distinguishing the coding
region and the upstream 2-kb promoter of SCL3I into four haplotypes, significant
differences were observed between SOC and expression value corresponding to vari-
ous haplotypes (Pgoc = 6.7x107°; P = 5.19x1073 Fig. 4d, e; Additional file 1:

» & expression
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Fig. S19a). We further found that gene expression of BnaA09.SCL31 was significantly
positively correlated with SOC (PCC R,y par.soc = 0-33, Pyg par.soc = 1.78x107%;
Additional file 1: Fig. S19b).

To verify the function of SCL31, we applied two Arabidopsis T-DNA insertion mutants
of SCL31 (one inserted in the promoter and the other in the exon) to examine the SOC
(Additional file 1: Fig. $20). Compared with WT, the mutants had a relatively stable fatty
acid composition and showed a significant decrease in SOC. Besides, we also observed
shorter siliques and smaller seeds in the mutants (Fig. 4f, g; Additional file 1: Figs. S21
and S22). These results suggest that SCL31 is an important TF positively affecting SOC,
silique length, and seed sizes.

Predicting regulatory mechanisms affecting SOC

In order to further explore the regulatory mechanisms of TWAS significant genes of
SOC, we trained the Basenji, which uses convolutional neural networks to predict chro-
matin accessibility (Additional file 1: Fig. $23). The trained Basenji model showed high
consistency between the predicted and observed features (Additional file 1: Fig. S24).
Basenji can also predict the effect of genomic variants on chromatin accessibility and
TF binding. Based on this model, we detected key motifs in the 2-kb promoter of TWAS
significant genes of SOC and then annotated the key motif by comparing for similarity
with known motifs by Tomtom [61] (Fig. 5a; Additional file 2: Table S17). Find Individual
Motif Occurrences (Fimo) can be applied to scan DNA sequences with motifs described
as position-specific scoring matrices [62]. We also used Fimo to scan the 2-kb promoter
of TWAS significant genes of SOC (Fig. 5b). These results showed that the NAC family
motifs were significantly enriched in the Basenji and Fimo results. And NAC13 had a sig-
nificantly enriched motif among the NAC family (Fig. 5a, b). Subsequently, we integrated
the eQTL results of TWAS significant genes of SOC and selected six genes (BnaC06.
GLTP, BnaA06.RIN4, BnaA04.MYC70, BnaC04.MYC70, BnaC04.PBL30) whose eQTL
interval harbor NACI3 and had NAC motif in its promoter, and we also found that
the expression of these genes was highly correlated with BnaA07.NACI13 and BnaCO07.
NAC13 (PCC R from 0.55 to 0.8; Additional file 1: Fig. S25). To further confirm the pre-
diction, we performed a transient dual-luciferase assay to verify the results and found
that BnaC04.MYC70 and BnaC02G0181500ZS were activated by BnaA07.NACI13 (Addi-
tional file 1: Fig. S26). These results suggest that NACI13 may affect SOC by regulating
TWAS significant genes of SOC.

NACI13 has not been reported to impact SOC in oilseed plants. To investigate
whether NACI3 affects the SOC, we performed heterologous overexpression of
BnaA07.NAC13 and BnaC07.NACI13 in Arabidopsis using the CaMV35S promoter.
The quantitative RT-PCR showed a significant increase in BnaA07.NACI3 and
BnaC07.NACI3 in the pure overexpression lines (Additional file 1: Fig. S27). We har-
vested the mature seeds of T2 overexpression lines and the SOC results showed that
overexpression of BnaA07.NACI3 and BnaC07.NACI3 in Arabidopsis significantly
increased (Fig. 5¢), indicating that NAC13 positively regulated SOC. Compared with
WT, the fatty acid composition was also altered (Additional file 1: Fig. S28). Surpris-
ingly, we found that the eQTLs of BnaA07.NACI13 were also localized in Hotspot87-88
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at 20 DAF and 40 DAF (Additional file 1: Fig. S29). Furthermore, BnaA07.NACI13 also
showed the most significant positive gene expression correlation with BnaA09.SCL31
(PCC Ryypap = 0.82, Py par = 8.86x107%%) (Additional file 1: Figs. S30 and S31).

To provide solid evidence, we transiently expressed BnaA09.SCL31 and BnaAO7.
NAC13 in tobacco leaves. Examination by confocal microscopy revealed that BnaA09.
SCL31 and BnaA07.NAC13 increased the numbers of lipid droplets (LDs) but did not
significantly change the size of LDs in leaf cells (Fig. 5d; Additional file 1: Fig. $32). This
indicates that BnaA07.NACI13 and BnaA09.SCL31 have a direct effect on lipid accu-
mulation. And then we examined the relative expression of NACI3 by quantitative RT-
PCR in SCL31 mutants. The results showed that the relative expression was significantly
decreased. In addition, the relative expression of some genes related to lipid metabolism
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(SUPPRESSOR OF DRY2 DEFECTS 1 [SUDI], LPAAT) and some other TWAS signifi-
cant genes of SOC (SCL30, SHEWENELLA-LIKE PROTEIN PHOSPHATASE 1 [SLP1])
were also significantly decreased compared to WT (Additional file 1: Fig. S33). And
then, we measured the effect of BnaA09.SCL31 on BnaA07.NACI3 promoter activity
using transient dual-luciferase reporter assays. There was a significant increase in rela-
tive LUC/REN values with the addition of BnaA09.SCL31 plasmid vector compared to
the empty (P = 9.88x1078 Fig. 5e; Additional file 1: Fig. S34a). Furthermore, for some
TWAS significant genes of SOC that were highly positively correlated with BnaA09.
SCL31, such as BnaC07.LPAAT and BnaC03.SLP1, adding BnaA09.SCL31 plasmid vec-
tor also led to a significant increase in the relative LUC/REN values (P, py 47 = 1.80x107%,
Py p; = 5.13x107°) (Fig. 5f, g). These suggest that BnaA09.SCL31 can affect the expres-
sion of BnaA07.NAC13, BnaC07.LPAAT, and BnaC03.SLP1. Moreover, for the BnaA07.
SRO3 (SIMILAR TO RCD ONE 3), a TWAS significant gene of SOC with a key NAC
motif in the promoter region predicted by the Basenji model, the experimental results
showed that BnaA07.NAC13 was also able to affect the expression of BnaA07.SRO3 (P
= 3.35x1073; Additional file 1: Fig. S34b). Therefore, based on these results, we specu-
late that SCL31 may influence TWAS significant genes of SOC expression by regulating
NAC13 and multiple downstream genes to impact SOC (Fig. 5h).

A comprehensive web-based tool for exploring eQTL variation in B. napus

To better understand the regulatory mechanism of oil biosynthesis and seed develop-
ment of B. napus, we integrated the results of eGWAS, GWAS, and TWAS to construct
a comprehensive multi-omics eQTL regulatory network. The network contained 11
GWAS significantly associated QTLs of SOC, 424 TWAS significant genes of SOC, and
141 eQTL hotspots, indicating that oil biosynthesis is extremely complex in B. napus
(Fig. 6). Lastly, we constructed a comprehensive web-based tool Bn-eQTL database with
useful tools for searching eQTLs by genes or SNPs and querying gene expression infor-
mation (http://yanglab.hzau.edu.cn/BneQTL/).

Discussion

Asymmetric distribution of eQTLs between B. napus subgenomes

B. napus originated about 7500—10,000 years ago [52] and was domesticated only 400—500
years [63]. B. napus is an allotetraploid crop formed by the natural cross and doubling of
Brassica rapa (AA, 2n = 20) and Brassica oleracea (CC, 2n = 18) [52, 53]. A large number
of these non-homoeologous chromosomal recombination events resulted in a high abun-
dance of genetic variation within B. napus [64, 65]. Studying the imbalance characteristics
of polyploid genomes can be a key tool to resolve the regulatory mechanisms of polyploid
crop evolution, domestication, and improvement [15, 16, 66, 67]. In the past studies, previ-
ous authors applied epigenome mapping [11] and GWAS [53] of B. napus to reveal imbal-
anced transcription and different evolutionary trends among subgenomes, indicating that
the overall gene expression and activity epigenetic signal modification levels were signifi-
cantly stronger on the An subgenome than the Cn subgenome, and the ratio of expres-
sion bias and epigenetic activity bias of homologous gene pairs on Az and Cr is symmetric
[11, 68]. In this study, we used eQTL analysis to find that An had higher genetic variation
than the Cn subgenome and An also had more hotspot regulatory regions at both seed
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development stages. Hotspot87-88 on chromosome A09 were found to affect SOC mainly
through regulating TWAS significant genes of SOC (Fig. 4a). Besides, the analysis of
homoeologous gene pairs between subgenomes revealed that asymmetric transcriptional
regulation causes expression asymmetry, while local eQTLs affected the gene expression
trend between subgenomes (Fig. 3e; Additional file 1: Fig. S11). These results provide new
insights for broadening the genetic basis and selective breeding in B. napus.

TWAS combined with machine learning to resolve key genes regulating hotspot regions
Distant eQTL hotspots can lead to expression changes of multiple downstream genes.
In previous eQTL studies in crops, the identification of hotspot regulatory regions was
important to reveal the regulatory relationships between genes and traits as well as to
construct a gene regulatory network [5, 7, 19, 69]. However, mining key genes in the reg-
ulatory regions of hotspots and inferring gene regulatory networks are still challenging.
In our study, we used eQTL analysis to identify important hotspots on chromosome
AQ9 that regulate TWAS significant genes of SOC (Fig. 4a). In addition, we constructed a
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machine learning method based on the Boosting integration model (XGBoost) using the
expression of regulated genes and TFs to build a feature selection integration framework
for gene expression data [27]. This method has been not used in the previous eQTL stud-
ies. In addition, we calculated the initial weights of gene regulatory relationships based on
the established feature selection integration framework (Additional file 1: Fig. S17). Based
on this, our results indicate the two TFs NACI13 and SCL31 could regulate TWAS significant
genes of SOC (Fig. 5h). In the SCL31 mutants, in addition to a significant decrease in SOC,
shorter siliques and smaller seeds were also observed. We also found BnaA09.SCL31 haplo-
types were significantly associated with thousand seed weight (TSW; P = 3.0x107°), and the
expression of BnaA09.SCL31 in 40 DAF was positively correlated with TSW (PCC Ry par.
tow = 0.18, Py pap.rsw = 4-04x1073). These results suggest that SCL31 may also play a plei-
otropic role in plant growth and development besides regulating SOC (Fig. 4f, g; Additional
file 1: Fig. S22). However, we only applied the population transcriptome data at 20 DAF and
40 DAF and there may be temporal limitations during seed development. We believe that it
is possible to resolve the dynamic regulatory processes of genes and TFs if they can be ana-
lyzed in conjunction with multiple key time points during seed development.

ATAC-seq combined with deep learning to resolve causal variants

GWAS has been proposed and widely practiced to resolve the genetic basis of crop
traits, but it has been particularly difficult to resolve the underlying mechanisms of var-
iation in non-coding regions [22]. Variants in non-coding regulatory regions are also an
important factor in phenotypic variation and their alteration of gene expression levels
and patterns has a broader scope for genetic improvement. In previous studies, Zachary
Lippman et al. obtained several yield-enhancing regulatory region variants by editing
the tomato CLV3 promoter region [70] and Zeng et al. improved the quality of rice by
editing the promoter and 5’ UTR-intron region of the Waxy gene [71]. Recent studies
have improved maize yield by editing the promoter of the maize CLE gene, overcoming
the disadvantage of known related mutants that had abnormal development [72]. How-
ever, how to pinpoint the linkage between core regulatory elements and phenotypes on
a genome-wide scale and further explore the regulatory pathways of genes remains a
pressing challenge.

With the development of high-throughput sequencing technology, a large amount of
high-throughput ATAC-seq data has been generated [73-76]. Our study applied ATAC-
seq to predict the binding sites of TFs and OCRs on a genome-wide scale (Additional
file 1: Fig. S4). Besides, Basenji (one deep convolutional neural network module) predicted
the variation of human genomic loci affecting gene expression with consistent information
with eQTL results, showing the excellent prediction ability [77]. In future studies, we can
also combine Basenji with ATAC-seq to construct convolutional deep learning network
models to predict the key regulatory elements in gene promoter regions, providing the
possibility to resolve the epigenetic state and regulatory processes of B. napus genes.

Conclusions

Taken together, in this study, we used large-scale transcriptome data of oilseed rape
populations, ATAC-seq data combined with eGWAS, GWAS, machine learning models,
and deep learning models to identify key transcription factors and regulatory networks



Tan et al. Genome Biology ~ (2022) 23:233 Page 16 of 25

regulating SOC in oilseed rape. This study will greatly enrich our understanding of the
regulatory mechanisms of oil metabolism.

Methods

Data sources

In this study, we applied resequencing data from 505 B. napus accessions. From these,
developing seeds of 309 at 20 DAF and 274 at 40 DAF B. napus accessions were selected
for whole transcriptome sequencing [50]. Besides, we used 273 time-series and multi-
tissue transcriptome data covering the entire growth period of rapeseed cultivar ZS11 to
construct the regulatory network [78]. We also obtained the 59 ATAC-seq samples from
six accessions of B. napus (ZS11, Westar, No2127, Zheyou7, Gangan, and Shengli) at
four stages of 20, 26, 34, and 40 DAF which were newly generated data in this research.

Variation calling, genotype filling, and annotation

The rapeseed genome (ZS11 v0) was downloaded from BnPIR [79] (http://cbi.hzau.
edu.cn/bnapus/index.php). The reads were aligned to the reference genome with BWA
software [80] with the command “mem -M -k 32 -t 4” The PCR duplicates of sequenc-
ing reads were removed with SAMTools [81], and the mapping reads were retained in
BAM format. Then, the Genome Analysis Toolkit (GATK v3.6) [82] was used to iden-
tify the sequencing variations among 505 accessions with the HaplotypeCaller module
and command “-T HaplotypeCaller -allowPotentiallyMisencodedQuals —emitRefCon-
fidence GVCE’ GVCEF files were merged with the “GenotypeGVCFs” command. SNPs
and InDels were filtered if mapping quality < 20 or sequencing depth < 50 in the whole
population. After obtaining the genotype, the LD-KNN algorithm was used to estimate
the missing genotype [83].

Linkage disequilibrium

For the linkage disequilibrium analysis, the decay of LD uses PLINK v1.9 [84] soft-
ware and is calculated based on the value of 7* and the corresponding distance between
the two SNPs. We set the gene composition to a 4-Mb region and set a 2-Mb overlap
between the windows. The detailed parameters of each window are as follows: “--r2 --1d-
window-r2 0 --allow-extra-chr- ld-window 99999 --1d-window-kb 99999 --allow-no-sex”

Transcriptome-wide association study for SOC and SGC

TWAS methods were designed according to our previously established study [50], but
we used the ZS11 vO rapeseed genome for TWAS in this study. Some low-expressed
genes (the 95th percentile of log2-transformed expression values) in the population were
excluded from the analysis, and finally, 80,122 and 78,405 expressed genes were obtained
at 20 DAF and 40 DAF, respectively. Association analysis was performed using EMMAX
software [85] and FDR-corrected P value <0.05 was used as the significance threshold
for TWAS.

To assess the accuracy of transcript abundance estimation by mapping RNA-seq
reads to the B. napus genome, we simulated RNA-seq datasets using gene models only
from one of the ZS11 An subgenome and then used all An gene from the ZS11 refer-
ence genome to calculate TPM. Simulation performed for the An showed a high level of
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correlation (PCC R=0.91, N=41338) between the real values and those estimated. This
indicates a high accuracy of transcript abundance estimation for homologous gene sets

between subgenomes.

The identification of eQTL and distant eQTL hotspots

The linear model in the FaST-LMM v0.3.8 [86] package was used to combine 11,700,689
high-quality SNPs (MAF > 0.05) corresponding to 20 DAF and 40 DAF for eGWAS. The
explained variance (r*) of LeadSNPs was calculated by FaST-LMM v0.3.8. The signifi-
cance threshold of the association was calculated by the software GEC [87] as 1x107°
and a total of 377,616 and 373,073 significantly associated SNPs were detected at 20 DAF
and 40 DAF, respectively. Combining SNPs was performed according to the criterion of
LD > 0.2. Based on the position of lead SNP in relation to the target genes, if the SNP is
located within 500 kb (the distance of LD decay [#?] to 0.1 is about 500 kb) upstream and
downstream of the gene, it was considered a local eQTLs, otherwise a distant eQTL.

To identify the potential distant eQTL hotspot regions, distant eQTLs were randomly
assigned in the genome, the number of eQTLs randomly distributed throughout the
genome was scanned using 1-Mb size intervals and 100-kb step size, and subsequently,
the maximum number of eQTLs within the 1-Mb interval was retained. After 1000 ran-
dom permutations, we defined a genome-wide QTL number greater than 81 (P < 0.01)
within 1Mb as a hotspot regulatory region based on the distribution of the maximum
number of eQTLs in the permutation (Additional file 1: Fig. S14). Any overlapped or
adjacent hotspots that may correspond to a single hotspot were combined into one,
resulting in 141 potential hotspots at 20 DAF and 40 DAF. The distant eQTL hotspots

were visualized using Circos v.0.69-6 [88].

ATAC-seq data analysis

ATAC-seq experiments were designed according to the previously established
experimental procedure [89]. We applied the constructed ATAC-seq library and
completed sequencing on the Illumina Hiseq at the Huazhong Agricultural Uni-
versity sequencing platform and obtained raw reads. ATAC-seq reads were aligned
to the ZS11 vO genome [79] by BWA [80] using default parameters. The high map-
ping quality reads (MAPQ > 30, qualified reads) were used for further analysis. We
divided the genome with a bin of 100 bp and extended 75 bp at both ends of each
bin. We extracted the number of ATAC-seq fragment ends and quantified and nor-
malized them. Multidimensional scaling was performed on these fragment counts by
the python sklearn package [90] (https://scikitlearn.org). Peaks were identified using
MACS2 v2.2.7.1 [91] with the parameters “-g 1.13e9 --nomodel --extsize 38 --shift
-15 --keep-dup all -B --SPMR --call-summits” The default parameters of BEDTools
[92] merge the peaks for each sample.

XGBoost model construction

We applied 273 ZS11 RNA-seq data [78] and 583 B. napus accession RNA-seq data
[50] to construct the XGBoost model. The TFs in Arabidopsis were downloaded from
PlantTFDB (http://planttfdb.gao-lab.org/), and homoeologous TFs of Arabidopsis and
B. napus were compared using blast (https://blast.ncbi.nlm.nih.gov/). A total of 6587 B.
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napus TFs were obtained. GRN was built using the Python machine learning libraries
scikit-learn v.0.22.2.post]l and XGBoost v.1.4.0 [27, 90]. The transformed TPM matrix
and the list of putative TFs were used to train the XGBboost model for each dataset
using the XGBRegressor with the parameters “-n_estimators 1000 -max_depth 3-learn-
ing_rate 0.0001 -reg_alpha 0 -reg_lambda 1” [27, 90].

Construction of the deep learning model

Fifty-nine B. napus ATAC-seq samples were used as input data for Basenji model train-
ing, and all duplicate sequences with failed original genome assembly were removed
in the sampling process. The Basenji model took a long fragment of 131,072-bp DNA
sequence as input and counts the sum of the number of reads obtained from ATAC-seq
sequencing in this region in units of 128 bp and then wrote it to an HDF5 file together
with the sampled sequences of single heat encoding to complete the partitioning of the
dataset during the sequence sampling process [93]. After the HDF5 file was obtained,
the data were input into the Basenji model for deep learn training [77].

Plant growth conditions and T-DNA insertion mutant identification

Arabidopsis ecotype Columbia-0 was used as the WT control. We ordered scl31-
1 (SALK_043461) and sc/31-2 (SALK_105042) Arabidopsis mutants from the com-
pany (https://m.arashare.cn/pages/batch/batch). The homozygous T-DNA insertional
mutants were verified by PCR-based screening using a T-DNA left border primer and
gene-specific primers. Primers used for the PCR verification of scl31-1 and scl31-2
were listed (Additional file 2: Table S18). We also constructed an overexpression vec-
tor (p35S-FAST-BnaA07.NACI13 and p35S-FAST-BnaC07.NACI13) that was used for
genetic transformation to obtain Arabidopsis overexpression lines. Arabidopsis genetic
transformation mediated by Agrobacterium tumefaciens was performed by the flower
dipping method [94]; TO generation seeds were harvested and cultured in a 16-h light/8-
h dark light chamber to harvest T1 generation seeds, after which the transgenic seeds
were harvested from T1 generation plants by means of an incubator containing a kana-
mycin concentration of 50 ng/uL of 1/2 MS culture medium for screening, followed by
transplantation of the screened Arabidopsis plants into the growth chamber and further
identified T2 generation Arabidopsis-positive seedlings and homozygous lines for phe-
notypic investigations. All plants were grown in a growth room with a 16-h light/8-h
dark cycle at 23/21°C, 50% humidity, and 100 pumol m~2s™" of light intensity.

RNA isolation and qRT-PCR

For quantitative RT-PCR (qRT-PCR) analysis, total RNA was extracted from per sample
(~60—-80 mg tissue) using TransZol Plant Reagent (TransGen, China). Then, 2 pg was
used to synthesize cDNA with EasyScript® First-Strand cDNA Synthesis SuperMix Kit
according to the manufacturer’s instructions (TransGen, China). Primers were designed
using NCBI primer design software and are listed in Table S18. To ensure the reliabil-
ity and validity of the qRT-PCR experiments, one reference gene, AtACTIN7, was used.
PCR reactions were set up in 96-well Hard-Shell PCR plates (Bio-Rad, USA) with 0.4-uM
primers using SYBR Premix TransStart® Green qPCR SuperMix (TransGen, China) in
15 pL and run on a Bio-Rad CFX Connect. The data were collected from three biological
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replicates and three technical replicates and expressed as the mean + standard error
(mean £ SE). PCR conditions were as follows: one cycle of 95 °C for 1 min; 45 cycles of
DNA melting at 95 °C for 10 s, DNA annealing at 60 °C for 10 s, and DNA extension at
72 °C for 30 s; and a final extension of DNA at 72 °C for 10 min.

Determination of seed fatty acid composition and SOC

We used a gas chromatography-flame ionization detector (GC-FID) to analyze the qual-
ity of rapeseeds harvested at maturity and obtained the data of seed fatty acid compo-
sition and SOC [95]. Briefly, we weighted 4—6 mg of Arabidopsis seeds and add 4 mL
of extraction solution (5% H,SO,, 95% methanol, 0.01% BHT) and 100 pL of internal
standard 16.2 pM/mL heptadecanoic acid (C17:0) at 85°C for 2 h to methyl esterify
the fatty acids. After it cooled to room temperature, 3.0 mL of hexane and 3.0 mL of
H,O were added, vortexed and mixed, and centrifuged at 1000 r/min for 10 min, and
1.0 mL of supernatant was taken into the injection vial. The gas chromatography was
equipped with a hydrogen flame ionization detector and a capillary RESTEK Rtx-wax
column (0.25 mmx30 m) with a helium carrier of 20 mL/min. The oven temperature
was kept at 170°C for 1 min and then gradually increased to 210°C at a rate of 3°C/min.
GC-MS was automatically injected for analysis. Finally, the fatty acid species were iden-
tified according to the retention time. The peak area data corresponding to each fatty
acid component were compiled. Using the internal standard heptadecanoic acid (17:0) as
a reference, the content of each fatty acid was used for the calculation of SOC as a per-
centage of the dry weight and fatty acid composition was calculated as mol%.

Dual-luciferase assay

Dual-luciferase assays were performed by using the Dual-Luciferase®Rep0rter Assay Sys-
tem (Promega, Madison, W1, USA). All reagents were prepared according to the manufac-
turer’s description. The BnaA07.NACI13, BnaC07.LPAAT, BnaC03.SLP1, BnaA07.SRO3,
BnaA04.MYC70, and BnaC02G0181500ZS promoters were amplified and inserted into
the pGreenlI0800-LUC vector as the reporter plasmid (Additional file 2: Table S18). The
OREF of BnaA09.SCL31 and BnaA07.NACI13 was amplified and inserted into the pGreenlII-
SK vector as the effecter plasmids. The method was performed in Arabidopsis protoplasts
according to Yoo et al. [96]. After 16 h, the transformed Arabidopsis protoplasts were dis-
solved into 100 pL of passive lysate. After 30s, a 50-pL aliquot was used for luminescence
measurements with the SPARKR®PMULTIMODE MICROPLATE (TECAN, Swiss). The
following steps were used for luminescence measurements: 50 pL of the firefly luciferase
reagent (LARII) was added to the test sample, with a 10-s equilibration time and measure-
ment of luminescence with a 10-s integration time, followed by addition of 50 pL of the
REN reagent and firefly quenching (Stop and Glow TM buffer), 10-s equilibration time,
and measurement of luminescence with a 10-s integration time. The data were represented
as the ratio of firefly to Renilla luciferase activity (Fluc/Rluc). Each data point consisted of
at least three biological replicates and 15 repeats were performed for each assay.

Tobacco transient transformation and lipid droplet labeling analysis
The recombinant vectors pBin-BnaAO9SCL31-GFP and 1305-35S-Bna.NAC13-
GFP were transformed into Agrobacterium tumefaciens (GV3101) and a mixture of
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Agrobacterium tumefaciens containing the vectors was prepared according to the pre-
vious method [97, 98]. Three-week-old tobacco was taken and injected into the leaf
pulp using a syringe with the needle removed and placed firmly against the back of
the tobacco leaf. After dark incubation overnight and light incubation for 2 days, the
infested leaves were cut into 1-2-mm pieces and placed in 2-mL centrifuge tubes and
stained with BODIPY staining solution (2pug/mL in 50-mM pipes buffer) for 45 min
under vacuum, followed by 15 min of washing with 50-mM pipes under vacuum and
repeated three times. After resting on ice, the protein expression localization and lipid
droplet staining were observed under a laser confocal microscope. The lipid droplets
emitted bright red fluorescence, and the number of lipid droplets was quantified using
Image] software.

Construction of the SOC-GWAS-TWAS-eGWAS regulated network and Bn-eQTL database
The eGWAS analysis was performed on each of the 422 TWAS significant genes of SOC
using information from 27 QTLs identified in the previous study. A QTL significantly
associated with the expression of a gene was an eQTL for that gene. Based on the hot-
spot and QTL information, a gene network regulating SOC was constructed. And then,
we constructed the Bn-eQTL database (http://yanglab.hzau.edu.cn/BneQTL/) based on
the Python Django framework (https://djangoproject.com).
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Additional file 1: Fig. S1. Overview of experimental and research analysis methods. Fig. S2. Venn diagram of the
distribution of genes regulated by different types of eQTLs (local eQTL and distant eQTL) at 20 DAF and 40 DAF. (a)
Distribution number of genes which were regulated by different types of eQTLs at 20 DAF. (b) Distribution number of
genes which were regulated by different types of eQTLs at 40 DAF. Fig. S3. Manhattan plot of BnaA05.FAD7 eGWAS at
40 DAF. Fig. $4. Study design on ATAC-seq of 6 representative accessions of B. napus. Fig. S5. Correlation analysis of 59
ATAC-seq samples. The samples are named according to “(22, 26, 34 or 40) DAF" + "accession_cellular ploidy (2C, 3C
or 4C)" + "biological replicate” format naming. Fig. S6. Regional plot of ATAC-seq data and eGWAS results of BnaA08.
TGD1. BnaA08.TGD1 is marked by a dashed line. The shaded area indicates the lead SNP of the local eQTL affecting
BnaA08.TGD1. Fig. S7. Comparison of the explained variance (r2) of eQTLs for expression variation in or not in OCRs.
Fig. S8. Expression correlation analysis of adjacent genes and randomly sampled gene pairs. Violin plot shows that
the expression correlation of adjacent genes is significantly higher than that of randomly sampled gene pairs, ***
indicates P < 0.001 in Kolmogorov-Smirnov test. Fig. S9. eQTL localization of B. napus. (a) Dot plot showing eQTL and
their regulated genes in 19 chromosomes. x-axis indicates the physical position of each variant on the ZS11 genome.
yaxis indicates the physical position of the localized gene on the ZS11 genome and each point indicates a detected
eQTL locus. Points on the diagonal line indicate local eQTLs and points away from the diagonal line indicate distant
eQTLs. (b) Average number of eQTL for different gene types. Fig. S10. The propensity of genome-wide homoeolo-
gous gene expression on different chromosomes of An and Cn at 40 DAF. Fig. S11. Effect of local eQTLs on
asymmetric regulation (Cn gene regulating An gene) of subgenomes. Fig. S12. Comparison of gene correlations in
different types of aHGPs at 40 DAF."BG" represents all HGPs.“Local”represents aHGPs with local eQTLs and “No Local”
represents aHGPs without local eQTLs. Fig. S13. The density map shows the enrichment of TFs in HGPs with feedback
regulation. The blue inverted triangle represents 333 HGPs that are TFs. Fig. S14. The density plot shows the
maximum number of eQTLs within 1 Mb. We defined the number of eQTLs within 1 Mb greater than 81 (P < 0.01) as
a hotspot (red dot). Fig. S15. Characterization of SOC-related gene regulation in subgenomic imbalance. a
Comparison of SOC-related gene correlations in different types of aHGPs at 20 DAF."BG" represents all HGPs.“Local”
represents aHGPs with local eQTLs and “No Local”represents aHGPs without local eQTLs. b Correlation between
expression levels of BnaA02.PDATT and BnaC02.PDATT at 20 DAF. ¢ Correlation between expression levels of BnaA0T.
AAD5 and BnaC01.AADS at 20 DAF. d Correlation between expression levels of BnaA07.WRIT and BnaCO6.WRI1 at 20
DAF. Fig. S16. The enrichment of hotspots regulating TWAS significant genes of SOC. The x-axis and y-axis represent
enrichment of TWAS significant genes of SOC in hotspots at 20 DAF and 40 DAF. Fig. S17. Workflow of XGBoost
module. The collected expression data of TFs were used to construct the XGBoost model, upstream TFs prediction is
performed for each gene in a gene set, and finally the prediction results of the whole gene set are summarized. Fig.
S18. Expression of BnaA09.SCL31 at 20 DAF is regulated by a distant hotspot eQTL, which in turn regulates
downstream SOC-related genes and affects seed oil content. Box plots of SOC and SOC-related genes (BnaA07.
NAC13, lysophosphatidic acid acyltransferase (BnaC07.LPAAT), GLYCOLIPID TRANSFER PROTEIN (BnaC06.GLPT),
SHEWENELLA-LIKE PROTEIN PHOSPHATASE 1 (BnaC03.SLPT)) based on haplotypes of distant eQTL. Fig. S19. The



http://yanglab.hzau.edu.cn/BneQTL/
https://djangoproject.com
https://doi.org/10.1186/s13059-022-02801-z

Tan et al. Genome Biology ~ (2022) 23:233 Page 21 of 25

population information of BnaA09.SCL31 expression level at 20 DAF. a Box plots for expression levels at 20 DAF based
on the haplotypes of variants in the gene region and the upstream 2 kb region of BnaA09.5CL31. b Correlation
between SOC and expression levels of BnaA09.SCL31 at 20 DAF. Fig. S20. Identification of Arabidopsis T-DNA Mutants
of SCL317. (a) Schematic diagram of TDNA insertion sites in SCL3T mutants (sc/31-1, sc/31-2). (b) Identification of
homozygous TDNA mutants by PCR with a pair of gene specific primers (LP+RP) or combination of T-DNA border
primer (LB1.3) and gene specific primers (RP). (c) Expression of SCL31 in WT, sc/31-1, scl31-2 analyzed by quantitative
RT-PCR using RNA extracted from leaves. Values are means(SD) (n = 3 biological repeats). ** indicates P < 0.01 and
***indicates P < 0.001 compared with WT in Student's t test. Fig. S21. Fatty acid composition of SCL37 mutant seeds
(sc/31-1, scl31-2). Values are means(SD) (n = 5 biological repeats). * indicates P < 0.05 and ** indicates P < 0.01
compared with WT in Student’s t test. Fig. 522. Silique and seed of SCL31 mutant lines (sc/31-1, sc/31-2). (a) Silique of
scl37-1 and scl37-2. Bar = 2mm. (b) Seed of sc/37-7 and sc/37-2. Bar = 500um. (c) Seed length of sc/37-7 and sc/37-2.
Values are means(SD) (n = 5 biological repeats) and different letters indicate differences at P < 0.05 using Student’s t
test. (d) Seed width of sc/37-7 and sc/37-2. Values are means(SD) (n = 5 biological repeats) and different letters
indicate differences at P < 0.05 using Student'’s t test. Fig. S23. Workflow of Basenji module. ATAC-seq data are used to
identify OCRs and construct basenji models. Subsequently, 2 kb promoter sequences of genes in the gene set are
collected for key motif identification. Fig. 524. The performance metrics of the Basenji deep learning model trained
with the ZS11 reference genome and 59 rapeseed ATAC-seq samples. The horizontal axis represents 59 different
samples and the vertical axis represents the performance data of the corresponding fold (where 2 represents the
square of the correlation. AUPRC is the accuracy between the predicted regression value and the true value using
the precision score function in scikit-learn package to calculate the accuracy between the predicted regression value
and the true value; AUROC is the area under the precision-recall curve of the predicted regression value and the true
value using the roc_auc_score function in the in scikit-learn package). Fig. S25. The correlation between BnaA07.
NAC13 and the expression of the downstream genes potentially regulated by BnaA07.NAC13. Fig. S26. Transcriptional
regulation of BnaC04.MYC70 and BnaC02G0181500ZS are activated by BnaA07.NAC13. a Schematic representation of
the constructs used for the dual-luciferase assay. The effector constructs contain BnaA07.NAC13 driven by the
CaMV35S promoter. The reporter construct contains the firefly luciferase driven by BnaC04.MYC70 and
BnaC02G0181500ZS promoter, and the Renilla luciferase (REN) driven by the CaMV35S promoter. And the black
square is the terminator. b,c Bar graph showing the relative LUC/REN ratio in the dual-luciferase assay. Values are
means(SD) (n = 3 biological repeats). Fig. S27. Expression of BnaA07.NACT3 and BnaC07.NAC13 in WT and OE lines
analyzed by quantitative RT-PCR using RNA extracted from leaves. (a, b) Values are means(SD) (n = 3 biological
repeats). *** indicates P < 0.001 compared with WT in Student's t test. Fig. S28. Fatty acid composition phenotype of
OE lines (BnaA07.NAC13, BnaC07.NAC13). (a, b) Values are means(SD) (n = 5 biological repeats). * indicates P < 0.05, **
indicates P < 0.01 and *** indicates P < 0.001 compared with WT in Student’s t test. Fig. 529. Manhattan plot of
BnaA07.NACT3 eGWAS at 20 DAF and 40 DAF. Fig. S30. Correlation between expression levels of BnaA07.NAC13 and
TFs (such as BnaA09.5CL31 , WIP DOMAIN PROTEIN 3 (BnaA09.WIP3), CRY2-INTERACTING BHLH 4 (BnaA09.CIB4), BLUEJAY
(BnaA09.BL))) in Hotspot87-88 at 20 DAF and 40 DAF. Fig. S31. Correlation between expression levels of BnaA09.5CL31
and BnaA07.NACT3 at 20 DAF and 40 DAF. Fig. S32. Size and number of LDs expressing BnaA09.5CL31 and BnaA07.
NAC13s in tobacco leaves. a LD count expressing BnaA09.SCL31 and BnaA07.NAC13s by size (average diameter).
Values are means(SD) (n = 3 biological repeats). Different letters indicate significant difference at P < 0.05, as
determined by one-way ANOVA with Tukey's post-test. b Quantification of LD sizes in leaf mesophyll cells. Circles
represent size of LDs. Fig. S33. Expression of NAC13, SUD1, LPAAT, SCL30, SLP1in WT, scl31-1, scl31-2 analyzed by
quantitative RT-PCR using RNA extracted from leaves. (a-€) Values are means(SD) (n = 3 biological repeats). “NS"
indicates P> 0.05, * indicates P < 0.05, ** indicates P < 0.01 and *** indicates P < 0.001 compared with WT in
Student's t test. Fig. 534. Transcriptional regulation of genes are activated by BnaA09.5CL31 or BnaA07.NACI13. a
Schematic representation of the constructs used for the dual-luciferase assay. The effector constructs contain
BnaA09.5CL31 and BnaA07.NAC13 driven by the CaMV35S promoter, respectively. The reporter construct contains the
firefly luciferase driven by BnaA07.NAC13, BhaC07.LPAAT, BhaC03.SLP1 and BnaA07.SRO3 promoter, and the Renilla
luciferase (REN) driven by the CaMV35S promoter. And the black square is the terminator. b Bar graph showing the
relative LUC/REN ratio in the dual-luciferase assay. Values are means(SD) (n = 3 biological repeats). BnaA07.SRO3
(SIMILAR TO RCD ONE 3).
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