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Abstract 

Background:  3′-end processing by cleavage and polyadenylation is an important and 
finely tuned regulatory process during mRNA maturation. Numerous genetic variants 
are known to cause or contribute to human disorders by disrupting the cis-regulatory 
code of polyadenylation signals. Yet, due to the complexity of this code, variant inter-
pretation remains challenging.

Results:  We introduce a residual neural network model, APARENT2, that can infer 
3′-cleavage and polyadenylation from DNA sequence more accurately than any previ-
ous model. This model generalizes to the case of alternative polyadenylation (APA) for a 
variable number of polyadenylation signals. We demonstrate APARENT2’s performance 
on several variant datasets, including functional reporter data and human 3′ aQTLs 
from GTEx. We apply neural network interpretation methods to gain insights into 
disrupted or protective higher-order features of polyadenylation. We fine-tune APAR-
ENT2 on human tissue-resolved transcriptomic data to elucidate tissue-specific variant 
effects. By combining APARENT2 with models of mRNA stability, we extend aQTL effect 
size predictions to the entire 3′ untranslated region. Finally, we perform in silico satura-
tion mutagenesis of all human polyadenylation signals and compare the predicted 
effects of >43 million variants against gnomAD. While loss-of-function variants were 
generally selected against, we also find specific clinical conditions linked to gain-of-
function mutations. For example, we detect an association between gain-of-function 
mutations in the 3′-end and autism spectrum disorder. To experimentally validate 
APARENT2’s predictions, we assayed clinically relevant variants in multiple cell lines, 
including microglia-derived cells.

Conclusions:  A sequence-to-function model based on deep residual learning enables 
accurate functional interpretation of genetic variants in polyadenylation signals and, 
when coupled with large human variation databases, elucidates the link between func-
tional 3′-end mutations and human health.

Keywords:  RNA, Polyadenylation, Deep learning, Neural networks, Untranslated 
region, Variant interpretation, Genomics, Explainable AI
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Background
Almost all human mRNA transcripts undergo cleavage and polyadenylation (pA). The 
position and efficiency of 3′ cleavage are controlled by a complex cis-regulatory code, the 
polyadenylation signal (PAS) (Fig. 1A). The PAS consists of a core hexamer, typically AAT​
AAA​, and surrounding upstream and downstream sequence elements which together 
recruit the core processing machinery (CFIm, CstF, CPSF, and hFIP1) [1–4]. A large num-
ber of auxiliary factors, including hnRNP F/H/I, SRSF proteins, PABPC1, Ptbp2, HuR, 
and Nova, further modulate pA strength by binding to sequence motifs in the PAS [5–
10]. Adding an extra layer of complexity, the exact variants of these motifs, their relative 
positioning, and interactions with structural motifs such as stem loops determine their 
cooperative, or antagonistic, effects [11]. Moreover, more than 70% of human genes con-
tain multiple PASs (alternative polyadenylation, or APA), resulting in RNA isoforms with 
distinct 3′ ends (Fig. 1B) [12–14]. The most common form of APA is the occurrence of 
two or more competing PASs in the 3′ untranslated region (3′ UTR) [1]. While all iso-
forms code for the same protein, their characteristics such as RNA stability or translation 
efficiency may vary considerably, as miRNA binding sites and other regulatory elements 
could have been removed from the shorter isoforms [15]. Less commonly, polyadenyla-
tion can also occur within introns, resulting in truncated protein isoforms.

Assessing the impact of genetic variation on pA is important in both research and 
clinical settings, as several mutations that disrupt APA isoform abundances have been 

Fig. 1  A deep residual neural network for predicting polyadenylation. A Core processing elements, auxiliary 
RBPs, and other determinants influence polyadenylation signal affinity. B Illustration of tandem 3′ UTR 
alternative polyadenylation (APA) in pre-mRNA. C Residual neural network architecture. A one-hot coded 
representation of the PAS is used to predict the 3′ cleavage distribution. D Predicted vs measured proximal 
isoform log odds of native human 3′ UTR PASs measured in an MPRA ( n = 1085 ). E Predicted logit score of all 
human PASs as a function of PAS # relative to the distal-most PAS. F Masked softmax regression (or a LSTM) 
for predicting multi-PAS isoform proportions given APARENT2 and Saluki scores as input. G Left: Comparison 
of correlation between predicted and measured distal isoform proportions from tissue-pooled native data 
(20-fold cross-validation). Each model predicts logit scores which are used to fit a multi-PAS regressor. LSTM 
performance shown as shaded bars. Right: Improvement in Spearman r when using Saluki scores in addition 
to APARENT2 as input; the improvement is shown separately for genes where the maximum distance 
between any adjacent pair of PASs is ≤250bp and >250bp respectively
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implicated in disease [16–18]. Even single PASs in 3′ UTRs without competing signals 
may have finely tuned functions, as weak mutations in such PASs can affect mRNA 
abundance [19]. While genome-wide association studies (GWAS) and mapping of APA 
QTLs (3′ aQTLs) are powerful tools for finding statistical links between variants and 
phenotype [20, 21], they require a relatively large sample size and are less useful for 
rare or de novo variants [22, 23]. In a complementary approach, deep learning mod-
els that predict the functional impact of variants from sequence have been successful 
at classifying disruptive mutations, regardless of population frequency [24–31]. Such 
sequence-predictive models have even been developed for pA [32–35]. In particular, 
we previously trained a convolutional neural network (CNN) called APARENT for APA 
prediction [36].

Inspired by the recent success of deep residual networks applied to splicing and tran-
scription factor binding prediction [27, 37], we here introduce APARENT2, a sequence-
based residual neural network for 3′ cleavage prediction at base-resolution. We 
systematically compare the performance of APARENT2 to other models at the task of 
predicting disruptive variants, using functional MPRA data of 12,350 single nucleotide 
variants (SNVs) from ClinVar and HGMD or from saturation mutagenesis of clinically 
relevant genes [36, 38–40] as well as scanning mutagenesis data from an assay of more 
than 12,000 PASs [35]. We further compare the models on 366 high-confidence human 
3′ aQTLs in 44 tissues from GTEx V7 [20], 1223 aQTLs from the newer GTEx V8 atlas 
[41], and 58 aQTLs measured among 52 HapMap Yoruba human lymphoblastoid cell 
lines [21]. In all tests, APARENT2 outperforms all state-of-the-art APA models. By 
combining APARENT2 with auxiliary tissue-specific models that we learn from native 
transcriptomic data in the testis, ovary, B-cell lymphocytes, and brain [42], we provide 
residual variant predictions that boost performance on GTEx 3′ aQTLs. Finally, using a 
linear model to combine the predictions of APARENT2 and a separate model of mRNA 
stability [43], we further refine our 3′ aQTL scores by accounting for differential isoform 
stability. This generalized model allows for scoring any variant in the entire 3′ UTR.

In silico interpretation methods have been applied extensively to assess the impact 
of genetic variants on the underlying cis-regulatory code [30, 37, 44–48]. Here, we use 
a mask-based interpretation method for neural networks—Scrambling—to elucidate 
higher-order features responsible for the predicted variant effects [49]. Specifically, we 
extend Scramblers to find the minimal set of features which explain the functional dif-
ferences between a variant and wildtype sequence. With this approach, we discover 
super-additive interactions such as those between the CFIm-binding motif TGTA and 
AT-rich elements, or motifs that are differentially more active in the brain and testis. We 
also find that some human PASs contain protective core hexamers (CSEs) that can initi-
ate polyadenylation when the main CSE is disrupted. To understand the evolutionary 
constraints of polyadenylation in humans, we cross-reference the predicted effects of all 
potential 44 million polyadenylation SNVs against the 2.8 million PAS variants observed 
in gnomAD [50]. We find that loss-of-function variants occur ∼2.5-fold less frequently 
in common variants (AF >10% ) compared to singletons. However, when applying APAR-
ENT2 to a cohort study of autism spectrum disorder (ASD), we found a ∼3-fold enrich-
ment of gain-of-function PAS mutations in cases (Fisher’s exact p = 2.2×10−4 ) [51]. To 
experimentally validate our predictions, we measured the impact of 94 clinically relevant 
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variants (including variants from ASD cases and associated controls) in an MPRA in 
HEK293T, SK-N-SH, and HMC3 cell lines.

Results
A residual neural network for predicting 3′ cleavage and polyadenylation

Given recent advances in deep learning, we first asked whether an updated neural 
network architecture could improve on the performance of current state-of-the-art 
predictors such as APARENT. To this end, we trained a deep residual network on a 
re-processed version of the APA MPRA of Bogard et al. [36]. These data contain >3.3 
million APA reporters with randomized proximal PAS sequence measured within 12 
diverse 3′ UTR contexts. Briefly, the MPRA data was re-processed to map 3′ cleavage 
reads at base-pair resolution for some missing UTR contexts (see Section 5 for details). 
The network, which is illustrated in Fig. 1C and is referred to as APARENT2, is architec-
turally similar to SpliceAI [27] and BPNet [37]. Through a sequence of 28 residual blocks 
[52], each block consisting of two layers of dilated convolutions and a skip connection 
(Additional file 1: Fig. S1A-B), the network transforms a one-hot coded representation 
of the input PAS (205 nt) into a predicted 3′ cleavage distribution. The last (206th) out-
put of the network predicts the total isoform proportion of a far-away competing distal 
PAS (which in the training MPRA is non-random). For baseline comparisons, we also 
retrained a model with the original APARENT architecture on the re-processed ver-
sion of the same MPRA (referred to as ConvNet below). To evaluate performance, we 
tested each network’s ability to infer total proximal isoform abundance on a held-out set 
of 1085 native human PASs (also measured in the MPRA [36]) (Fig. 1D). APARENT2 
had significantly better correlation ( R2 = 0.84 ) compared to the ConvNet baseline 
( R2 = 0.77 ; Additional file 1: Fig. S1C). APARENT2 also had better correlation on held-
out test data from the random MPRA (Additional file 1: Fig. S1D).

Although APARENT2 was trained in the context of tandem APA, we note that the 
network effectively learns to score PASs relative to a fixed reference and we can thus 
interpret this score as an absolute measurement of PAS strength. Using APARENT2 as a 
PAS scoring function, we applied it to all human PASs in PolyADB V3 [53, 54]. In agree-
ment with earlier analyses suggesting that distal signals are functionally more conserved 
[55], we found a near-perfect monotonically decreasing trend in predicted cis-regulatory 
strength as a function of PAS rank relative to the distal-most PAS of each gene (Fig. 1E). 
The median strength of the proximal-most PAS was reduced ∼6-fold compared to the 
distal-most PAS (Additional file 1: Fig. S1E). We also successfully recapitulated binding 
motifs for several known pA mediators, including CFIm, CstF, HNRNPH2, and HuR by 
applying a motif discovery method, TF-MoDISco [56], to the APARENT2 predictions of 
20,000 PAS sequences from PolyADB (Additional file 1: Fig. S1F-G).

In the context of a multi-PAS gene, isoform abundance of a given PAS is determined 
not only by its intrinsic strength but also by the relative strength and distance of compet-
ing signals. Additionally, isoform abundances may be affected by the differential mRNA 
stability of the resulting 3′ UTR isoforms. To predict isoform proportions for genes with 
arbitrary numbers of PASs, we thus used native 3′-sequencing data to fit a multi-PAS 
regression model using the APARENT2 scores, the PAS distances, and a PCA reduc-
tion of the hidden-layer embedding of each isoform predicted by the Saluki model [43], 
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as inputs (Fig. 1F; Spearman r ranged between 0.63 and 0.76 depending on data source 
when comparing measured to predicted distal isoform proportions with 20-fold cross-
validation) [13, 42, 54, 57]. Using the hidden-layer embeddings instead of the final Saluki 
half-life predictions consistently improved performance. When comparing to other 
APA models, including PolyApredictor [35], DeepPASTA [33], and DeeReCT-APA [34], 
APARENT2 was the most accurate at the task of multi-PAS prediction (Fig.  1G) and 
pairwise PAS prediction (Additional file 1: Fig. S1H-I). Switching the softmax regression 
layer of the multi-PAS model for a recurrent network (a LSTM [58]) resulted in only 
marginal performance gains (r increased by 0.0 to 0.025; Fig. 1G).

While the overall improvement to predictive performance increased only modestly 
when including the Saluki half-life scores as input (Spearman r increased by 0.047 on 
the APADB data), we noted that the improvement increased monotonically with larger 
differences between isoform lengths (Fig. 1G, right; Additional file 1: Fig. S1J). For genes 
with large PAS distances ( >250bp), a larger predicted difference in isoform stability was 
associated with larger improvement to predictive performance, while for genes with 
short isoforms ( ≤250bp), there was no improvement even for highly differentially stable 
transcripts (Additional file 1: Fig. S1K). Taken together, these results suggest that APAR-
ENT2 can score cis-regulatory stability elements near the PAS, but that a more general 
stability model such as Saluki is beneficial for 3′ UTRs with long isoforms.

Predicting the impact of variants on polyadenylation signal processing efficiency

We next compared APARENT2 to APARENT, DeepPASTA, DeeReCT-APA, and Pol-
yApredictor at the tasks of classifying disruptive variants and estimating effect sizes (see 
Section 5 for details on how each model was used). We first analyzed our own variant 
MPRA [36], consisting of 12,350 SNVs occurring near PASs of disease-implicated 3′ 
UTRs from ClinVar, HGMD, or ACMG genes [38–40]. Figure 2A shows that the wildtype 
and variant cleavage distributions predicted by APARENT2 match the measured peaks 
better than the original APARENT model for an example SNV (rs886052699) in the 
ALDH3A2 gene. When comparing all models based on their ability to predict isoform 
fold changes and classify disruptive variants (|fold change| > 2 ), we found that APAR-
ENT2 had the highest overall accuracy (Fig.  2B, Additional file  1: Fig. S2A-B; average 
precision = 0.67; R2 = 0.69 ; n = 12, 350 ). Importantly, the performance gap of APAR-
ENT2 increased when looking only at the more challenging class of variants outside of 
the CSE.

We further compared the models on a separate 3′ UTR MPRA which measured expres-
sion levels as a proxy for polyadenylation processing efficiency [35]. In this assay, a single 
PAS was inserted in each mini-gene reporter and RNA levels were found to vary over 
almost an order of magnitude with PAS strength and thus 3′-end processing efficiency. 
These data allow us to test our ability to infer intrinsic PAS strength independent of the 
presence of APA. We tested the models on a subset of scanning mutagenesis measure-
ments of several native PASs, including 572 viral PASs. We first compared the models on 
how well their predicted variant fold changes correlated with measured RNA/DNA fold 
change ratios (Fig. 2C, Additional file 1: Fig. S2C). Here, APARENT2 and PolyApredictor, 
a model trained directly on these data, had identical correlations ( Spearman r = 0.65 , 
n = 442 ), which was considerably higher than other models. However, when predicting 
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variant fold change ratios at individual cleavage sites, APARENT2 was more accurate 
(Fig. 2D, Additional file 1: Fig. S2D; median Spearman r = 0.72 , total n = 1217).

A catalog of higher‑order polyadenylation variant interpretations

Given the increased performance of a more complex neural network architecture (in this 
case a deep residual network), we wanted to understand the types of higher-order reg-
ulatory features learned by APARENT2 that impact variant effect predictions in poly-
adenylation signals. To this end, we used a neural network attribution method recently 
developed by our group—Scrambling—to detect contextual features responsible for the 
observed variant effects [49]. To interpret a mutation, we optimize a discretized mask 
to highlight a shared set of features (nucleotides) in the wildtype and variant sequences 
that allows reconstruction of their predicted odds ratio when inserted into neutral back-
grounds (Fig. 3A; see Section 5 for details).

In Fig.  3B, we interpret a gain-of-function variant (rs886048091) which creates 
an upstream CFIm-binding motif (TGTA) and is both predicted and measured to 
have a log odds ratio (LOR) that is larger than the median fold change observed for 
other TGTA-creating mutations (predicted LOR = +1.36 , median LOR = +0.17 ). 
The mask-based interpretation elucidates a cooperative interaction with a down-
stream T-rich motif, which reconstructs the prediction. We find additional support 
in the MPRA data of Bogard et al. [36], as T-rich elements in the DSE are associated 
with higher-magnitude TGTA-creating mutations ( p = 5.41× 10−3 ; Fig.  3B, right), 
while T-rich elements are not associated with larger effect sizes for other mutations 

Fig. 2  Prediction of functionally screened polyadenylation variants. A Variant of uncertain significance 
from ClinVar (rs886052699) measured in an MPRA [36]. Shown are the measured and predicted 3′ 
cleavage distributions across the PAS. Green: wildtype cleavage, magenta: variant cleavage. B Comparison 
of precision-recall curves when tasking each APA model with classifying disruptive APA variants 
( |fold change| > 2 ) from the MPRA of Bogard et al. [36] (n = 12,350). The curves are shown for non-CSE 
variants only. C Comparison of predicted vs measured RNA/DNA log fold change ratios on the data from 
Slutskin et al. [35] (n = 442). D Comparison of predicted vs measured RNA/DNA log fold change ratios at 
individual cleavage sites within a given PAS
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( p = 0.27 ). Additionally, rs886048091 stabilizes the RNA secondary structure of the 
PAS [59] (Additional file 1: Fig. S3A) and the interpretation highlights altered base-
pairing positions near the mutation.

We similarly interpret two other SNVs with markedly high or low effect sizes 
which create putative CstF-binding and CFIm-binding motifs (Fig.  3C). Our inter-
pretations elucidate cooperative and competitive interactions with a nearby 3′ cleav-
age site and a nearby redundant TGTA motif respectively. The MPRA measurements 
also indicate significant super- and sub-additive variant effect sizes in the presence 
of the proposed interacting motifs ( p = 0.02 and p = 3.16× 10−6 ) [36]. In Addi-
tional file  1: Fig. S3B-D, we describe additional higher-order features in the con-
text of SNVs. For example, we find that well-positioned T-rich elements are crucial 
determinants of de novo cleavage when mutations create competing CSE hexamers.

The mask in Fig.  3C (right) highlights an overall sub-additive (competitive) rela-
tionship between CFIm-binding motifs. To study this interaction in detail, we re-
analyzed a subset of our previously published MPRA data [36] where either single or 
dual TGTA motifs were inserted at all possible positions of three randomly selected 
wildtype sequences and their impact on pA efficiency was measured with respect to 
the wildype activity (Fig. 3D). APARENT2 could accurately predict the LOR of both 
individual TGTA insertions (Fig. 3E; Additional file 1: Fig. S3E; Spearman r = 0.86 ) 
and dual insertions (Fig. 3F; Additional file 1: Fig. S3F; Spearman r = 0.72 ). APAR-
ENT2 predicts an increasingly sub-additive trend with decreasing motif distance, 
which is consistent with the MPRA measurements.

Fig. 3  Interpretation of cis-acting polyadenylation variants. A Mask-based variant interpretation, 
reconstructing the relative odds ratio between the wildtype and mutated sequence. B Interpretation of a 
ClinVar SNV in the LDHA PAS (rs886048091). Left boxplot: Measured LORs of TGTA-creating variants from 
the MPRA of Bogard et al. [36]. Right boxplot: Measured LORs of non-TGTA-creating variants. p-values are 
computed with two-sided t-tests. C Interpretation of two variants of interest in the MOCS2 PAS and BMPR1A 
PAS. D Individual- and pairwise TGTA motifs were inserted in wildtype PASs and their LORs were measured in 
an MPRA [36]. E Predicted and observed LOR of individual TGTA insertions. F Predicted and observed LOR of 
dual TGTA insertions
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Silent hexamer mutations are protected by functional redundancy

The core cis-regulatory polyadenylation element in humans is the CSE hexamer motif, 
which in its canonical form is either AAT​AAA​ or ATT​AAA​ but weaker nucleotide vari-
ants exist (Fig. 4A) [1]. Reporter experiments measuring polyadenylation efficiency have 
recently shown that clinically benign CSE mutations often have lower functional effect 
sizes than expected [60]. To investigate this phenomenon at a larger scale, we collected 
all measured CSE mutations from the MPRA of Bogard et al. [36] (n = 628) and com-
pared APARENT2’s variant effect predictions to the measurements (Fig. 4B, left). APAR-
ENT2 can regress the effect sizes accurately (Spearman r = 0.71) and the predictions 
generally separate the benign from pathogenic labels in ClinVar.

To identify CSE variants with predicted effect sizes that are lower than expected, we 
compared APARENT2’s predictions to a linear CSE hexamer regression model trained 
on the same data (Fig. 4B, right). While the two models generally agree (Spearman r = 
0.64), we find multiple mutations with log odds ratios < −2 as predicted by APARENT2 
but with log odds ratios > −2 as predicted by the hexamer model. All variants that occur 
in ClinVar within this group are labeled benign. Using our mask-based interpretation 
method, we dissected the origin of this discrepancy. First, we find a group of completely 
silent mutations and these PASs all contain redundant CSE hexamers (Fig.  4C, Addi-
tional file 1: Fig. S4A). Importantly, the interpretations show that besides the extra CSE 
motifs, it is crucial that auxiliary elements (e.g., CFIm-binding TGTA motifs or down-
stream T-rich elements) are well-positioned with respect to the new CSE. Second, we 

Fig. 4  Redundancy of functional hexamer motifs in human polyadenylation signals. A Position weight matrix 
(PWM) of the CSE motif, as measured in the MPRA of Bogard et al. [36]. B Predicted vs measured log odds 
ratio of CSE mutations from the MPRA (n = 628). Right: Log odds ratio predicted by APARENT2 vs the effect 
sizes predicted by a linear hexamer model trained on the same data. C Interpretation of a functionally silent 
CSE mutation in the TPMT gene. D Interpretation of a variant with dampened effect size in the SMAD4 gene. 
E Boxplot showing measured LORs of all assayed CSE mutations [36]. p-values are computed with two-sided 
t-tests
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find another group of variants with dampened effect sizes when mutating the canoni-
cal CSE into a weaker form (Fig. 4D, Additional file 1: Fig. S4B). Rather than redundant 
CSE motifs, these PASs contain many well-positioned auxiliary motifs (CFIm- and CstF-
binding motifs and T-rich elements) which dampen the loss of the canonical CSE hex-
amer. This hypothesis agrees with earlier work suggesting that weak CSEs are efficient 
polyadenylation elements when found in a strong sequence context [61, 62]. To validate 
this phenomenon directly in the data, we compared the measurements of all CSE muta-
tions from the MPRA and found a significantly lower variant effect size in PASs with 
redundant CSE hexamers (Fig. 4E; Additional file 1: Fig. S4C).

Functional variant predictions correlate with human APA QTLs

To assess the APA models on variant prediction within a native genomic context, we 
downloaded the recently published atlas of APA QTLs (3′ aQTLs) from GTEx v7 [20]. 
The majority of aQTL measurements involve distant SNPs far away from any PAS, which 
is beyond the scope of APARENT2. We thus narrowed the data to the subset of variants 
that occur close enough to the core hexamer of an annotated PAS in PolyADB (within 
50nt; n = 2043). We further filtered the data on lead SNPs (the most significant SNP for 
a given APA event), resulting in a total of 366 3′ aQTLs measured among 44 tissue types 
(Fig. 5A). We then tasked each model with inferring the aQTL effect size due to each 
variant (Fig. 5A, B, Additional file 1: Fig. S5A-B). APARENT2 had the highest median 
correlation across all tissues (Spearman r = 0.61 ) and was followed by DeeReCT-APA 
(r = 0.48 ). We obtained similar results when replicating the analysis on 1223 lead 
SNPs from the newer GTEx v8 atlas [41] (Additional file  1: Fig. S5C-E). We further 

Fig. 5  Inferring 3′ aQTL effect sizes from sequence. A Total number of 3′ aQTLs, cis-acting aQTLs, and lead 
aQTLs respectively (GTEx v7). Right: Predicted vs measured aQTL effect sizes in the lung. B Predicted vs 
measured 3′ aQTL effect size Spearman r’s (GTEx v7). Each dot corresponds to the correlation in a particular 
tissue type. C Predicted vs measured aQTL effect sizes of the data from Mittleman et al. [21] ( n = 58 ). D 
Multiple softmax regression for predicting tissue-specific isoform abundance. APARENT2 (green) and the 
tissue model (blue) are used to score each PAS. E Increase (red) or decrease (blue) in Spearman r when 
using a particular tissue model to scale the 3′ aQTL predictions made by APARENT2 in a given GTEx tissue 
(testis, ovary, B-cell lymphocytes, and brain). F Reconstructive mask for a SNP in the ALDH7A1 gene, with a 
brain-specific effect. The bottom mask is the result of 64 randomly initialized optimization attempts. Boxplot 
shows differential PAS usage in data from Lianoglou et al. [42]
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benchmarked the models on a separate 3′ aQTL dataset [21], consisting of 58 SNVs 
occurring near annotated PASs among 52 HapMap Yoruba human lymphoblastoid cell 
lines (Fig. 5C, Additional file 1: Fig. S5F). APARENT2 again were the most correlated 
with the measured effects (r = 0.70 ). Finally, by comparing our variant predictions to 
1007 intronic GTEx eQTLs and 2225 3′ UTR eQTLs [63], we validated an observation 
made by Mittleman et al. [21] that mRNA expression is significantly downregulated due 
to gain-of-function mutations in intronic PASs, possibly due to aberrant transcript trun-
cation (Additional file 1: Fig. S5G; across all GTEx tissues, we found that variant effects 
predicted by APARENT2 in weak intronic PASs had a median negative correlation of 
r = −0.3 compared to the measured eQTL effect sizes).

Tissue‑specific variant prediction as residual learning

The 3′ aQTL effect sizes above are tissue-specific, yet APARENT2’s predictions are not. 
The reason we observe high correlation is because APA, for most genes and PASs, is 
not differentially regulated [64]. Thus, predictions of APARENT2, which was trained 
on MPRA data from HEK293 cells, correlate quite well across all tissues. However, we 
asked whether we could improve variant predictions on some of the aQTLs by combin-
ing native, tissue-specific 3′-end sequencing data with the single-cell line MPRA data in 
a hybrid model. Here, we draw inspiration from earlier work by Cheng et al. [65], where 
tissue-specific splicing models were used to scale the variant predictions of a non-tis-
sue-specific model. This hybrid approach is motivated by the idea that the non-tissue-
specific model, which has been trained on a large MPRA, can provide more accurate 
baseline predictions. The tissue-specific models, then, are used only to predict residual 
up- or downregulation due to tissue-specific trans-acting regulators and their cognate 
cis-acting motifs.

We focused on 4 human tissues and cell types that have previously been reported 
to exhibit differential polyadenylation [64]: testis, ovary, B-cell lymphocytes (BLCL), 
and brain. We downloaded publicly available 3′-end sequencing data for HEK293, tes-
tis, ovary, BLCL, and brain [42] and mapped the RNA-Seq reads to annotated PASs in 
APADB [57]. In total, we collected APA isoform data for 6440 genes, each gene having 
between 2 and 10 PASs. First, in agreement with earlier studies suggesting that weaker 
PASs are upregulated in the testis, we observed that the APARENT2 PAS score itself is 
predictive of differential usage in the testis; the isoform odds ratio increases ∼1.5-fold 
in the testis for proximal PASs with scores <0 and distal competing signals with scores 
>0 ( p = 2.5×10−50 ; Additional file 1: Fig. S5H). Next, using these data, we trained four 
tissue-specific models to learn the residual APA regulation necessary to predict tissue-
specific differences superimposed on the baseline APARENT2 predictions (Fig.  5D; 
Spearman r = 0.20–0.41 on held-out test data, Additional file 1: Fig. S5I). After training, 
we used each tissue-specific model to scale the GTEx effect size predictions (Additional 
file 1: Fig. S5J). With this approach, we raised the median aQTL Spearman correlation 
from 0.66 to 0.72 in these 4 tissues (Fig. 5E, Additional file 1: Fig. S5K-L).

Finally, we applied our mask-based attribution framework to interpret tissue-specific 
variants on the basis of the residual tissue models. In Fig. 5F, we investigate GTEx SNP 
rs744722, which has a positive 3′ aQTL effect size in the brain but a median negative 
effect size in other tissues. Our interpretation suggests that the variant modifies a T/
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GT/CT-rich motif by removing one of the Gs. We hypothesized that this SNP alters the 
affinity for CstF binding, which has an overall negative impact in most tissues, but has a 
net-positive effect in the brain due to the upregulated levels of HuR/Elavl I and Ptbp2, 
which are RBPs known to compete with CstF binding in T-rich regions [6, 7]. CLIP data 
suggests that CstF binds overlapping the mutation site in ADH7A1 [66] and we find in 
the native transcriptomic training data that CT-rich motifs are associated with upregu-
lated PAS usage in the brain ( p = 1.13×10−12 ). In Additional file 1: Fig. S5M, we inter-
pret a similar loss-of-CstF binding mutation, which is observed to have a more negative 
effect size in testis compared to other tissues. Consistent with earlier studies, we find 
evidence that GT-rich motifs are associated with differential APA in the testis, which is 
likely due to elevated levels of CstF [67–69].

Variant prediction across the 3′ UTR by combining models of polyadenylation and mRNA 

stability

We found in Fig.  1G that modeling both pA efficiency and mRNA isoform stability 
improved the overall fit to endogenous 3′-end sequencing data. We thus hypothesized 
that the combined model would also improve aQTL effect size estimation by correct-
ing APARENT2’s predictions for effects on stability (Fig. 6A). We tuned the regression 
weights of the combined model on tissue-pooled measurements from PolyADB V3 [54] 
and used the model’s distal-most output to score the impact of SNPs from the GTEx v7 
catalog on isoform abundance (Fig. 6B) [20]. When evaluating the combined model on 
SNPs that overlap both the APARENT2 and Saluki input windows (n = 594 ), it consist-
ently outperformed APARENT2 alone for all tissues (Fig. 6C, top, Additional file 1: Fig. 
S6A-B; median Spearman r increased from 0.53 to 0.68). When applied to all lead SNPs 
occurring anywhere in the 3′ UTR (including outside APARENT2’s window; n = 1489 ), 
the median correlation reached 0.58 (Fig. 6C, bottom).

To exemplify the types of co-localizing regulatory signals of APA and mRNA stabil-
ity that benefit from joint modeling, we applied in silico saturation mutagenesis (ISM) 
to the wildtype and mutant sequence surrounding a GTEx SNP (rs540) that was better 
predicted when using both models (Fig.  6D). The attributions show that both models 

Fig. 6  Extending aQTL predictions to the entire 3′ UTR. A The total impact of a 3′ UTR mutation on isoform 
abundance is scored by APARENT2 and Saluki. B Absolute value of predicted vs measured 3′ aQTL effect sizes 
for lead SNPs and a matched set of non-lead SNPs overlapping PASs in the lung (GTEx v7). Final predictions 
are made by isotonic regression trained on all non-lung SNPs. C Top: Predicted vs measured aQTL effect 
size Spearman r’s for SNPs overlapping PASs. Each dot represents the correlation in a given tissue. Bottom: 
Predicted vs measured effect sizes for all 3′ UTR SNPs, using the joint APARENT2+Saluki model. D Difference 
in ISM maps between mutant and wildtype sequence (rs540). Green/magenta annotations correspond to 
APARENT2/Saluki predictions
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respond to the creation of a TGTA motif. However, while APARENT2 recognizes this as 
the putative binding motif for CFIm (a pA enhancer), it neglects the simultaneous crea-
tion of a putative Pumilio-binding motif (a de-stabilizing RBP). The effect of this RBP is 
accounted for by Saluki.

Disruptive polyadenylation variants are selected against in the human population

We next sought to understand the connection between the functional impact of genetic 
variation on polyadenylation and human health. Using APARENT2, we performed full in 
silico saturation mutagenesis of every annotated PAS in PolyADB V3 [54] and imputed 
the effect size (odds ratio) of every possible SNV (n >43.8 million). For each PAS, we cal-
culated the average wildtype isoform usage across all tissues in PolyADB. We then re-
calculated the isoform usage in the presence of each mutation by using the APARENT2 
prediction to scale the isoform odds. Given these two quantities, we estimated the change 
in isoform proportion ( �use) due to each variant. When cross-referencing our predic-
tions against the >2.8 million PAS SNVs curated from the >71, 000 genomes sequenced 
in gnomAD v3 [50] (Fig. 7A), we found that disruptive loss-of-function variants (result-
ing in downregulated pA) are depleted in common variants (AF >0.1% ) compared to 
singletons (wilcoxon p = 2.1×10−76 ; Fig. 7B, Additional file 1: Fig. S7A). Disruptive loss-
of-function variants ( �use < −0.15 ) occur ∼2.5-fold less frequently among common vari-
ants (AF >10% ) than singletons and they occur ∼1.4-fold more frequently in unobserved 

Fig. 7  Large-scale analysis of polyadenylation signal mutations and their implication in health and disease. 
A Relative position of mutation vs predicted � isoform abundance for all PAS variants in gnomAD (n = 
2.8 million). Color intensity represents allele frequency. Inset: Reference vs alternate isoform abundance 
for all 43.8 million potential PAS SNVs (orange = gnomAD variants). B Distribution of predicted � isoform 
abundance for common gnomAD variants (AF >0.1% ; green) and singletons (magenta). C Relative 
enrichment of disruptive variants ( �isoform abundance < −0.15 ) with respect to singleton variants. Wilcoxon 
p-values are shown above each bar. D Absolute predicted isoform fold change vs p-value of fine-mapped 
GWAS SNPs from CAUSALdb ( 95% credible set, n = 4200) [70]. E Distribution of predicted log odds ratios for 
the F2 PAS. F Distribution of predicted log odds ratios for the SCAF8 PAS. G Predicted log odds ratios among 
ASD cases and controls from a WGS study [51]
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variants (AF = 0% ) compared to singletons (Fig.  7C). These results suggest a negative 
selection pressure on disruptive variants in human polyadenylation signals.

Gain‑of‑function mutations in the 3′‑end are associated with clinical conditions

Most of the known deleterious polyadenylation variants are highly disruptive CSE muta-
tions [16–18]. However, while we found in the previous section that highly disruptive 
loss-of-function variants are generally selected against, they also frequently occur as 
common variants. This suggests that we cannot use the inferred effect on polyadenyla-
tion alone as a predictor for variant pathogenicity. To highlight this phenomenon, we 
intersected our predictions against CAUSALdb [70], a database containing fine-map-
ping results from over 3000 GWAS summary statistics (including UK Biobank [71] 
and GWAS Catalog [72]). We first noticed that SNPs with a large posterior inclusion 
probability (PIP) from UK Biobank are enriched for disruptive APA variants (Addi-
tional file  1: Fig. S7B) [73]. We then identified 96 SNPs with PIP >90% and many of 
these are known deleterious variants that act through APA (Fig. 7D). As expected, the 
predicted effect size of these known APA mutations varies considerably. For exam-
ple, the variant rs1799963 in the F2 gene increases pA efficiency only modestly ( <1.5

-fold) but is responsible for thrombophilia [19]. In contrast, the cancer-associated vari-
ant rs78378222 disrupts the PAS of the TP53 gene >10-fold. Clearly, the downstream 
consequence of disrupted polyadenylation depends on the importance of the affected 
APA isoforms, not to mention the gene itself. However, we can assume that a mutation 
is likely not deleterious if it occurs in a PAS with common variants that have even larger 
effect sizes. Thus, we can eliminate PAS mutations and classify them as likely benign 
when they co-occur with putative functional common variants in gnomAD with high 
impact on polyadenylation. For example, the pathogenic variant rs1799963 would not be 
eliminated, since it is the variant with the largest predicted odds ratio of all observed F2 
variants in gnomAD (Fig. 7E).

Using the stratification process above, we investigated the link between misregu-
lated polyadenylation and autism spectrum disorder (ASD), a relationship which 
has been suggested before but mainly at the trans-regulatory level and less in terms 
of cis-regulatory variation in the 3′ UTR [74–77]. Figure  7F displays an example 
rare variant (rs1778827990) associated with ASD [78]. The suspected variant has a 
considerably higher (positive) effect size than any of the observed variants in gno-
mAD. Hypothesizing that gain-of-function mutations may be linked to ASD, we ran 
APARENT2 on whole-genome sequencing (WGS) data from 1902 families [51, 79] 
and found that variants overlapping PASs in cases are enriched for gain-of-function 
compared to controls (Wilcoxon p = 0.049 , ncases = 297 , ncontrols = 296 ). When 
removing variants that co-occur with higher-impact common SNPs in gnomAD (AF 
>0.01% ), the significance increased (Wilcoxon p = 2.1×10−4 ), and when also remov-
ing variants that occur in PASs with a protective downstream PAS within 200nt, the 
significance increased further (Wilcoxon p = 1.5×10−5 ; see Section  5 for filtering 
procedure) (Fig. 7G, Additional file 1: Fig. S7C). We observed a 3.02-fold enrichment 
of gain-of-function mutations in cases (Fisher’s p = 2.2×10−4 ). As additional valida-
tion, the predicted effect sizes of variants from the control set were indistinguish-
able from variants in gnomAD after applying the same filtering (Wilcoxon p = 0.341 ) 
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while case variants were significantly different (Wilcoxon  p = 2.7×10−5 ). Finally, we 
found an enrichment among PAS case variants of the gene ontology terms’ regula-
tion of primary metabolic process’ (FDR = 6.79×10−02 ) and “protein binding” (FDR 
= 3.48×10−04 ) [80]. We found no significant enrichment among controls.

When replicating the analysis against a smaller WGS study of 200 families [78], we 
again observed an enrichment of gain-of-function mutations in cases relative to the 
controls from An et al. [51], but the results were only significant with less stringent 
filtering criteria (Wilcoxon  p = 0.039 ; Additional file  1: Fig. S7D-E). The predicted 
effect sizes of case variants were not significantly different from gnomAD variants 
(Wilcoxon  p = 0.127 ), but the trend was similar to that of the larger cohort data so 
this is likely due to insufficient sample size. Even in this smaller cohort, we can use 
APARENT2 to functionally interpret variants with high predicted effect sizes. For 
example, the variant highlighted in Fig. 7F (rs1778827990) is predicted to be a puta-
tive gain-of-CstF binding mutation (Additional file 1: Fig. S7F).

An MPRA of clinically relevant variants in multiple cell lines

To validate the predictions made for clinically relevant variants and to assess brain-
specific effects, we experimentally tested 94 PAS SNVs in a plasmid reporter MPRA 
measured in HEK293T, SK-N-SH, and HMC3 cells (Fig.  8A; Additional file  1: Fig. 
S8A-C). These variants consisted of 38 case and 38 control variants from the ASD 
data set (19 variants with the largest positive effects and 19 variants with the larg-
est negative effects for both cases and controls, after removing variants that occur 
in PASs with higher-impact common SNPs in gnomAD; AF >0.01% ), in addition to 9 
GWAS SNPs with diverse predicted effects and other disease-relevant examples in the 
F2 and SCAF8 genes. APARENT2’s predictions agreed well with the measurements in 

Fig. 8  MPRA validation in multiple cell lines. A APA reporter system for measuring variant effects in HEK293T, 
SK-N-SH and HMC3. B Predicted vs measured variant effects (LORs) in the three assayed cell lines. C Predicted 
vs measured effects of 9 GWAS SNPs (PIP = posterior inclusion probability). D Measured effects of 2 SNVs in 
the F2 and SCAF8 genes (orange), alongside common gnomAD SNPs (blue). E Measured effects of 76 autism 
variants from An et al. [51]. p-values are computed with two-sided Wilcoxon tests
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HEK293T and SK-N-SH (Fig.  8B; r = 0.85 in HEK293T and 0.83 in SK-N-SH) but 
were less concordant with HMC3 (r = 0.69), suggesting microglia-specific PAS usage 
modulation.

APARENT2 could accurately predict the effects of the selected GWAS SNPs (r = 0.92 
in HEK293T; Fig. 8C). However, the chosen variants that displayed loss of function (the 
majority of which were associated with cardiovascular traits) had less extreme effects in 
HMC3 (Additional file 1: Fig. S8D). Additionally, we validated the effects of rs1799963 
(F2; thrombophilia) and rs1778827990 (SCAF8; autism case) and found that these var-
iants behave similarly across cell lines (Fig.  8D). Finally, we recapitulated a significant 
enrichment of gain-of-function variants in autism cases for all cell lines (Fig. 8E, Addi-
tional file 1: Fig. S8E; Wilcoxon p ≤ 0.04 ). There were ∼3-fold more case variants with 
effect sizes larger than controls in HMC3 than there were in HEK293T and SK-N-SH, 
suggesting they have potential microglia-specific effects.

Discussion
In this paper, we developed an improved human polyadenylation variant prediction 
model, APARENT2, based on deep residual neural networks. We systematically com-
pared this model to other sequence-predictive APA models, including the original 
APARENT network, on the task of predicting functionally disruptive variants from 
MPRA data and human APA QTLs. We found that APARENT2 was considerably better 
at variant effect size estimation compared to other models, in particular for cryptic vari-
ants outside of the CSE. We further trained tissue-specific residual models for the testis, 
ovary, B-cell lymphocytes, and brain and used these to improve variant prediction in 
human tissues. By combining rich modeling with mask-based attribution, we extracted 
complex cis-regulatory rules and elucidated cooperativity among core polyadenylation 
signal motifs. For example, we found super-additive interactions between the CFIm-
binding motif TGTA and downstream AT-rich elements. Conversely, we identified pro-
tective buffering effects of redundant and well-positioned core hexamers that can “take 
over” in case the original CSE is disrupted by mutations.

An intriguing finding of our work is that the same PAS scoring function accurately 
predicts relative isoform abundance in multi-PAS genes and absolute transcript levels 
in genes containing a single PAS. These results are consistent with a simple model of 
polyadenylation where a PAS emerging during transcription is used with an independ-
ent probability that is determined entirely by the sequence of that signal. If an additional 
PAS occurs in the emerging transcript, its usage is again determined independently by 
the sequence. Moreover, 3′-end processing via cleavage and polyadenylation is in com-
petition with other processes such as RNA degradation and transcriptional feedback 
that reduce mature mRNA levels. By incorporating a model of RNA stability with APAR-
ENT2, we further improved APA QTL predictions by correcting for differential isoform 
stability.

We applied APARENT2 to make functional predictions on 44M PAS variants in 
the human genome, orders of magnitude more than would currently be possible even 
in a high-throughput reporter assay. Moreover, unlike statistical methods such as 
aQTL analysis, functional predictions can be made even for variants that have not yet 
been observed, but may well occur, in the human population. Finally, we combined 
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APARENT2’s variant predictions with additional evidence from a large variation data-
base (gnomAD). This allowed us to enrich our predictions by disregarding mutations 
that co-occur in PASs with common high-impact variants, as these PASs are likely not 
important for function. Using this approach, we found a ∼3-fold enrichment of gain-
of-function variants (leading to more efficient pA) in individuals with autism spectrum 
disorder.

It is important to note that we cannot definitively classify mutations in PASs with 
high predicted effect size as causative of autism; both loss- and gain-of-function vari-
ants occur frequently in controls, suggesting many gain-of-function variants in cases are 
likely benign. However, the significant over-representation of gain-of-function muta-
tions in cases suggests that some of those variants contribute to autism. We experi-
mentally validated predicted high-impact variants in an MPRA and showed that case 
variants indeed are enriched for gain-of-function, with more extreme effects in micro-
glia-derived HMC3 cells. These results signify the importance of having a functional 
model; the number of mutations occurring in PASs was almost identical between cases 
and controls and we only discovered the signal in APARENT2’s predictions.

Conclusions
The sequence-to-function model developed here, APARENT2, enabled more accu-
rate variant effect predictions within human polyadenylation signals than any previous 
model. Importantly, the deep residual network architecture employed is interpretable; 
by applying mask-based attribution techniques, we could project higher-order features 
of the polyadenylation code down to the sequence and validate these interactions using 
functional variant effect measurements. This approach led to the discovery of multiple 
epistatic interactions between cis-regulatory RNA binding protein motifs. By computa-
tionally assessing the impact of every potential polyadenylation signal mutation in the 
genome and intersecting these predictions against human variation data, we could draw 
powerful associations to phenotypic traits and clinical conditions.

Methods
Neural network architecture

APARENT2 is based on residual blocks of dilated convolutions [52] and is architectur-
ally similar to the SpliceAI model [27]. Let P be the APARENT2 model. As input, P 
receives a one-hot coded sequence x ∈ {0, 1}205×4 , which represents the proximal PAS, 
and a one-hot coded variable l ∈ {0, 1}13 which indicates the source 3′ UTR sub-library 
from the MPRA training data [36]. Internally, P consists of 7 residual groups, and each 
residual group is made up of 4 residual blocks. A residual block (Additional file 1: Fig. 
S1A) consists of two batch-normalized, ReLU-activated one-dimensional convolutional 
layers with a specific filter dilation rate. Each block also has a skip connection, which 
mathematically performs an unweighted element-wise addition. Each residual group 
consists of residual blocks of the same dilation rate. For this particular network, the 7 
residual groups use the following sequence of dilation rates: 1, 2, 4, 8, 4, 2, 1. Between 
each residual group, there is an extra skip connection to the final output layer. Only x is 
passed through the series of residual blocks, producing in the end a single-channel vector 
of non-normalized cleavage scores s(x) ∈ R

206 (Note that s has one position more than 
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x ; this extra position represents the total isoform score of the distal signal). The library 
indicator variable l is multiplied with a position-specific weight matrix W ∈ R

206×13 
and linearly combined with s(x) , producing new scores ŝ(x, l)j = s(x)j +

13
k=1 wjk × lk 

( 1 ≤ j ≤ 206 ) which have effectively been scaled with a library-specific intercept. Finally, 
P produces a normalized 206-way cleavage distribution ŷ ∈ [0, 1]206 by applying the 
softmax transform (Eq. 1).

All residual blocks in APARENT2 have 32 channels and all convolution filters are 3 posi-
tions wide. Note that there is no explicit sigmoid output representing the total proximal 
isoform proportion. Rather, the proximal isoform proportion is computed as the sum of 
cleavage probability mass 7–57 nt downstream of the start of the proximal CSE (which is 
located at position 70): ŷiso =

∑127
j=77 ŷj . However, for some variant prediction tasks, the 

proximal isoform is defined as “any cleavage that is not distal” (i.e., the data processing of 
those datasets considered cleavage from nearby competing cryptic PASs as “proximal”). 
In that case, we define the predicted proximal isoform proportion as ŷiso =

∑205
j=1 ŷj (and 

ŷ206 is the distal proportion).

MPRA training data

The MPRA dataset from Bogard et al. [36] was re-processed to make the training data 
more uniform. First, the original dataset consisted of 185-nt-long sequences, starting 50 
nt upstream of the proximal CSE. However, for some of the sub-libraries (the MPRA 
consisted of 13 sub-libraries with different 3′ UTR contexts), an additional random bar-
code was located from 70 to 50 nt upstream of the CSE. In the re-processed version of 
the data, we included 20 nt of additional sequence upstream of the CSE to capture these 
barcodes.

Second, for some of the sub-libraries, the exact cleavage distributions were not esti-
mated from the RNA-Seq data. Instead, these sub-libraries only included total proximal-
to-distal isoform proportions. We re-mapped the RNA-Seq reads to these sub-libraries 
and augmented the data with the missing cleavage distributions.

Finally, the original models were only trained on about 2.4 million of the degenerate 
(randomized) MPRA data (3 of 12 sub-libraries of the random MPRA were held out 
for independent testing), and it was not trained on any of the assayed human APA sites 
from the designed MPRA. Here, we trained the network on data from all of the degener-
ate sub-libraries, resulting in 3.3 million training sequences and 80,000 sequences for 
validation and testing each. We also included human intronic PAS sequences from the 
designed MPRA (which had been measured in a 3′ UTR reporter), adding approximately 
10,000 additional high-quality measurements to the training data. To keep the variant 
prediction results unbiased, we did not train the network on any of the human 3′ UTR 
sequences from the variant MPRA. Note that, as in the original paper, MPRA sequences 
with >75% adenine bases in a 12–20-bp region were removed to minimize internal prim-
ing artifacts [36]. Hence, the resulting trained model cannot be used on sequences with 
long adenine stretches.

(1)ŷj = P(x, l)j =
eŝ(x,l)j

∑206
k=1 e

ŝ(x,l)k
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Cleavage and isoform cost function

Given the training data D = {x(i), y(i)}Ni=1 , where x ∈ {0, 1}205×4 is a one-hot coded 
representation of the proximal (degenerate) polyadenylation signal and y ∈ [0, 1]206 is 
the measured 3′ cleavage distribution, we trained APARENT2 to minimize the hybrid 
cost function given in Eq. 2.

Here, KL
[

ŷ(i)||y(i)
]

 is the KL divergence between the predicted cleavage distribution 

ŷ(i) = P(x(i), l(i)) and measured distribution y(i) (defined in Eq.  3). KL
[

ŷ
(i)
iso||y

(i)
iso

]

 is an 

extra consistency term used to fit the sum of a subset of softmax outputs ŷiso =
∑110

k=80 ŷk 
to the total observed proximal isoform proportion yiso =

∑110
k=80 yk (defined in Eq.  4). 

We found empirically that the extra consistency term produced better isoform fold-
change predictions for downstream variant prediction tasks, presumably by increasing 
the importance of predicting cleavage accurately within the region specified by this loss 
term (which is where the majority of proximal cleavage occurs for most PASs). Note that 
the last position in the target vector ( y(i)206 ) corresponds to the total isoform proportion 
(total cleavage) of the distal (non-degenerate) PAS.

Model training

We trained APARENT2 for 5 epochs with mini-batch SGD using the Adam optimizer 
in Keras [81, 82] with default parameters and batch size = 64 . During training, we 
randomly shift both the input sequence x(i) and target cleavage distribution y(i) by at 
most 15 nt in either direction (Additional file 1: Fig. S1B). As such, the CSE position 
(which all sequences are initially aligned against) varies during training, forcing the 
network to learn to displace the cleavage distribution according to the location of the 
CSE. This helped the network give better predictions to locally competing CSE hex-
amers in the nearby USE or DSE regions.

Web tool

We developed a web tool for running in silico saturation mutagenesis across human 
polyadenylation signals from the PolyADB V3 data [54] (Additional file  1: Fig. S9). 
The application loads a graph tool based on D3.JS [83], where predicted cleavage dis-
tributions can be explored interactively. Note: This web application has been online 
since 2019, but has been relying on the original APARENT model for predictions.

(2)Ltrain({x
(i), y(i)}Ni=1) =

1

N

N
∑

i=1

(

KL
[

ŷ(i)||y(i)
]

+ KL
[

ŷ
(i)
iso||y

(i)
iso

])

(3)KL
[

ŷ||y
]

=

206
∑

k=1

yk × log

(

yk

ŷk

)

(4)KL
[

ŷiso||yiso
]

= yiso × log

(

yiso

ŷiso

)

+ (1− yiso)× log

(

1− yiso

1− ŷiso

)
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Endogenous datasets

We collected four different sets of human 3′-end sequencing data in order to bench-
mark the APA models at the tasks of predicting pairwise and multi-PAS isoform pro-
portions. We first downloaded the tissue-pooled version of APADB [57] from http://​
tools.​genxp​ro.​net:​9000/​apadb/​downl​oad/​track/​hg19.​apadb_​v2_​final.​bed/ (dataset 
# 1). We obtained the RNA-seq counts of Lianoglou et  al. [42] from https://​cbio.​
mskcc.​org/​lesli​elab/​ApA/​atlas/ and mapped the read positions to the annotated PASs 
in APADB. From the mapped cleavage position counts, we estimated the total read 
count c(k)i  that support APA isoform i of gene k aggregated over all tissues (dataset # 
2). Similarly, the aggregated isoform counts from Derti et al. [13] were downloaded 
from GEO (accession GSE30198) and mapped to the PAS sequences from APADB 
(dataset # 3). The final dataset consisted of the tissue-pooled RNA-seq counts from 
PolyADB V3 [54] and was downloaded from https://​exon.​apps.​wistar.​org/​PolyA_​DB/​
v3/​downl​oad/3.​2/​human_​pas.​zip (dataset # 4).

For the task of pairwise APA isoform prediction, we collected pairs of adjacent 3′ 
UTR PASs with a total read count ≥500 . The two sites had to be at least 100bp apart 
and at most 4000bp apart. Finally, sequences with more than 7 consecutive adenine 
bases were removed to minimize the risk of internal priming. For the multi-PAS pre-
diction task, we kept genes with at least 2 annotated PASs in APADB (or PolyADB) 
and at most 10 PASs. We removed genes with less than 10 total counts, or with PASs 
separated by less than 50bp or more than 40,000bp. Genes with PASs that contain 
more than 13 consecutive adenines were removed.

Variant datasets

We benchmarked the APA models on two 3′ UTR MPRAs, two native transcriptomic 
3′ aQTL datasets, and GWAS data. The specific data filters and measurements of each 
dataset are described below.

Isoform MPRA: [36] This APA variant MPRA contains SNVs near PASs of disease-
implicated 3′ UTRs from ClinVar, HGMD, or ACMG genes [38–40]. We filtered the 
data to include only variants where the wildtype and variant sequences each had a 
mean unique UMI read count > 200 from at least 5 barcoded replicates. This resulted 
in a total of 12,350 retained variants. We estimated the log odds ratio (log fold change) 
LOR(ywt, yvar) of each variant’s proximal isoform abundance yvar with respect to the 
wildtype abundance ywt (Eq. 5). These isoform abundances were calculated by summing 
all cleavage probabilities mapping to cut sites +0 to +50 nt downstream of the CSE.

In one of the benchmarks, we compared the model performances of classifying disrup-
tive APA variants. A variant was deemed “disruptive” if the absolute value of its isoform 
odds ratio with respect to the wildtype abundance was larger than 2: 
Disruptive = 1 if

∣

∣

∣

ŷvar/(1−ŷvar)
ŷwt/(1−ŷwt)

∣

∣

∣
> 2 else 0.

The dataset was downloaded from https://​github.​com/​johli/​apare​nt.

(5)LOR(y(wt, y(var)) = log

(

y(var)/(1− y(var))

y(wt)/(1− y(wt))

)

http://tools.genxpro.net:9000/apadb/download/track/hg19.apadb_v2_final.bed/
http://tools.genxpro.net:9000/apadb/download/track/hg19.apadb_v2_final.bed/
https://cbio.mskcc.org/leslielab/ApA/atlas/
https://cbio.mskcc.org/leslielab/ApA/atlas/
https://exon.apps.wistar.org/PolyA_DB/v3/download/3.2/human_pas.zip
https://exon.apps.wistar.org/PolyA_DB/v3/download/3.2/human_pas.zip
https://github.com/johli/aparent
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Expression MPRA: [35] This 3′ UTR MPRA measured the RNA/DNA fold changes 
of viral PAS variants. We filtered the data to include only sequences that were in the 
test set of the PolyApredictor model. We also removed sequences that contained 
either a stretch of at least 10 consecutive A’s, or sequences containing the subse-
quence “AGA” at position 41, as the measurements of these sequences seemed to be 
influenced by artifacts. Finally, we only considered the subset of sequences that were 
part of the scanning mutagenesis experiments, resulting in a total of 442 variants. For 
these sequences, we matched the wildtype and variant PASs in order to calculate the 
RNA/DNA fold change ratio FCR(uwt,uvar) = uvar − uwt due to each variant. Here, u 
is the logarithm of the RNA/DNA fold change of a particular sequence.

The model PolyApredictor predicts the log fold changes û directly. For all other 
models, we approximate û with the predicted isoform log odds: log

(

ŷ/(1− ŷ)
)

 . Fur-
thermore, since both PolyApredictor and APARENT2 support cleavage predictions at 
base-pair resolution, we also compared them on their ability to infer the RNA/DNA 
fold change ratios FCRj of each variant across every wildtype cleavage position j.

The dataset was downloaded from https://​github.​com/​segal​lab/​PolyA​predi​ctors.
GTEx 3′ aQTLs: [20, 41] The GTEx v7 3′ aQTL data was downloaded and mapped 

to the PolyADB V3 annotation [54]. The data was further filtered to only include 
lead SNPs occurring within 50nt of the most likely CSE of the annotated PAS. This 
resulted in 366 SNPs with measured 3′ aQTL effect sizes among 44 GTEx tissue 
types. To predict effect sizes, we first used each model to infer the SNP log odds ratio 
LOR(ŷ(wt), ŷ(var)) , which is an estimate of the local effect that the given variant has on 
the efficiency of the overlapping PAS. Next, given the observed polyadenylation distal 
usage index yPDUI ∈ [0, 1] of a particular PAS averaged across all GTEx tissues and 
samples, we inferred the SNP effect size �yPDUI by scaling the measured PDUI with 
the predicted variant odds ratio (Eq. 6).

In the above equation, � is assigned +1 or −1 and indicates whether the particular var-
iant is near the distal PAS or not. If the variant is far away from the distal PAS, it is 
assumed that it acts through a competing PAS and hence the predicted effect is inverted 
by assigning � = −1 . We used a simple heuristic to assign � : If the SNP is within 150bp 
from the annotated transcript end, we let � = +1 , otherwise � = −1.

The dataset was downloaded from https://​doi.​org/​10.​7303/​syn22​236281.
Note: In Additional file 1: Fig. S5C-E, we replicated the 3′ aQTL benchmark on the 

newer GTEx v8 atlas. The filter criteria were identical to the GTEx v7 atlas, except for 
a maximum p-value threshold of 10−12 that was imposed on lead SNPs to increase the 
quality of the estimated effect sizes. We also assigned � = +1 if a SNP occurs within 
500bp of the transcript end but creates a canonical de novo CSE hexamer, as such 
variants were annotated as belonging to the distal isoform.

The dataset was downloaded from https://​wlcb.​oit.​uci.​edu/​3aQTL​atlas.
HapMap Yoruba lymphoblastoid 3′ aQTLs: [21] The 3′ aQTLs were mapped 

against the PolyADB V3 annotation [54] and narrowed to the subset of SNPs 

(6)�yPDUI =
1

(

1+ e−�×LOR(ŷ(wt),ŷ(var)) × (1− yPDUI)/yPDUI

) − yPDUI

https://github.com/segallab/PolyApredictors
https://doi.org/10.7303/syn22236281
https://wlcb.oit.uci.edu/3aQTLatlas
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occurring within 50nt of the most likely CSE of each annotated PAS. This resulted in 
58 variants measured among 52 HapMap Yoruba human lymphoblastoid cell lines. 
We used the effect sizes estimated from nuclear mRNA only. The predicted log odds 
ratio LOR(ŷ(wt), ŷ(var)) of each model was directly compared to the 3′ aQTL effect 
sizes.

The raw data and annotations were available at GEO under accession GSE138197. The 
processed data, including the estimated 3′ aQTL effect sizes, were provided to us by the 
authors.

Fine-mapped GWAS SNPs: [70, 73] The GWAS SNPs from the 95% credible set of 
CAUSALdb [70] were intersected against 3′ UTR PASs from PolyADB V3 [54]. In addi-
tion, all fine-mapped GWAS SNPs from the UK Biobank cohort (generated by Kanai 
et al. [73]), including variants outside the credible set, were downloaded. The predicted 
log odds ratio LOR(ŷ(wt), ŷ(var)) of APARENT2 was compared to the p-values and poste-
rior inclusion probabilities of each dataset.

CAUSALdb was downloaded from http://​www.​mulin​lab.​org/​causa​ldb/​index.​html. The 
UKBB fine-mapping data was downloaded from https://​www.​finuc​anelab.​org/​data.

Variant prediction models

Following is a list of the APA models that were included in the variant prediction bench-
mark, with a detailed description of how each model was used and where each model 
was downloaded from.

APARENT2: (This paper) The model takes as input a 205-nt one-hot coded sequence 
x ∈ {0, 1}205×4 and a MPRA sub-library indicator l ∈ R

13 . The model predicts a 3′ 
cleavage distribution ŷ ∈ R

206 ( ̂y206 corresponds to total isoform cleavage). When 
using the model for variant prediction, we set l11 = 1 (the human intronic PAS sub-
library intercept). The variant log odds ratio LOR(ŷ(wt), ŷ(var)) is calculated from a sub-
set of the cleavage outputs. For the MPRA of Bogard et  al. [36] and the 3′ aQTLs of 
Mittleman et  al. [21], we define LOR(ŷ(wt), ŷ(var)) = LOR(

∑127
j=77 ŷ

(wt)
j ,

∑127
j=77 ŷ

(var)
j ) . 

For the MPRA of Slutskin et  al. [35] and the GTEx 3′ aQTLs [20], we define 
LOR(ŷ(wt), ŷ(var)) = LOR(

∑205
j=1 ŷ

(wt)
j ,

∑205
j=1 ŷ

(var)
j ).

APARENT: [36] The original APARENT model, which takes as input a 185-nt one-hot 
coded sequence x ∈ {0, 1}185×4 , a MPRA sub-library indicator l ∈ R

13 , and a binary vari-
able d ∈ {0, 1} which indicates whether there is a far-away distal PAS in the MPRA sub-
library. The model produces two outputs, a total proximal isoform proportion ŷiso ∈ R , 
and 3′ cleavage distribution ŷ ∈ R

186 ( ̂y186 corresponds to total isoform cleavage). When 
using the model for variant prediction, we set l4 = 1 and d = 1 . The variant log odds 
ratio LOR(ŷ(wt), ŷ(var)) is calculated as the average of the isoform and cleavage outputs: 
LOR(ŷ(wt), ŷ(var)) =

(

LOR(ŷ
(wt)
iso , ŷ

(var)
iso )+ LOR(

∑e
j=s ŷ

(wt)
j ,

∑e
j=s ŷ

(var)
j )

)

/2 , where s = 57 

and e = 107 for the MPRA of Bogard et al. [36] and the 3′ aQTLs of Mittleman et al. 
[21], and s = 1 and e = 185 otherwise.

The trained model was downloaded from https://​github.​com/​johli/​apare​nt/​tree/​mas-
ter/​saved_​models.

DeeReCT-APA: [34] An LSTM-based model trained on mouse 3′-sequencing data. 
The model takes as input a tensor x ∈ {0, 1}P×455×4 , where xp ∈ {0, 1}455×4 denotes the 
p:th PAS in a given 3′ UTR. When using the model for SNV prediction, we only pass 

http://www.mulinlab.org/causaldb/index.html
https://www.finucanelab.org/data
https://github.com/johli/aparent/tree/master/saved_models
https://github.com/johli/aparent/tree/master/saved_models
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two input PASs ( P = 2)—the sequence of the PAS containing the mutation and a fixed 
distal PAS that we never change. The distal PAS was chosen as a strong sequence from 
the training data. We could not use the distal PAS from the variant MPRA, since the 
model’s input window was larger than the plasmid reporter 3′ UTR. By passing either 
the wildtype or variant sequence as the proximal PAS, the model returns the predicted 
wildtype and variant isoform proportions ŷ(wt) and ŷ(var) . Given these predictions, we 
calculate LOR(ŷ(wt), ŷ(var)).

The model was re-trained using the code from  https://​github.​com/​lzx325/​DeeRe​
CT-​APA-​repo.

DeepPASTA (Rel Iso): [33] An ensemble of CNNs trained on human 3′ sequenc-
ing data [13]. We used the “Tissue-specific, relatively dominant” models. These tis-
sue-specific model instances take as input two 200-nt one-hot coded sequences 
x(p), x(d) ∈ {0, 1}200×4 (proximal and distal PAS) and one-hot coded representations 
s(p), s(d){0, 1}200×7 of their most probable secondary structures. When using the models 
for SNV prediction, we use a fixed distal PAS that we never change. By passing either 
the wildtype or variant sequence as the proximal PAS, the model returns the predicted 
wildtype and variant isoform proportions ŷ(wt) and ŷ(var) . Given these predictions, we 
calculate LOR(ŷ(wt), ŷ(var)) . This is repeated for each tissue-specific model and the aver-
age LOR is used as the final prediction.

The trained models were downloaded from https://​www.​cs.​ucr.​edu/​~aaref​001/​DeepP​
ASTA_​site.​html.

DeepPASTA (Site Pred): [33] This CNN ensemble takes a single one-hot coded 
sequence x ∈ {0, 1}200×4  and one-hot coded representations s(1), s(2), s(3){0, 1}200×7 of 
the three most probable secondary structures, as input. The model predicts the likeli-
hood of x being a PAS. By passing either the wildtype or variant sequence as x , the model 
returns the predicted wildtype and variant PAS probabilities ŷ(wt) and ŷ(var) . Given these 
predictions, we calculate LOR(ŷ(wt), ŷ(var)).

The trained model was downloaded from  https://​www.​cs.​ucr.​edu/​~aaref​001/​DeepP​
ASTA_​site.​html.

PolyApredictor: [35] An RNA/DNA expression level CNN and a 3′-cleavage CNN 
(as two separate networks) trained on a plasmid reporter MPRA of 3′ UTRs (assayed in 
K562 cells). The models each take a one-hot coded sequence x ∈ {0, 1}250 as input, which 
represents the 3′ UTR, and predicts either the total log RNA

DNA level ŷ ∈ R or the per-nucle-
otide log RNA

DNA levels ŷ ∈ R
250 across all potential cleavage positions of the 3′ UTR. To use 

these models for variant prediction, we pass either the wildtype or variant sequence as x 
and calculate the predicted LOR as LOR(ŷ(wt), ŷ(var)) = ŷ(var) − ŷ(wt).

The trained models were downloaded from  https://​github.​com/​segal​lab/​PolyA​predi​
ctors.

Motif discovery

To generate a representative selection of RNA binding protein motifs within human pol-
yadenylation signals, we used APARENT2 to predict the isoform logit log ŷiso/(1− ŷiso) 
for 20,000 randomly sampled 3′ UTR PASs from PolyADB_V3 (where ŷiso =

∑127
k=77 ŷk ). 

The PASs were restricted from having more than 7 consecutive adenine bases, the sig-
nals had to be alternatively used in tissue-pooled measurements, and the CSE had to 

https://github.com/lzx325/DeeReCT-APA-repo
https://github.com/lzx325/DeeReCT-APA-repo
https://www.cs.ucr.edu/%7eaaref001/DeepPASTA_site.html
https://www.cs.ucr.edu/%7eaaref001/DeepPASTA_site.html
https://www.cs.ucr.edu/%7eaaref001/DeepPASTA_site.html
https://www.cs.ucr.edu/%7eaaref001/DeepPASTA_site.html
https://github.com/segallab/PolyApredictors
https://github.com/segallab/PolyApredictors
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have a hamming distance of at most 2nt from the consensus AAT​AAA​ motif. We used 
DeepSHAP [84] to obtain attribution scores for each PAS (64 reference patterns), which 
were clustered into sequence logos using TF-MoDISco [56] (sliding window = 8 , flank 
size = 5 , max seqlets = 40, 000 , FDR = 0.05 , # mismatches = 0).

The TF-MoDISco software was installed from https://​github.​com/​kunda​jelab/​tfmod​isco.

Pairwise and multi‑PAS modeling

All APA models were benchmarked on the pairwise APA prediction task using the four 
endogenous data sources from Muller et al. [57], Derti et al. [13], Lianoglou et al. [42], 
and Wang et al. [54]. For each dataset, we estimated the true isoform logit of each pair 
of APA sites as logitendogenous = logit

(

(cp + cpseudo)/(cp + cd + cpseudo)
)

 , where cp and cd 
are the proximal and distal isoform counts and cpseudo = 0.5 is a pseudo count. We then 
used each APA model to predict logit scores logitp and logitd . These scores and the log-
distance d between the sites were used to regress the measured isoform logits (Eq. 7):

For the multi-PAS task, we estimated the distal isoform proportion of each gene as 
yd = cd/

∑10
i=1 ci . We then feed each APA model the 10 input PAS sequences of the gene 

(with zero padding if the gene has less than 10 PASs). Each model returns 10 predicted 
logit scores logiti , which are used in a masked softmax regression model to predict the 
distal isoform proportion of the endogenous data (Eq. 8):

where

The variable di denotes the cumulative log distance between PAS i and the proximal-
most PAS. The variables 

{

salukii,k
}4

k=1
 denote the first 4 principal components (PCs) of 

the final hidden-layer activations of the Saluki model [43] for isoform i. These 4 PCs 
explained >95% of the variance for all data sources. Since there are 50 training folds 
of the Saluki model, we train 50 corresponding APA regression models according to 
Eq.  8 and use the mean predicted distal isoform proportion in all evaluations. Saluki 
was downloaded from https://​zenodo.​org/​record/​63264​09. Each 3′ UTR isoform was 
extracted from the GENCODE v19 annotation starting from the last defined stop codon 
of each gene and ended at the median cleavage site of the PAS [85]. A constant 5′ UTR 
and ORF, taken from https://​github.​com/​vagar​wal87/​saluki_​paper, were used for all 3′ 
UTRs. Note that the Saluki inputs were only used for the model named “A2+Saluki” 
in the benchmark of Fig. 1G. The parameters of the softmax regression model were fit 

(7)
logitendogenous = w(proximal) × logitp + w(distal) × logitd + w(distance) × d + w(bias)

(8)ŷd =
exp

(

fd
)

∑10
i=1 1{PAS i exists} ×

[

exp
(

fp,i
)]

fd = w
(score)
d × logitd +

[

4
∑

k=1

w
(saluki)
d,k × salukid,k

]

+ w
(distance)
d × dd + w

(bias)
d

fp,i = w(score)
p × logiti +

[

4
∑

k=1

w
(saluki)
p,k × salukii,k

]

+ w(distance)
p × di + w(bias)

p

https://github.com/kundajelab/tfmodisco
https://zenodo.org/record/6326409
https://github.com/vagarwal87/saluki_paper
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using LM-BFGS. In one of the tests in Fig. 1G, the APARENT2 logits, the Saluki PCs, 
and the PAS log distances were used to fit a single-layer LSTM model with 16 hidden 
units instead of the (linear) softmax regression model. This model was trained in Keras 
with 20-fold cross-validation [81].

In Fig.  6A–D, we used the softmax regression model of Eq.  8 to score the total 
impact of 3′ aQTLs on pA efficiency and isoform stability. We trained the regression 
weights on tissue-pooled measurements from PolyADB V3 and relied on the anno-
tations of this dataset to define the isoforms. The PolyADB annotation was used in 
favor of the APA annotation used to originally define the 3′ aQTLs because the latter 
annotation changes depending on the tissue type and even the specific variant. As it 
is difficult to train the model of Eq. 8 on such a dynamically changing annotation, we 
used the PolyADB annotation as a feasible approximation. However, as these annota-
tion differences sometimes invert the sign of the prediction, we only used the absolute 
value of effect sizes for comparisons. We used isotonic regression in scikit-learn [86] 
to calibrate the predicted effect sizes on held-out SNPs that only occur in other tissue 
types than the tissue we are currently scoring.

Tissue‑specific modeling of native APA

We again used the tissue-specific RNA-seq data from Lianoglou et  al. [42], but we 
now keep track of the total read count c(k)ij  supporting APA isoform i in tissue j of 
gene k. We removed genes with more than 10 APA isoforms. We estimated isoform 
proportions by normalizing the isoform counts by the total count across each gene: 
y
(k)
ij = c

(k)
ij /

∑10
t=1 c

(k)
tj  . We then created separately filtered copies of the data for pairs 

of tissues, where one tissue was HEK293 and the other tissue was either the testis, 
ovary, BLCL, or brain. Genes with less than 10 reads in any tissue were removed from 
each dataset. This resulted in 4453 HEK293–testis genes, 4495 HEK293–ovary genes, 
4366 HEK293–BLCL genes, and 4715 HEK293–brain genes.

Using these data, we trained 4 individual tissue-specific models that learn the dif-
ference in isoform proportion �tissue

HEK293 = yi,tissue − yi,HEK293 between the target tissue 
type and HEK293. The model works as follows: Given the 10 input PAS sequences 
x ∈ {0, 1}10×205×4 of a given gene (with appropriate zero-padding), we execute APAR-
ENT2 on each PAS to obtain baseline cleavage predictions ŷ ∈ [0, 1]10×206 . We com-
pute the baseline isoform logit for PAS i as logiti,base = logit

(

∑205
j=1 ŷij

)

 . We also feed x 

as input to a trainable CNN that predicts tissue-specific scores ŝ ∈ R
10×2 . The CNN 

weights are shared across all 10 PASs. Internally, the tissue-CNN consists of 2 convo-
lutional layers (16 filters, 8 positions wide) and global average pooling. Finally, we lin-
early combine logiti,base , ŝi,tissue and the log distance di between PAS i and the 
proximal-most PAS and apply masked softmax to predict tissue-specific proportions 
ŷi,tissue (Eq. 9):

where

(9)ŷi,tissue =
1{PAS i exists} ×

[

exp
(

fi
)]

∑10
t=1 1{PAS t exists} ×

[

exp
(

ft
)]
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For the first 25 epochs, we froze the tissue-CNN weights and forced ŝi,tissue to be 0. We 
only optimized the PAS-specific regression weights w ∈ R

10×3 from Eq.  9. We mini-
mized the mean (masked) KL divergence between predicted and observed tissue-specific 
isoform proportions across all K genes (Eq. 10). Consequently, the regression weights w 
will learn to combine the baseline APARENT2 scores and the log distances to infer the 
mean isoform proportion across the 2 tissues.

After the weights w converge, we un-froze the tissue-CNN weights and optimized 
w jointly with the CNN-predicted scores ŝi,tissue for 25 additional epochs. We noticed 
that if we keep minimizing the KL divergence loss of Eq. 10, the CNN would disregard 
learning about tissue-specific differences (which is a relatively small source of variation 
for APA) in favor of learning to better predict the mean proportion across both tissues. 
We thus switched to a (masked) margin loss which penalized the model based on the 
observed and predicted tissue-specific differences �tissue

HEK293 =
(

yi,tissue − yi,HEK293

)

 and 
�̂

tissue
HEK293 =

(

ŷi,tissue − ŷi,HEK293

)

 rather than absolute proportions (Eq. 11).

For each tissue-specific model (testis, ovary, BLCL, brain), we learned an ensemble of 10 
independently trained CNNs. We stopped when the validation error on a held-out test 
set of 500 genes started to increase.

Tissue‑specific aQTL effect size prediction

We used the testis-, ovary-, BLCL-, and brain-specific APA models to scale the effect 
size predictions made by APARENT2 on the GTEx aQTLs [20]. We used the linear 
model proposed by Cheng et al. [65] for combining baseline variant predictions with 
a tissue-specific scaling factor. Specifically, the logit of the tissue-specific distal iso-
form usage (PDUI) for the variant sequence is assumed to follow the relationship of 
Eq. 12.

Here, y(ref )PDUI,base corresponds to the mean PDUI measured across all tissues and samples. 
If we set

•	 βvar = �× LOR(ŷ(wt), ŷ(var)) (the baseline APARENT2 variant prediction)
•	 βtissue = γ ×

(

ŝ
(ref)
tissue − ŝ

(ref)
HEK293

)

 (the tissue-specific prediction)

•	 βvar×tissue = γ ×

((

ŝ
(var)
tissue − ŝ

(var)
HEK293

)

−

(

ŝ
(ref)
tissue − ŝ

(ref)
HEK293

))

 (the tissue-specific vari-

ant effect)

fi = w
(score)
i ×

(

logiti,base + ŝi,tissue
)

+ w
(distance)
i × di + w

(bias)
i

(10)KL
[
ŷ||y

]
=

1

K
×

(
K∑

k=1

10∑

i=1

1{PAS i exists} ×

[
yk
i,tissue

× log

(
yk
i,tissue

ŷk
i,tissue

)
+ yk

i,HEK293
× log

(
yk
i,HEK293

ŷk
i,HEK293

)])

(11)L
[
ŷ, y

]
=

1

K
×

(
K∑

k=1

10∑

i=1

1{PAS i exists} ×

[
1{|Δtissue

HEK293
|>0.2} ×max

(
sign(Δtissue

HEK293
) × (Δtissue

HEK293
− Δ̂tissue

HEK293
), 0

)]
)

(12)logit
(

y
(var)
PDUI,tissue

)

= logit
(

y
(ref )
PDUI,base

)

+ βvar + βtissue + βvar×tissue + ǫ
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and rearrange the terms, we get:

Compared to Eq. 6, the difference is that we scale the variant odds ratio e−�×LOR(ŷ(wt),ŷ(var)) 
predicted by APARENT2 with a tissue-specific odds ratio prediction e−γ×

(

ŝ
(var)
tissue−ŝ

(var)
HEK293

)

 . 
Note that there is a free hyper-parameter γ ∈ R that we need to tune on the GTEx aQTL 
data in order to properly scale the score residual 

(

ŝ
(var)
tissue − ŝ

(var)
HEK293

)

 predicted by the tis-

sue model. We used the same value of γ for all tissue types ( γ is chosen so as to maximize 
the median Spearman r against measured 3′ aQTLs for all tissues).

Mask‑based variant interpretation

We adapted our recent work on mask-based interpretation [49] to find the contextual fea-
tures within a sequence that explain the relative fold change between wildtype and variant 
predictions. If the effect of all nucleotides were independent, the solution would simply be 
to return the mutated position itself (and nothing else). But, assuming mutations interfere 
with complex cis-regulatory code, the mask would have to retain a larger set of nucleotides 
(distant motifs, etc.) to reconstruct the variant effect. This is different from our earlier work, 
which focused on finding salient features that explain the absolute prediction of individual 
sequences. We found that per-example attribution worked stably for this task, so for sim-
plicity, we settled on optimizing individual masks rather than training a parametric ad-hoc 
interpreter and fine-tuning its scores.

Let s ∈ (0,+∞]N be the scores (the “mask”) that we will optimize specifically for the 
wildtype and variant sequences x(wt) and x(var) of length N. We first set su = +∞ and 
freeze this score, where u is the position of the mutation. Next, we channel-broadcast s into 
ṡ ∈ (0,+∞]N×4 (same shape as x(wt)):

We then use ṡ as interpolation coefficients between the original wildtype pattern x(wt) 
and a reference pattern b̃(x(wt)) , which is taken here as a Laplace-smoothed copy of the 
wildtype pattern; b̃(x(wt))ij =

(

x
(wt)
ij + 1

)

/5:

Here, σ denotes position-wise softmax, i.e.,  x̂(wt)s  is a softmax-relaxed position-specific 
scoring matrix (PSSM) whose entropy is controlled by s . Next, we sample a discrete one-
hot coded pattern x(wt)s  from x̂(wt)s  using the Gumbel distribution [87]:

The next step is to construct a similar sample x(var)s  of the variant pattern, whose infor-
mation content has been masked and only the salient features marked by s are conserved. 
While we could theoretically re-apply Eqs.  15-16 to x(var)s  the same way we obtained 

(13)
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(14)ṡij = si (1 ≤ i ≤ N , 1 ≤ j ≤ 4)

(15)x̂(wt)s = σ

(

log b̃(x(wt))+ x(wt) × ṡ
)

(16)x(wt)s = {C
(wt)
i }Ni=1, C

(wt)
i ∼ Gumbel(x̂

(wt)
si1 , ..., x̂

(wt)
siM )
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x
(wt)
s  , that approach does not work well in practice. The reason is that if the wildtype and 

variant PSSMs x̂(wt)s  and x̂(var)s  have high entropy (which they are optimized for), then 
drawing independent samples from each PSSM will result in patterns with very different 
sequence content (except for the small set of features retained by s ). Consequently, the 
variance in the resulting predictions will be unnecessarily high. Instead, we directly con-
struct the mutated sample x(var)s  from the wildtype sample x(wt)s  by “erasing” the wildtype 
nucleotide and adding the mutation:

Both samples x(var)s  and x(wt)s  now have the same randomized (masked) background 
content and the same feature set retained by s . Finally, we optimize the cost defined in 
Eq. 18, which minimizes the mean squared error between the original and scrambled log 
odds ratio-predictions while maximizing entropy.

Here, �s = LOR
(

P(x
(wt)
s ),P(x

(var)
s )

)

 and � = LOR
(

P(x(wt)),P(x(var))
)

 , where P(x) is 

the proximal isoform proportion predicted by APARENT2 ( P(x) =
∑127

j=77 yj(x) for pre-
dicted cleavage y(x) ). See Eq. 5 for a definition of LOR. Note that we do not optimize s 
directly; instead, we optimize parameters w ∈ R

N , which are instance-normalized and 
softplus-transformed into s ( s = Softplus(IN(w)) ). In our experiments, we optimize w 
for 300 iterations of gradient descent (Adam, learning rate = 0.01 ). We noticed more sta-
ble performance if we first optimize the mask s for a small target KL divergence tbits 
(Eq. 19) for the first few gradient updates before maximizing the entropy unbounded.

ASD cohort data filtering procedure

The autism spectrum disorder (ASD) WGS data from An et al. [51] was filtered by differ-
ent criteria in some of the figures. In Additional file 1: Fig. S7C (left), we remove variants 
(in cases and controls) that occur in a PAS which shares common variants in gnomAD 
(AF >0.01% ) with strictly larger effect sizes or with >1.5-fold effect sizes. In Additional 
file 1: Fig. S7C (right), we apply more stringent filtering (1.25-fold effect size cutoff) and 
we also remove variants that occur in PASs with a downstream neighboring PAS within 
200nt in PolyADB v3. In main Fig. 7G, we re-processed the gnomAD data by binning 
SNVs in the same PAS by their effect size (5 bins) and recomputed their (joint) allele fre-
quency by aggregating allele counts in each bin. This allows for a group of rare variants 
(in the same PAS) to take the role of one common variant if their effect sizes are com-
parable. The same filtering procedure was used for the cohort data from Yuen et al. [78] 
(Additional file 1: Fig. S7D), but the gnomAD AF cutoff was raised to 0.1% due to the 
smaller sample size. For both datasets, whenever a variant overlaps multiple PASs, we 

(17)x(var)s = x(wt)s +
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assign the mutation to the PAS with largest predicted effect size (we tested other assign-
ment strategies in Additional file 1: Fig. S7E).

MPRA validation of selected variants

A total of 76 predicted outlier variants from the filtered autism data were chosen for 
experimental validation (38 case variants and 38 matched controls from Additional file 1: 
Fig. S7C). Additionally, we tested 9 GWAS SNPs, 3 hand-picked examples from the F2, 
SCAF8, and MECP2 genes, 2 apaQTLs, 4 matched control SNPs from gnomAD, and 6 
control PASs that had previously been measured in the MPRA of Bogard et al. [36].

Cloning

For the variant and reference libraries, a vector was constructed by cloning two separate 
250-nt oligo pool libraries (Twist) 25nt upstream of the bGH pA signal in an mCherry 
reporter plasmid. All libraries contained homology to the vector and were constructed 
using In-Fusion assembly (Takara). Library sizes were estimated by plating serial dilu-
tions of library transformation and extrapolating plasmid coverage based on colony 
counts. The remaining transformants were grown in 100-mL LB overnight culture and 
libraries were prepared using a HiSpeed Plasmid Midi Kit (Qiagen). Selected individual 
clones from each library were Sanger sequenced to confirm library assembly. Library 
sequences and primers are listed in Additional file 2: Table S1.

Cell culture and transfection

HEK 293T cells (ATCC, CRL-3216) were cultured in Dulbecco’s modified Eagle 
medium (Gibco), SK-N-SH cells (ATCC HTB-11) were cultured in MEM (Gibco), and 
HCM3 cells (ATCC, CRL-3304) were cultured in EMEM (ATCC), all supplemented 
with 10% fetal bovine serum (Cytiva) and 1% penicillin/streptomycin (Gibco). For 
transfections, 300,000 (HEK293T) or 500,000 (SK-N-SH, HMC3) cells were plated 
(2mL) in tissue culture-treated 6-well plates (Fisher Scientific) 24 h prior such that 
they would be 50–70% confluent on the day of transfection. Variant and reference 
libraries were transfected into cells using Lipofectamine 3000 (Thermo Fisher) with 2 
biological replicates for each library. Media were changed 5 h post-transfection.

RNA extraction

Cells were harvested for RNA extraction 36–48 h after transfection. Cells were detached 
by incubating 2–5 min at room temperature with 1mL of TrypLE (Gibco). Once cells 
were detached, they were added to 3mL of media with 10% FBS. Cells were rinsed 
twice with 1x PBS (Gibco). One to 5% of the cells were used for flow cytometry to con-
firm transfection efficiency and the remaining cells were lysed and passed through a 
QIAshredder (Qiagen) to homogenize cell lysates. Total RNA was extracted from lysates 
using the RNeasy kit (Qiagen) with additional on column DNaseI digestion performed 
following the manufacturer’s protocol. mRNA was isolated using the NEBNext Poly(A) 
mRNA Magnetic Isolation Module (NEB) with 5 µ g of total RNA input per sample.
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Sequencing library construction

The resulting mRNAs were reverse transcribed with SuperScript IV Reverse Tran-
scriptase (Thermo Fisher) to generate cDNA. Polyadenylated mRNA was reverse 
transcribed with an anchored polyT primer containing Illumina adaptor sequences, 
a unique molecular identifier(UMI), and unique index sequences for each sample 
(P7-index-PE2-UMI-T18VN). RNA hydrolysis was performed on cDNA and sam-
ples were purified using DNA Clean & Concentrator-5 (Zymo). Library cDNA was 
then amplified with KAPA HiFi HotStart ReadyMix (Roche) using a library-spe-
cific forward primer containing additional Illumina adaptor sequences (P5-PE1) 
and reverse primer matching the adaptor sequence added during RT. Amplifica-
tion was conducted and monitored with qPCR and stopped early to minimize PCR 
biases. Samples were size selected to keep fragments ≥ 100nt using KAPA Pure 
Beads (Roche). Sample size distributions were analyzed using Tapestation High 
Sensitivity D1000 (Agilent).

Library sequencing

Library concentrations were quantified using qPCR quantification with the NEBNext 
Library Quant Kit for Illumina (NEB) as well as Qubit 1x dsDNA HS (Thermo Fisher). 
Concentrations between the two methods were averaged to determine optimal library 
loading concentrations for sequencing. Libraries were pooled with 10% PhiX and 
sequenced on MiSeq (Illumina) with a MiSeq Reagent Nano or Micro v2 (300 cycles) 
kit. Paired-end sequencing was performed with read 1 (292 nt) covering the library 
sequences, read 2 (8 nt) covering the UMIs, and the index read (6 nt) for demultiplexing 
pooled samples.

Barcoding and mapping

The open-source adaptor trimming software package cutadapt v1.15 was used to trim 
adapters off read 1. Read 1 was then aligned and mapped to the known respective library 
sequences. The sequence upstream of the proximal PAS CSE was used to map cleaved 
mRNA back to the full UTR sequence (allowing for ≤ 2 substitution errors). Reads were 
searched 5′ to 3′ across for the site of polyadenylation as sequencing reads were long 
enough to precisely locate cut sites for all proximal isoforms. The site of polyadenylation 
was identified by searching for a consecutive run of 20 A’s (allowing for ≤ 2 substitution 
errors). A read was considered distally cleaved if no polyadenylation site was found in read 
1. Mapped reads were collapsed over UMIs in read 2. The final counts were pooled across 
the 2 replicates.
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