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Background
DNA methylation (DNAm) at CpG dinucleotides is an epigenetic mark extensively mod-
ulated in health and disease. To date, DNAm has primarily been investigated in bulk 
samples, which hinders the study of rare cell types, differentiation processes, and cel-
lular heterogeneity. Single-cell DNAm (scDNAm) methods can overcome these limita-
tions but currently require prohibitive sequencing efforts to cover the 28 million CpGs 
in the human genome. Available techniques with a cellular throughput of more than 100 
cells produce sparse datasets, where only 1–7% of the investigated CpGs are randomly 
covered in a single cell [1–6]. Notably, recent progress in scDNAm methods substan-
tially increased the number of CpGs to up to 30% [7], but the methods still require pro-
hibitive sequencing effort to reduce the dropout rate. Most CpGs in the genome are not 
informative to assess at single-cell level, as they are either constitutively (un)methylated 
or display no variable methylation within the tissue of interest [8]. For instance, less than 
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4% of CpGs show a DNAm difference of more than 50% across the differentiation pro-
cess of human B and T cells [9, 10] (Additional file 1: Fig. S1). Bulk DNAm data is avail-
able for most human tissues and cell types [11] and can be used to identify CpGs with 
variable methylation [12]. Additionally, single-cell, genome-wide reference DNAm maps 
are emerging and serve as a rich resource for identifying variably methylated CpGs [13]. 
However, generating these maps are multimillion-dollar efforts that need to be comple-
mented by cheaper methods accessible to individual investigators and for future clinical 
applications. Targeted approaches that focus sequencing on variable CpGs can efficiently 
dissect intra-tissue DNAm heterogeneity, and complement single-cell genome-wide 
methods. In most human tissues and cell types, targeted methods can capture a large 
fraction of the variation observed in whole genome data (Additional file 1: Fig. S1), but 
have so far been limited to a throughput of less than 100 cells per experiment, and less 
than 60 investigated CpGs per cell [14–16]. To fill the existing gap of high-throughput, 
targeted scDNAm methods, we developed scTAM-seq, a targeted bisulfite-free method 
for profiling up to 650 CpGs in up to 10,000 cells.

Results
scTAM‑seq profiles the methylation states of up to 650 CpGs using Mission Bio’s Tapestri 

platform

We have developed scTAM-seq (single-cell Targeted Analysis of the Methylome) for 
measuring DNAm states at single-cell resolution in a high-throughput manner. To 
achieve this, we have combined an optimized single-cell PCR in droplet-based technol-
ogy (Mission Bio Tapestri platform [17]) with the digestion of genomic DNA using a 
DNAm-sensitive endonuclease. Among five candidate enzymes, we identified HhaI and 
SsiI as fully active in the Tapestri Barcoding Mix buffer (see “Methods”) and used HhaI in 
the following experiments. This enzyme selectively digests unmethylated “GCGC” rec-
ognition sites, while leaving methylated sites intact. Hence, upon digestion of genomic 
DNA in barcoded single-cell droplets, amplicons containing targeted CpGs can only be 
amplified from methylated recognition sites (Fig.  1a). Based on the throughput of the 
Tapestri platform, scTAM-seq enables the analysis of 650 CpGs in up to 10,000 cells and 
can be combined with single-cell readouts of surface-protein expression [18, 19].

For a pilot study, we designed a panel of primers (Additional file 2: Table S1) to amplify 
424 amplicons containing CpGs with dynamic DNAm during B-cell differentiation. 
These include CpGs differentially methylated across hematopoietic stem and progeni-
tor cells (HSCs), pre-B cells, immature B cells, naive B cells, and memory B cells [10]. As 
controls, we designed amplicons without HhaI recognition sites (non-HhaI), amplicons 
covering CpGs that are either constitutively methylated or unmethylated across B-cell 
differentiation, and amplicons interrogating CpGs within imprinting control regions. 
We applied scTAM-seq to B cells isolated from either bone marrow or peripheral blood, 
while simultaneously profiling the expression of 46 cell-surface proteins by staining cells 
with oligonucleotide-tagged antibodies [18, 19]. For both samples, we generated data 
from two experimental conditions, one digested by HhaI and one undigested sample. 
Using the per-cell performance of the non-HhaI control amplicons as a quality filter, 
we obtained data for 4706–9583 cells per experiment (“Methods” and Additional file 3: 
Table S2).
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scTAM‑seq exhibits low false‑positive and false‑negative rates

To assess the false-negative rate (FNR) and false-positive rate (FPR) of scTAM-seq, we 
compared the performance of the digested and undigested samples for the bone mar-
row (Fig.  1b) and blood (Additional file  1: Fig. S2a) samples. Non-HhaI and constitu-
tively methylated amplicons exhibited similar fractions of cells with mapped reads in 
the undigested and digested samples (e.g., r = 0.98, constitutively methylated ampli-
cons from bone marrow samples), showing an amplicon-dependent dropout rate that is 
virtually identical in the digested and undigested sample (Fig. 1b, Additional file 1: Fig. 
S2a). Amplicons containing constitutively unmethylated CpGs in B cells only displayed 
reads in the undigested sample. From these amplicons, we inferred a median FPR (i.e., 
the number of cells with reads for a given constitutively unmethylated amplicon in the 
digested sample) of less than 0.2% (Fig. 1c), demonstrating high digestion efficacy.

Most of the amplicons targeting B-cell differentiation CpGs showed a lower fraction 
of cells with reads in the digested sample, indicating selective digestion of unmethyl-
ated CpGs (Fig. 1b). For these amplicons, we leveraged the undigested control sample to 

Fig. 1  ScTAM-seq identifies cellular subtypes in B cells from peripheral blood. a Overview of the scTAM-seq 
workflow. b Per amplicon comparison of fraction of cells with at least one sequencing read in the 
undigested and digested bone marrow sample. c False-negative rate (estimated on B-cell differentiation 
amplicons, n=424, undigested bone marrow control) and false-positive rate (estimated on the constitutively 
unmethylated amplicons, n=32, digested bone marrow sample) across all amplicons of the respective class. 
d Heatmap (binary distance, Ward’s method) of binarized, single-cell DNAm values of 9583 cells across 313 
high-performance amplicons in the peripheral blood sample. e Comparison of pseudo-bulk and bulk DNAm 
for the 424 B-cell differentiation-related amplicons. r: Pearson’s correlation coefficient. The colors correspond 
to the DNAm clusters in d 
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calculate the FNR, defined as the number of cells without a sequencing read for a given 
B-cell differentiation amplicon in the undigested sample. The median FNR was 6.7% for 
the undigested bone marrow sample and 16.3% for the undigested blood sample, at the 
level of single cells and single CpGs (Fig. 1c, Additional file 1: Fig. S2b). The larger FNR 
of the undigested blood sample can be attributed to lower sequencing depth (Additional 
file 3: Table S2) and an altered distribution of reads per amplicon compared to the undi-
gested bone marrow sample (Additional file 1: Fig. S3).

Finally, considering the non-HhaI and the constitutively methylated amplicons, we 
observed the highest correlation of both digested samples with the undigested bone 
marrow sample (Additional file 1: Fig. S4), and exclusively used this sample as control in 
the following analyses. We note that FNR is influenced by the sequencing depth (“Meth-
ods” and Additional file 3: Table S2) and GC content of the amplicon (Additional file 1: 
Fig. S5). As the FNR can be calculated from the undigested control sample, it can be 
accounted for when computing pseudo-bulk methylation values in the digested sample 
(see “Methods”).

DNAm is dynamic across single cells in peripheral blood

To evaluate the ability of scTAM-seq to resolve cell populations, we first analyzed B 
cells from the peripheral blood sample. Unsupervised clustering of the CpGs covered 
by high-confidence amplicons (FNR < 0.25) identified three clusters. We used reference 
bulk DNAm data to identify these clusters as naive, non-switched (ns-) memory, and 
class-switched (cs-) memory B cells (Fig.  1d). Surface-protein expression data further 
validated these cluster assignments and were in line with single-cell CITE-seq data [20] 
(Additional file 1: Fig. S6 and Fig. S7). We next computed pseudobulk DNAm values per 
cell-type cluster for all 424 CpGs included in the assay while accounting for the FNR per 
amplicon (“Methods”). We found a strong correlation between pseudobulk and refer-
ence bulk data [10, 21] for each pairwise comparison (r ≥ 0.88, Fig. 1e, Additional file 1: 
Fig. S8), confirming the high accuracy of scTAM-seq.

To assess if scTAM-seq can resolve intra-population heterogeneity, we further per-
formed a focused analysis of the 4100 ns-memory B cells. We identified substantial het-
erogeneity within this population at the DNAm level, which was linked to differences 
in the expression of CD27 and CD11c cell-surface proteins (Fig.  2a–d). The gradual 
gain of CD27 appeared to be associated with gradual progression of cellular differen-
tiation, with CD27-negative ns-memory B cells representing early, atypical memory B 
cells that are present at the highest frequencies at birth [22, 23]. Furthermore, linking 
the different DNAm patterns within the ns-memory B cell cluster to chromatin states 
[24] showed that one CpG cluster that loses methylation along differentiation pseudo-
time (CpG cluster 1) is enriched for heterochromatin (Fisher’s test p-value: 2.28×10−9), 
while gain of methylation (CpG cluster 5) occurs more frequently in polycomb-associ-
ated poised promoters (Fisher’s test p-value: 2.7×10−4) (Fig.  2e). These patterns have 
previously been linked to proliferative history [25], showing that scTAM-seq can capture 
the gradual increase in proliferative history upon cellular differentiation. Additionally, 
subsets of memory B cells expressing CD11c have previously been described as more 
prone towards differentiation into plasma cells and are enriched in autoimmune diseases 
[26, 27]. Overall, our results show the potential of our method to resolve cell types to an 
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unprecedented resolution, characterizing subpopulations masked until now within bulk 
DNAm data, and linking them to other mechanisms such as gradual differentiation and 
proliferative history.

Surface‑protein expression data can be leveraged for integration of high‑throughput 

scDNAm data with proteo‑transcriptomic atlases

We next investigated the potential of scTAM-seq to profile DNAm dynamics during 
B-cell differentiation in bone marrow. Dimensionality reduction and clustering using 
scDNAm data revealed five groups of cells arranged in a putative B-cell differentiation 
pseudotime trajectory [28]. We labelled the clusters as hematopoietic stem and pro-
genitor cells (HSCs), pro/pre-B cells (pre-B cells), immature B cells, naive B cells, and 

Fig. 2  scTAM-seq identifies cellular states associated with proliferation. a Heatmap showing the binarized, 
single-cell DNAm matrix for 4100 ns-memory B cells in the 313 high-performance amplicons. Five clusters 
of ns-memory B cells and six CpG clusters were defined based on a hierarchical clustering (binary distance, 
Ward’s method). b Low-dimensional representation of the binarized data matrix for all cells (naive, cs- and 
ns-memory B cells) using UMAP. The pseudotime was inferred with Monocle3. c Surface-protein expression 
within the UMAP-space. The surface-protein expression data was binarized using a cutoff of 1 for the 
CLR-normalized counts. d Surface-protein expression for the different clusters (ordered by increasing 
pseudotime) identified in a as barplots. Shown is the mean and two times the standard error within each 
of the clusters. e Average DNAm value per CpG- and cell cluster were estimated by computing the fraction 
of all methylated amplicons in a given CpG and cell cluster. The error bar indicates two times the standard 
error across all cells of a cell cluster. The pie chart indicates the genomic distribution of the CpGs within each 
CpG cluster according to chromatin states of naive, germinal center, ns-, and cs-memory B cells defined in 
Beekman et al.
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memory B cells based on pseudotime and reference bulk DNAm patterns (Fig.  3a–c, 
Additional file  1: Fig. S9-S11). Notably, naive, cs-, and ns-memory B cells were repre-
sented both in the bone marrow and the blood samples and highlighted a high corre-
lation between pseudo-bulks of biological replicates analyzed with scTAM-seq (all 
correlations r> 0.92, Additional file 1: Fig. S12).

To identify cell types in an automated manner without making use of bulk DNAm lev-
els, we transferred labels from a single-cell CITE-seq reference [20], using the surface-
protein expression data captured by scTAM-seq (Fig. 3d). These annotations, as well as 
the expression of cluster-specific cell-surface proteins (Fig. 3e), confirmed the order of 
B-cell differentiation stages by pseudotime analysis. Next, we demonstrated that the sur-
face-protein expression data can be used to integrate scDNAm and scRNA-seq data into 
a common reference space (Additional file 1: Fig. S13). This allowed us to identify CpGs 
anti-correlated and correlated with gene expression throughout the differentiation tra-
jectory, as exemplified for CXCR5 (negative correlation, CpG located in gene promoter) 
and SMARCA4 (positive correlation, CpG located in intronic region, Fig. 3f,g). Together, 
these analyses demonstrate the abilities of scTAM-seq to dissect DNAm heterogeneity 
of complex cellular populations.

Fig. 3  scTAM-seq captures the B-cell differentiation process in bone marrow. a Heatmap of single-cell 
DNAm values for 5340 cells and 313 amplicons in the digested bone marrow sample. b–d Visualization of 
DNAm data in low-dimensional space (UMAP), with labels inferred from bulk DNAm (b), across differentiation 
pseudotime (inferred with Monocle3, c), or with labels transferred from CITE-seq data (d). e Visualization of 
surface-protein expression for cells embedded in the DNAm UMAP. The value shows the CLR-normalized 
expression values (see “Methods”). f, g Relationship between DNAm and log-normalized gene expression 
across B-cell differentiation showing a positive (f, CXCR5, CpG located in promoter region) and negative 
correlation (g, SMARCA4, CpG located in intronic region), respectively
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Discussion
We present scTAM-seq as a targeted, cost-effective, scDNAm method with an FPR 
of less than 0.2% and an FNR as low as 7%, depending on the amplicon GC content 
and sequencing depth. In silico simulations show that the FPR and FNR of scTAM-
seq estimated from the digested and undigested bone marrow and blood samples are 
suited to reliably cluster cells and to estimate pseudo-bulk DNAm values (Additional 
file 1: Fig. S14). As scTAM-seq is a targeted method, only up to 650 CpGs of the 28 
million CpGs in the human genome can be analyzed. This might lead to a decreased 
ability for de novo cell-type discovery in comparison to large-scale projects employing 
genome-wide scDNAm methods [29]. On the other hand, genome-wide approaches 
for scDNAm profiling suffer from limited cellular throughput and high data sparsity. 
Targeted methods thus serve as complementary approaches to genome-wide (single-
cell) DNAm profiling methods, since the reduction in data sparsity allows for a more 
detailed analysis of selected CpGs in a large number of cells, rather than having to bin 
single-cell methylation states across genomic windows. Additionally, for most tissues 
and cell types, bulk DNAm data is readily available, revealing that only few CpGs are 
variable across cell differentiation (Additional file  1: Fig. S1). Thus, targeting only a 
few, highly variable CpGs is promising to reveal DNAm heterogeneity across cellular 
differentiation at unprecedented accuracy. Of note, the Mission Bio Tapestri platform 
has recently been extended to cover 1000 amplicons, which increases the coverage of 
scTAM-seq even further. The selection of potentially interesting CpGs for scTAM-
seq is facilitated by tools for the identification of variably methylated sites from bulk 
DNAm data [12]. We created a pipeline automating the selection of such target sites 
for scTAM-seq, which is available at https://​github.​com/​velte​nlab/​CpGSe​lecti​onPip​
eline [30]. Of note, the use of HhaI limits the number of analyzable CpGs to 1.76 mil-
lion in the human genome, but further sites can be analyzed using other enzymes 
such as SsiI (Additional file 4: Table S3).

Since scTAM-seq exhibits a low FNR and FPR, we envision that it can also be used 
to further investigate imprinted regions, as well as other regions harbouring allele- and 
strand-specific methylation (Additional file 1: Fig. S15). Ultimately, scDNAm values can 
help to discern cellular heterogeneity from allele-specific methylation, which in bulk 
data can only be achieved in special situations where SNPs are located on the same 
sequencing read. Conversely, allele- and strand-specific methylation might lead to an 
overestimation of pseudo-bulk DNAm values by scTAM-seq.

Of note, the Mission Bio Tapestri platform was originally developed for profiling 
somatic mutations in cancer at single-cell resolution [18]. This ability can readily be inte-
grated into scTAM-seq. Sites of potential somatic mutations can regularly be included 
into the amplicon panel design and thus profiled together with the cell-type-specific 
DNAm state (as long as there is no HhaI cut site in the amplicon). Thereby, scTAM-
seq has the potential to uncover clonal and sub-clonal development of tumors from the 
combined angle of somatic mutation, DNAm, and cell-surface proteins. Furthermore, it 
allows us to characterize surface-protein phenotypes of cells defined by specific DNAm 
patterns and to develop FACS schemes for purifying these newly identified cellular 
identities [20]. To guide cell-type annotation, the surface-protein expression data can 
be used for integration with proteo-transcriptomic atlases, as exemplified for the bone 

https://github.com/veltenlab/CpGSelectionPipeline
https://github.com/veltenlab/CpGSelectionPipeline
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marrow sample. Finally, in addition to human panels, murine DNAm dynamics can also 
be profiled.

Conclusions
In summary, scTAM-seq is a powerful method for investigating DNAm dynamics at sin-
gle-cell and single-nucleotide resolution. Due to its targeted nature, it focuses sequenc-
ing coverage on CpGs with variable methylation states in a cell population of interest, 
achieving a false-positive rate of less than 0.2% combined with a false-negative rate as 
low as 7%. Therefore, scTAM-seq alleviates data sparsity in comparison to genome-wide 
methods and thus enables high-throughput cell-to-cell comparisons at the level of single 
CpGs.

Methods
Amplicon panel design

Enzyme selection

Using the REBASE database (http://​rebase.​neb.​com/​rebase/​rebase.​html [31]), 60 
DNAm-sensitive endonucleases, targeting 33 restriction sites and fulfilling the follow-
ing criteria, were selected: (i) digestion activity is completely blocked by DNAm (5mC), 
(ii) enzyme is sensitive to heat inactivation, (iii) recognition site does not contain Ns 
(representing any nucleotide), (iv) recognition site harbors a single CpG, (v) enzyme is 
commercially available. The complete selection of DNAm-sensitive endonucleases is 
available in Additional file 4: Table S3. Next, we chose four enzymes to test in the Tapes-
tri Barcoding Mix buffer: AciI (NEB, recognition site CCGC), HpaII (NEB, recognition 
site CCGG), HpyCH4IV (NEB, recognition site ACGT), and HhaI (NEB, recognition site 
GCGC), with 3.7 M, 2.3 M, 2.2 M, and 1.3 M recognition sites in the human genome 
(hg38), respectively. To comply with criterium (iv), sequence contexts in which two 
CpGs occur, e.g., CCGCG for AciI and, CGCGC or GCGCG for HhaI, are not included 
within this list; but without this consideration, there are 4.2 M AciI, and 1.76 M HhaI 
recognition sites in the human genome. These numbers were calculated using Biostrings 
v2.56.0, R package (https://​bioco​nduct​or.​org/​packa​ges/​Biost​rings).

The activity of these four enzymes was tested as follows. PCR products were generated 
from genomic DNA of Jurkat cells using the primers: 5′-TTC​CAC​GTT​TTT​CTT​TCA​
TGC-3′ and 5′-GCA​GTC​GTT​GGT​TGG​AAA​CT-3′for AciI, 5′-CCC​AGG​CGT​TTG​
TTA​AAG​AG-3′and 5′-GCA​TGA​AAG​AAA​AAC​GTG​GAA-3′ for HpaII, 5′-TGG​CTG​
TAG​CCA​GTT​CTC​AA-3′ and 5′-AAG​GAC​ACG​CCT​CTC​ACA​CT-3′ for HpyCH4IV, 
5′-GGG​GAT​CAA​TCA​CCA​TAT​GAA-3′and 5′-TGG​CTG​ATG​GGA​TCA​ACA​AT-3′ for 
HhaI, followed by digestion of the respective amplicons for 30 min at 37°C in the stand-
ard buffer provided by the company, or the Tapestri Barcoding Mix buffer. HpaII and 
HpyCH4IV showed only partial digestion in the Tapestri Barcoding Mix buffer. On the 
contrary, HhaI showed the same ability to digest unmethylated PCR products in both 
buffers (data not shown) and was chosen for the follow-up scTAM-seq design. AciI 
did not show complete digestion in the Tapestri Barcoding Mix buffer, but its isoschi-
zomer SsiI (Thermo Fisher) showed almost complete digestion, comparable with the 
standard buffer (data not shown), representing an alternative enzyme compatible with 
scTAM-seq.

http://rebase.neb.com/rebase/rebase.html
https://bioconductor.org/packages/Biostrings
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Target region selection

Target regions were selected fulfilling the following criteria: (i) containing one HhaI rec-
ognition site in a 300-bp window (except for non-HhaI amplicons, which do not contain 
any recognition site), (ii) GC content between 45 and 65%. The first criterion reduces the 
number of CpGs that can be analyzed by SsiI (scTAM-seq compatible) and HhaI to 1.6M 
and 0.8M, respectively. Bulk DNAm data of B-cell subpopulations (stem and progenitor 
cells, pre-BI and pre-BII cells, immature, naive, non-class-switched and class-switched 
memory, plasmablasts, and plasma cells) obtained by 450K array analysis (Illumina) 
were mined from Kulis et  al. [10]. Using this data, we identified 1753 CpGs showing 
dynamic DNAm during B-cell differentiation that can be digested by HhaI and fulfill the 
criteria above. Next, to select around 450 CpGs with the highest predictive value for the 
B-cell populations of interest, scDNAm datasets were simulated using the bulk DNAm 
values of the 1753 CpGs (considering an allelic FNR of 0.2 and an allelic FPR of 0.1). This 
data was employed to run a regularized linear model (glmnet R package [32], param-
eters: λ = e−4, α = 0.9), leading to the selection of a panel of 428 CpGs. Furthermore, 
to improve the limited separation between early B-cell subpopulations, 32 CpGs show-
ing differential methylation among these populations (pairwise comparisons, FDR <0.05, 
minimum DNAm difference 0.25) were added to the panel, yielding a final selection of 
451 CpGs. As controls, we selected 50 constitutively unmethylated CpGs within an HhaI 
recognition site (top 50 CpGs with lowest DNAm levels in B cells, bulk DNAm <0.06 in 
all samples) and 30 constitutively methylated CpGs within an HhaI recognition site (top 
30 CpGs with highest methylation levels in B cells, bulk DNA methylation >0.94 in all 
samples), as well as 96 amplicons without HhaI recognition sites. Moreover, we lever-
aged imprinting control region data from Court et al. [33] to select 13 CpGs showing 
intermediate methylation across B-cell differentiation.

Amplicon design

Using the Tapestri Designer tool (https://​suppo​rt.​missi​onbio.​com/​hc/​en-​us/​artic​les/​
44043​29631​895-​Tapes​tri-​Desig​ner-​User-​Guide), amplicons were designed spanning our 
CpGs of interest. Some regions yielded no amplicons, leading to a final panel covering 
424 B-cell differentiation-related CpGs, 21 constitutively methylated CpGs, 32 consti-
tutively unmethylated CpGs, 12 CpGs within imprinting control regions, and 87 non-
HhaI regions. A complete overview of the panel design can be found in Additional file 2: 
Table S1.

Recommendations for panel design

Since amplicon performance is related to GC content, we recommend excluding ampli-
cons with a GC content above 0.65 (Additional file 1: Fig. S5). Non-HhaI amplicons are 
essential to distinguish between cells and empty droplets after sequencing, we recom-
mend including at least 50 amplicons of this type in the design. To aid the inclusion of 
these control regions in other panels, we provide the exact locations of the high-con-
fidence non-HhaI amplicons used for cell selection in our study in Additional file  5: 
Table S4.

https://support.missionbio.com/hc/en-us/articles/4404329631895-Tapestri-Designer-User-Guide
https://support.missionbio.com/hc/en-us/articles/4404329631895-Tapestri-Designer-User-Guide
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Sample preparation

Sample description

Peripheral blood samples were obtained from two healthy donors (female age 57, 
male age 49) from the Banc de Sang I Teixits (Catalunya, Spain). Frozen bone marrow 
mononuclear cells were purchased from StemExpress® (Folsom, CA, USA, Cat. num. 
BMMNC050C; Lot. 2106150113) and correspond to a 22-year-old healthy male donor.

Isolation of B‑cell subpopulations from peripheral blood

Briefly, peripheral blood was collected and stored at room temperature (15–25°C). 
Within 24 h after sample collection, B-cell subpopulations were isolated using the Roset-
teSeqTM Human B Cell Enrichment Cocktail (StemCellTM Technologies; Cat. num. 
15024) followed by a Ficoll®-Paque Premium (Gmbh; Cat. num. 17-5442-02) density 
gradient centrifugation. B-cell subpopulations were cryopreserved in heat-inactivated 
fetal bovine serum (GibcoTM; Cat. num. 10270106) supplemented with 10% DMSO, 
until the day of the experiment.

Flow cytometry cell sorting

B-cell subpopulations from PBMCs were stained with the monoclonal antibody anti-
CD19(PE) (Clone HIB19; Invitrogen; Cat. num. 12-0199-41) in a 1:20 dilution for 30 
min on ice. Bone marrow mononuclear cells were stained for 30 min on ice with the 
following antibodies: anti-CD19(APC/Cy7) (clone HIB19; Biolegend; Cat. num. 302217) 
in a 1:20 dilution, anti-CD38(APC) (clone HIT2; eBioscience; Cat. num. 17-0389-42) in 
a 1:30 dilution, anti-CD123(PE) (clone 763; BD; Cat. num. 561058) in a 1:50 dilution, 
anti-CD10(PE/Cy7) (clone Hi10a; Biolegend; Cat. num. 312213) in a dilution 1:20, and 
anti-CD34(AF488) (clone 581; Biolegend; Cat. num. 343517) in a dilution 1:100. All 
samples were sorted using the BD Influx and FACSAria II SORP cell sorters. A purity 
of 90–95% CD19+ cells was obtained after sorting PBMC samples. The bone marrow 
sample was sorted for the following subpopulations: (S1) CD34+/CD38-, (S2) CD38+/
CD34+/CD10+/CD123- and (S3) CD19+/CD34-, resulting in 9.25% of S1, 6.5% of S2 
and 84.25% of S3 when considering the total number of sorted cells. These subpopula-
tions were mixed in a ratio of 10% of S1, 22.9% of S2, and 67.1% of S3 for a total of 1 M 
cells.

Oligo‑tagged antibody cell staining

Following sorting, cells were stained with oligo-tagged antibodies following the instruc-
tion in the Tapestri® Single-Cell DNA + Protein Sequencing User Guide V2 (Tapestri 
User Guide V2, https://​suppo​rt.​missi​onbio.​com/​hc/​en-​us/​artic​les/​36006​24064​93-​Tapes​
tri-​Single-​cell-​DNA-​Prote​in-​Seque​ncing-​V2-​User-​Guide). Briefly, 1 M cells were stained 
with TotalSeq-D Heme Oncology Cocktail (BioLegend; Cat. num. 399906) reconstituted 
in 59 μl of Cell Staining buffer (BioLegend; Cat. num. 420201), and adding 1 μl of Total-
Seq-D0154 anti-CD27 antibody (clone O323, BioLegend; Cat. num. 302861) for 30 min 
on ice.

https://support.missionbio.com/hc/en-us/articles/360062406493-Tapestri-Single-cell-DNA-Protein-Sequencing-V2-User-Guide
https://support.missionbio.com/hc/en-us/articles/360062406493-Tapestri-Single-cell-DNA-Protein-Sequencing-V2-User-Guide
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scTAM‑seq and surface protein library preparation and sequencing

Sample processing using the Tapestri instrument

A total of 120,000–140,000 cells were loaded into a Tapestri microfluidics cartridge. 
Upon encapsulation, cells were lysed. To obtain the digested samples, the DNAm-
sensitive endonuclease was added to the barcoding master mix as follows: 288 μl of 
Tapestri Barcoding Mix V2, 5 μl of highly concentrated HhaI enzyme (150,000 U/mL, 
NEB; Cat. Num. R0139B-HC1), while keeping the remaining reagents as stated in the 
Tapestri protocol (5 μl Forward Primer Pool, 2 μl Antibody Tag Primer). To ensure 
the activity of the DNAm-sensitive endonuclease, the PCR program was modified as 
shown in Additional file 6: Table S5, introducing a 30-min step at 37°C, prior to the 
targeted amplification. This step was introduced for the digested and undigested sam-
ples to avoid bias in the amplification performance. The DNA digestion and targeted 
PCR steps were performed in a T100 Thermal Cycler (Bio-Rad). All other sample 
processing steps were performed following the Tapestri User Guide V2. All Tapestri-
related reagents were obtained using Tapestri Single-Cell DNA Custom Kits and Car-
tridge (Mission Bio, Inc; Cat. num. MB02-0001 and MB03-0034).

Recommendations for sample preparation

The scTAM-seq protocol has been optimized utilizing a highly concentrated HhaI 
enzyme (150,000 U/mL, NEB; Cat. Num. R0139B-HC1). To ensure the stability of the 
single-cell emulsion, we recommend using this highly concentrated enzyme. Regard-
ing the undigested control sample, we suggest generating at least one undigested 
control sample per amplicon panel. To ensure this sample is of sufficient quality, we 
suggest to evaluate the correlation of the non-HhaI amplicons between the undigested 
sample and each digested sample, as shown in Additional file 1: Fig. S4. If more than 
one undigested sample is generated, we suggest to use as a control the undigested 
sample that shows the highest correlation with each digested sample, respectively.

scTAM‑seq and surface‑protein library purification and sequencing

The Tapestri User Guide V2 was followed to prepare the libraries, with a few modi-
fications listed here. Briefly, PCR products were retrieved from individual droplets 
and purified with 0.7X Ampure XP beads (Beckman Coulter; Cat. num. A63881), to 
split the scTAM-seq library bound to the beads from the surface-protein library in 
the supernatant. Illumina i5/i7 sequencing indexes were added to the scTAM-seq 
PCR products, followed by two steps of purification, using 0.69X and 0.65X Ampure 
XP beads (these are different from the ratios indicated in the Tapestri User Guide 
V2). PCR products from the surface-protein library were incubated with Tapestri 
Biotin Oligo at 96 °C for 5 min, followed by incubation on ice for 5 min, and puri-
fied using Tapestri Streptavidin beads. Afterwards, the beads were used as PCR tem-
plates for the incorporation of i5/i7 Illumina indices, followed by purification using 
0.9X Ampure XP beads. The quality of all scTAM-seq and surface-protein libraries 
were assessed by Bioanalyzer (Additional file 1: Fig. S16). Libraries were pooled and 
sequenced on the Illumina NovaSeq 6000 platform, at the CNAG-CRG Sequencing 
Unit, read length 2 × 150 cycles, at a sequencing depth of 260 M reads/library in case 
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of surface-protein libraries, and 420 M aligned reads/library for scTAM-seq libraries 
(Additional file 3: Table S2).

Recommendations for sample sequencing

The FNR is related to the sequencing depth. We recommend adhering to the following 
formula for calculating the number of reads required for scTAM-seq libraries:

–	 Recommended coverage for each amplicon per cell: 60–80X (preferably closer to the 
higher end)

–	 Total paired reads per library: number of expected cells × number of amplicons in the 
panel × coverage per amplicon.

The number of expected cells per default is 10,000. Therefore, for a panel of 500 ampli-
cons sequenced at 70X, the required paired-end read number of would be (10,000 × 500 
× 70) 350M. Moreover, it is important to ensure similar sequence depth per library is 
achieved among all samples, with the undigested control having the same or more reads 
per library than the digested sample.

For the surface-protein library, we followed the instructions on Tapestri User Guide 
V2.

Bioinformatic analysis

Raw data processing

Raw sequencing data was processed using a customized version of the Mission Bio Tap-
estri Pipeline v2 (https://​suppo​rt.​missi​onbio.​com/​hc/​en-​us/​secti​ons/​36000​62553​14-​
Tapes​tri-​Pipel​ine). Briefly, cell barcodes were extracted from the raw FASTQ data files 
and sequencing adapters trimmed using cutadapt [34] v2.5. Trimmed reads were aligned 
to the reference genome version “hg19” using bwa-mem [35] v0.7.12. Subsequently, read 
pair information was verified using PicardTools (v1.126, https://​github.​com/​broad​insti​
tute/​picard), and quantified with samtools [36] (v1.9), and the cell barcode distribu-
tion was computed using the python scripts provided by Mission Bio. As a final step, 
we identified cells from the barcodes as follows: we exclusively used the non-HhaI con-
trol amplicons to determine barcodes that can reliably be called as “cells” according to 
their overall read counts and adapted the original cell detection method implemented 
by Mission Bio (https://​suppo​rt.​missi​onbio.​com/​hc/​en-​us/​artic​les/​36004​23816​34-​Cell-​
calli​ng). We only used those control amplicons that were reliably captured in most of 
the cells (Additional file 5: Table S4). To determine a read count cutoff on a per ampli-
con and per cell basis, we focused on the number of amplicons in the panel and com-
puted the threshold as the minimum of 10 and 0.2 times the average number of reads 
for those cells covered by at least eight times the number of amplicons in the panel (see 
https://​suppo​rt.​missi​onbio.​com/​hc/​en-​us/​artic​les/​36004​23816​34-​Cell-​calli​ng for a more 
detailed description). Then, we call as cells those barcodes having more than the deter-
mined threshold of reads in at least 70% of the amplicons. To determine potential dou-
blets, we employed the DoubletDetection (https://​doi.​org/​10.​5281/​zenodo.​26780​41) 
software, which removed a maximum of 16% of cells from our data (Additional file 7: 
Table  S6, Additional file  1: Fig.  17). The pipeline has been implemented in bash and 

https://support.missionbio.com/hc/en-us/sections/360006255314-Tapestri-Pipeline
https://support.missionbio.com/hc/en-us/sections/360006255314-Tapestri-Pipeline
https://github.com/broadinstitute/picard
https://github.com/broadinstitute/picard
https://support.missionbio.com/hc/en-us/articles/360042381634-Cell-calling
https://support.missionbio.com/hc/en-us/articles/360042381634-Cell-calling
https://support.missionbio.com/hc/en-us/articles/360042381634-Cell-calling
https://doi.org/10.5281/zenodo.2678041
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snakemake [37] and is available from the GitHub repository (https://​github.​com/​velte​
nlab/​scTAM-​seq-​scrip​ts) [38].

Clustering analysis and dimension reduction

As a first step, we computed false-positive rates (FPR) and false-negative rates (FNR) 
as follows: the FPR represents the event when a read is present although the respective 
site is not methylated; therefore, we leveraged the 32 amplicons containing constitutively 
unmethylated CpGs in the digested sample to compute a FPR for each amplicon across 
all the cells. The FPR is defined as the fraction of cells that obtain at least one sequenc-
ing read across all cells for the constitutively unmethylated amplicons. Conversely, the 
FNR represents the probability of observing no sequencing read although there is either 
no digestion or the site is protected by methylation. We were particularly interested in 
the FNR of the 424 B-cell differentiation amplicons and thus quantified their FNR in the 
undigested sample. Consequently, we computed the per amplicon FNR as the fraction of 
cells not having a sequencing read across all cells.

Next, we discretized the cells-by-amplicon DNAm matrix according to the presence 
of at least one sequencing read and clustered the binary matrix to obtain cell-type clus-
ters. Due to the low FPR computed in the control experiment, we found that a cutoff 
of one sequencing read reliably differentiated methylated from unmethylated CpGs for 
an individual cell. We selected high-performance amplicons as those amplicons with 
FNR lower than 0.25 in the undigested bone marrow control, leading to 313 amplicons 
selected. Notably, a fraction of cells in the amplicons could be false positives, but we 
found that this effect is diminished by cell clustering and pseudo-bulk computation. We 
clustered this matrix using the binary distance (i.e., the fraction of methylation calls that 
are different between any two cells divided by the fully methylated states) and Ward’s 
minimum variance method (“ward.D2” option in the “hclust” R function). We selected 
three clusters for the peripheral blood and five clusters for the bone marrow data, since 
we observed a separation into previously defined cell types.

To obtain a low-dimensional representation of the data, we used the read count matrix 
obtained from scTAM-seq after removal of doublets, and selected the 313 high-per-
formance amplicons associated with B-cell differentiation. After binarization as stated 
above, we normalized the data using Seurat v4.0 [39] with the functions “Normalize-
Data” (“LogNormalize” method), and then executed “ScaleData,” “RunPCA,” “Find-
Neighbors” (dimensions 1–11), and “RunUMAP” using all of the features. The cells of 
the bone marrow sample were annotated using the information from bulk data into five 
cell types. Then, we used Signac (v1.2) [40] and Monocle3 (v1.0) [28] to infer a trajectory 
in the low-dimensional space (“learn_graph” and “order_cell” functions).

For the surface protein expression data, we used Seurat v4.0 and employed the cen-
tered log ratio (CLR) method for normalization. All surface-protein expression values 
shown in the paper represent the CLR-normalized expression values.

Computing pseudo‑bulk DNAm values

We aimed at obtaining a pseudobulk DNAm level across all cells in a given cluster on a 
per CpG basis, correcting for the FNR observed in the undigested sample. Notably, we 
aimed at inferring pseudobulk DNAm values for all 424 B-cell differentiation amplicons, 

https://github.com/veltenlab/scTAM-seq-scripts
https://github.com/veltenlab/scTAM-seq-scripts
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also for those with elevated FNRs. We defined the observables for amplicon i and cell 
cluster c, which can be computed directly from the experiments as follows:

The parameter we aim to estimate is the DNA methylation value for cluster c in ampli-
con i:

We assume that the reads that we obtained can be modelled using a Binomial distribu-
tion given the following formula:

Additionally, we assume that we do not have prior information about the true underly-
ing DNA methylation state and thus use an uninformative prior:

We use the Hamiltonian Monte Carlo algorithm as implemented in the “rstan” R pack-
age [41] to obtain the parameter mi,c (pseudobulk methylation value) for each cluster 
separately.

Integrating scTAM‑seq with scRNA‑seq data

Since 33 of the 46 surface proteins were also measured in a single-cell proteo-transcrip-
tomic atlas [20], we used this overlap to perform cell label transfer and data integration 
of the bone marrow data with the CITE-seq reference atlas [20] using Seurat v4.0 [39]. 
Multimodal nearest neighbors are defined between cells assayed using scTAM-seq and 
CITE-seq data using the joint information of surface-protein expression with the “Find-
MultiModalNeighbors” function. Then, we used the “RunSPCA” function to perform 
supervised PCA (sPCA) of the surface-protein expression data in the reference atlas and 
determined anchors in our dataset using the “FindTransferAnchors” function. Lastly, we 
used the “MapQuery” function of Seurat to transfer the cell-type label from the refer-
ence atlas to our dataset. For this task, we summarized pre-, pro-, and pre-pro-B cells 
into one class which we termed pre-B cells. After joining the reference atlas and our data 
using the sPCA dimension reduction, we generated a new low-dimensional representa-
tion of the combined dataset using the “RunUMAP” function.

For associating DNAm differences with gene expression changes, we leveraged the 
labels transferred from the CITE-seq atlas and correlated the mean expression from the 
whole transcriptome analysis of Triana et al. [20] with the mean DNAm per cell type for 
the five cell-type labels transferred. Importantly, we only considered those genes that 
are located closer than 25kb in both orientations from the investigated CpG. Then, we 
investigated those genes showing the strongest (negative/positive) Pearson correlation 

n0,i,c = Number of cells without any read for amplicon i in cluster c

n1,i,c = Number of cells with at least one read for amplicon i in cluster c

pi = FNR for amplicon i estimated from the undigested control experiment

mi,c = Pseudobulk methylation state of amplicon i in cluster c

n1,i,c ∼ Binom n0,i,c + n1,i,c, (1− pi)×mi,c

mi,c ∼ Beta(1, 1)
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with the target CpG. We found that there were more negatively correlated than posi-
tively correlated genes and that the CpGs with the strongest correlation were preferen-
tially located in the gene promoter (Additional file 8: Table S7 and Table S8).

Data visualization

All analyses were performed with R-version newer than 4.0 [42] and the ggplot2 (https://​
ggplo​t2.​tidyv​erse.​org) and ComplexHeatmap [43] R packages were used for plotting. The 
lines in the boxplot represent the median, the 25th and 75th percentiles, and 1.5 times 
the inter-quartile range.
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