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Background
During RNA transcription, multiple spliceosomes may act on the same transcript in 
parallel to remove segments of sequence called introns and splice together flanking 
exons  [1]. Most splicing occurs stochastically  [2] during transcription  [3–5], although 
up to 20% of splicing may occur after transcription and polyadenylation  [5, 6] (Addi-
tional file 1: Fig. S1). Introns are spliced by U2 and U12 spliceosomes [7], primarily in 
the nucleus [8], though studies suggest that cytoplasmic splicing may also occur [9–12].

Intron retention (IR) is a form of alternative splicing where an anticipated intron 
remains after transcript processing is complete. IR occurs in up to 80% of protein-cod-
ing genes in humans [13] and may affect gene expression regulation [14–20] as well as 
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response to stress [21–23]. Transcripts containing introns may also be stably detained in 
the nucleus before undergoing delayed splicing (“intron detention,” or ID), with implica-
tions for temporal gene expression [24]. In cancers, high levels of IR [25–27] can gen-
erate aberrant splicing products with known and potential biological consequences for 
gene expression and cell survival [28]. It is unclear how commonly IR may give rise to 
a protein product  [29, 30], but novel peptides derived from transcripts with retained 
introns (RIs) are increasingly being studied in disease contexts such as cancer [31–35].

Despite its biological relevance, detection of IR from bulk RNA sequencing (RNA-seq) 
data remains challenging for two principal reasons: (1) a short RNA-seq read (e.g., from 
Illumina’s HiSeq, NovaSeq, or MiSeq platforms) is almost never long enough to resolve 
a full intron or its context in a transcript, particularly in genome regions with multi-
ple overlapping transcripts, and (2) RNA-seq data may contain intronic sequence from 
unprocessed or partially processed transcripts, DNA contamination, and non-messen-
ger RNA such as circular RNAs (cRNAs) [4, 36], potentially yielding spurious IR calls, 
independent of read length.

Existing tools designed specifically for RI detection make simplifying assumptions to 
address the above issues. These tools include keep me around (KMA) [37], IntEREst [38], 
iREAD [39], superintronic [40], and IRFinder [13] and its most recent implementation 
as IRFinder-S  [41]. Some mitigate challenge (1) by ignoring from consideration any 
intronic regions that overlap other features (KMA, IntEREst, and iREAD), leaving bio-
logical blindspots in RI detection  [37–39]. Some attempt to mitigate challenge (2) by 
recommending that a user provides poly(A)-selected data as their input [13, 37, 39, 40], 
assuming that poly(A) selected data represents fully processed, mature RNA. However, 
poly(A) selection during library preparation has been shown not to remove all immature 
post-transcriptionally spliced RNA molecules, and intronic sequences are commonly 
found in poly(A)-selected RNA-sequencing data [42, 43]. Other tools (e.g., rMATS [44], 
MAJIQ [45], and SUPPA2 [46]) are designed to identify a broader range of alternative 
splicing events, not just RIs, and do not make this assumption. To clarify the quality of 
and best practices for RI detection, we performed tests on poly(A)-selected, sample-
matched long- and short-read sequencing runs for two biological specimens, with pro-
cessed long-read data providing a standard against which we evaluated short read-based 
RI detection across eight tools: five RI-specific tools (KMA, IntEREst, iREAD, superin-
tronic, and IRFinder) and three general-purpose tools (rMATs, MAJIQ, and SUPPA2).

Results
Testing RI detection using sample‑paired short‑ and deep long‑read RNA‑seq data

To generate a dataset to test RI detection, we identified two human biological specimens 
on the Sequence Read Archive (SRA) with RNA-seq data from both Illumina short-read 
and PacBio Iso-Seq RS II long-read platforms (Fig. 1). These were a human whole blood 
sample (HX1)  [47] and a human induced pluripotent stem cell line sample (iPSC)  [48], 
with, respectively, 46 and 27 Iso-Seq runs, 24.4 and 91.3 million aligned short reads, and 
945 and 840 thousand aligned long reads (Additional file 1: Table S1). To confine attention 
to robustly represented loci, we identified a set of 1327 and 1203 target genes in HX1 and 
iPSC samples, respectively, each with ≥ 2 short reads per base median coverage across the 
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full gene length and ≥ 5 full-length long reads assigned to at least one isoform of the gene 
(Additional file 1: Fig. S2).

We sought to quantify IR in each biological specimen using long-read data. To account 
for random splicing and sample contamination that may lead to noisy splicing patterns, we 
developed a novel variant of intron percent spliced in (PSI) [49]. For a given intron i and 
transcript t, we defined persistence Pi,t as

where r is a read among the set of all reads Mt assigned as best matches to transcript t, 
information density di is the proportion of Mt covering intron i, the binary variable Rr,i 
is 1 if and only if r provides evidence for the retention of i, and the spliced fraction SFr,i 
and scaled Hamming similarity Hr,i are defined in Section 5 (see Eqs. 3 and 4). In brief, 

(1)Pi,t = di ·

r∈Mt

Rr,i · SFr,i ·Hr,i

|Mt |
,

Fig. 1  Overview of experimental plan. Long- and short-read RNA-seq data from the same biological 
specimen [47, 48] were downloaded from the SRA and subject to processing and analysis. Short reads (left 
path) were aligned and quantified according to the requirements of eight short read RI detection tools [37–
41], and retained introns were called by each of these. The raw long Iso-Seq reads (right path) were processed 
to the stage of full-length non-concatemer (FLNC) reads, but left unclustered. After long reads were aligned 
to the reference genome, each aligned read was assigned to a best match transcript or discarded, and intron 
persistence was calculated. The called RI output of each short read detection tool was compared against the 
set of persistent introns identified in the long-read data (where Pi ≥ 0.1 ). Created with BioRe​nder.​com

https://biorender.com/
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the intron persistence Pi,t incorporates the extent and similarity of splicing across tran-
script reads, accounting for stochastic splicing initiation and progression (Additional 
file 1: Fig. S1). Note the information density, spliced fraction, and Hamming similarity 
modify standard transcript-specific PSI as captured by the Rr,i factor. Finally, to address 
ambiguity in transcripts of origin in short-read data, we defined intron i’s persistence Pi 
as the maximum persistence across all isoforms Ti that contain i:

Going forward, we define a “persistent intron” as an intron for which Pi ≥ 0.1.
Across the union of transcripts from both samples, a substantial majority ( 76.7% ) of 

introns were fully spliced out ( Pi,t = 0 ), and a small minority ( 0.13% ) of introns were 
always unspliced within a transcript ( Pi,t = 1 ) (Fig.  2a and Additional file  1: Fig.  S3). 
These extreme values are in keeping with our qualitative understanding of splicing pat-
terns; however, the range of intermediate persistence values appears to represent a spec-
trum with varying extents of inconsistent splicing across and between reads. While we 
tested short-read RI detection on a per-sample basis, we also compared intron persis-
tence patterns between HX1 and iPSC samples and found significant similarity in splic-
ing patterns across matched transcripts (Additional file 1: Figs. S3 and S4).

Similarities of intron properties across short‑read RI detection tool outputs

We compared RIs called by eight tools for short-read data (Table 1). While most introns 
were consistently spliced out, 80.8% (1072/1327) and 80.0% (963/1203) of target genes 
in HX1 and iPSC, respectively, had at least one RI identified in either short- or long-
read data. Expression of called RIs varied substantially between tools in both HX1 
(Fleiss’ κ = 0.145 ) and iPSC (Fleiss’ κ = 0.068 ), though we note that the outputs of RI-
specific detection tools (IntEREst, superintronic, KMA, and IRFinder-S) are more cor-
related with each other than with the outputs of general-purpose alternative splicing 

(2)Pi = max
t∈Ti

Pi,t .

Table 1  Short-read tools studied

a See Section 5 for measure definitions

 bIndependent introns are intron regions not overlapping features from other transcript isoforms

Tool IRFinder-S 
[41]

super-
intronic 
[40]

iREAD 
[39]

KMA [37] IntEREst 
[38]

MAJIQ [45] rMATS [44] SUPPA2 [46]

Year 2021 2020 2020 2015 2018 2016 2014 2018

RI-specific Yes Yes Yes Yes Yes No No No

RI 
measurea

IRratio log cover-
age

FPKM TPM FPKM or 
PSI

PSI PSI PSI

Language C++ R Python Python, R R Python Python Python

Host 
website

GitHub GitHub GitHub GitHub Biocon-
ductor

Personal 
site

GitHub GitHub

Sample 
data 
format

BAM or 
FASTQ

BAM BAM FASTQ BAM BAM FASTQ FASTQ

Reference 
format

GTF GTF/GFF3 BED FASTA, 
GTF/GFF3

GTF/GFF3 GFF3 GTF GTF, FASTA

Intron 
definition

All introns All introns Inde-
pendent 
intronsb

Inde-
pendent 
intronsb

Inde-
pendent 
intronsb

All introns All introns All introns
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detection tools (rMATS, MAJIQ, and SUPPA2) (Additional file 1: Fig. S5). Further, using 
circBase  [50] to probe whether cRNA contamination may have affected RI detection, 
we identified only a small percent ( < 7% ) of called RIs that appeared to overlap intronic 
cRNAs (Additional file 1: Fig. S6).

We next examined the distributions of several intron properties (length, GC content, 
relative position in transcript, and annotated exon overlap) and their relationships with 
the set of RIs called by each short-read tool and their relative expression levels (Fig. 2b 
and Additional file 1: Fig. S7). Unsurprisingly, tools that exclude introns with overlap-
ping genomic features (i.e. KMA, IntEREst, iREAD; Table 1) had exceedingly low overlap 
between exons and the RIs they reported. We also note that KMA and IntEREst called 
extremely long RIs (up to > 157 kilobases), compared to those called by other short-
read tools or the persistent introns identified from long-read data (maximum 6275 
and 5926 bases in HX1 and iPSC). We observed a slight overall 3′ bias among persis-
tent introns from long-read data, as well as the set of RIs from several short-read tools 
(Fig. 2b), potentially reflecting the relatively shorter duration of exposure of 3′ introns 
to the cotranscriptional splicing machinery and/or implicit 3′ bias of the Clontech sam-
ple prep  [51] used in both samples [47, 48]. Despite this slight 3′ tendency, there was 
no appreciable association between intron persistence and intron position in transcript 

Fig. 2  a Distribution of persistence Pi,t and representative transcript examples for iPSC. The number of 
introns (y-axis) having a given persistence value (x-axis) is shown as a dark black line; note that a large 
number of introns with Pi = 0 are omitted from this analysis. Along the line, gray circles indicate the Pi value 
corresponding to each of nine introns from representative transcript examples (each transcript is labeled 
by Ensembl ID, e.g., ENST00000446856.5). Read-level data is shown for each transcript as a colored matrix, 
where each row is a single long read assigned to the transcript and each column represents a given intron, 
and color indicates whether an intron is retained (light green), spliced out (dark green), or lacking sequence 
coverage (white) in a given read. b Distributions of properties of persistent and called RIs. Each panel contains 
a series of boxplots depicting the distribution of intron length (top, log-scale), % of bases in the intron 
that are G or C (2nd row), relative position in transcript (3rd row), and % of intron bases with overlapping 
annotated exons (bottom) for HX1 (left) and iPSC (right). The distribution of each of these features is shown 
for long-read persistent introns (“PacBio”, gray) and RIs called by each of the eight short read tools: MAJIQ 
(light pink), rMATS (light green), SUPPA2 (light blue), IRFinder-S (red), superintronic (yellow), iREAD (green), 
KMA (blue), and IntEREst (purple)
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(Additional file  1: Fig.  S8). Among all tools, IRFinder-S and MAJIQ called sets of RIs 
with characteristics most similar to persistent introns from long-read data (Fig. 2b).

Precision and recall are poor across short‑read RI detection tools

We tested performance (precision, recall, and F1-score) of RI detection by eight short-
read tools, comparing sets of called RIs against persistent introns identified from 
long-read data (defined as Pi ≥ 0.1 ). Overall tool performance was poor in most cases 
(Fig. 3a, Additional file 1: Table S2). Many persistent introns ( 41.0% and 27.7% in iPSC 
and HX1, respectively, Additional file  1: Fig. S9) were not called by any short-read 
tool, and the majority of called RIs were neither identified among persistent introns 
in long-read data nor consistently called between short-read tools (Fig. 3c and Addi-
tional file 1: Fig. S9). In HX1 and iPSC, respectively, 47.1% and 48.3% of called RIs were 
not called by more than one tool ( 47.7% overall). IRFinder-S had the best recall and 
F1-score, possibly due to the similarity between the properties of its called RIs and 
properties of persistent introns, though it is worth noting general-purpose alternative 

Fig. 3  a Short-read tool performance across different thresholds of intron persistence. Each panel displays 
tool performance along the y-axis (measured by one of precision, recall, or F1-score as labeled) for a set of 
introns defined by the indicated threshold for intron persistence along the x-axis. Data for HX1 and iPSC 
are shown at left and right, respectively, with each tool’s per-sample performance depicted in a different 
color (IRFinder-S [red], superintronic [yellow], iREAD [green], IntEREst [purple], and KMA [blue], MAJIQ 
[light pink], rMATS [light green], and SUPPA2 [light blue]). b Variation in short-read tool performance across 
intron persistence thresholds for potential vs. called RIs. Each panel displays tool performance as measured 
by precision (left), recall (middle), and F1-score (right) for HX1 (top) and iPSC (bottom) samples. The 
performances for each tool’s potential RIs and called RIs are shown along the x- and y-axes, respectively, with 
centroid and whiskers denoting, respectively, the median and interquartile range of tool performance across 
intron persistence thresholds. Each tool’s performance is depicted in a different color (color labels same as 
3a.). Reference lines are shown with slope of 1. c Varying degrees of consensus of retained intron calls among 
short-read tools. Bar plots depict the number of true positive (green), false positive (pink), and false negative 
(blue) intron calls (y-axis) consistent across a specified number of short-read (SR) tools (x-axis). Upper and 
lower panels depict HX1 and iPSC data, respectively. LR denotes long-read data
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splicing detection tools (rMATS, MAJIQ, and SUPPA2) had substantially higher pre-
cision than other tools. By contrast, iREAD demonstrated the lowest recall across all 
tools (Additional file  1: Fig.  S10). Performance metrics for IntEREst and KMA were 
very similar across both samples (Fig. 3b).

To address sensitivity in persistent intron identification, we also considered short-read 
tool performance on subsets of long-read introns with increasing minimum thresholds 
of intron persistence ( Pi ≥ 0.1 to 0.9 in increments of 0.1). RI-specific tools (IRFinder-
S, superintronic, iREAD, IntEREst, and KMA) exhibited qualitatively different behavior 
than general-purpose tools (rMATS, MAJIQ, and SUPPA2), with general-purpose tools 
performing better overall (Fig.  3a and Additional file  1: Fig.  S11). MAJIQ in particu-
lar outperformed other tools across a range of persistence values, as measured by the 
F1-score. Among general-purpose tools, recall tended to increase with increasing persis-
tence. Among RI-specific detection tools, overall performance remained poor across all 
levels of intron persistence, with uniformly worse precision, recall and F1-score as intron 
persistence increased. Further, IRFinder-S and superintronic were consistently best per-
formers among RI-specific tools, albeit interchangeably depending on the sample, met-
ric assessed, and intron persistence threshold. For instance, IRFinder-S demonstrated 
highest recall in HX1 at the lowest cutoff values ( Pi ≥ 0.1 to 0.4), while superintronic 
demonstrated higher recall across higher thresholds in HX1 and for all cutoffs in iPSC 
(Additional file 1: Table S2).

Finally, since each tool is capable of calling RIs with different levels of stringency, 
we evaluated tool performance on a raw set of all potential RIs (all expressed introns 
detected by that tool) vs. the corresponding subset of introns called as RIs by that 
tool. Rather than improving overall performance by retaining persistent RIs and 
removing false positive ones, stringency filters improved precision at the expense 
of recall, with typically slight corresponding improvements in F1-score across tools 
(Fig. 3b, Additional file 2).

Short introns and introns that do not overlap exons are more reliably called

We next compared the distributions of seven intronic properties (length, GC content, 
position, exonic overlap, splice site motifs, U2- vs. U12-type spliceosomes, and uniform-
ity of coverage by mapped reads) between the sets of true positive (TP), false positive 
(FP) and false negative (FN) RIs for each tool (defined as described in 5.18). Every tool 
except IRFinder-S had difficulty identifying shorter RIs ( < 600 bases) (Fig.  4a, b). FPs 
tended to be longer than either TPs or FNs and were distributed more centrally within a 
transcript compared to persistent introns (both TPs and FNs) across all tools (Fig. 4a and 
Additional file 1: Fig. S12). As expected, the overwhelming majority of introns across all 
tools had canonical GT-AG splice motifs and splicing by the U2 spliceosome, while FNs 
showed increased frequencies of other motifs and spliceosome types relative to FPs and 
TPs (Additional file 1: Fig. S13).

We also probed how much distributional uniformity of mapped read coverage 
across an intron (coverage “flatness” [39, 41]) and incidence of overlapping exons dif-
fered among TPs, FPs, and FNs. Coverage of FPs and FNs was nonuniform, where 
coverage tended to decrease from 5′ to 3′ intron ends. Coverage of TPs was more 
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uniform, where coverage was in general substantially lower than for FPs and FNs 
(Fig. 4c, top two plots). Closer to their 5′ ends, FNs and TPs were distinguished by 
their tendencies to overlap exons (Fig. 4c, bottom two plots). Indeed, for all tools, FNs 
appear to have substantial overlap with exons from other transcript isoforms (Fig. 4a). 
Overlapping exons may thus be a key obstacle to improving recall of many short-read 
RI detection tools.

Persistent introns or called RIs occur in genes with experimentally validated IR

Finally, we searched the literature and third-party resources for independent evidence of 
persistent introns appearing in the HX1 and iPSC samples studied here. We examined RI 
presence in six genes (2 in both HX1 and iPSC and 4 in iPSC alone) that have experimen-
tally validated IR from a variety of cell types and tissues (Additional file 1: Table S3) [17, 

Fig. 4  a Distributions of properties of TP, FP, and FN RIs across short-read detection tools. Each panel displays 
the boxplot distributions of intron length (top, log scale), % of bases in the intron that are G or C (2nd row), 
relative position in transcript (3rd row), and % of intron bases with overlapping annotated exons (bottom) 
for the output from each of eight short-read tools (from left to right: IRFinder-S, superintronic, iREAD, KMA, 
IntEREst, rMATS, MAJIQ, and SUPPA2). Y-axes correspond to intron properties as labeled, with each boxplot 
along the x-axis corresponding to the TP (green, left boxes), FP (pink, middle boxes), and FN (blue, right 
boxes) calls for HX1 (left) and iPSC (right). b Short-read tool performance as a function of intron length. Each 
panel depicts the LOESS-smoothed precision (top), recall (middle), or F1-score (bottom) in either the HX1 
(left) or iPSC (right) sample across overlapping, sliding window intron length ranges (Section 5). Smooths 
are grouped and colored by eight short-read tools (red = IRFinder-S, yellow = superintronic, green = iREAD, 
purple = IntEREst, blue = KMA, light pink = MAJIQ, light green = rMATS, light blue = SUPPA2). c Read 
coverage and exon overlap as a function of position within an intron. LOESS-smoothed short-read data (see 
Section 5) show the median log10-scaled coverage (top row, y-axes) and fractions of introns with overlapping 
exons (bottom row, y-axes) as a function of position (x-axis, 5′ → 3′ on positive strand) for HX1 (left column) 
and iPSC (right column). Introns were grouped by truth category membership for at least 3/8 tools (colors, 
blue = FN, pink = FP, green = TP)



Page 9 of 22David et al. Genome Biology          (2022) 23:240 	

52–54]. We found that intron retention across these six genes varied substantially by 
sample (no TP introns were observed in both HX1 and iPSC) (Fig.  5). We also found 
significant variation between the set of RIs in these genes called by different short-read 
tools, with no TP introns identified by all tools (Additional file 1: Fig. S14). Interestingly, 
the SRSF7 gene, which has previously been shown to exhibit post-transcriptional splic-
ing  [24, 55], appeared to be generally enriched for persistent introns.

Discussion
This work raises fundamental questions regarding how results from short-read RI 
detection tools should be interpreted. We have taken IR to mean the persistence of 
an intron in a transcript after processing is complete, in alignment with the biologi-
cal literature on IR. Short-read RI detection tools are commonly thought to iden-
tify such retained introns, with the assumption that poly(A) selection is sufficient 
to guarantee fully spliced and mature transcripts for sequencing; however, these 
tools are not inherently designed to distinguish intron retention from contaminat-
ing events such as partial transcript processing. This disconnect between how tool 
developers and tool users employ the same language may be responsible for false 
assertions in the published literature about which introns are retained. We note, 
for instance, that the prediction of putative neoepitopes arising from IR  [31–35] 

Fig. 5  Short-read tool performance across six genes with experimentally validated RIs. Comparison of 
short-read tool called RIs with introns detected in long-read data are shown as a pair of matrices for each of 
six genes (AP1G2, LBR, SRSF7, IGSF8, FAHD2A, and FAHD2B). The rows in each matrix correspond to the results 
from each of eight short-read tools (from top to bottom: 1, IntEREst; 2, iREAD; 3, IRFinder-S; 4, superintronic; 5, 
KMA; 6, rMATS; 7, MAJIQ; 8, SUPPA2) applied to either HX1 (top) or iPSC (bottom) data; columns correspond 
to all introns found across all annotated transcript isoforms of the indicated gene, ordered by left and then 
right genomic coordinates. Each cell in the matrix depicts the presence or absence of an intron in short-read 
and/or long-read data as a TP (green), FN (blue), FP (pink), and TN (peach) assessment; white boxes indicate 
introns found only in transcripts with < 5 assigned long reads. Black outlines indicate the experimentally 
validated RI(s) in each gene
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requires confidence in the detection of stable, persistent IR with a high likelihood 
of translation and a low likelihood of undergoing NMD, none of which is assured by 
short-read RI detection tools.

Limitations of this work include the small number of biological specimens with 
matched short and deep long read RNA-seq available in the public domain, the 
lack of replicates of short-read RNA-seq data in this setting, and the limited depth 
of the long read sequencing data. As a result, we were unable to study the patterns 
of IR across tissue type and other distinguishing sample characteristics. We con-
fined attention to introns that occur in genes with high coverage in both short and 
long-read data and did not address either confidence in IR as a function of read 
depth or systematic biases in gene coverage as a function of sequencing platform. 
We therefore acknowledge the potential for such biases to introduce the false con-
clusion in some cases that short read detected IR is spurious when no retained 
introns are present in corresponding long-read data. Our intron persistence met-
ric represents an improvement over PSI, but it only partially accounts for admixed 
splicing patterns from different cell types in a mixed-cell sample such as HX1. 
Like other RI detection studies  [15–17, 25, 31, 34, 43], our approach is explicitly 
linked to annotation (here, GENCODE v35) and therefore reports IR only rela-
tive to annotated transcripts, ignoring potential unannotated transcripts. We also 
did not explore the entanglement of biological and technical effects in the length 
of persistent introns: shorter introns are more likely to be retained  [43, 56, 57], 
but the length limit of PacBio Iso-Seq reads of up to 10 kilobases means that any 
molecules with longer persistent introns were not considered in this study. Fur-
thermore, we calculated length-weighted median expression to harmonize short-
read tool outputs to long-read intron ranges (Additional file 1: Fig. S15), and this 
stringent approach may have inflated false negative rates in regions returning 
high expression magnitudes and variances. Finally, we were only able to evaluate 
a small subset of the tools available for short read-based RI detection, as many 
of these tools harbor substantial software implementation and reproducibility 
challenges.

While there is evidence for cytoplasmic splicing, the phenomenon is rare in many 
tissues and cell types  [9–12]. To better explore intron persistence in future work, it 
may be worth investigating the differences in detectable intron retention between 
nuclear and cytoplasmic RNA fractions.

Conclusions
This is the first study to evaluate the quality of short-read RI detection using short- and 
long-read RNA-seq data from the same biological specimen. This study also establishes a 
novel metric capturing the persistence of an intron in a transcript as it is processed using 
deep long read RNA-seq, and it is the first to interrogate the potential effects of splicing 
progression during transcript processing and spurious sources of intronic sequence. We 
find that short-read tools detect IR with poor recall and precision, calling into question 
the completeness and validity of a large percentage of putatively retained introns called 
by commonly used methods.
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Methods
Identification of paired short‑ and long‑read data

Two advanced-search queries were performed on the Sequence Read Archive (SRA) 
(https://​www.​ncbi.​nlm.​nih.​gov/​sra) on July 13, 2021, and all experiment accession num-
bers were collected from the query results by downloading the resulting RunInfo CSV 
files. For both searches, the query terms included organism “human,” source “transcrip-
tomic,” strategy “rna seq,” and access “public” with platform varying between the two 
searches: “pacbio smrt” for the long-read query and “illumina” for the short-read query. 
The RunInfo files were merged and projects with both Illumina and PacBio sequencing 
performed on the same NCBI biosample were identified. Due to relatively low sequenc-
ing depth of PacBio experiments, all projects with fewer than 20 PacBio sequencing runs 
were eliminated. PacBio experiments conducted on any PacBio platform earlier than RS 
II were also removed. Two remaining biosamples were chosen as data on which to test RI 
detection: 1) biosample SAMN07611993, an iPS cell line collected and processed by bio-
project PRJNA475610, study SRP098984, with 1 short-read and 27 long-read runs [48], 
and 2) biosample SAMN04251426 (HX1), a whole blood sample collected and processed 
by bioproject PRJNA301527, study SRP065930, with 1 short-read and 46 long-read 
runs [47]. (See the project repository at https://​github.​com/​pdxgx/​ri-​tests for accession 
numbers.)

Long‑read data collection, initial processing, and alignment

Raw Iso-Seq RS II data were downloaded from the SRA trace site (https://​trace.​
ncbi.​nlm.​nih.​gov/​Traces/​sra), via the “Original format” links under the “Data access’ 
tab for each run. These comprised three .bax.h5 files for both samples, with an 
additional .bas.h5 and metadata file for each HX1 run. For both samples, indi-
vidual runs were processed separately as follows, with differences in handling of the 
two samples as noted. Subreads were extracted to BAM files from the raw movie 
files using bax2bam (v0.0.8). Circular consensus sequences were extracted using 
ccs (v3.4.0) with –minPasses 1 set to 1 and –minPredictedAccuracy 
0.90. Barcodes were removed from CCS reads and samples were demultiplexed 
with lima (v2.2.0). For HX1, the input barcode FASTA files were generated from 
the Clontech_5p and NEB_Clontech_3p lines from “Example 1” primer.fasta 
(https://​github.​com/​Pacif​icBio​scien​ces/​IsoSeq/​blob/​master/​isoseq-​dedup​licat​ion.​
md). For iPSC, forward and reverse barcode fasta files were downloaded from the 
study’s GitHub page (https://​github.​com/​Eichl​erLab/​isoseq_​pipel​ine/​tree/​master/​
data) and merged into a single FASTA file per the lima input requirements. Since 
lima generates an output file for each 5′-3′ primer set, these were merged using sam-
tools merge (samtools and htslib v1.9). Demultiplexed reads were refined 
and poly(A) tails removed using isoseq3 refine (isoseq v3.4.0) to generate full-
length non-concatemer (FLNC) reads. FLNC reads were extracted to FASTQ files 
using bedtools bamtofastq (bedtools v2.30.0) and aligned to GRCh38 with 
minimap2 (v2.20-r1061) using the setting -ax splice:hq. Sequence download 
and processing scripts are available at https://​github.​com/​pdxgx/​ri-​tests. After pro-
cessing, the 46 HX1 Iso-Seq runs yielded 945,180 aligned long reads covering 32,837 
transcripts of 11,813 genes for HX1, with 13,560 of these transcripts covered by at 

https://www.ncbi.nlm.nih.gov/sra
https://github.com/pdxgx/ri-tests
https://trace.ncbi.nlm.nih.gov/Traces/sra
https://trace.ncbi.nlm.nih.gov/Traces/sra
https://github.com/PacificBiosciences/IsoSeq/blob/master/isoseq-deduplication.md
https://github.com/PacificBiosciences/IsoSeq/blob/master/isoseq-deduplication.md
https://github.com/EichlerLab/isoseq_pipeline/tree/master/data
https://github.com/EichlerLab/isoseq_pipeline/tree/master/data
https://github.com/pdxgx/ri-tests
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least 5 long reads and 4409 unique 5+ read transcripts showing evidence of possible 
intron retention. In the iPSC sample, we obtained 839,558 aligned long reads cover-
ing 31,546 transcripts of 11,992 genes. 12,676 of these transcripts were covered by 
at least 5 long reads, with 3137 unique 5+ read transcripts showing evidence of pos-
sible intron retention.

Assignment of long reads to transcripts

The long-read alignment files were parsed as follows. GENCODE v.35  [58] anno-
tated transcripts’ introns, strand, and start/end positions were extracted from the 
GENODE v35 GTF file. Then for each aligned long read, spliced-out introns, strand 
and start/end positions were extracted using pysam (v0.16.0.1, using samtools 
v1.10)  [59, 60]. A set of possible annotated transcripts was generated, comprising 
transcripts for which the read’s set of introns exactly matched the annotated tran-
scripts’ introns sets (“all introns”), or if no such transcripts were found, transcripts 
for which the read’s introns were a subset of the transcripts’ intron sets (“skipped 
splicing”). Then, the best transcript match was chosen from the shortlist of potential 
matches as the transcript whose length most closely matched the read length. Some 
reads did not cover the full lengths of their best-matched transcripts, defined by the 
read alignment start and end position encompassing all introns in the annotated tran-
script (“full length”); in the case where not all intron coordinates were covered, these 
were labeled “partial” reads.

Intron persistence calculation

Intron persistence was calculated only for every transcript that was assigned as the best 
match for at least 5 reads. We calculated persistence for each intron within these tran-
scripts as the information density of the intron di (i.e., the proportion of reads assigned 
to the transcript that cover intron i) multiplied by the mean of the product of three 
terms across all long reads assigned to that isoform: 

1.	 The retention, or presence, Rr,i of a given intron i is 1 if the read wholly contains i or 0 
if it is absent/spliced out as annotated in read r.

2.	 The spliced fraction ( SFr,i ) for a given intron i and read r is defined as 

where I is the set of introns spanned by r and Rr,i is defined above. This fraction 
of spliced introns in a read, with the target intron excluded, represents the splic-
ing progression of the read. A mature RNA molecule should tend to have fewer 
unspliced introns present than an RNA from the same transcript at an earlier point 
in splicing progression.

3.	 The scaled Hamming similarity ( Hr,i ) for a given read r and intron i is defined as the 
average number of spliced or unspliced introns that match between the target read 
and other reads assigned to the transcript that have intron i spliced the same as in 
read r, scaled to the number of introns in the isoform: 

(3)SFr,i =
|{i′ ∈ I : Rr,i′ = 0}| + Rr,i − 1

|I | − 1
,
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where Ir is the set of introns spanned by r, Ir′ ∩ Ir is the set of introns covered by 
both r and r′ , Mt is the set of reads assigned as best matches to the same transcript as 
r and span the target intron i, and Rr,i′ is as defined above. Any partial reads that are 
assigned to the transcript as a best match but do not span the target intron are not 
included in this calculation, and the scaled Hamming similarity between two reads 
is only calculated for introns covered by both reads. This term accounts for the sto-
chasticity of splicing initiation and progression, since a collection of reads would be 
more likely to have a dissimilar pattern of unspliced introns if the splicing process 
remained incomplete.

Persistence Pi,t was calculated for each intron i in a given transcript isoform t as infor-
mation density of the intron di times the mean of the product of the three terms above 
per Eq. 1. Since short reads are not assignable to specific transcripts or isoforms, and 
certain introns fully or partially recur across multiple transcripts, we set the intron per-
sistence Pi for a given intron i as the maximum Pi,t found for that intron across all tran-
scripts in which it occurs per Eq. 2.
Pi,t is entirely determined by retention Rr,i (which determines PSI) when all reads 

cover all introns and have the same splicing patterns as each other; however, for ∼ 11% 
of data containing noise in sequencing and/or splicing, this PSI contribution likely over-
estimates intron retention compared with Pi,t (Additional file 1: Fig. S16).

Alignment and BAM generation for short‑read data

FASTQs were previously generated by other groups using either Illumina’s NextSeq 500 
(iPSC [48], run id: SRR6026510) or HiSeq 2000 (HX1 [47], run id: SRR2911306), and files 
were obtained from the SRA using the fastq-dump command from the SRA Toolkit 
(v2.10.8). A STAR​ (v2.7.6a) [61] index was generated based on the GRCh38 primary 
assembly genome FASTA (ftp://​ftp.​ebi.​ac.​uk/​pub/​datab​ases/​genco​de/​Genco​de_​human/​
relea​se_​35/​GRCh35.​prima​ry_​assem​bly.​genome.​fa.​gz) and GTF (ftp://​ftp.​ebi.​ac.​uk/​pub/​
datab​ases/​genco​de/​Genco​de_​human/​relea​se_​35/​genco​de.​v35.​prima​ry_​assem​bly.​annot​
ation.​gtf.​gz) files from GENCODE v35 [58]. Reads were aligned with STAR to this index 
using the –outSAMstrandField intronMotif option. Primary alignments were 
retained for reads mapping to multiple genome regions. SAM files output by STAR​ were 
converted to both sorted and unsorted BAM files using samtools sort and view 
(samtools v1.3.1), respectively.

Additionally, for use with KMA  [37], bowtie2 (v2.3.4.3)  [62] alignments were per-
formed. Alignment statistics may be found in the project repository (https://​github.​
com/​pdxgx/​ri-​tests) and are summarized in Additional file  1: Fig.  S17. A FASTA file 
with intron sequences was generated based on the GRCh38 primary assembly genome 
FASTA and GTF files from GENCODE version 35 using the generate_introns.
py script from the KMA package setting 0 bp for the extension flag. These intron 

(4)

Hr,i =
1

|{r′ ∈ Mt : Rr′,i = Rr,i}|

×
∑

{r′∈Mt :Rr′ ,i=Rr,i}

|{i′ ∈ Ir′ ∩ Ir : Rr′,i = Rr,i′ }|

|Ir′ ∩ Ir |
,

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/GRCh35.primary_assembly.genome.fa.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/GRCh35.primary_assembly.genome.fa.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/gencode.v35.primary_assembly.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/gencode.v35.primary_assembly.annotation.gtf.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/gencode.v35.primary_assembly.annotation.gtf.gz
https://github.com/pdxgx/ri-tests
https://github.com/pdxgx/ri-tests
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sequences were combined with the GRCh38 transcript sequence FASTA file from GEN-
CODE version 35 (ftp://​ftp.​ebi.​ac.​uk/​pub/​datab​ases/​genco​de/​Genco​de_​human/​relea​
se_​35/​genco​de.​v35.​trans​cripts.​fa.​gz), and this combined FASTA was used to create a 
Bowtie 2 index. Reads were aligned to this index using bowtie2 according to specifi-
cations from KMA [63]. To quantify expression from the Bowtie 2 alignments, eXpress 
(v1.5.1) [64, 65] was used.

Selection of target gene subset

Due to variable short- and long-read coverage across the genome, we selected a sub-
set of genes to use for our test dataset to ensure adequate sequencing coverage for RI 
detection on both platforms. For the short-read data, we chose a coverage cutoff based 
on the requirements of the short-read RI detection tools used. The two tools with clear 
coverage requirements are iREAD, which requires coverage of 20 reads across an intron 
for RI detection, and superintronic, which requires 3 reads per region. Since these are 
short reads (126 bases for iPSC and 90 for HX1) required over potentially long intronic 
regions, we chose a median gene-wide coverage (including both intronic and exonic 
regions) of 2 reads per base, ensuring either consistent coverage across the gene or high 
coverage in some areas. For the PacBio data, we selected 5 long reads per gene, and a 
further filter of at least 5 reads assigned as “full length” best matches (see Section 5.3) 
to a single transcript of the gene, as giving enough information for comparing splicing 
progression and splicing patterns between reads. We further required these 5 full-length 
reads’ aligned left and right coordinates to fall within 50 bases of the matched tran-
scripts’ annotated left and right coordinates. The target gene sets, 1203 genes for iPSC 
and 1327 for HX1, were chosen from the aligned data, naive to potential RI detection, 
and then for both short- and long- read data, the gene subset was applied as a filter after 
running metric calculations or RI detection by short read tools. Within these genes, only 
transcripts with at least 5 coordinate-matched full-length long reads were studied.

Intron feature annotation

For the set of target genes, transcripts with at least 5 long reads were selected for anal-
ysis. Features of each intron in these transcripts including intron lengths, splice motif 
sequences, relative transcript position, spliceosome category, and transcript feature 
overlap properties were extracted as follows. Length was calculated as the difference 
between the right and left genomic coordinates of the intron ends. Relative position 
within the transcript is an intron-count normalized fraction where 0 represents the tran-
script’s 5′ end and 1 represents the 3′ end. Splice motifs were assigned to each intron by 
querying the GRCh38 reference genome with samtools faidx (samtools v1.10) 
for the two coordinate positions at each end of the intron, and assigned to one of three 
canonical motif sequences (GT-AG, GC-AG, and AT-AC, and their reverse comple-
ments for − strand genes) or labeled as “other” for noncanonical motifs. Three feature 
overlap properties were studied: the total number of exons from other transcripts with 
any overlap of the intron region, the percent of intron bases with at least one overlap-
ping exon from another transcript, and the maximum number of exons overlapping a 
single base in the intron. These were calculated by extracting all exon coordinates from 

ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/gencode.v35.transcripts.fa.gz
ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_35/gencode.v35.transcripts.fa.gz
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the GENCODE v35 annotation file and using an interval tree to query each intron 
base position against the set of annotated exon coordinates. Spliceosome category was 
determined from recent U2 and U12 intron annotations  [7]. BED files of U2 and U12 
introns for GRCh38 were downloaded from the Intron Annotation and Orthology Data-
base (https://​intro​ndb.​lerner.​ccf.​org/) on January 25, 2022. Introns were labeled “U2” 
or “U12” if they only overlapped ranges from one of either spliceosome category, and 
remaining introns were labeled “other.” GC content was calculated for intron sequences 
by first obtaining intron sequences using the getSeq() function from the BSgenome 
(v1.64.0) R package on the BSgenome.Hsapiens.UCSC.hg38 (v1.4.4) dataset. We 
then calculated GC frequency with the letterFrequency() function from the 
Biostrings (v2.64.0) R package, and we finally obtained the GC fraction by dividing 
by this frequency by the intron size in bp.

Selection of short‑read RI detection algorithms and identification of likely RIs

We successfully downloaded and ran eight tools for short-read data, including five RI-
specific detection tools (superintronic, KMA, IntEREst, iREAD, and IRFinder-S) and 
three general tools for alternative splicing detection (MAJIQ, rMATS, and SUPPA2). We 
used a remote server with the CentOS v7 operating system. To run superintronic, KMA, 
IntEREst, iREAD, MAJIQ, rMATS, and SUPPA2, we used conda virtual environments 
(see https://​github.​com/​pdxgx/​ri-​tests). We ran IRFinder-S from a fully self-contained 
Dropbox image per the tool’s instructions (see below). IntEREst and superintronic are 
provided as R libraries which we ran from interactive R sessions, while iREAD, IRFinder-
S, and KMA were run from command line, and a separate R package was used for RI 
detection for KMA. Outputs from all tools were read into R and harmonized to a single 
set of intron ranges after applying minimum coverage filters based on both short-read 
and long-read data. After running tools according to their provided documentation, we 
consulted literature and documentation on a tool-by-tool basis to devise starting filter 
criteria based on expression magnitude and other properties. We used these starting 
criteria to find the subset of most likely RIs, then we modified filter criteria to ensure 
filtered intron quantities were roughly one order of magnitude lower than unfiltered 
introns in both iPSC and HX1.

IR quantification with IntEREst

To run IntEREst (v1.6.2) [38], the referencePrepare function from the pack-
age was used to generate a reference from the GENCODE v35 primary assembly GTF 
file  [58]. This reference was used along with the sorted STAR BAM alignment from 
each sample to detect intron retention with the interest function, considering all 
reads and not just those that map to junctions. We used the interest function with 
the IntRet setting, which takes into account both intron-spanning and intron-exon 
junction reads and returns expression as a normalized FPKM. The filter FPKM ≥ 3 , rec-
ommended for iREAD, left > 90% of introns in both samples, so we increased the mini-
mum filter to FPKM ≥ 45 , and this retained 5038/32544 ≈ 15% of introns in HX1 and 
6832/21820 ≈ 31% of introns in iPSC (Additional file 1: Fig. S10).

https://introndb.lerner.ccf.org/
https://github.com/pdxgx/ri-tests
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IR quantification with keep me around (KMA)

To run KMA [37], we used devtools to install a patched version of the software which 
resolves a bug unaddressed by the authors, available at https://​github.​com/​adamt​ongji/​
kma. The read_express function was used to load expression quantification data 
output from eXpress, and the newIntronRetention function was used to detect 
intron retention. Returned intron expression was scaled as transcripts per million 
(TPM). We noted the recommended filters of unique counts ≥ 3 and TPM ≥ 1 left just 
7.2% of introns in iPSC versus 19% in HX1, so we used a less stringent filter of unique 
counts ≥ 10 for both samples, which left 6437/14155 ≈ 45% of introns in iPSC and 
5089/20484 ≈ 25% of introns in HX1 (Additional file 1: Fig. S10).

IR quantification with iREAD

To run iREAD (v0.8.5) [39], a custom intron BED file was made from the GENCODE v35 
primary assembly GTF file using GTFtools (v0.6.9)  [66]. The total number of mapped 
reads in each sorted STAR BAM alignment was determined using samtools, and used 
as input to the iREAD python script to detect intron retention. Intron expression was 
returned scaled as FPKM. To identify the most likely RIs, we applied previously pub-
lished filter recommendations for entropy score ( ≥ 0.9 ) and junction reads ( ≥ 1 ). Since 
there were relatively few introns remaining after applying published filters to the iPSC 
short-read data ( 313/19316 ≈ 1.6% vs. 583/7748 ≈ 7.5% in HX1), we applied lower 
filters for FPKM ( ≥ 1 vs. ≥ 3 ) and read fragments ( ≥ 10 vs. ≥ 20 ) (Additional file  1: 
Fig. S10).

IR quantification with superintronic

To run superintronic (v0.99.4)  [40], intronic and exonic regions were gathered from the 
GENCODE v35 primary assembly GTF file [58] using the collect_parts function. The 
compute_coverage function was used to compute coverage scores for each sample from 
sorted STAR BAM alignments, and the join_parts function was used to convert these 
scores to per-feature coverage scores. Intron expression was returned as log2-scaled coverage, 
and we identified retained intron ranges as those overlapping long read-normalized ranges 
with LWM ≥ 3 , per the expressed introns filter described in [40] (Additional file 1: Fig. S10).

IR quantification with IRFinder‑S

We ran IRFinder-S v2.0-beta using the Docker image obtained from https://​github.​com/​
Ritch​ieLab​IGH/​IRFin​der. We prepared the IRFinder reference files using the GENCODE 
v35 genome sequence reference and intron annotations  [58]. Our analyses focused on 
the coverage and IRratio metrics, and the intron expression profile flags returned under 
warnings. Intron expression was returned as an IRratio, which is similar to PSI, and we 
identified likely retained introns as having IRratio ≥ 0.5 without any flags per the meth-
ods in [41] (Additional file 1: Fig. S10).

IR quantification with MAJIQ

We ran the MAJIQ (v2.4) package using our STAR-aligned BAM files and the GEN-
CODE v35 GFF3 genome annotation  [45]. We first ran majiq build to generate 

https://github.com/adamtongji/kma
https://github.com/adamtongji/kma
https://github.com/RitchieLabIGH/IRFinder
https://github.com/RitchieLabIGH/IRFinder
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a file containing all local splice variations (LSVs), followed by majiq psi to calcu-
late PSI for each LSV. We then identified the subset of RI LSVs by filtering on terms 
under the column “lsv_type” and available coordinates under the “ir_coords” 
column of the PSI outputs. We identified likely retained introns as having PSI > 0.5, 
which was similar to the threshold we used for IRFinder-S outputs.

IR quantification with rMATS

We ran the rMATS (v.4.1.1) Python package, otherwise known as “rmats-turbo,” 
using the GENCODE v35 GTF genome annotation file and the sample FASTQ 
files  [44]. This returned a separate series of output files for each alternative splicing 
event type. We identified the IR splice event outputs as files containing “RI” in the file 
names, and we extracted the Inclusion Level, which is similar to PSI. We identified 
likely retained introns as having an Inclusion Level > 0.8 which identified a number of 
events that was approximately similar to those returned by MAJIQ.

IR quantification with SUPPA2

We ran the SUPPA2 (v2.3) Python package using the sample FASTQ files [46]. Briefly, 
SUPPA2 takes as input the isoform-level expression output from the Salmon (v1.9.0) 
software. We first generated the Salmon index using the GENCODE v35 transcripts 
FASTA, then we quantified isoform expression using the sample paired FASTQs in 
TPM units. Next, we generated the splice events annotation with the SUPPA2 gen-
erateEvents function on the GENCODE v35 GTF, and finally quantified IR events 
using the psiPerEvent function and the Salmon isoform expression output. This 
outputs the junction-level expression as PSI. We identified likely retained introns 
as those having PSI > 0.8 , as this was similar to the threshold used for rMATS and 
returned event quantities similar to those from iREAD.

Harmonization of intron retention metrics across algorithms and runs

Prior to analysis, we harmonized algorithm outputs on intron ranges returned by anal-
ysis of available long read runs. We harmonized intron expressions from short read RI 
detection tools to intron ranges remaining after long reads were uniquely mapped to tran-
script isoforms. For each short-read RI detection tool, we calculated the region median 
intron expression value after weighting values on overlapping range lengths (a.k.a. length-
weighted medians [LWM]). Calculation of LWMs is shown for an example intron in Addi-
tional file 1: Fig. S15. Inter-rater agreement among the output from different short-read 
algorithms was assessed by Fleiss’ kappa [67] using the R package irr (v0.84.1.67) [68].

Determination of truth metric groups from called RIs

For each short-read tool, we used the tool-specific called RIs and the LR persistent 
introns, as described above, to categorize introns as either true positive (TP, i.e. per-
sistent in long-read and called in short-read), true negative (TN, i.e. neither persistent 
in long-read nor called in short-read), false positive (FP, i.e. not persistent in long-
read, called in short-read), or false negative (FN, i.e. persistent in long-read, not called 
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in short-read). (Note: We use this language as a convenient description of our results, 
not to indicate that the long-read persistent introns indicate a full and complete set of 
true biological retained introns.) We then identified subsets of TP introns identified 
among at least N tools (e.g. a TP 3+ intron was TP for ≥ 3 short-read tools, etc.).

Calculation of performances by intron length bins

We calculated called RI performance metrics across eight short-read tools for a series 
of overlapping intron length bins. In total, 41 bins were calculated for each sample by 
sliding 300 bp-wide windows from 0 to 4300 bp lengths at 100 bp intervals. Plots were 
generated by computing LOESS smooths of the binned performance results.

Calculation of normalized binned coverages

We evaluated binned intron characteristics across intron truth metric categories for 
each sample. We assigned introns to truth categories if they were recurrent in that cat-
egory for ≥ 3 of 8 short-read tools (e.g., an intron that was recurrent TP for 3 tools in 
iPSC, etc.). We then calculated the log10 median short-read coverage for 1,000 evenly 
spaced bins per intron for each truth category. We further calculated percent of introns 
overlapping an exon for each bin by using annotations from the GENCODE v35 GTF. 
Plots were generated by computing the LOESS smooths of the binned results.

Comparison of detected RIs with circular RNA

We downloaded a database of human circular RNAs from circbase  [50] (http://​www.​
circb​ase.​org/​downl​oad/​hsa_​hg19_​circR​NA.​txt), most recently updated in 2017. We 
extracted all cRNAs labeled with the “intronic” flag in the annotation column and per-
formed a liftover of genomic coordinates for these cRNAs from hg19 to GRCh38 using 
the UCSC Genome Browser liftover tool (https://​genome.​ucsc.​edu/​cgi-​bin/​hgLif​
tOver). For each sample, we determined the percent of introns overlapping at least one 
cRNA for the 4+ consensus truth metric groups TP, FP, and FN (e.g., intron was TP in 
≥ 4 SR tools, etc.)

Comparison of detected RIs with validated RIs

In order to test introns in this study against experimentally validated RIs, we identified 
wet-lab studies in the literature that had first predicted and then validated intron reten-
tion. We identified 4 such studies [17, 52–54] that validated a total of 6 RIs in our sets of 
target genes as defined above (2 and 6 in HX1 and iPSC respectively) (Additional file 1: 
Table S3). (The above four plus an additional ten studies [9, 30, 69–76] experimentally 
validated RIs in an additional 2 genes that were found in our target gene set for each 
sample, but without evidence of IR, and 47 and 43 genes, for HX1 and iPSC respec-
tively, that did not pass our sample coverage thresholds for inclusion in this study.) The 
validated intron coordinates (Additional file 1: Table S3) were extracted either from the 
published intron number [17, 52, 53], assuming a count from the gene’s 5′ to 3′ end, or 
via BLAT queries of the target sequence [54]. Adequate intron expression information 
was available in both samples for the genes LBR and AP1G2, but only one sample each 
for remaining genes.

http://www.circbase.org/download/hsa_hg19_circRNA.txt
http://www.circbase.org/download/hsa_hg19_circRNA.txt
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://genome.ucsc.edu/cgi-bin/hgLiftOver
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