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Background
Recent studies such as the 1000 Genomes Project [1] have produced large catalogues of 
known human genetic variation. Researchers now have access to genotype information 
for thousands of individuals at known variant sites, providing unprecedented knowledge 
about how often genetic variants occur together at sub-population and individual levels.

Discovery and characterization of an individual’s genetic variation have traditionally 
been done in two steps: 1) variant calling: discovering genetic variation in the genome, 
and 2) genotyping those called variants: determining whether each genetic variant is 
present in one or both of the chromosomes of the individual. Variant calling is a com-
putationally expensive task, usually performed by first sequencing the genome of inter-
est at high coverage, followed by mapping the sequenced reads to a reference genome 
and inferring variants according to where the mapped reads differ from the reference. It 
is now possible to skip the variant calling step, instead relying on catalogues of known 
genetic variation to directly genotype a given individual. For humans, the huge amount 
of already detected genomic variation means that a large amount (>90%) of an individ-
ual’s genetic variation can be detected this way [1]. Genotyping individuals at sites of 
known variation has in principle been performed already since the early 2000’s based on 
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SNP chips (microarrays). This has however been restricted to a limited set of fixed sites 
that a given chip has been designed to capture. While these chip-based techniques are 
still popular today due to their low cost, e.g. in GWAS studies [2], they are limited by 
chip architecture and thus only able to genotype about 1-2 million variants. Contrary 
to this, sequence-based genotyping techniques are, while being more expensive to per-
form, in theory able to genotype any genetic variant that has already been detected in 
the population.

Sequence-based genotyping is traditionally performed by aligning sequenced reads 
to a reference genome and examining how the reads support genotypes locally at each 
variant [3, 4]. While these methods generally have high accuracy, they are slow, mostly 
because read-mapping/alignment is computationally expensive. Also, since these meth-
ods require the mapping of reads to a reference genome, they have a tendency to per-
form poorly in regions where the reference genome is very different from the sequenced 
genome, such as in variant-rich regions. Furthermore, since reads are more likely to be 
correctly mapped when they are similar to the reference, reads supporting variant-alleles 
may be underrepresented among the mapped reads, resulting in a bias towards the refer-
ence alleles, a problem referred to as reference bias [5].

In an attempt to both speed up genotyping and avoid reference bias, several align-
ment-free approaches have emerged during the last few years [6–9]. These methods work 
by representing genetic variants by their surrounding kmers (sequences with length k 
covering each variant) and looking for support for these kmers in the sequenced reads. 
Since these methods do not map reads to a reference genome, they mitigate the prob-
lem of reference bias, and are usually computationally very efficient since kmer-lookup 
is fast compared to read mapping. However, these methods struggle when variant alleles 
cannot be represented by unique kmers, e.g. because a variant allele shares one or more 
kmers with another location in the genome. The genotyping method Malva [8] attempts 
to solve this problem by using larger kmers in cases where kmers are non-unique, but 
is still not able to genotype all variants using this approach. The more recent method 
PanGenie [10] takes the approach of Malva one step further and uses known population 
haplotype information to infer the likelihood of genotypes for variants that do not have 
unique kmers, such as variants in repetitive regions of the genome. PanGenie does this 
by using a Hidden Markov Model (HMM) with one state for each possible pair of hap-
lotypes from the set of known haplotypes in the population. While this approach works 
well for relatively few input haplotypes and variants (PanGenie was tested using haplo-
types from around 10 individuals and about 7 million variants), the number of states in 
the HMM increases quadratically with the number of haplotypes, and the method scales 
poorly when more than a few haplotypes are used. This means that the more than 5000 
haplotypes and 80 million variants available in the 1000 Genomes Project cannot easily 
be utilised by an approach like PanGenie. Furthermore, PanGenie does not use kmer-
information at all for variants with non-unique kmers.

We here describe KAGE – a new genotyper for SNPs and short indels that builds on 
recent ideas of alignment-free genotyping from Malva and PanGenie for computation-
ally efficiency. KAGE implements two novel ideas for utilising all previously known 
haplotype information from repositories such as the 1000 Genomes Project in order to 
improve genotyping accuracy. We show that combining these ideas leads to a genotyper 
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that is both more accurate and computationally efficient than existing alignment-free 
genotypers.

Results
We here present KAGE, which is based on two new ideas that are inspired by recent 
progress in alignment-free genotyping and imputation. We first show how each idea can 
improve genotyping accuracy for alignment-free genotyping methods, and then show 
that when these ideas are combined into KAGE, we get a graph-based alignment-free 
genotyper that is highly accurate and considerably more computationally efficient than 
existing alignment-free genotyping methods.

Idea 1: Modelling expected kmer‑counts from the population

Alignment-free genotypers, like Malva and PanGenie, compute genotype likelihoods by 
counting the number of kmers from the read set that support each allele of every variant 
to be genotyped, as illustrated in Fig. 1. A problem with this approach is that some vari-
ants may have alleles that are covered by kmers that also match elsewhere in the genome 
(for some or many individuals), making such variants difficult to genotype, as illustrated 
in Fig. 2. We hypothesise that this problem may be addressed by modelling the expected 
match count for each individual kmer based on population data, such as data from the 
1000 Genomes Project.

To test this hypothesis, we implemented a baseline genotyper that follows the scheme 
in Fig.  1: each variant is represented by kmers, and the genotyper counts how many 
times each kmer exists in the read data sets, computing genotype probabilities using 
Bayes formula (naively assuming each kmer is unique in the genome). We also created 
a more sophisticated version of this genotyper, where we assume that each kmer exists 
with a given frequency in the population, and use this information when computing the 
probability of observing the given number of kmers for each variant (Section  5). We 

Fig. 1  Overview of a typical alignment-free genotyping approach. First, kmers covering each allele of each 
variant is stored (step 1), e.g. by choosing kmers from a graph representation of the variants. All kmers 
from the reads are then collected (step 2), and genotype probabilities are computed using Bayes rule with 
genotype probabilities from a known population used as priors (step 3). The most likely genotype is chosen
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benchmark both these methods against Malva. As shown in Fig.  3, our naive method 
performs worse than Malva, whereas the approach where expected kmer counts are 
modelled from the population performs better. In Table 1 we show the accuracy of the 

Fig. 2  Graph with duplicate kmers. The SNP G/T has a kmer CTA (green) on the variant allele that also 
exists on the reference path (blue). If we observe each of the kmers CTA and CGA once in the read set, we 
might be fooled to believe that GT is the most likely genotype for this variant. However, when knowing 
that the kmer CTA is expected to occur at least once in the read data set, due to the duplication, we might 
conclude otherwise. This information can be used to adjust the probabilities used to compute the binomial 
probabilities of observing kmer counts given genotypes

Fig. 3  Genotype accuracy increases when expected kmer counts are modelled from the population. Our 
prototype alignment-free genotyper (naive KAGE) performs a bit worse than Malva, as expected. However, 
when we compute expected kmer counts from the population, using 1000 Genomes data, and use these 
counts to compute the probability of observing the given kmers in our data, the genotyping accuracy greatly 
improves. Note: KAGE here refers to a simplified version of the full genotyper that we present in the next 
section (here KAGE does not use variants to adjust prior probabilities)
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two methods on SNPs that have unique and non-unique kmers. As can seen in the table, 
the accuracy on SNPs with non-unique kmers drastically increases for the more sophis-
ticated genotyper that uses information about the kmer frequency from the popula-
tion. Although this is an experiment performed on a single small benchmark dataset, 
these findings provide an indication that the idea of comparing observed kmer counts to 
expected kmer counts based on a population may work.

Idea 2: Using a single variant to adjust the prior

While Malva uses the allele frequency from the population as priors for genotype like-
lihoods, PanGenie uses a more sophisticated approach where genotypes are inferred 
using a Hidden Markov Model (HMM), meaning that the predicted genotype of one var-
iant provides information that can support the determination of the genotypes of other 
variants. While this approach may allow PanGenie to predict genotypes with higher 
accuracy than Malva, this method does not scale to handle a large number of known 
haplotypes, since the HMM must represent every possible pair of haplotypes as a sepa-
rate state, making the number of HMM states grow quadratically with the number of 
haplotypes. We hypothesise that a simpler approach may be better for two reasons: First, 
a simple approach may be able to utilise all the haplotype information available (e.g. the 
2548 individuals available from the 1000 Genomes project, rather than only a handful 
that the PanGenie approach would typically employ), and second, such an approach may 
be computationally faster than an HMM-approach that requires inference on hidden 
states. To test this hypothesis, we implement a way of efficiently computing prior prob-
abilities for each genotype of each variant given genotype probabilities of other variants 
(Section 5). We let every variant only depend on a single other variant, which leads to 
a very efficient way of genotyping all variants, and allows us to use as many underlying 
haplotypes as we would like. The determination of a single best suited helper variant for 
each known variant in the genome is performed only once, in a general pre-process-
ing step. The genotyping of individuals then only needs to perform a fast lookup in this 
precomputed table. We test this approach against PanGenie, where PanGenie is run with 
a varying number of known haplotypes as input. In order to test PanGenie with as many 
haplotypes as possible from the 1000 Genomes Projects, we perform this experiment on 
a small test data set (5 million base pairs of chromosome 1).

The result of this experiment is shown in Fig. 4, where it can be seen that the accuracy 
of both this approach (KAGE) and PanGenie increase with the number of known haplo-
types. This experiment is performed on a small test dataset, so as to allow the inclusion 
of a larger number of individuals in PanGenie, and is not meant as a benchmarking of 
the methods per se. These findings provide an indication that the use of a single variant 
as prior still allows us to leverage information from a large number of individuals.

A new graph‑based alignment‑free genotyper

We combine the two ideas discussed above into a new alignment-free genotyper KAGE, 
and compare this genotyper in terms of running time, memory usage and accuracy 
against existing alignment-free genotypers as well as the most commonly used align-
ment-based genotypers. We follow the guidelines from “Best practises for benchmarking 
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germline small-variant calls in human genomes” [11] and compare the output of each 
genotyper against a truth data set (similarly to how PanGenie and Malva assess their 
methods).

In the following experiments, we run PanGenie with 64 input haplotypes (from 32 
individuals), since a larger number of haplotypes make PanGenie too slow and memory 
demanding when run on whole-genome data. We run KAGE with all of the 5096 hap-
lotypes available from the 1000 Genomes Project. When listing run times, we consider 
only the time used to genotype a given sample, not the time used to index the reference 
genomes, graphs, or variants, since such indices can be created once and then be re-used 
for genotyping an arbitrary number of samples. All experiments are based on genotyp-
ing variants from the 1000 Genomes Project using short reads as input. Accuracy is pre-
sented by recall and precision when predicted genotypes are compared against a truth 
dataset. Further details about these experiments can be found in the Section 5, and a 
Snakemake pipeline for reproducing all the results can be found at https://​github.​com/​
ivargr/​genot​yping-​bench​marki​ng.

In the experiments, we compare the genotypers listed in Table 2, which includes the 
alignment-based genotyper Graphtyper as well as all alignment-free genotypers we 
believe are relevant or commonly used. For comparison, we also run the commonly used 
variant caller GATK [3], which does not only genotype a specified set of variants, but 
tries to detect any variation from the reference. We include GATK so that the results of 
the genotypers can be contrasted to the alternative approach of performing full variant 
calling.

We genotype the individual HG002 from GIAB, which is an individual commonly 
used to benchmark variant callers and genotypers. The results can be seen in Table  3 
and Fig. 5. We ran the final version of KAGE also on another individual (HG006, also 

Fig. 4  Accuracy of Pangenie and KAGE as a function of the number of individuals included in the model on 
a small test dataset. Recall and precision (shown as F1 score) are computed for the predicted genotypes by 
the various methods on a small test dataset (genome size 5 million bp) with reads simulated from HG002, in 
order to test whether the accuracy of PanGenie and KAGE increases with a larger number of individuals in the 
model. The F1 score of Malva and “our naive approach” are shown as a single dot, since both of these only use 
the whole population genotype frequency when estimating genotype probabilities

https://github.com/ivargr/genotyping-benchmarking
https://github.com/ivargr/genotyping-benchmarking
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from GIAB), which was not consulted until after we finalised all method and param-
eter choices, and verified that the results are similar (Additional file 1: Table S2 and S3). 
The results from genotyping HG002 using 30x read coverage can be found in Additional 
file 1: Table S1, and are similar to the results from 15x coverage. The experiments per-
formed show that KAGE is about as accurate as, or more accurate than, all the other 
genotypers and considerably faster than any of the methods. GATK comes out as clearly 
more accurate than the genotype methods, but is as expected considerably slower than 
most of the genotypers. KAGE is about as accurate as the alignment-based method 
Graphtyper while being more than 30 times faster. KAGE is able to genotype a sample 
fast by pre-building all indexes (Section 5). While creating these indexes is quite time-
consuming (a couple of days), once indexes are built for a set of variants and a reference 
population, genotyping a new sample takes a short fixed amount of time, which is inde-
pendent of the number of individuals in the reference population. For the experiment 
presented in Table 3, KAGE spends about 2 minutes on genotyping and 10 minutes on 
counting kmers.

The idea of using a single variant to adjust the prior probabilities when genotyping 
can be seen as a way of using information at some variants to “impute” the genotypes at 
other variants. While this seems to work well for KAGE, and leads to fast genotyping, we 
were curious as to whether higher accuracy could be achieved by using established and 
more sophisticated imputation tools. To test this hypothesis, we ran KAGE without the 
builtin imputation, producing a VCF with genotype likelihoods that reflect the probabil-
ity of the possible genotypes given only kmer information. We then ran the imputation 
tool GLIMPSE [12] on this VCF. As seen in Table 3 (KAGE + GLIMPSE), this combina-
tion of KAGE and GLIMPSE leads to higher accuracy than only running KAGE, showing 
the strength of imputation to improve genotyping accuracy.

Discussion
We find that KAGE has as high or higher accuracy than the other genotypers. PanGenie 
seems to perform similarly on indels, but performs slightly worse on SNPs. Malva per-
forms worse than all the other methods, which we believe makes sense considering that 
Malva does not have a good way of dealing with variants represented by non-unique 
kmers. While PanGenie has almost as good accuracy as KAGE, it requires more than 
20 times the run time and considerably more memory than KAGE on the experiments 
we have run. KAGE is able to genotype a full sample with 15x coverage in only about 12 
minutes using 16 compute cores, while all the other methods require several hours. This 
means that with KAGE, given pre-built indexes, it is now possible to genotype a sample 
quickly and easily on a standard laptop, such as in a clinical setting. The computational 
efficiency of KAGE also allows for a reduced energy footprint when large numbers of 
samples are to be genotyped. This is highly relevant given current plans of sequencing 
more than a million genomes in the coming years [13].

We confirm that performing full variant calling with a method such as GATK yields 
considerably higher accuracy than only genotyping a preset of specified variants. One 
should therefore be aware of this speed/accuracy tradeoff: genotyping a preset of known 
variants can be very efficient and give decent accuracy now that a lot of genomic vari-
ation is known. However, when the aim is to accurately discover as many variants in 
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a sample as possible, and runtime is not an issue, a variant caller like GATK or Deep-
Variant [14] would be the best option. We note that GATK has higher accuracy in our 
experiments than what has been found in the previous benchmarks presented in the 
Graphtyper [4] and Malva [8] papers, where Malva and Graphtyper are both shown to 
have as good as and in some cases better genotyping accuracy than GATK. We believe 
this might be because GATK has been significantly improved in the last few years since 
these papers were published [3]. It should be noted that GATK was used among other 
tools to create the GIAB truth dataset, which could potentially influence the measured 
performance of GATK in our experiments.

We are surprised to see that KAGE and PanGenie, which are completely alignment-
free, are able to achieve very close accuracy to Graphtyper, which first maps and aligns 
all reads using BWA-MEM and then locally realigns all reads to a sequence graph. We 
believe the reason must be that KAGE and PanGenie exploit population information in 
a more sophisticated way when computing the genotype likelihoods. We speculate that 
PanGenie should be able to achieve even better accuracy by using more known haplo-
types as input, but this would lead to very long run-time and high memory usage due to 
the quadratic complexity of the Hidden Markov Model used.

While KAGE’s fairly simple builtin “imputation” that uses only a single variant to help 
genotype another variant seems to work well, we observe higher accuracy when running 
the more sophisticated imputation tool GLIMPSE on the output from KAGE. We have 
developed KAGE so that it can optionally be run without the builtin imputation, so that 
any other imputation tool can be run on the output if the user wishes. We believe that 
making software modular like this is beneficial for the bioinformatics community, as it 
enables coupling of different software that are specialised in certain tasks. We believe 
the high accuracy achieved by KAGE and GLIMPSE together highlights the strength of 
using reference populations/pangenomes to improve genotyping performance, since in 
our experiments, this combination clearly outperforms all the other genotypers in run-
time, and all except GATK in accuracy.

While Malva’s strength is supposed to be a relatively low run-time, Malva is unfortu-
nately not optimised to run on multiple compute cores/threads. We believe Malva would 
be able to run considerably faster if it was able to utilise multiple compute cores in the 
genotyping step. We observe that Bayestyper differs from the other methods by having a 
lower recall and a higher precision, meaning that Bayestyper is likely more conservative 
when genotyping. We were not able to tune Bayestyper to provide higher recall at the 
cost of lower precision.

There are a few limitations of KAGE. First, KAGE is for now only able to genotype 
SNPs and short indels, and it is important to note that our benchmarks only compare 
the tools on SNPs and short indels, while several of the methods have been developed 
also for structural variation. We believe, however, that the ideas that KAGE are based 
on can be generalised to structural variant calling with short reads, which would be 
an interesting opportunity for further work. Second, KAGE relies on a relatively good 
database of known variation from a population. This is important to remember, as 
not all individuals are well represented in e.g. the 1000 Genomes Project, and gen-
otyping accuracy for such individuals is likely to be lower. The fact that more and 
more genotypers are using population information to improve accuracy highlights the 
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importance of good reference populations (pangenomes) that represent and cover all 
ancestries. In the same way, KAGE will not work on other species where pangenomes 
are not yet available. This does, however, also mean that we expect KAGE to poten-
tially perform even better in the future when more genetic variation data from more 
individuals will be available. Finally, KAGE and the other kmer-based methods are 
not able to use information from paired-end reads. We do not consider this a major 
problem, however, since single-end sequencing is very common and cheaper to per-
form than paired-end sequencing.

Conclusions
KAGE allows genotyping of SNPs and short indels by an alignment-free approach that 
is more than 20 times faster than existing methods, while offering competitive accuracy. 
We see KAGE as a highly timely contribution to the field, given the plans of large inter-
national consortia to sequence and genotype millions of genomes in the coming years.

Methods
Model description

The following describes the model and assumptions used in KAGE. We here assume 
all variants are biallelic variants, each with two alleles – a reference allele and an alter-
native allele. An individual can thus have the following three genotypes at a variant: 
Having the reference allele in both chromosomes (we refer to this as having the geno-
type 0/0), having the alternative allele in both chromosomes (1/1), or having the refer-
ence allele in one chromosome and the alternative allele in the other (0/1). Note that 
we are not concerned with the phasing of genotypes, so 1/0 and 0/1 are considered as 
being the same genotype.

Assuming a variant of interest i, we define P(Gi = g) as the probability of having the 
genotype g at this variant, where g is either 0/0, 0/1 or 1/1. We let Ki = (Kir ,Kia) be 
the observed kmer counts on the reference and variant allele of variant i. Every vari-
ant of interest i has a preselected helper variant h with kmer counts Kh . KAGE geno-
types a variant i by selecting the most likely genotype. This is done by calculating the 
posterior probabilities P(Gi|Ki,Kh):

In the above formula, P(Ki|Gi) is the likelihood of observing the kmer counts Ki on the 
variant of interest given a genotype Gi . The summation corresponds to a prior probabil-
ity of the genotype Gi given the observed counts on the helper variant and the popula-
tion structure, with the individual probabilities corresponding to the following:

•	 P(Gh) is the probability (over the population) of genotype Gh at the helper variant.
•	 P(Gi|Gh) is the probability (over the population) of having genotype Gi on the var-

iant of interest given genotype Gh at the helper variant

(1)P(Gi|Ki,Kh) = P(Ki|Gi)

Gh∈G

P(Gh)P(Gi|Gh)P(Kh|Gh)
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•	 P(Kh|Gh) is the likelihood of observing the kmer counts Kh given genotype Gh at 
the helper variant, similarly to P(Ki|Gi).

The probability distributions for P(Ki|Gi) and P(Kh|Gh) are modelled as mixtures of 
Poisson distributions, one Poisson distribution for each individual in the reference pop-
ulation that has the given genotype:

where gi(t) is the genotype of individual t at variant i. The rate �irt of each individual 
is proportional to the number of times the kmer sir occurs in that individual’s genome 
( dirt ) (plus an error term). This gives us:

We note that, implementation-wise, the above sum is calculated in a more efficient 
manner.

The corresponding probabilities P(Kia|Gi) , P(Khr |Gr) and P(Kha|Ga) are calculated 
using the same setup. The next sections describe further how this is implemented in 
KAGE, and we refer to the Additional material for more details.

KAGE implementation

Given the model described in the previous section, the following explains more in detail 
how KAGE works. KAGE roughly consists of three steps: indexing, kmer counting and 
genotyping.

Indexing: Creating a kmer‑to‑graph‑node index, choosing helper variants and finding 

expected kmer counts

All the following indexes are built once for a reference population and a set of variants 
one wants to genotype.

In order to genotype a variant, KAGE needs to know how many kmers in the read data 
set support each allele of the variant. For this, we build an index that enables lookup 
from any kmer to nodes (if any) in the graph the kmer maps to. Given a set of bi-allelic 
variants, kmers representing each allele are selected so that every allele of every vari-
ant is represented by at least one kmer. This is done by representing the variants as a 
genome graph (using the Python package obgraph), and for each variant considering all 
kmers covering the alleles of the variants. A set of kmers is chosen by trying to pick the 
kmers with lowest maximum “population frequency”, where population frequency is the 
expected number of times this kmer is found in the population (Fig. 6). The resulting 
kmers are stored in an index that enables direct lookup from any kmer to the nodes in 
the graph that the kmer covers.

For each variant of interest, we also want to find one other variant that correlates well 
with our variant of interest. This means that for a good helper variant, individuals tend 

P(Kir |Gi) =
∑

t:gi(t)=Gi

Pois(Kir; �irt)/|{t : gi(t) = Gi}|

P(Kir |Gi) =

n∑

t=1:gi(t)=Gi

Pois(Kir; �0(dirt + ǫ)/|{t : gi(t) = Gi}|



Page 11 of 15Grytten et al. Genome Biology          (2022) 23:209 	

to have the same genotype on the helper variant as on the variant of interest. Using such 
variants we can improve our prediction of the interest-genotype in cases where the 
count model for the variant of interest gives ambiguous results. In order to find good 
helper variants, we evaluate the metric 

∑
G∈G log πv(G,G) for the neighbouring 200 var-

iants to the variant of interest, and choose as helper the variant v with the highest score.
KAGE also needs a model for expected kmer counts for a “random” individual in the 

population. For each possible genotype at a variant, we simply count, for each variant 
allele, how many individuals with the given genotype in a reference population have 0, 1, 
2, 3, . . . and so on kmer counts on that allele and store this information in an index.

Counting kmers in a read data set

Given the kmer indexes described in the previous section, we can count how many times 
kmers from a read data set maps to nodes representing variant alleles in the graph. The 
result from this procedure is a count for each node in the graph, saying how many times 
kmers from the read data set mapped to that node.

Genotyping

KAGE genotypes a bi-allelic variant in the following way. Given kmer counts for each 
allele of the variant, the probabilities of observing those counts given the different pos-
sible genotypes are calculated using combinations of Poisson models. These models take 
into account how common it is to observe various kmer counts in a reference popula-
tion. Similar probabilities are also calculated for the helper variant. We can then calcu-
late the probability of getting the observed counts given each combination of genotypes 
on the two variants (9 combinations). When combining this with the prior probabilities 
of each genotype combination (calculated from the observed genotype-combinations in 
a reference population), we can use Bayes rule to calculate the probabilities of the dif-
ferent genotype combinations given the observed counts. In order to find the marginal 
probabilities for each genotype of the main variant, we simply sum over the probabili-
ties for each genotype on the helper variant. A more mathematical description is given 
previously under the section Model description, and the full details can be found in the 
additional material.

Benchmarking genotypers

We compared KAGE against the following other tools: GATK HaplotypeCaller version 
4.2.3.0, Graphtyper version 2.7.1 (using the genotype subcommand), Malva version 
1.3.1, PanGenie (commit ID da87f55cdccf31cd2c0008fd4848e33ba42021fc) and Bayes-
typer version 1.5. We also tried including Platypus in the comparison, but were not able 
to get the tool to work. Both Bayestyper and Malva use kmer-counts from kmc [15]. We 
ran kmc version 3.1.1 and included singleton kmers (using the flag -ci1) for Bayestyper 
and Malva, as this seemed to give the best results. For Bayestyper and Malva, we used 
the suggested k specified by the tool documentation, which was 51 for Bayestyper and 
31 (short kmers) and 45 (long kmers) for Malva. We ran KAGE and PanGenie with the 
recommended k=31. While GATK has the option to genotype a specified set of vari-
ants, we did not use this option. The reason is that even when this option is specified, 
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GATK will also call other alleles at the specified sites. We also experienced slower run 
time using this option. Thus, we chose to let GATK just do full variant calling, which is 
also what it is built for.

GATK and Graphtyper were run on reads mapped to GRCh38 using BWA-MEM [16] 
version 0.7.17-r1188. A Snakemake [17] pipeline for running all the experiments and 
a conda environment with all the necessary tools can be found at https://​github.​com/​
ivargr/​genot​yping-​bench​marki​ng. Reads were simulated using Graph Read Simulator 
(version 0.0.9) with substitution, deletion and insertion rate all set to 0.001. When using 
experimental data all reads were obtained from the GIAB repository and downsampled 
to the given coverage used in the experiment. Exact data URLs can be found in the con-
fig file of the Snakemake pipeline.

Variants genotyped in the experiments are from the 1000 Genomes Project v2a. 
Only variants with allele frequency >0.1% were used. Accuracy (precision and recall) 

Table 1  Accuracy on SNPs that can be represented with unique kmers vs. SNPs that cannot. The 
accuracy increases for variants that cannot be represented with unique kmers after implementing 
idea 1 (KAGE with model of kmer counts) and increases further when introducing idea 2 (KAGE full). 
The accuracy on SNPs that can be represented with unique kmers is always high, since these SNPs 
are easy to genotype

Method Accuracy on SNPs with  
non-unique kmers

Accuracy on SNPs with unique 
kmers

Naive KAGE 64 % 97 %

KAGE with model of kmer counts 77 % 97 %

KAGE (full) 92 % 99 %

Table 2  Overview of genotypers

Genotyper Alignment-free/alignment-based Uses prior haplotype-information

Malva Alignment-free No

Bayestyper Alignment-free No

PanGenie Alignment-free Yes

Graphtyper Alignment-based No

GATK Alignment-based No

Table 3  Results from genotyping HG002

Indels 
recall

Indels 
precision

Indels F1 SNPs 
recall

SNPs 
precision

SNPs F1 Runtime Memory 
usage

KAGE 0.582 0.908 0.709 0.929 0.981 0.955 12 min 18 GB

KAGE + 
GLIMPSE

0.594 0.894 0.713 0.948 0.99 0.968 1.4 hours 18 GB

PanGenie 0.561 0.926 0.699 0.905 0.979 0.941 3.9 hours 111 GB

Bayestyper 0.485 0.993 0.652 0.834 0.997 0.908 7.9 hours 30 GB

Malva 0.537 0.856 0.659 0.849 0.921 0.883 14.9 hours 50 GB

Graphtyper 0.568 0.941 0.708 0.909 0.993 0.949 5.1 hours 23 GB

GATK 0.898 0.96 0.928 0.966 0.981 0.973 9.0 hours 64 GB

https://github.com/ivargr/genotyping-benchmarking
https://github.com/ivargr/genotyping-benchmarking
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was measured using Happy version 0.3.14 against GIAB truth datasets [18]. Accuracy 
was measured within high-confidence regions using the Happy -f flag with the regions 
file that accompany each GIAB data set. We did not filter any variants on quality or 
other criteria before running Happy.

To create Table 1, we for simplicity only measure the accuracy on SNPs that exist in 
the truth dataset, and define a correctly genotyped variant as a variant with the same 
predicted genotype as the genotype of the variant in the truth data set. The percent-
ages are computed by dividing by the number of correctly genotyped variants with 
the total number of variants in the truth data set that have unique/non-unique kmers. 
A variant is defined as having unique kmers if, for both alleles of the variant, there 

Fig. 5  Accuracy and runtime of methods. Showing a the F1 score on SNPs and Indels combined and b 
the runtime of each of the methods when genotyping HG002 using read data with 15x coverage. All tools, 
except Malva, are run with 16 compute cores

Fig. 6  Illustration of kmer selection. Example of how 3-mers can be selected for the SNP T/G (grey box). 
KAGE uses a graph-representation of all variants, and considers all possible ways to pick kmers around the 
two alleles of a variant. Here, there are three possible ways to pick a set of kmers, illustrated by red, blue and 
purple boxes. In this case, the kmers marked in red will be preferred, as the blue kmers include TTA which is 
not unique (exists elsewhere in the graph), and the purple kmers similarly include the non-unique kmer GAT​
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exists at least one kmer that does not exist anywhere else in the genome graph that 
represents all the variants in the population.

Software implementation

KAGE was implemented using Python 3, and some run-time critical code (kmer 
lookup) were written in Cython. All code developed as part of this method has been 
modularized into four Python packages, each available through the PyPi package 
repository: kage-genotyper (main tool for genotyping), graph_kmer_index (building 
and using the kmer indexes necessary for the genotyping), kmer-mapper (counting 
kmers) and obgraph (building and working with the sequence graphs). KAGE with all 
dependencies can be installed directly by installing only the kage-genotyper package.
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