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Background
Meta-analysis for molecular epidemiology in large populations has seen great success 
in linking high-dimensional ‘omic features to complex health-related phenotypes. One 
example of this is in genome-wide association studies (GWAS [1]), where the appropri-
ate study scale, achieved by rigorous integration of multiple cohorts, has both facilitated 
reproducible discoveries (in the form of disease-associated loci [2–4]) and addressed 
confounding due to unobserved population structure [5]. The inflammatory bowel dis-
eases (IBD) represent a particular success story for GWAS meta-analysis [3, 4], and 
environmental and microbial contributors complementing the condition’s complex 
genetic architecture have been detailed by many individual studies [6–8]. However, in 
the absence of methods appropriate for large-scale microbial meta-analysis, the extent 
to which these findings reproduce across studies, or can be extended by increased joint 
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sample sizes, remains undetermined. Likewise, it is unclear whether reproducible popu-
lation structure in the microbiome, such as microbially driven IBD “subtypes,” exists to 
help explain the clinical heterogeneity of these conditions [9].

Meta-analysis of microbial community profiles presents unique quantitative challenges 
relative to other types of ‘omics data such as GWAS [10] or gene expression [11]. These 
include particularly strong batch, inter-individual, and inter-population differences, and 
statistical issues including zero inflation and compositionality [12, 13]. Consequently, 
methods to correct for cohort and batch effects from other ‘omics settings [14–17] are 
not directly appropriate. Two recent studies have suggested quantile normalization [18] 
and Bayesian Dirichlet-multinomial regression (BDMMA) [19] for microbial profiles, 
which are applicable to a limited subset of differential abundance tests and do not pro-
vide batch-corrected profiles. To date, there are no methods permitting the joint analysis 
of batch-corrected microbial profiles for most study designs.

IBD represents one of the best-studied, microbiome-linked inflammatory phenotypes 
to date which thus stands to benefit from such approaches [20, 21]. Among the inflam-
matory bowel diseases, Crohn’s disease (CD) and ulcerative colitis (UC) have been indi-
vidually linked with structural and functional changes in the gut microbiome in many 
individual studies [21]. Each of CD and UC can itself be highly heterogeneous within 
the IBD population, however, and diversity in disease-associated gut microbial features 
has not been consistently associated with factors including disease subtype, progression, 
or treatment response [7, 9, 22, 23]. Of note, two meta-analysis studies included IBD as 
one of several phenotypes [24, 25]. These studies were not IBD-specific, did not have 
access to appropriate normalization techniques, nor took the aforementioned factors 
into account. The complexity of microbial involvement in IBD, and the presence of sub-
stantial unexplained variation in the manifestation of its symptoms, makes it particularly 
appropriate for application of meta-analysis techniques.

In this work, we introduce and validate a statistical framework for population-scale 
meta-analysis of microbiome data, and apply it to the largest collection to date of ten 
published 16S rRNA gene sequencing-based IBD studies (Table 1) to identify consistent 
disease associations and population structure. We found both previously documented 
and novel microbial links to the disease, with further differentiation among subtypes, 
phenotypic severity, and treatment effects. We further confidently conclude that there 
are no apparent, reproducible microbiome-based subtypes within CD or UC, which are 
instead a population structure gradient from less to more “pro-inflammatory” ecologi-
cal configurations. Our work thus represents one of the first large-scale efforts to assess 
consistency in gut microbial findings for IBD and provides methodology supporting 
future microbial community meta-analyses.

Results
Integrating 10 studies of the IBD stool and mucosal microbiomes

We collected and uniformly processed ten published 16S studies of the IBD gut 
microbiome (Table 1, Fig. 1a, Additional file 1: Figs. S1-S4, Additional file 2: Supple-
mental Notes, Additional file  3: Table  S1) totaling 2179 subjects and 5151 samples. 
These studies range widely in terms of cohort designs and population characteris-
tics, including recent-onset and established disease patients, cross-sectional and 



Page 3 of 31Ma et al. Genome Biology          (2022) 23:208 	

longitudinal sampling, pediatric and adult populations, diseases (CD and UC), treated 
and treatment-naive patients, biopsy and stool samples, and inclusion of healthy/non-
IBD controls. Covariates were manually curated to ensure consistency across studies 
(“Methods”). Major factors available from all or most studies included demographics 
(age/sex/race), biogeography, disease location and/or extent, antibiotic usage, immu-
nosuppression, and steroid and/or 5-ASA usage.

Table 1  Ten uniformly processed 16S rRNA gene sequencing studies of the IBD mucosal/stool 
microbiomes. For longitudinal cohorts, numbers in parentheses indicate baseline sample size. For 
age, mean and standard error (parenthesized) are shown. Additional covariates are summarized in 
Additional file 3: Table S1

Study Brief 
description

N subject N sample Phenotype(s) Age Gender Sample 
type(s)

PROTECT 
[23]

Longitudinal 
cohort of 
newly diag-
nosed UC

405 1212 (539) UC 405 12.71 (3.29) Male 52%/
Female 48%

Biopsy 22%/
Stool 78%

RISK [7] Pediatric 
cohort of 
treatment-
naïve CD

631 882 CD 430/Con-
trol 201

12.16 (3.22) Male 59%/
Female 41%

Biopsy 72%/
Stool 28%

Herfarth [26] Densely 
(daily) 
sampled 
longitudinal 
cohort

31 860 (31) CD 19/Control 
12

36.03 (14.12) Male 35%/
Female 
58%/Miss-
ing 6%

Stool

Jansson-
Lamendella 
[22]

Longitudinal 
follow-up 
with fecal 
samples

137 683 (137) CD 49/UC 60/ 
Control 28

Male 42%/
Female 58%

Stool

Pouchitis 
[27]

Patients 
recruited 
underwent 
IPAA for 
treatment 
of UC or 
FAP prior to 
enrollment.

353 577 CD 42/UC 266/
Control 45

46.19 (13.58) Male 52%/
Female 48%

Biopsy

CS-PRISM 
[28]

Cross-
sectional 
cohort 
nested in 
PRISM

397 467 CD 215/UC 
144/Control 38

41.68 (15.22) Male 47%/
Female 53%

Biopsy 29%/
Stool 71%

HMP2 [9] Large cohort 
of newly 
diagnosed 
IBD with 
multi-‘omics 
measure-
ment.

81 177 (162) CD 37/UC 22/
Control 22

29.76 (19.63) Male 51%/
Female 49%

Biopsy

MucosalIBD 
[29]

Pediatric 
cohort with 
Paneth cell 
phenotypes

83 132 CD 36/Control 
47

12.93 (3.65) Male 58%/
Female 42%

Biopsy

LSS-PRISM 
[30]

Longitudi-
nal cohort 
nested in 
PRISM.

18 88 (19) CD 12/UC 6 30.37 (10.52) Male 39%/
Female 61%

Stool

BIDMC-FMT 
[31]

FMT Trial 
design

8 16 CD 8 38.38 (12.73) Male 62%/
Female 38%

Stool
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Using this joint dataset and upon uniform bioinformatics processing (“Methods”), we 
first assessed the factors that corresponded to overall variation in microbiome structure, 
which included disease status, sample type (biopsy versus stool), and dominant phyla 
(Bacteroidetes and Firmicutes, Fig.  1b). Cohort effects prior to batch correction and 
meta-analysis were also significant. Microbiome differences associated with disease were 
notable even without normalization. However, this can be misleading due to the con-
founding of cohort structure between studies, such as the differentiation between RISK 
(a predominantly mucosal study of CD) and PROTECT (a predominantly stool study of 
UC). Inter-individual differences largely independent of population or disease, such as 
Bacteroidetes versus Firmicutes dominance, were also universal among studies and sam-
ple types as expected [9, 32]. Many of these factors were of comparable effect size, both 
visually and as quantified below, emphasizing the need for covariate-adjusted statistical 
modelling to delineate the biological (disease, treatment) and technical (cohort, batch) 
effects associated with individual taxa throughout the cohorts (Additional file  1: Figs. 
S1-S4, Additional file 2: Supplemental Notes).

A statistical framework for meta‑analysis of microbial community profiles

We developed a collection of novel methods for meta-analysis of environmental expo-
sures, phenotypes, and population structures across microbial community studies, 
specifically accounting for technical batch effects and interstudy differences (“Meth-
ods,” Fig.  1a). Jointly named MMUPHin (Meta-Analysis Methods with a Uniform 
Pipeline for Heterogeneity in microbiome studies), our methods consist of three main 
components: batch and study effect correction (MMUPHin_Correct), meta-analyzed 

Fig. 1  A method for large-scale microbial community meta-analysis and its application to inflammatory 
bowel disease. a We developed a novel statistical framework, MMUPHin, allowing joint normalization and 
meta-analysis of large microbial community profile collections with heterogeneous and complex designs 
(multiple covariates, longitudinal samples, etc.). We applied it to a collection of 10 inflammatory bowel 
disease studies comprising 2179 subjects and 5151 total samples (Table 1). We uniformly processed the 
associated sequence data and harmonized metadata across cohorts. Microbial taxonomic profiles were then 
corrected for batch and study effects before downstream analyses for omnibus and per-feature association 
with disease phenotypes and unsupervised population structure discovery. b MDS ordination of all microbial 
profiles (Bray-Curtis dissimilarity) before batch correction visualize the strongest associations with gut 
microbial composition, including disease, sample type (biopsy or stool), cohort (visualized separately for 
larger and smaller studies), and dominant phyla
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differential abundance testing (MMUPHin_MetaDA), and population structure dis-
covery (MMUPHin_Discrete and MMUPHin_Continuous). First, MMUPHin_Correct 
performs batch correction of microbial abundance data, by extending methods from the 
gene expression literature (ComBat [15]) to zero-inflated microbiome sequencing pro-
files. Based on linear modelling, the method can differentiate between technical effects 
(batch, study) versus covariates of biological interest (exposure, phenotype). Second, 
MMUPHin_MetaDA performs meta-analytical testing of per-feature (taxon, gene, or 
pathway) differential abundance effects, by combining well-validated data transforma-
tion and linear modelling combinations for microbial community profiles [33] with fixed 
and random effect modelling [34]. Lastly, MMUPHin_Discrete and MMUPHin_Con-
tinuous perform unsupervised discovery and validation of both discrete and continuous 
population structures in microbial community data (Additional file  1: Fig. S5). This is 
generalized from our previous approaches in cancer transcriptional subtyping [35]. Our 
methods are available as an R package [36] through Bioconductor [37].

Comprehensive validation of MMUPHin via realistic synthetic data

We validated MMUPHin both in comparison to existing methods and through exten-
sive simulation studies (Fig. 2), with simulated realistic microbial abundance profiles at 
different data dimensionality, biological/technical batch signal strength, and discrete/
continuous population structures (“Methods,” Additional file 1: Figs. S6-S10, Additional 
file  4: Table  S2). These simulations were designed to be complementary to our appli-
cation to and assessment of the IBD microbiome as described below, since they allow 
analysis of a controlled ground truth of outcome-associated and null microbial elements 
that is lacking in uncontrolled population settings. As detailed in “Methods,” our simula-
tion approach (a) generates realistic microbial profiles, so that the evaluation findings 
are generalizable to the appropriate target populations, and (b) is neutral to the evalu-
ated methods (ComBat, quantile normalization, MMUPHin, etc.).

MMUPHin_Correct successfully reduced variability attributable to technical effects 
in simulated microbial profiles, as first quantified by the PERMANOVA R2 statistic 
[38] (Fig. 2a, b, Additional file 1: Fig. S6). This was true both in terms of reducing the 
overall microbial variability attributable to technical artifacts and in terms of the ratio 
of “biological” versus technical variability (Fig. 2a). ComBat correction [15], suited for 
gene expression data, was capable of reducing batch effects to a lesser degree, but also 
tended to reduce desirable “biological” variation in the process, likely due to noise intro-
duced by it changing many zero counts to non-zero values. Previously proposed tech-
niques for microbial community data, namely quantile normalization [18] and BDMMA 
[19], are only appropriate for differential abundance analysis and do not provide batch-
normalized profiles, thus precluding PERMANOVA batch effect quantification; their 
per-feature testing performance is evaluated together with MMUPHin_MetaDA instead. 
MMUPHin_Correct thus provides batch-corrected microbial community profiles that 
retain biologically meaningful variation more than (or not even possible using) existing 
methods. Subsequently, for differential abundance testing, MMUPHin_MetaDA suc-
cessfully corrected for false associations when batch/cohort effects were confounded 
with variables of interest, which is a common concern for ‘omics meta-analysis [39], 
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while quantile normalization [18] and BDMMA [19] had either inflated or overly con-
servative false positive rates (Fig. 2c, d, Additional file 1: Figs. S7-S8).

We also validated MMUPHin’s support for unsupervised population structure dis-
covery, in addition to these “supervised” differential abundance and statistical asso-
ciation tests. In microbial communities, valid, generalizable population structure can 
manifest as either discretely clustered subtypes [40] or as continuously variable gradi-
ents of community configurations [41], but methods for discovery are particularly sus-
ceptible to false positives in the presence of technical artifacts [32, 41]. To this end, for 

Fig. 2  Effectiveness of batch correction, association meta-analysis, and unsupervised population structure 
discovery methods. All evaluations use simulated microbial community profiles as detailed in “Methods.” Left 
panels summarize representative subsets of results (full set of simulation cases presented in Additional file 4: 
Table S2 and results in Additional file 1: Figs. S6-S9), and right panels show examples of batch-influenced data 
pre- and post-correction. a, b MMUPHin_Correct is effective for covariate-adjusted batch effect reduction 
while maintaining the effect of positive control variables. For panel a, PERMANOVA R2 statistics summarize 
the effect of batch and positive/negative control variables on the overall microbial composition, before and 
after batch correction. Results shown correspond to the subset of details in Additional file 1: Fig. S6 with 
number of samples per batch = 500, number of batches = 4, and number of features = 1000 with 5% spiked 
with associations. c, d Batch correction and meta-analysis with MMUPHin_MetaDA reduces false positives 
when an exposure is spuriously associated with microbiome features due to an imbalanced distribution 
between batches. Corresponds to Additional file 1: Fig. S7 with number of samples per batch = 500, number 
of features = 1000 with 10% spiked associations, and case proportion difference between batches = 0.8. 
Evaluations of BDMMA generate low FPRs due to the zero-inflated nature of simulated microbial abundances, 
and are included only in Additional file 1: Fig. S7. e, f Batch correction improves correct identification of the 
true underlying number of clusters during discrete population structure discovery. Success rate is measured 
as the percentage of selecting the true number of clusters (before and after correction) across simulation 
iterations. Corresponds to Additional file 1: Fig. S8 with number of samples per batch = 500 and number 
of batches = 2. g, h Continuous structure discovery with MMUPHin_Continuous accurately recovers 
microbiome compositional gradients in a simulated population. We compare identified continuous structure 
loading with true scores with Pearson correlations. Corresponds to Additional file 1: Fig. S9 with number of 
batches = 6
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discrete structures, MMUPHin_Discrete a) evaluates the existence of discrete clus-
ters within individual microbiome studies and b) validates the reproducibility of such 
structures among studies meta-analytically (Fig. 2e, f, Additional file 1: Fig. S9), by uti-
lizing established clustering strength evaluation metrics [42]. For continuous struc-
tures, MMUPHin_Continuous identifies major axes of variation that explain the largest 
amount of heterogeneity among microbial profiles that are also consistent across stud-
ies. This is generalized from single study principal component analysis (PCA [43]) to 
multiple studies by constructing a network of correlated top PC loadings [35] (Fig. 2g, h, 
Additional file 1: Fig. S10). As a result, MMUPHin was able to successfully identify dis-
crete clusters (i.e., microbiome “types”) when present, as well as significantly consistent 
continuous patterns of microbiome variation that recur among populations (Additional 
file 2: Supplemental Notes).

Meta‑analysis of the IBD microbiome

Given these validations of MMUPHin’s accuracy in simulated data, we next applied 
it to the 10-study, 4,789-sample IBD gut amplicon profile meta-analysis introduced 
above (Fig.  3). MMUPHin_Correct successfully reduced the effects both of differ-
ences among studies, and of batches within studies (study effect correction model-
ling disease and sample type as covariates, see “Methods”), although these remained 
among the strongest source of variation among taxonomic profiles as quantified 
by PERMANOVA R2 (Fig.  3a, “Methods,” Additional file  5: Table  S3). Among bio-
logical variables, sample type (biopsy/stool), biopsy location (multiple, conditional 

Fig. 3  Meta-analytic omnibus and per-feature testing reveal novel and previously documented IBD 
associations. a Omnibus testing (PERMANOVA on Bray-Curtis dissimilarities with stratification and covariate 
control where appropriate, see “Methods” and Additional file 5: Table S3) identified between-subject 
differences as the greatest source of microbiome variability, with IBD phenotype, disease (CD/UC), and 
sample type (stool/biopsy) as additional main sources of biological variation. MMUPHin successfully reduced 
between-cohort and within-study batch effects, although these technical sources also remained significant 
contributors to variability. b Individual taxa significantly associated with IBD phenotypes or treatments 
after meta-analysis. Taxa are arranged by family-level median effect size of IBD vs. control for disease results 
and that of antibiotic usage for treatment results. Effect sizes are aggregated regression coefficients (across 
studies with random effects modelling) on arcsin square root-transformed relative abundances. Detailed 
model information in “Methods” and Additional file 5: Table S3. Individual study results in Additional file 6: 
Table S4
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on biopsy samples), disease status (IBD/control), and disease types (CD/UC, con-
ditional on IBD) consistently had the strongest effect on the microbiome among 
studies. Several relationships between study design and phenotypic effects were 
apparent. Batches had a particularly strong effect in CS-PRISM and RISK, for exam-
ple, where biopsy and stool samples were also perfectly separated by batch. Treat-
ment exposures all had small effects on microbiome structure within studies, which 
typically reached statistical significance only when combined by meta-analysis; anti-
biotics were an exception with slightly larger effects. Montreal classification did not 
generally correspond with significant variation, while age (at sample collection as 
stratified below and above 18, and at diagnosis by Montreal age classification [44]) 
had small but significant effects. The effects of gender and race were not significant. 
Lastly, for longitudinal studies, relatively stable differences between subjects over 
time were large and significant, consistently for both longer-interval (HMP2) as well 
as densely sampled cohorts (Herfarth, daily samples), in agreement with previous 
individual studies’ observations [9, 23].

We identified individual taxonomic features consistently associated with disease and 
treatment variables (Fig. 3b, Additional file 6: Table S4), with meta-analysis multivari-
ate differential abundance analysis (MMUPHin_MetaDA), adjusting for common demo-
graphics (age, gender, race) and further stratifying for sample type and disease when 
appropriate (“Methods,” Additional file  5: Table  S3). At a very high level, differential 
abundance patterns between CD and control microbiomes were consistent with, and 
often more severe than contrasts between UC and control, confirming with increased 
resolution previous observations that CD patients tend to have more aggravated dys-
biosis than UC patients [9]. As expected, our meta-analysis confirms many of the taxa 
associated with IBD reported by previous individual studies (Fig. 3b, detailed in Addi-
tional file 2: Supplemental Notes); they also agreed with important features as identified 
through other types of predictive, rather than hypothesis testing, machine learning mod-
els (Additional file 1: Fig. S11 [45]. These findings agree with the emerging hypotheses of 
pro-inflammatory aerotolerant clades (e.g., Escherichia and other Enterobacteriaceae) 
forming a positive feedback loop in the gut during inflammation, often of oral origin 
[7] (e.g., Fusobacterium, Dialister, Veillonella), and depleting the gut’s typical fastidious 
anaerobe population as a result (primarily Ruminococcaceae, Lachnospiraceae, and other 
Clostridia and Firmicutes clades) [9].

We also identified two taxa not previously associated with IBD, both of modest effect 
sizes and likely newly detected by the meta-analysis’ increased power. The genus Acine-
tobacter was enriched in CD, and Turicibacter was depleted. Turicibater in particular 
is poorly represented in reference sequence databases, with only nine genomes for one 
species (Turicibacter sanguinis) currently in the NCBI genome database; this makes it 
easy to overlook in shotgun metagenomic profiles relative to amplicon sequencing. The 
genus Acinetobacter, conversely, is quite well characterized due to its role in antimicro-
bial resistant infections [46], and it was previously linked specifically to the primary scle-
rosing cholangitis phenotype in UC [47], although without follow-up to our knowledge. 
Turicibacter is overall less characterized both in isolation and with respect to disease, 
although our findings and others’ suggest it might be inflammation-sensitive when pre-
sent; it was one of many clades increased in mice during CD8+ T cell depletion [48] and 
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reduced in a homozygous TNF deletion [49]. As the strains of Acinetobacter implicated 
in gut inflammation are unlikely to be those responsible for, e.g., nosocomial infections, 
further investigation of both clades using more detailed data or IBD-specific isolates is 
warranted.

Among treatment variables (samples or time points during which subjects were 
receiving antibiotics, immunosuppressants, steroids, and/or 5-ASAs), antibiotics had 
the strongest effects on individual taxa, as well as the greatest number of significantly 
associated taxa (Fig. 3b). These associations are also broadly in agreement with previous 
observations for microbiome responses to antibiotics in IBD or generally, e.g., the deple-
tion of Faecalibacterium, Ruminococcus, and Bacteroides in patients treated with antibi-
otics, and the enrichment of (often stereotypically resistant) taxa such as Streptococcus, 
Acinetobacter, and the Enterobacteriaceae, with differential responses to the treatment 
groups speaking to both administration considerations and their impact on host versus 
microbial community bioactivities (Additional file 2: Supplemental Notes).

Subsets of IBD-linked taxa were additionally associated with the diseases’ phenotypic 
severity (Fig. 4a, Additional file 7: Table S5). Montreal classification [44] was used as a 
proxy for disease severity, including Behavior categories for Crohn’s disease (B1 non-
stricturing, non-penetrating, B2 stricturing, non-penetrating, B3 stricturing and pen-
etrating) and Extent for ulcerative colitis (E1 limited to rectum, E2 up to descending 
colon, E3 pancolitis). We tested for features differentially abundant in the more severe 
phenotypes when compared against the least severe category (B1 CD and E1 UC, “Meth-
ods”). Among statistically significant results, many extended those identified above as 
overall IBD associated (Fig.  3b), such as the depletion of Faecalibacterium in B3 CD 
and Roseburia in B2 CD, as well as the enrichment of Enterobacteriaceae in E3 UC. In 
most cases, microbial dysbiosis was also additionally aggravated from the moderate to 
the most extreme disease manifestations; such differences were statistically significant 
(“Methods”) in, for example, the progressive depletion of Bacteroides in CD and UC, as 
well as the enrichment of Enterobacteriaceae in UC. This meta-analysis is uniquely pow-
ered to detect these subtle differences, which aid in shedding light on the microbiome’s 
response to progressive inflammation and disease subtypes. Pancolitis corresponds with 
a unique microbial configuration distinct from regional colitis and not generally detect-
able in smaller studies [6], for example, while more severe CD induces essentially a more 
extreme form of the same dysbiosis observed in less severe forms of the disease.

Additionally, diseases (CD and UC) and their corresponding dysbioses also inter-
acted distinctly with the microbiome under different treatment regimes and in differ-
ent biogeographical environments (mucosa vs. stool, Fig. 4b, Additional file 8: Table S6). 
Interaction effects, in the statistical sense, were defined as a main exposure (IBD or 
treatment) having differential effects on taxon abundance with respect to either sam-
ple type (biopsy/stool) or diseases (CD/UC); they were identified via moderator meta-
analysis models (“Methods”). Overall, we found elevated effects of both CD (relative to 
controls) and antibiotic treatment in stool as compared to biopsy-based measurements 
of the microbiome (Additional file 8: Table S6). An example of this is Dehalobacterium, 
with significantly greater depletion in CD stool relative to biopsies (Fig. 4b). Dehalobac-
terium, as with Turicibacter above, is underrepresented in reference sequence databases, 
better-detected by amplicon sequencing, and thus not a common microbial signature 
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of IBD. It has been linked to CD in at least one existing 16S-based stool study [50]. In 
contrast, several UC-specific microbial disruptions were more prominent at the mucosa 
(i.e., in biopsies, Additional file 8: Table S6). Coupled with the severity-linked differences 
above, this suggests CD-induced changes in the entire gut microbial ecosystem largely as 
a consequence of inflammation, with UC-induced dysbioses both more local and more 
specific to disease and treatment regime. Additional results include effect of steroids 
on the Enterobacteriaceae, which tended to be more abundant in CD patients receiving 
steroids, but less abundant in UC recipients (Fig. 4b, Additional file 8: Table S6, Addi-
tional file 2: Supplemental Notes).

Lastly, we also conducted a more direct comparison of IBD microbiome associations 
found after applying each of the three batch correction methods (quantile normaliza-
tion, ComBat, and MMUPHin_Correct) to our meta-analysis dataset. This employed a 
simpler post-correction testing strategy, as previously recommended [18], thus making 
the results more directly comparable but likely less biologically relevant than those dis-
cussed previously (Fig. 3). MMUPHin_Correct-processed abundance profiles still iden-
tified more IBD-associated genera compared to ComBat and quantile normalization, 
while also showing the best agreement with both other methods (Additional file 1: Fig. 

Fig. 4  IBD-associated taxa are aggravated in more severe disease; disease biogeography and CD/UC 
differentially affect some taxa with respect to disease and treatment. a Statistically significant genera from 
meta-analytically synthesized differential abundance effects among severity of CD and UC phenotypes 
as quantified by Montreal classification. The difference between the most severe phenotype with the 
least severe one (B3 vs. B1 for CD, E3 vs. E1 for UC) was in most cases more aggravated than that of the 
intermediate phenotype. Many of the identified features overlap with those associated with IBD vs. control 
differences, suggesting a consistent gradient of severity effects on the microbiome. Individual study results 
in Additional file 7: Table S5. b Genus Dehalobacterium as an example in which a taxon is uniquely affected in 
the stool microbiome during CD and not at the mucosa. Likewise, family Enterobacteriaceae as an example 
in which steroid treatment corresponds with enrichment of the clade in CD samples, but depletion in UC. 
In all panels, effect sizes are aggregated regression coefficients on arcsin square root-transformed relative 
abundances. Full sets of statistically significant interactions, with individual study results, are in Additional 
file 8: Table S6
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S12). This provides empirical evidence for MMUPHin’s effectiveness in real-world set-
tings, in addition to its accuracy as quantified by our simulation studies.

Consistent IBD microbial population structure discovered by unsupervised analysis

The existence of subtypes within gut microbial communities has been a major open 
question in human microbiome studies, and it is of particular importance within IBD as 
a potential explanation for heterogeneity in disease etiology and treatment response [6, 
9]. To systematically characterize population structure in the IBD gut microbiome that 
was reproducible among studies, we performed both discrete (MMUPHin_Discrete) and 
continuous (MMUPHin_Continuous) structure discovery on the 10 cohorts using our 
meta-analysis framework. To identify potential discrete community types (i.e., clusters), 
we performed clustering analysis within each cohort’s IBD patient population and evalu-
ated the clustering strength via prediction strength (MMUPHin_Discrete, “Methods”). 
We found no evidence to support discrete clustering structure within individual cohorts, 
nor were we able to reproduce each cohort’s clustering results externally (Fig. 5a). This 
lack of discrete structure was consistent when we further stratified samples to either 
CD or UC populations (Additional file 1: Fig. S13), or extended to additional dissimi-
larity metric and clustering strength measurements (Additional file 1: Fig. S13, “Meth-
ods”). Our observation that the IBD gut microbiome cannot be well characterized by 
discrete clusters is thus consistent with previous findings on gut microbial heterogeneity 
for healthy populations [41] and suggests that, at the level powered by this study, such 
microbiome subtypes are not clearly responsible for clinical heterogeneity.

Conversely, we identified two consistent, continuously varying gradients of micro-
bial community variation in the IBD microbiome (Fig. 5b–d, Additional file 1: Fig. S14). 
These gradients represent patterns of microbes that occur with greater or lesser abun-
dance in tandem, and which covary across subjects in a population; they were identified 
as principal component (PC) vectors that recur among different cohorts (MMUPHin_
Continuous, see “Methods”) [35]. Briefly, we used the four largest IBD cohorts (CS-
PRISM, Pouchitis, PROTECT, and RISK) as training datasets to identify two clusters 
of consistent PCs (Fig. 5b), which were confirmed with sensitivity analysis (Additional 
file 1: Fig. S15) and validated in the remaining cohorts (Additional file 1: Fig. S16). The 
consensus loadings (i.e., within-cluster average) representing these two clusters (Fig. 5c, 
Additional file 1: Fig. S14, Additional file 9: Table S7) were used to assign continuously 
varying scores to the IBD population that capture gradient changes in the microbiome 
that occurred consistently within IBD, across diseases, sample types, and cohorts. This 
disease-linked “type” of microbiome variation corresponded roughly to severity or 
extent of inflammation, as detailed below.

In particular, while the second continuous population structure captured the Firmi-
cutes-Bacteroidetes tradeoff present in most gut microbiome studies (Additional file 1: 
Fig. S14) [9, 32, 41], the first continuous score was IBD-specific and corresponded 
roughly to more extreme disease-associated dysbiosis in CD and UC populations 
(Fig.  5d). This is evidenced by the taxa with highest weights in the scores’ consensus 
loading vector (Fig. 5c), which included taxa differentially abundant between IBD and 
control populations (Fig.  3). The score was consistent both within CD and UC while 
also further differentiating IBD, non-IBD control, and healthy populations (Fig.  5d, 
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Additional file  1: Fig. S17), even though it was identified unsupervisedly only from 
diseased subsets. The composition of the score and its population structure are also 
consistent with our recent definition of dysbiotic gut microbiome configurations cor-
responding with multi-‘omic perturbations during IBD activity [9]. Together with the 
supervised meta-analysis results above, these unsupervised population structure find-
ings confirm that there are no detectable discrete subtypes of the gut microbiome in IBD 
even among ~5000 combined samples, while showing a single continuously variable gra-
dient of microbiome changes reproducibly present during more dysbiotic diseases.

Fig. 5  Unsupervised population structure discovery finds no evidence of microbiome-based subtypes in the 
IBD gut, but a reproducible gradient of continuously variable dysbiosis in disease. a No support was detected 
for discrete microbiome subtypes (clusters) within the IBD microbiome, neither within cohort nor when 
evaluated among studies (red bars) using prediction strength [42]. This remained true during stratification 
within CD and UC, and for additional dissimilarity metric/clustering strength measurements (Additional 
file 1: Fig. S12). b Conversely, two reproducible, continuously variable patterns of microbiome population 
structure were identified using groups of similar principal components (“Methods”) [35]. These patterns 
were consistent within and between cohorts, disease types, and sample types, as well as under different 
edge strength cutoffs (Additional file 1: Fig. S14), and their consensus loadings were reproducible among 
cohorts (Additional file 1: Fig. S15). c Top 20 genera with highest absolute loadings for the disease-associated 
dysbiosis score corresponding to the first cluster in b. Many of these taxa were also IBD-associated (Fig. 3b). d 
Distribution of the dysbiosis pattern across CD, UC, non-IBD control, and healthy populations. Although it was 
defined in an unsupervised way solely within the IBD population, across which the pattern is highly variable, 
it also differentiates well between IBD and control populations (Additional file 1: Fig. S16)



Page 13 of 31Ma et al. Genome Biology          (2022) 23:208 	

Discussion
Microbiome studies in general, and the IBD gut microbiome in particular, stand to 
benefit from meta-analysis, as have other multiply sampled conditions such as colo-
rectal cancer [51, 52]. This is a major hurdle in establishing reproducibility of clini-
cally relevant disease biomarkers, i.e., ecological and microbiological changes during 
disease that are reproducible across populations. Both the findings and methodology 
presented in this work are thus of interest, allowing MMUPHin to be validated and 
to leverage increased sample sizes from combined studies. However, all microbial 
community meta-analyses should be approached with caution, since in many cases 
unwanted sources of technical variation between studies (i.e., batch effects) are so large 
as to potentially mask biological signals even after correction [53–55] (Additional file 2: 
Supplemental Notes). Reducing interstudy variation in microbial community profiles 
is challenging relative to other ‘omics data types due to (1) the extreme heterogeneity 
of microbes within most communities (exacerbating both technical and biological dif-
ferences), and (2) feature zero inflation arising from both biological and technical rea-
sons [13, 56]. MMUPHin alleviates this problem by taking care to incorporate batch/
study effects in each of its components, not just during batch effect normalization 
(MMUPHin_Correct): mixed effects modelling was adopted for differential abundance 
meta-analysis to allow for residual per-study effects (MMUPHin_MetaDA); PC network 
clustering prioritizes consistent biological signals over batch effects (MMUPHin_Con-
tinuous). Thus despite these challenges, MMUPHin was able to meta-analyze amplicon 
profiles in this study both to associate microbial shifts with disease outcome, to associ-
ate them with treatment-specific differences, and to identify a single pattern of typical 
microbial variation within IBD. While previous efforts have developed IBD dysbiosis 
scores by contrasting patients with control groups [7, 9], this pattern of microbial vari-
ation was present specifically within IBD patients (both CD and UC), and in agreement 
with supervised methods, captured several classes of microbial functional responses in 
the gut (Additional file 2: Supplemental Notes).

We consider this study based on 16S rRNA gene sequencing to be a proof of concept, 
able to achieve unprecedented power due to the number of amplicon profiled samples 
available, but with greater precision possible in future work using, e.g., metagenomic 
and other ‘omics technologies. This also enabled comparison of responses in the stool 
versus mucosal microbiomes, the latter of which are not amenable to metagenomic 
profiling from biopsies; these were in overall good agreement, but the few areas of sig-
nificantly differential responses to inflammation are likely of particular immunological 
interest. The large sample and population sizes also provide some confidence in ruling 
out discrete, microbially driven population subtypes as an explanation for CD and UCs’ 
clinical heterogeneity. Instead, the work identified a single consistent axis of gradient 
microbial change corresponding to increasing departures from “normal” microbiome 
configurations [7, 9, 57]. This pattern of consistent microbial dysbiosis can continue to 
be explored in further work on its functional, immunological, and clinical consequences. 
Overall, this study represents one of the first large-scale, methodologically appropriate, 
targeted meta-analysis of the IBD microbiome, and the corresponding methodology and 
its implementation are freely available for future meta-analyses of human-associated and 
environmental microbial populations.
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Conclusions
We provide a novel framework for microbial community meta-analysis and apply it to 
the first large-scale integration of over 5100 amplicon profiles of the stool and mucosal 
microbiomes in IBD. This identified a significantly reproducible gradient in the gut 
microbiome indicative of increasing dysbiosis in subsets of patients. Our results sup-
ported many of the taxonomic associations previously ascribed to IBD (e.g., Faecali-
bacterium, Ruminococcus, Enterobacteriaceae) while uncovering new associations 
(Turicibacter, Acinetobacter) not confidently associated with inflammation by other 
populations or data types. Almost all effects were exhibited similarly using either stool 
or mucosal profiling, with a small number of exceptions showing significant differen-
tiation (e.g., Dehalobacterium). Novel disease-treatment response interactions were 
observed (e.g., steroids on Enterobacteriaceae). The study also showed no evidence of 
additional population structure, such as microbiome-driven discrete disease subtypes, 
within CD or UC. The meta-analysis framework developed for the study, MMUPHin, 
has been extensively evaluated and its performance for batch effect removal, supervised 
meta-analysis of exposures and covariates, and unsupervised population structure dis-
covery validated on a variety of simulated microbial community types. It is extensible 
to integration of microbial community taxonomic or functional profiles from other data 
types (e.g., metagenomic sequencing), environments, or health conditions.

Methods
MMUPHin: a uniform statistical framework for meta‑analysis of microbial community 

studies

We developed MMUPHin (Meta-analysis Methods with a Uniform Pipeline for Het-
erogeneity in microbiome studies) as a framework for meta-analysis of microbial com-
munity studies using taxonomic, functional, or other abundance profiles. It includes 
components for batch effect adjustment, differential abundance testing, and unsuper-
vised discrete and continuous population structure discovery.

Batch adjustment: MMUPHin_Correct

For microbial community batch correction, we extended the batch correction method 
developed for gene expression data in ComBat [15] with an additional component to 
allow for the zero-inflated nature of microbial abundance data. In our model, sample 
read count Y was modelled with respect to both batch variable and biologically relevant 
covariate(s) X:

where i indicates batch/study, j indicates sample, and p indicates feature. γip and δip are 
batch-specific location and scale parameters. σp is a feature-specific standardization fac-
tor. βp are covariate-specific coefficients, and ϵijp is an independent error term follow-
ing a standard normal distribution. Iijp is a binary (0, 1) zero-count indicator, to allow 
for zero inflation of features. As in ComBat, γip and δip are modelled with normal and 
inverse-gamma priors, respectively. Hyperparameters are estimated with empirical 

Yijp = exp βpXij
′ + σp γip + δipǫijp × Iijp
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Bayes estimators as in ComBat [15]. The posterior means, ˆγ ∗
ip

 and ˆδ∗ip , along with 
standard frequentist estimates β̂p and σ̂p are used to provide batch-corrected count data:

Per-sample feature counts are then re-normalized to keep sample read depth 
unchanged post-correction. In practice, the user provides sample microbial abun-
dance table (Y), batch/study information, and optionally any other covariates X that 
are potentially confounded with batch but encode important biological information. 
MMUPHin outputs an adjusted profile ∼Y  that is corrected for the effect of batches 
but retains the effects of X (if provided).

With this model specification, we expect MMUPHin_Correct to often reduce, 
rather than fully correct batch differences. This is due to two considerations. First, 
MMUPHin_Correct focuses on correcting non-zero abundance batch effects, and 
does not change features’ presence/absence across batches. “Correcting” a feature’s 
batch-specific presence to absence is inappropriate, as substantial non-zero read 
counts indicate biological presence rather than technical artifacts. Imputing non-
zero abundance for batch-specific absence is technically challenging in our linear 
modelling framework, as the per-sample/feature noise ϵijp cannot be reliably inferred 
for inflated zero values. Second, the empirical Bayes batch effect estimates ˆγip∗ and 
ˆσip∗ are shrunken from their frequentist counterparts, which provides regulariza-

tion for high-dimensional parameters as in ComBat and avoids “overfitting” to batch 
differences in small sample sizes. MMUPHin_Correct’s design is thus intentionally 
conservative, by correcting batch differences that can be confidently inferred, and 
maintaining those that are not (which thus also avoids eliminating non-batch, bio-
logical signal).

Lastly, we note that MMUPHin_Correct does not explicitly model any particular 
sources of batch effects, such as primers, extraction protocols, and amplicon regions 
for 16S rRNA sequenced profiles. However, it will nevertheless attempt to correct for 
variability caused by differences in these protocols, to the extent that they manifest 
as batch/study differences. As examples: if two studies adopted different extraction 
protocols, potential study differences will be captured with MMUPHin_Correct and 
normalized. In contrast, if samples within the same study were sequenced using dif-
ferent amplicon regions, and this difference in protocol was not flagged as a “batch” 
variable, MMUPHin_Correct will not register the potential differences.

Meta‑analysis differential abundance testing: MMUPHin_MetaDA

For meta-analytical differential abundance testing, after batch correction, MMUPHin_
MetaDA first performs multivariate linear regression within individual studies using 
previously validated data transformation and modelling combinations appropriate for 
microbial community profiles (MaAsLin2 [33]). This yields study-specific, per-feature 
differential abundance effect estimations β̂ip , where i indicates study and p indicates fea-
ture. These are then aggregated into meta-analysis effect size with fixed/random effects 
modelling as implemented in the metafor R package [34]:

∼
Yijp = exp

{

Yijp − β̂pXij
′ − ˆγ ∗

ipσ̂p

ˆδ∗ip
+ β̂pXij

′

}

× Iijp
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βp is the overall differential abundance effect of feature p. ϵip is per-study measurement 
error, and eip is study-specific random effects term (not present in fixed-effect models).

Overall, for running MMUPHin_MetaDA, the user provides a microbial community 
profile, study design (batch) information, the main exposure variable of interest, and 
optional additional covariates. If any meta-analyzed studies include repeated meas-
ures (e.g., longitudinal designs), then random covariates can also be provided and will 
be modelled for such studies. MMUPHin_MetaDA then performs MaAsLin2 regres-
sion modelling within each study and aggregates effect sizes of the exposure variable 
β̂ip across studies using the resulting random/fixed effects model. The estimated overall 
effect, β̂p , is reported as the overall differential abundance effect for feature p.

We note that MMUPHin_MetaDA always accounts for the batch variable in its super-
vised differential abundance testing. This agrees with the field’s consensus on the most 
appropriate way to address batch effects during supervised testing [15, 58]. Through 
simulation evaluations, the performance (FPR, power) of MMUPHin_MetaDA is robust 
with or without upstream adjustment with MMUPHin_Correct (Additional file 1: Fig. 
S8). Nevertheless, pre-correcting the data with MMUPHin_Correct can still be helpful. 
This is both consistent with similar applications of batch correction in other molecular 
data types [15], and because MMUPHin_Correct accounts for both location and scale 
batch effects, while the linear modeling in MMUPHin_MetaDA only accounts for the 
former. Regardless, correcting the data with MMUPHin_Correct is most useful in analy-
sis tasks where accounting for batch effects is otherwise not straightforward, such as for 
visualizing the data or during unsupervised population structure discovery.

Unsupervised discrete structure discovery: MMUPHin_Discrete

For unsupervised discrete (i.e., cluster) structure discovery of a single study, again after 
batch correction, MMUPHin_Discrete uses average prediction strength [42], an estab-
lished clustering strength metric, to measure the existence of reproducible clusters 
among meta-analyzed datasets. Briefly, for each individual dataset, the metric randomly 
and iteratively divides samples into “training” and “validation” subsets. In each iteration, 
clustering is first performed on the training samples, across a range of cluster numbers k, 
yielding (for a specific k) training sample clusters Ak1, Ak2, …, Akk. Note that Ak1, Ak2, …, 
Akk jointly forms a partition of the testing sample indices. The same clustering analysis 
is then performed on the validation samples, and the resulting partition of sample space 
provides classification membership potentially different from clustering memberships 
Ak1, Ak2, …, Akk. Prediction strength for kclusters is defined as

i.e., the minimum (across validation clusters) proportion of same-cluster sample pairs 
also being classified as the same group by training samples. nkl =  ∣ Akl∣, or the number of 
test samples in the lth cluster.

Average prediction strength is the average of prediction strengths across randomi-
zation iterations. Intuitively, it characterizes the degree of agreement between the 

β̂ip = βp + ǫip + eip

ps(k) = min
1≤l≤k

1

nkl
(

nkl − 1
)

∑

j≠j�∈Ak l

I
{

validation samples j and j� are classified to the same group according to training samples
}
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clustering structures in randomly partitioned validation and training subsets; if k is 
appropriately describing the true number of discrete clusters in the dataset, then average 
prediction strength should be close to one (training and validation samples agree most 
of the time).

We additionally generalized this metric to meta-analysis settings, where we aimed to 
quantify the agreement of clustering structures between studies. In the meta-analytical 
setting, generalized prediction strength for cluster number k in study i with validation 
study i′ is

where Akil indicates the lth cluster membership in study i, when cluster number is speci-
fied as k; nkil =  ∣ Akil∣. The average generalized prediction in study i for cluster number k 
is then defined as the average of gpsii′(k) across all i′ ≠ i, i.e., all validation studies (instead 
of iterations of randomized partitions). Similar to the single study prediction strength, 
it describes the generalizability of clustering structure in study i in external validation 
studies.

Unsupervised continuous structure discovery: MMUPHin_Continuous

We extended our previous work in cancer gene expression subtyping [35] to perform 
unsupervised continuous structure discovery in microbial community profiles. Comple-
mentary to discrete cluster discovery, the goal is to identify strong feature covariation 
signals (gradients) that are reproducible across studies. This is carried out by perform-
ing principal component analysis individually in microbiome studies and constructing a 
network of correlated PCA loading vectors, to identify loadings that are consistently pre-
sent across studies. In detail, given a collection of training microbial abundance datasets, 
our method takes the following steps (visualized in Additional file 1: Fig. S5):

(1)	 For each dataset i, PCA is performed on normalized and arcsin square root-trans-
formed microbial abundance data. Given a user-specified threshold on variance 
explained, we record its top PC loading vectors, wi1,wi2, . . . ,wiJi , where Ji is the 
smallest number of top loading vectors that jointly explain percentage of variability 
in the dataset past a customizable threshold 0 < thresholdv < 1 (default to 80%).

(2)	 For two PC loadings from different datasets wij and wi ′ j′, similarity is quantified 
with the absolute value of cosine coefficient [59] ∣ cos  < wij, wi ′ j′ > ∣. This yields a 
network of PC loading vectors associated by weighted edges wij and wi ′ j′, retaining 
edges only if their weight surpasses a customizable similarity threshold (∣ cos  < wij, 
wi ′ j′ >  ∣  > thresholds, 0 < thresholds<1).

(a)	 This threshold is default to 0.7, which is close to the theoretical guarantee 
that all size-three clusters will by definition have positive cosine coefficients 
between all PC pairs. In practice, we recommend the user to vary this param-
eter as needed to evaluate robustness and interpretability.

(3)	 In the resulting network, we perform cluster detection based on modularity score 
[60, 61] to identify densely connected modules of PCs. Each module by definition 

gpsii�(k) = min
1≤l≤k

1

nki;l
(

nki�l − 1
)

∑

j≠j�∈Aki;l

I
{

validation samples i�j and i�j� are classified to the same group according to study i
}
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consists of PCs from different datasets that are similar to each other—whether or 
not they occur in the same order or with similar percent variance explained—and 
which thus represent strong feature covariation signals that are recurrent in studies.

(a)	 Clustering by modularity score avoids large clusters with few intracluster 
edges and prioritizes smaller clusters that are more densely connected (Addi-
tional file 1: Fig. S18, Additional file 2: Supplemental Notes). This is relevant for 
MMUPHin because the more densely connected a cluster is, the better consist-
ency the PCs in the cluster have, which provides evidence for recurring biologi-
cal signals across the spanned datasets.

(4)	 For a module k containing PC set Mk, its consensus vector Wk is calculated as the 

average of sign-corrected loading vectors in Mk, i.e., Wk :=

∑

wij∈Mk

∼
wij

|Mk |
 . Note that 

the average is taken not over the original loading vectors wij, but rather their sign-
corrected versions 

∼
wij . Specifically, the signs of each wij in Mk are corrected so that 

all loading vectors have positive cosine coefficients.

(a)	 We note that, given a specific cosine threshold for constructing edges of the 
network, it is not guaranteed that such a correction is always possible. That is, 
with all possible sign corrections, there are still certain intracluster PCs that 
have negative cosine coefficients. Such cases are unlikely to happen in empiri-
cal evaluations and are further reduced by our modularity clustering approach 
(Additional file 1: Fig. S18). We discuss this issue in Additional file 2: Supple-
mental Notes.

(b)	 In the case where such issues occur, a higher cosine threshold is recommended. 
With a sufficiently high cosine threshold, clusters are guaranteed to be consist-
ent (all PCs will have positive cosines), but also be smaller and thus are less 
interpretable in terms of consistent biological signals across studies.

(5)	 The module-wide consensus vectors Wk represent strong, mutually independent, 
and reproducible covariation signals across the microbial datasets; they are used to 
identify continuously varying gradients in microbial abundance profiles that repre-
sent reproducible population structures. Specifically, given a sample with normal-
ized and transformed microbial abundance measurements x, its continuous score 
for module k is defined as x′Wk, as in regular PCA.

(6)	 If additional studies are available, the reproducibility of each Wk can be further 
examined by correlating Wk with the top PC loadings in each such validation study. 
For each additional study, Wk is considered to be validated in that dataset if its 
absolute cosine coefficient with at least one of the dataset’s top PCs surpasses the 
coefficient similarity cutoff thresholds; the number of top PCs to consider in the val-
idation dataset loadings is determined with the same cutoff thresholdv.

Simulation validation of MMUPHin

We performed extensive simulation studies (Fig. 2, Additional file 1: Figs. S6-S10, Addi-
tional file  4: Table  S2) to validate the performance of each component of MMUPHin 
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(MMUPHin_Correct, MMUPHin_MetaDA, MMUPHin_Discrete, and MMUPHin_
Continuous). In all cases, these employed realistic microbial abundance profiles gener-
ated using SparseDOSSA (http://​hutte​nhower.​sph.​harva​rd.​edu/​spars​edossa). This is a 
model of microbial community structure using a set of zero-inflated log-normal distri-
butions fit to selected training data, in this case drawn from the IBD gut microbiome 
[6]. Controlled microbial associations with simulated covariates can then (optionally) be 
spiked in. Note that although the assumed null distributions in MMUPHin and Sparse-
DOSSA are the same (zero-inflated log normal), the models of effects for batch and bio-
logical variables are substantially different: MMUPHin assumes exponentiated effects, 
while SparseDOSSA assumes re-standardized linear effects.

Specifically, SparseDOSSA models null microbial feature abundances using a zero-
inflated log-normal distribution:

This is the same initial distributional assumption as the MMUPHin batch correction 
model, when there are no batch or covariates effects. However, for spiked-in associations 
with metadata (batch, biological variables, etc.), SparseDOSSA uses a different model. 
Given a simulated, pre-spiking-in feature count vector Yp with mean μp

Y and standard 
error σp

Y, as well as a metadata variable vector X with mean μX and standard error σX, 
the post-spiked-in feature count is set to:

where φ is a configurable spike-in strength parameter. By this definition, microbial fea-
tures post-spike-in have the same mean and approximately the same variance as before, 
the only difference being the added association with the metadata variable(s) used. 
This is to ensure the counts of the modified feature are not dominated by the values of 
the target covariate, but instead distributed similarly to real data. The SparseDOSSA 
association model thus differs from MMUPHin’s model in two substantial ways: (i) 
MMUPHin’s associations are defined within the exponentiated component and are thus 
better described as a multiplicative effect, whereas SparseDOSSA’s effects are directly 
applied on untransformed data, and (ii) SparseDOSSA additionally ensures realistic data 
generation with the re-standardization procedure.

Thus, the only component of the SparseDOSSA model that requires fitting to training 
data is the aforementioned zero-inflated log-normal null distribution. In our analysis, 
this was always PRISM [6], while other parameters were specified across a wide range of 
combinations to simulate different application scenarios. These include the effect sizes of 
the associated batch and biological variables (i.e., the φ parameter), number of batches, 
sample sizes, and dimensionality (both the total number of features and the percentage 
of features randomized to be associated with batch/biological variables). For each com-
bination of simulation parameters, we performed 20 random replications (i.e., running 
simulation/evaluation with the same parameters but different random seeds). Additional 
file 4: Table S2 presents the full list of parameter combinations.

Yip ∼ LogN
(

µp, σ
2
p

)

× Bernoulli
(

πp

)

∼
Yip =
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1+ φ

{
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[
(

Xi − µX
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Evaluating batch adjustment

For evaluation of MMUPHin’s batch effect adjustment component, MMUPHin_Correct, 
we simulated metadata that included batch (with varying total batch numbers 2, 4, 6, 8), 
a binary positive control (simulated “biological” covariate), continuous positive control 
(“biological”), and negative control (binary, and guaranteed to be non-associated with 
microbial features) variables. Microbial abundance data was simulated to be associated 
with the batch and the two positive control variables at varying effect sizes (1, 2, 5, 10 for 
batch variable and fixed at 10 for positive control variables), but not with the negative 
control variable. We additionally varied the number of samples per batch (20 to simulate 
multiple-batches in a single study scenario, 100 to simulate meta-analysis with moderate 
sized studies and 500 to simulate large meta-analysis), total number of microbial fea-
tures (n=200 and 1000), as well as the percentage of features associated with metadata 
(5%, 10%, and 20%) (Additional file 4: Table S2).

Performance of batch correction methods was quantified by omnibus associations 
(PERMANOVA R2) between the simulated microbial abundance data with the batch 
and positive control variables, before and after batch correction. For ComBat [15] and 
our method, batch correction was performed with both positive control variables and 
the negative control variable as covariates. MMUPHin_Correct successfully reduced the 
confounding batch effect, but retained the effect of positive control variables, and did 
not inflate the effect of negative control variable (Fig. 2a, Additional file 1: Fig. S6).

Evaluating meta‑analytic differential abundance testing

We evaluated false positive rates (FPR) for meta-analytic feature association testing, spe-
cifically the null case in which there are no associations between microbial features and 
covariates, but false associations can arise in the presence of batch effects with unbal-
anced distribution of covariate values across studies (Fig. 2b). For simulation, we gen-
erated a binary covariate unevenly distributed between two “studies” at varying levels 
of disparity (Additional file 4: Table S2). Microbial abundance data was simulated to be 
associated only with the two studies and not with the covariate (i.e., study confounded 
null data), with varying strengths of batch effect (from 0 to 10). The number of sam-
ples per batch varied between 100 and 500 to, again, simulate moderate- and large-sized 
meta-analysis. Lastly, we varied a total number of microbial features and the percentage 
of features associated with metadata as above.

FPRs were calculated as the percentage of simulated microbial features with nomi-
nal p-values < 0.05 for associations with the exposure variable. Four data normalization 
and analysis regimes were evaluated (Fig. 2c, Additional file 1: Fig. S6): (a) naive MaAs-
Lin2 model on the study effect confounded null data (without explicitly modelling the 
batches), (b) the quantile normalization procedure, paired with two-tailed Wilcoxon 
tests, as proposed in [18], (c) BDMMA as proposed in [19], with the default 10,000 total 
MCMC sampling and 5000 burn-in, (d) the complete MMUPHin meta-analysis model 
for the batch-corrected data as described above (MMUPHin_Correct + MMUPHin_
MetaDA). Note that due to its computational cost we were only able to evaluate the 
Dirichlet-multinomial regression model on a subset of parameter combinations, namely 
number of samples per batch = 100, number of features = 200, and percent of associated 
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microbes = 5%. These parameters roughly agree with those used in the simulation analy-
sis in the method’s original publication [19].

We also evaluated the computational costs of quantile normalization, BDMMA, and 
MMUPHin (Additional file 1: Fig. S7). For this, the same subset of 20 replications (batch 
effect 0, exposure imbalance 0, number of samples per batch 100, and number of fea-
tures 200) were ran through the three methods under the same computation environ-
ment (single core Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz). The computational 
cost of BDMMA is prohibitive when compared to MMUPHin and quantile normaliza-
tion, requiring ~5 total CPU hours to finish on the very moderately sized data (200 total 
samples by 200 features).

Evaluating unsupervised discrete structure discovery

To simulate microbial abundance data with known discrete clustering structure, we 
again used the simulation model above, with microbial feature associations added both 
with a discrete “batch” variable and a discrete clustering variable, at varying number of 
batches (2, 4, 6, 8), number of clusters (3, 4, 5, 6), and effect size of association (0 to 10 
for batch, fixed at 10 for cluster). For the evaluation of MMUPHin’s unsupervised meth-
ods (both here for MMUPHin_Discrete and during continuous population structure dis-
covery below for MMUPHin_Continuous), we fixed the number of samples per batch at 
500, the number of total features at 1000, and the percent of associated features at 20%. 
These were guided by the fact that the underlying unsupervised methods (clustering, 
PCA) require larger sample sizes for good performance even without batch confound-
ing, and are generally only practical with higher feature dimensions (Additional file 4: 
Table S2).

Performance of clustering was evaluated as the percentage of replicates in which the 
right number of synthetically defined underlying clusters was identified using prediction 
strength, across technical replicates for a fixed combination of simulation parameters. 
That is, the number of clusters within a simulation was identified as that which maxi-
mized prediction strength. This was compared to the “truth” (i.e., the known simulation 
parameter) and counted as a success only if the two agreed. The percentage of success 
for a given parameter combination across the 20 random replications was used as the 
evaluation metric for model performance. We compared the performance of cluster-
ing before and after MMUPHin_Correct (Fig. 2e, Additional file 9: Table S7). Note that 
batch correction is modelled only using the batch variable and specifically not including 
the cluster variable as a covariate in the batch correction model above, as the underlying 
cluster structure is unknown in non-synthetic unsupervised analyses settings.

Evaluating unsupervised continuous structure discovery

To simulate microbial abundance data with known continuously variable population 
structure, we spiked in feature associations with both a simulated batch covariate (4, 
6, 8) and a continuously varying gradient (uniformly distributed between −1 and 1), at 
varying number of batches and effect size of both associations (as above). The number 
of samples per batch, total number of microbial features, and the percentage of features 
associated were fixed at the same values as above (Additional file 4: Table S2).
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Performance of continuous structure discovery analysis with MMUPHin_Continu-
ous was evaluated as the Spearman correlation between the known simulated gradi-
ent score and the strongest continuously valued population structure as identified by 
MMUPHin’s continuous structure discovery method (above). We again compared the 
performance of continuous score discovery on the batch confounded and batch-cor-
rected data (Fig. 2g, Additional file 1: Fig. S10). Note that, as above, batch correction 
is again modelled only using the batch variable and does not have any access to the 
synthetic continuous gradient, as any underlying continuous population structure is 
unknown during unsupervised analyses settings.

Collection and uniform processing of ten IBD microbiome studies employing 16S rRNA 

gene sequencing

Study inclusion and raw sequence data

We curated 10 published 16S rRNA gene sequencing (abbreviated 16S) gut micro-
biome studies of IBD for meta-analysis (Table 1, Additional file 3: Table S1). Demul-
tiplexed raw sequences were either downloaded from EBI (Jansson-Lamendella and 
Herfarth) or available locally as previously generated (other eight studies). Metadata 
were obtained either directly from the sequence repository/manuscript (Herfarth, 
Jasson-Lamendella, HMP2, MucosalIBD, PROTECT, RISK), or from collaborators 
(BIDMC-FMT, CS-PRISM, LSS-PRISM, Pouchitis). This resulted in a total of 5151 
samples and 2179 subjects available prior to processing and quality control.

Metadata curation

We manually curated subject- and sample-specific metadata across studies to ensure 
consistency. Variables collected and curated include:

•	 Disease (CD, UC, control), universally available.
•	 Type of controls (non-IBD, healthy). Control information was available directly 

for CS-PRISM, Jansson-Lamendella, and Pouchitis, inferred from study design 
described in manuscript for Herfarth, HMP2, MucosalIBD, and RISK (all non-IBD 
controls), and not applicable for BIDMC-FMT, LSS-PRISM, and PROTECT (only 
has IBD subjects).

•	 Sample type (biopsy, stool), universally available.
•	 Body site of biopsy sample collection (ileum, colon, rectum), with more detailed 

classifications recorded separately in case of need. Mappings for the relevant data-
sets are:

° CS-PRISM: terminal ileum, neo-ileum, pouch are aggregated as ileum; 
cecum, ascending/left-sided colon, transverse colon, descending/right-sided 
colon, and sigmoid colon were aggregated as colon; rectum classification was 
kept unchanged.
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° HMP2: ileum classification kept unchanged; cecum, ascending/right-sided 
colon, transverse colon, descending/left-sided colon, and sigmoid colon were 
aggregated as colon.
° MucosalIBD: all terminal ileum samples, aggregated to ileum.
° Pouchitis: terminal ileum, pouch, pre-pouch ileum aggregated as ileum; sig-
moid colon aggregated to colon.
° PROTECT: all rectum samples, classification kept unchanged.
° RISK: terminal ileum was aggregated to ileum; rectum kept unchanged.

•	 Montreal classifications:

° Location for CDs (L1, L2, L3, and possible combinations), available for 
BIDMC-FMT, CS-PRISM, Herfarth, Jansson-Lamendella, LSS-PRISM, and 
Pouchitis.
° Behavior for CDs (B1, B2, and B3), available for CS-PRISM, Herfath, Jans-
son-Lamendella, LSS-PRISM, Pouchitis, and RISK.
° Extent for UCs (E1, E2, and E3), available for CS-PRISM, Jansson-Lamen-
della, LSS-PRISM, Pouchitis, and PROTECT.

•	 Age at sample collection (in years), available for BIDMC-FMT, CS-PRISM, Her-
farth, HMP2, LSS-PRISM, MucosalIBD, Pouchitis, PROTECT, RISK.

•	 Age at diagnosis (in years). Directly available for CS-PRISM, HMP2, LSS-PRISM, 
and Pouchitis, inferred as baseline age for PROTECT and RISK as these were new-
onset cohorts.

•	 Race (White, African American, Asian / Pacific Islander, Native American, more 
than one race, others). Directly available for CS-PRISM, Herfarth, HMP2, PRO-
TECT, and RISK, inferred from manuscript cohort description for Jansson-
Lamendella (all Caucasian cohort).

•	 Gender (male/female). Available for BIDMC-FMT, CS-PRISM, Herfarth, HMP2, 
Jansson-Lamendella, LSS-PRISM, MucosalIBD, Pouchitis, PROTECT,

•	 Treatment variables, including antibiotics, immunosuppressants, steroids, and 
5-ASA. These variables were encoded as yes/no to indicate, approximately, cur-
rently receiving them at the time of sampling. Additional information such as 
specific medication or delivery method was recorded separately if available in 
case of need. We note the potentially confounding difference in studies’ defini-
tions of treatment: for Pouchitis and PROTECT authors defined antibiotics as 
receiving the treatment within the past month (30 days for Pouchitis, 27 days for 
PROTECT), whereas for CS-PRISM, HMP2, LSS-PRISM, and RISK such determi-
nation was not possible (antibiotics “yes” was defined as “currently taking”). Like-
wise, we had no additional information to determine the time extent for the other 
three treatments, beyond that according to metadata/publication, patients were 
“currently taking” the treatment at sample collection.

For a comprehensive list of curation mapping schema, please refer to our metadata 
curation repository: https://​github.​com/​bioba​kery/​ibd_​meta_​analy​sis.

https://github.com/biobakery/ibd_meta_analysis
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16S amplicon sequence bioinformatics and taxonomic profiling

Sequences were processed, per cohort, with the published, standardized bioBakery 
workflow [62] using the UPARSE protocol [63] (version v9.0.2132-64bit). For all studies, 
demultiplexed sequences were truncated at 200bp max length and filtered by maximum 
expected error of one [63]. Operational taxonomic units (OTUs) were clustered at 97% 
identity and aligned using USEARCH with 97% identity to the Greengenes database 97% 
reference OTUs (version 13.8) [64] for taxonomy assignment. The resulting Greengenes 
identifiers for OTUs were used as basis for matching features (taxa) among cohorts.

Quality control

Across samples, a median of 81.51% reads / sample passed quality control filtering and 
were successfully assigned to OTUs with Greengenes identifiers (Additional file 1: Fig. 
S1). These 8921 raw OTUs aggregated to a total of 1122 genera prior to quality con-
trol. We retained taxa that exceeded 5e−5 relative abundance with at least 10% preva-
lent in at least one study; this criterion generally removes spurious OTU assignments 
while retaining rare organisms if confidently present in at least one study. Lastly, we also 
removed low read depth samples with less than 3000 total sequences, which retained 
78.34–100% samples per cohorts (Additional file 3: Table S1). The final resulting taxo-
nomic profile, used for all further analysis, aggregated into 249 total genera spanning 
4789 samples (OTUs unclassified under a particular taxonomy level were aggregated as 
“unclassified” feature under that taxon, e.g., “Enterbacteriaceae unclassified” accumu-
lates all OTUs’ abundances under the family that could not be classified at the genus 
level.

Data availability

Quality-controlled (truncated and filtered) sequences, Greengenes mapped OTU count 
profiles, and curated sample metadata are available at the Human Microbial Bioactives 
Resource Portal (http://​portal.​micro​biome-​bioac​tives.​org).

Applying MMUPHin to IBD gut microbiome meta‑analysis

For the resulting collection of microbiome studies, batch and study effects were per-
formed using MMUPHin_Correct on the genus level feature abundance profiles. Batch 
(i.e., sequencing run) effect correction was first performed within individual studies 
(when batch/plate information was available, applicable to BIDMC-FMT, CS-PRISM, 
LSS-PRISM, MucosalIBD, and RISK). Microbial abundance profiles across all studies 
were then jointly corrected for study effects, while modelling disease status (IBD or con-
trol), disease (CD or UC), and sample type (biopsy or stool) as covariates. Reduction of 
batch and study effects was evaluated by PERMANOVA R2 (Fig. 3a).

Sensitivity analysis for amplicon sequence variants (ASV) microbial abundance profiles

We additionally evaluated the impact of OTU- versus ASV-based bioinformatics pipe-
lines on our method and meta-analysis results (Additional file 1: Fig. S18). Specifically, we 
processed two studies representing extremes of size, BIDMC-FMT (n=16, two technical 
batches) and RISK (n=882, fifteen batches) with the dada2 method [65], and performed 
batch correction and evaluation on the generated ASV profiles. MMUPHin_Correct was 

http://portal.microbiome-bioactives.org
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still capable of reducing batch effects in either study’s ASV-based abundance profiles, 
showcasing that our method is applicable to such new bioinformatics protocols (Addi-
tional file 1: Fig. S18a). Additionally, when aggregated at the genus level, OTU- and ASV-
based abundance profiles had limited differences, suggesting that the choice of sequence 
variant units has limited impact on our meta-analysis results, as previously indicated 
[66] (Additional file 1: Fig. S18b).

Association analyses

Omnibus testing of microbial composition associations

We used PERMANOVA tests (2000 permutations) as implemented in the R package 
vegan [38] using Bray-Curtis dissimilarities for all omnibus association tests of overall 
microbial community structure with covariates (Fig. 3a). Where appropriate, R2s were 
calculated conditioning on the necessary covariates; specifically, CD/UC Montreal 
classifications were conditional on CD/UC samples respectively, treatment was condi-
tional on IBD status, biopsy location was conditional on a sample being a biopsy, and 
all covariates were conditional on being non-missing. Otherwise, variables were tested 
marginally (that is, each as the sole variable in the model). Importantly, to account for 
repeated measures within subjects for longitudinal studies, we adopted the blocked per-
mutation strategy as in [9], where per-sample measurements (sample type, biopsy loca-
tion, treatment) were permuted within subjects, and per-subject measurements (disease, 
demographics) were permuted along with subjects (but within cohorts, relevant for the 
all-cohort evaluation). For a full list of the model and permutation strategies that this 
resulted in for our analysis, please refer to Additional file 5: Table S3. Finally, per-vari-
able p-values were adjusted with Benjamini-Hochberg false discovery rate control on a 
per-study basis.

Per‑feature meta‑analysis differential abundance testing

To identify microbial features individually significantly associated with one or more 
covariates, we applied MMUPHin’s differential abundance testing model (MMUPHin_
MetaDA) as described above. Cohorts were first stratified by sample type (biopsy or 
stool) and, where appropriate, diseases (CD or UC) prior to model fitting. Arcsin square 
root-transformed genus level taxon abundances were tested for covariate associations 
in individual cohort strata with multivariate linear modelling (linear random intercept 
model adopted for longitudinal studies). Covariates used for adjustment include age, 
gender, and race for disease variables, and additionally disease status for treatment vari-
ables. Effect sizes across cohort strata were aggregated with a random effects model with 
restricted maximum likelihood estimation [34]. P-values were FDR adjusted across fea-
tures for each variable. For the full list of models adopted as well as cohort stratification 
strategy, please refer to Additional file 5: Table S3. Figure 3b visualizes the aggregated 
meta-analysis effects; for individual study results, refer to Additional file 6: Table S4.

To relate these real data results to our simulation evaluation, the real-world data char-
acteristics best correspond with the simulated scenario with eight batches and four 
thousand samples in total (versus ten real studies and 4789 samples post filtering), 200 
microbial features (249 real genera), and 10% spiked features at batch effect size 10, 
which yielded ~10% PERMANOVA R2 for batch effect and 3% R2 for binary exposure 
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(10.98% for studies and 3.48% for sample type observed in real data) (Additional file 1: 
Fig. S6 panels, second row, last column).

Testing for phenotypic severity within CD and UC patients

Meta-analytical testing of features associated with CD behavior and UC extent classi-
fications were performed with similar models (Additional file 5: Table S3). Specifically, 
within each study’s CD patients, the tests for contrasts B2 versus B1 and B3 versus B1 
are performed by

The two β1coefficients, once aggregated with meta-analysis, were reported as the effect 
sizes shown in Fig. 4a, along with their FDR corrected q-values (adjusted across features 
for each test).

β2 in this model corresponds to the effect of B3 in addition to the overall contrasts 
between B23 versus B1. The meta-analysis aggregated p-values of these effects were 
reported as the differentiation between the most severe and “medium” severity pheno-
types (vertical bars indicating significance in Fig. 4a). Note that FDR adjustment of this 
effect was performed across the subset of features with at least either B2 versus B1 or B3 
versus B1 effect significant (i.e., the subset of features visualized in Fig. 4a). Equivalent 
models were adopted for contrasts between extent categories of UC patients. Individual 
study results for the aggregated effects in Fig. 4a are in Additional file 7: Table S5.

Interaction effects testing

To test for interaction effects with sample type and diseases, we fit meta-analysis mod-
erator models [34] on the per cohort strata effects:

The moderator effects β1p correspond to the interaction effect between the exposure 
under evaluation (disease, treatment, etc.) with the moderator variable. Figure 4b visu-
alizes the two example features, Dehalobacterium and Enterobacteriacea; all significant 
interactions as well as individual study effects are in Additional file 8: Table S6.

Population structure analyses

Discrete structure discovery

We performed discrete subtype discovery (i.e., “enterotyping” [67]) in IBD, CD, and UC 
populations across studies (longitudinal studies subsetted to baseline samples), using 
MMUPHin’s discrete structure discovery component (MMUPHin_Discrete). Only stud-
ies with at least 33 samples were considered for clustering analysis, as this was the sam-
ple size in the original enterotype paper [32]. Specifically, clustering was performed on 
Bray-Curtis dissimilarity by the partition-around-medoid method as implemented in R 

Relative abundance ∼ β0 + β1I
{

subject is B2
}

+ additional covariates (subsetted to B1, B2 CDs)
Relative abundance ∼ β0 + β1I

{

subject is B3
}

+ additional covariates (subsetted to B1, B3 CDs)

Relative abundance ∼ β0+β1I
{

subject is B2 or B3
}

+β2I
{

subject is B3
}

+additional covariates

β̂ip = β0p + β1pI
{

cohort strata i is biopsy
}

+ ǫip + eip
β̂ip = β0p + β1pI

{

cohort strata i is CD
}

+ ǫip + eip
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package cluster; the same method was adopted in previous enterotyping efforts includ-
ing the original enterotype paper [32, 41]. Clustering was evaluated with prediction 
strength and validated externally with MMUPHin’s generalized prediction strength as 
described above. Across studies, we found no evidence to support a particular number 
of clusters within IBD, CD, or UC populations (Fig. 5a, Additional file 1: Fig. S12), sug-
gesting that the IBD microbiome does not have discrete clusters.

We additionally extended our clustering evaluation analysis to other dissimilarity met-
rics (Jaccard, root Jensen-Shannon divergence) and clustering strength measurements 
(Calinski-Harabasz index, average silhouette width), which were also explored in previ-
ous efforts [41]. Importantly, the original enterotype paper adopted root Jensen-Shan-
non divergence and Calinski-Harabasz index for cluster discovery. Across combinations 
of these additional dissimilarities and clustering strength metrics, we also found no evi-
dence to support discrete clusters (Additional file 1: Fig. S12).

Continuous structure discovery

Continuous structure discovery was performed with MMUPHin’s corresponding com-
ponent (MMUPHin_Continuous). The four largest studies (CS-PRISM, Pouchitis, PRO-
TECT, RISK) were subsetted to baseline samples (only relevant for PROTECT), stratified 
by CD/UC and biopsy/stool sample type, and used as the training sets for MMUPHin_
Continuous. The minimum variance explained threshold (thresholdv) was set to default 
(80%), but we varied the PC similarity (evaluated by absolute cosine coefficient) cutoff 
thresholds between 0.5 and 0.8 to assess the sensitivity of the two identified PC clusters 
in Fig. 5b (corresponding to thresholds = 0.65). As we show in Additional file 1: Fig. S14, 
with a small thresholds(0.5) PC networks become denser, with the two PC clusters in 
Fig. 4b forming key components of two larger clusters; when thresholds is large (0.8), the 
network is sparser, with only the most highly similar nodes of the two clusters forming 
smaller communities. We thus concluded that the two identified clusters in Fig. 5b were 
not sensitive to the cosine coefficient threshold, as they were recurrently identified in 
both smaller and larger cutoff scenarios.

Continuous structure validation

We validated the consistency of the two clusters’ corresponding continuous scores in 
all IBD cohorts, non-IBD, and healthy control samples, as well as a randomly permuted 
mock study (as a negative control). The reproducibility of each continuous score within 
a study was defined as the maximum absolute cosine coefficient between the score’s 
consensus loading (as provided by MMUPHin_Continuous) and the top three princi-
pal component loadings discovered independently within that study. Note that the num-
ber of top principal components considered here was set to a fixed value (three) instead 
of based on a percent variance cutoff as in MMUPHin_Continuous. This is because in 
the two identified clusters in Fig. 5c, the latest included node was PC3. The randomly 
permuted study consisted of 473 samples (median validation data sets sample size) ran-
domly selected from the entire meta-analysis collection, but each sample’s microbial 
abundance was independently permuted across features. This was to simulate a “nega-
tive control” dataset where there should be no continuous population structures.
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As we show in Additional file 1: Fig. S12, the dysbiosis score was well validated across 
studies, except for healthy control samples and the negative control dataset. The Firmi-
cutes-versus-Bacteroidetes tradeoff score, on the other hand, was reasonably well repro-
duced in all studies and particularly well-established in healthy samples, but, again, was 
not significantly detected in the negative control dataset.

Continuous score assignment

Assignment of continuous scores was straightforward given the two consensus loading 
vectors provided by MMUPHin. Within each study, arcsin square root-transformed rela-
tive abundances were centered per-feature, the transformed abundance matrix was then 
multiplied by each consensus loading via dot product to generate per-sample continuous 
scores. These scores were used for visualization as in Fig. 4d and Additional file 1: Fig. 
S10, as well as for testing the difference between CD, UC, non-IBD, and healthy control 
populations as in Additional file 1: Fig. S16. We provide the two consensus loadings in 
Additional file 9: Table S7; interested researchers can follow these steps to assign the two 
continuous scores in other datasets.
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