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Abstract

Microbiome studies of inflammatory bowel diseases (IBD) have achieved a scale for
meta-analysis of dysbioses among populations. To enable microbial community meta-
analyses generally, we develop MMUPHIn for normalization, statistical meta-analysis,
and population structure discovery using microbial taxonomic and functional profiles.
Applying it to ten IBD cohorts, we identify consistent associations, including novel taxa
such as Acinetobacter and Turicibacter, and additional exposure and interaction effects.
A single gradient of dysbiosis severity is favored over discrete types to summarize IBD
microbiome population structure. These results provide a benchmark for characteriza-
tion of IBD and a framework for meta-analysis of any microbial communities.

Keywords: Inflammatory bowel disease, Metagenomics, Dysbiosis, Meta-analysis,
Batch effect

Background

Meta-analysis for molecular epidemiology in large populations has seen great success
in linking high-dimensional ‘omic features to complex health-related phenotypes. One
example of this is in genome-wide association studies (GWAS [1]), where the appropri-
ate study scale, achieved by rigorous integration of multiple cohorts, has both facilitated
reproducible discoveries (in the form of disease-associated loci [2—4]) and addressed
confounding due to unobserved population structure [5]. The inflammatory bowel dis-
eases (IBD) represent a particular success story for GWAS meta-analysis [3, 4], and
environmental and microbial contributors complementing the condition’s complex
genetic architecture have been detailed by many individual studies [6—8]. However, in
the absence of methods appropriate for large-scale microbial meta-analysis, the extent
to which these findings reproduce across studies, or can be extended by increased joint
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sample sizes, remains undetermined. Likewise, it is unclear whether reproducible popu-
lation structure in the microbiome, such as microbially driven IBD “subtypes,” exists to
help explain the clinical heterogeneity of these conditions [9].

Meta-analysis of microbial community profiles presents unique quantitative challenges
relative to other types of ‘omics data such as GWAS [10] or gene expression [11]. These
include particularly strong batch, inter-individual, and inter-population differences, and
statistical issues including zero inflation and compositionality [12, 13]. Consequently,
methods to correct for cohort and batch effects from other ‘omics settings [14—17] are
not directly appropriate. Two recent studies have suggested quantile normalization [18]
and Bayesian Dirichlet-multinomial regression (BDMMA) [19] for microbial profiles,
which are applicable to a limited subset of differential abundance tests and do not pro-
vide batch-corrected profiles. To date, there are no methods permitting the joint analysis
of batch-corrected microbial profiles for most study designs.

IBD represents one of the best-studied, microbiome-linked inflammatory phenotypes
to date which thus stands to benefit from such approaches [20, 21]. Among the inflam-
matory bowel diseases, Crohn’s disease (CD) and ulcerative colitis (UC) have been indi-
vidually linked with structural and functional changes in the gut microbiome in many
individual studies [21]. Each of CD and UC can itself be highly heterogeneous within
the IBD population, however, and diversity in disease-associated gut microbial features
has not been consistently associated with factors including disease subtype, progression,
or treatment response [7, 9, 22, 23]. Of note, two meta-analysis studies included IBD as
one of several phenotypes [24, 25]. These studies were not IBD-specific, did not have
access to appropriate normalization techniques, nor took the aforementioned factors
into account. The complexity of microbial involvement in IBD, and the presence of sub-
stantial unexplained variation in the manifestation of its symptoms, makes it particularly
appropriate for application of meta-analysis techniques.

In this work, we introduce and validate a statistical framework for population-scale
meta-analysis of microbiome data, and apply it to the largest collection to date of ten
published 16S rRNA gene sequencing-based IBD studies (Table 1) to identify consistent
disease associations and population structure. We found both previously documented
and novel microbial links to the disease, with further differentiation among subtypes,
phenotypic severity, and treatment effects. We further confidently conclude that there
are no apparent, reproducible microbiome-based subtypes within CD or UC, which are
instead a population structure gradient from less to more “pro-inflammatory” ecologi-
cal configurations. Our work thus represents one of the first large-scale efforts to assess
consistency in gut microbial findings for IBD and provides methodology supporting
future microbial community meta-analyses.

Results

Integrating 10 studies of the IBD stool and mucosal microbiomes

We collected and uniformly processed ten published 16S studies of the IBD gut
microbiome (Table 1, Fig. 1a, Additional file 1: Figs. S1-S4, Additional file 2: Supple-
mental Notes, Additional file 3: Table S1) totaling 2179 subjects and 5151 samples.
These studies range widely in terms of cohort designs and population characteris-
tics, including recent-onset and established disease patients, cross-sectional and
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Table 1 Ten uniformly processed 16S rRNA gene sequencing studies of the IBD mucosal/stool
microbiomes. For longitudinal cohorts, numbers in parentheses indicate baseline sample size. For
age, mean and standard error (parenthesized) are shown. Additional covariates are summarized in

Additional file 3: Table S1

Study Brief N subject Nsample Phenotype(s) Age Gender Sample
description type(s)
PROTECT Longitudinal 405 1212 (539) UC405 12.71(3.29) Male52%/  Biopsy 22%/
[23] cohort of Female 48%  Stool 78%
newly diag-
nosed UC
RISK [7] Pediatric 631 882 CD 430/Con- 1216 (3.22) Male59%/  Biopsy 72%/
cohort of trol 201 Female 41% Stool 28%
treatment-
naive CD
Herfarth [26] Densely 31 860 (31) CD 19/Control  36.03 (14.12) Male 35%/  Stool
(daily) 12 Female
sampled 58%/Miss-
longitudinal ing 6%
cohort
Jansson- Longitudinal 137 683 (137) CD49/UC 60/ Male 42%/  Stool
Lamendella  follow-up Control 28 Female 58%
[22] with fecal
samples
Pouchitis Patients 353 577 CD42/UC266/ 46.19(13.58) Male 52%/  Biopsy
[27] recruited Control 45 Female 48%
underwent
IPAA for
treatment
of UC or
FAP prior to
enrollment.
CS-PRISM Cross- 397 467 CD 215/UC 4168 (15.22) Male 47%/  Biopsy 29%/
[28] sectional 144/Control 38 Female 53% Stool 71%
cohort
nested in
PRISM
HMP2 [9] Large cohort 81 177 (162) CD37/UC22/ 29.76(19.63) Male51%/  Biopsy
of newly Control 22 Female 49%
diagnosed
IBD with
multi-‘omics
measure-
ment.
MucosallBD  Pediatric 83 132 CD 36/Control 1293 (3.65) Male 58%/  Biopsy
[29] cohort with 47 Female 42%
Paneth cell
phenotypes
LSS-PRISM  Longitudi- 18 88(19) CD12/UC6 30.37(10.52) Male39%/  Stool
[30] nal cohort Female 61%
nested in
PRISM.
BIDMC-FMT ~ FMT Trial 8 16 cbs8 38.38(12.73) Male 62%/  Stool
[31] design Female 38%

longitudinal sampling, pediatric and adult populations, diseases (CD and UC), treated

and treatment-naive patients, biopsy and stool samples, and inclusion of healthy/non-

IBD controls. Covariates were manually curated to ensure consistency across studies

(“Methods”). Major factors available from all or most studies included demographics

(age/sex/race), biogeography, disease location and/or extent, antibiotic usage, immu-

nosuppression, and steroid and/or 5-ASA usage.
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Fig. 1 A method for large-scale microbial community meta-analysis and its application to inflammatory
bowel disease. a We developed a novel statistical framework, MMUPHin, allowing joint normalization and
meta-analysis of large microbial community profile collections with heterogeneous and complex designs
(multiple covariates, longitudinal samples, etc.). We applied it to a collection of 10 inflammatory bowel
disease studies comprising 2179 subjects and 5151 total samples (Table 1). We uniformly processed the
associated sequence data and harmonized metadata across cohorts. Microbial taxonomic profiles were then
corrected for batch and study effects before downstream analyses for omnibus and per-feature association
with disease phenotypes and unsupervised population structure discovery. b MDS ordination of all microbial
profiles (Bray-Curtis dissimilarity) before batch correction visualize the strongest associations with gut
microbial composition, including disease, sample type (biopsy or stool), cohort (visualized separately for
larger and smaller studies), and dominant phyla

Using this joint dataset and upon uniform bioinformatics processing (“Methods”), we
first assessed the factors that corresponded to overall variation in microbiome structure,
which included disease status, sample type (biopsy versus stool), and dominant phyla
(Bacteroidetes and Firmicutes, Fig. 1b). Cohort effects prior to batch correction and
meta-analysis were also significant. Microbiome differences associated with disease were
notable even without normalization. However, this can be misleading due to the con-
founding of cohort structure between studies, such as the differentiation between RISK
(a predominantly mucosal study of CD) and PROTECT (a predominantly stool study of
UC). Inter-individual differences largely independent of population or disease, such as
Bacteroidetes versus Firmicutes dominance, were also universal among studies and sam-
ple types as expected [9, 32]. Many of these factors were of comparable effect size, both
visually and as quantified below, emphasizing the need for covariate-adjusted statistical
modelling to delineate the biological (disease, treatment) and technical (cohort, batch)
effects associated with individual taxa throughout the cohorts (Additional file 1: Figs.
S1-S4, Additional file 2: Supplemental Notes).

A statistical framework for meta-analysis of microbial community profiles

We developed a collection of novel methods for meta-analysis of environmental expo-
sures, phenotypes, and population structures across microbial community studies,
specifically accounting for technical batch effects and interstudy differences (“Meth-
ods,” Fig. la). Jointly named MMUPHin (Meta-Analysis Methods with a Uniform
Pipeline for Heterogeneity in microbiome studies), our methods consist of three main
components: batch and study effect correction (MMUPHin_Correct), meta-analyzed
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differential abundance testing (MMUPHin_MetaDA), and population structure dis-
covery (MMUPHin_Discrete and MMUPHin_Continuous). First, MMUPHin_Correct
performs batch correction of microbial abundance data, by extending methods from the
gene expression literature (ComBat [15]) to zero-inflated microbiome sequencing pro-
files. Based on linear modelling, the method can differentiate between technical effects
(batch, study) versus covariates of biological interest (exposure, phenotype). Second,
MMUPHin_MetaDA performs meta-analytical testing of per-feature (taxon, gene, or
pathway) differential abundance effects, by combining well-validated data transforma-
tion and linear modelling combinations for microbial community profiles [33] with fixed
and random effect modelling [34]. Lastlyy, MMUPHin_Discrete and MMUPHin_Con-
tinuous perform unsupervised discovery and validation of both discrete and continuous
population structures in microbial community data (Additional file 1: Fig. S5). This is
generalized from our previous approaches in cancer transcriptional subtyping [35]. Our
methods are available as an R package [36] through Bioconductor [37].

Comprehensive validation of MMUPHin via realistic synthetic data

We validated MMUPHin both in comparison to existing methods and through exten-
sive simulation studies (Fig. 2), with simulated realistic microbial abundance profiles at
different data dimensionality, biological/technical batch signal strength, and discrete/
continuous population structures (“Methods,” Additional file 1: Figs. S6-S10, Additional
file 4: Table S2). These simulations were designed to be complementary to our appli-
cation to and assessment of the IBD microbiome as described below, since they allow
analysis of a controlled ground truth of outcome-associated and null microbial elements
that is lacking in uncontrolled population settings. As detailed in “Methods,” our simula-
tion approach (a) generates realistic microbial profiles, so that the evaluation findings
are generalizable to the appropriate target populations, and (b) is neutral to the evalu-
ated methods (ComBat, quantile normalization, MMUPHin, etc.).

MMUPHin_Correct successfully reduced variability attributable to technical effects
in simulated microbial profiles, as first quantified by the PERMANOVA R2 statistic
[38] (Fig. 2a, b, Additional file 1: Fig. S6). This was true both in terms of reducing the
overall microbial variability attributable to technical artifacts and in terms of the ratio
of “biological” versus technical variability (Fig. 2a). ComBat correction [15], suited for
gene expression data, was capable of reducing batch effects to a lesser degree, but also
tended to reduce desirable “biological” variation in the process, likely due to noise intro-
duced by it changing many zero counts to non-zero values. Previously proposed tech-
niques for microbial community data, namely quantile normalization [18] and BDMMA
[19], are only appropriate for differential abundance analysis and do not provide batch-
normalized profiles, thus precluding PERMANOVA batch effect quantification; their
per-feature testing performance is evaluated together with MMUPHin_MetaDA instead.
MMUPHin_Correct thus provides batch-corrected microbial community profiles that
retain biologically meaningful variation more than (or not even possible using) existing
methods. Subsequently, for differential abundance testing, MMUPHin_MetaDA suc-
cessfully corrected for false associations when batch/cohort effects were confounded
with variables of interest, which is a common concern for ‘omics meta-analysis [39],
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Fig. 2 Effectiveness of batch correction, association meta-analysis, and unsupervised population structure
discovery methods. All evaluations use simulated microbial community profiles as detailed in “Methods. Left
panels summarize representative subsets of results (full set of simulation cases presented in Additional file 4:
Table S2 and results in Additional file 1: Figs. S6-59), and right panels show examples of batch-influenced data
pre- and post-correction. a, b MMUPHin_Correct is effective for covariate-adjusted batch effect reduction
while maintaining the effect of positive control variables. For panel a, PERMANOVA R? statistics summarize
the effect of batch and positive/negative control variables on the overall microbial composition, before and
after batch correction. Results shown correspond to the subset of details in Additional file 1: Fig. S6 with
number of samples per batch = 500, number of batches = 4, and number of features = 1000 with 5% spiked
with associations. ¢, d Batch correction and meta-analysis with MMUPHin_MetaDA reduces false positives
when an exposure is spuriously associated with microbiome features due to an imbalanced distribution
between batches. Corresponds to Additional file 1: Fig. S7 with number of samples per batch = 500, number
of features = 1000 with 10% spiked associations, and case proportion difference between batches = 0.8.
Evaluations of BDMMA generate low FPRs due to the zero-inflated nature of simulated microbial abundances,
and are included only in Additional file 1: Fig. S7. e, f Batch correction improves correct identification of the
true underlying number of clusters during discrete population structure discovery. Success rate is measured
as the percentage of selecting the true number of clusters (before and after correction) across simulation
iterations. Corresponds to Additional file 1: Fig. S8 with number of samples per batch = 500 and number

of batches = 2. g, h Continuous structure discovery with MMUPHin_Continuous accurately recovers
microbiome compositional gradients in a simulated population. We compare identified continuous structure
loading with true scores with Pearson correlations. Corresponds to Additional file 1: Fig. S9 with number of
batches =6

while quantile normalization [18] and BDMMA [19] had either inflated or overly con-
servative false positive rates (Fig. 2c, d, Additional file 1: Figs. S7-S8).

We also validated MMUPHin’s support for unsupervised population structure dis-
covery, in addition to these “supervised” differential abundance and statistical asso-
ciation tests. In microbial communities, valid, generalizable population structure can
manifest as either discretely clustered subtypes [40] or as continuously variable gradi-
ents of community configurations [41], but methods for discovery are particularly sus-
ceptible to false positives in the presence of technical artifacts [32, 41]. To this end, for

Page 6 of 31
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Fig. 3 Meta-analytic omnibus and per-feature testing reveal novel and previously documented IBD
associations. a Omnibus testing (PERMANOVA on Bray-Curtis dissimilarities with stratification and covariate
control where appropriate, see “Methods"and Additional file 5: Table S3) identified between-subject
differences as the greatest source of microbiome variability, with IBD phenotype, disease (CD/UC), and
sample type (stool/biopsy) as additional main sources of biological variation. MMUPHin successfully reduced
between-cohort and within-study batch effects, although these technical sources also remained significant
contributors to variability. b Individual taxa significantly associated with IBD phenotypes or treatments
after meta-analysis. Taxa are arranged by family-level median effect size of IBD vs. control for disease results
and that of antibiotic usage for treatment results. Effect sizes are aggregated regression coefficients (across
studies with random effects modelling) on arcsin square root-transformed relative abundances. Detailed
model information in “Methods”and Additional file 5: Table S3. Individual study results in Additional file 6:
Table S4

discrete structures, MMUPHin_Discrete a) evaluates the existence of discrete clus-
ters within individual microbiome studies and b) validates the reproducibility of such
structures among studies meta-analytically (Fig. 2e, f, Additional file 1: Fig. S9), by uti-
lizing established clustering strength evaluation metrics [42]. For continuous struc-
tures, MMUPHin_Continuous identifies major axes of variation that explain the largest
amount of heterogeneity among microbial profiles that are also consistent across stud-
ies. This is generalized from single study principal component analysis (PCA [43]) to
multiple studies by constructing a network of correlated top PC loadings [35] (Fig. 2g, h,
Additional file 1: Fig. S10). As a result, MMUPHin was able to successfully identify dis-
crete clusters (i.e., microbiome “types”) when present, as well as significantly consistent
continuous patterns of microbiome variation that recur among populations (Additional
file 2: Supplemental Notes).

Meta-analysis of the IBD microbiome

Given these validations of MMUPHin’s accuracy in simulated data, we next applied
it to the 10-study, 4,789-sample IBD gut amplicon profile meta-analysis introduced
above (Fig. 3). MMUPHin_Correct successfully reduced the effects both of differ-
ences among studies, and of batches within studies (study effect correction model-
ling disease and sample type as covariates, see “Methods”), although these remained
among the strongest source of variation among taxonomic profiles as quantified
by PERMANOVA R2 (Fig. 3a, “Methods,” Additional file 5: Table S3). Among bio-
logical variables, sample type (biopsy/stool), biopsy location (multiple, conditional
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on biopsy samples), disease status (IBD/control), and disease types (CD/UC, con-
ditional on IBD) consistently had the strongest effect on the microbiome among
studies. Several relationships between study design and phenotypic effects were
apparent. Batches had a particularly strong effect in CS-PRISM and RISK, for exam-
ple, where biopsy and stool samples were also perfectly separated by batch. Treat-
ment exposures all had small effects on microbiome structure within studies, which
typically reached statistical significance only when combined by meta-analysis; anti-
biotics were an exception with slightly larger effects. Montreal classification did not
generally correspond with significant variation, while age (at sample collection as
stratified below and above 18, and at diagnosis by Montreal age classification [44])
had small but significant effects. The effects of gender and race were not significant.
Lastly, for longitudinal studies, relatively stable differences between subjects over
time were large and significant, consistently for both longer-interval (HMP2) as well
as densely sampled cohorts (Herfarth, daily samples), in agreement with previous
individual studies’ observations [9, 23].

We identified individual taxonomic features consistently associated with disease and
treatment variables (Fig. 3b, Additional file 6: Table S4), with meta-analysis multivari-
ate differential abundance analysis (MMUPHin_MetaDA), adjusting for common demo-
graphics (age, gender, race) and further stratifying for sample type and disease when
appropriate (“Methods,” Additional file 5: Table S3). At a very high level, differential
abundance patterns between CD and control microbiomes were consistent with, and
often more severe than contrasts between UC and control, confirming with increased
resolution previous observations that CD patients tend to have more aggravated dys-
biosis than UC patients [9]. As expected, our meta-analysis confirms many of the taxa
associated with IBD reported by previous individual studies (Fig. 3b, detailed in Addi-
tional file 2: Supplemental Notes); they also agreed with important features as identified
through other types of predictive, rather than hypothesis testing, machine learning mod-
els (Additional file 1: Fig. S11 [45]. These findings agree with the emerging hypotheses of
pro-inflammatory aerotolerant clades (e.g., Escherichia and other Enterobacteriaceae)
forming a positive feedback loop in the gut during inflammation, often of oral origin
[7] (e.g., Fusobacterium, Dialister, Veillonella), and depleting the gut’s typical fastidious
anaerobe population as a result (primarily Ruminococcaceae, Lachnospiraceae, and other
Clostridia and Firmicutes clades) [9].

We also identified two taxa not previously associated with IBD, both of modest effect
sizes and likely newly detected by the meta-analysis’ increased power. The genus Acine-
tobacter was enriched in CD, and Turicibacter was depleted. Turicibater in particular
is poorly represented in reference sequence databases, with only nine genomes for one
species (Turicibacter sanguinis) currently in the NCBI genome database; this makes it
easy to overlook in shotgun metagenomic profiles relative to amplicon sequencing. The
genus Acinetobacter, conversely, is quite well characterized due to its role in antimicro-
bial resistant infections [46], and it was previously linked specifically to the primary scle-
rosing cholangitis phenotype in UC [47], although without follow-up to our knowledge.
Turicibacter is overall less characterized both in isolation and with respect to disease,
although our findings and others’ suggest it might be inflammation-sensitive when pre-
sent; it was one of many clades increased in mice during CD8+ T cell depletion [48] and
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reduced in a homozygous TNF deletion [49]. As the strains of Acinetobacter implicated
in gut inflammation are unlikely to be those responsible for, e.g., nosocomial infections,
further investigation of both clades using more detailed data or IBD-specific isolates is
warranted.

Among treatment variables (samples or time points during which subjects were
receiving antibiotics, immunosuppressants, steroids, and/or 5-ASAs), antibiotics had
the strongest effects on individual taxa, as well as the greatest number of significantly
associated taxa (Fig. 3b). These associations are also broadly in agreement with previous
observations for microbiome responses to antibiotics in IBD or generally, e.g., the deple-
tion of Faecalibacterium, Ruminococcus, and Bacteroides in patients treated with antibi-
otics, and the enrichment of (often stereotypically resistant) taxa such as Streptococcus,
Acinetobacter, and the Enterobacteriaceae, with differential responses to the treatment
groups speaking to both administration considerations and their impact on host versus
microbial community bioactivities (Additional file 2: Supplemental Notes).

Subsets of IBD-linked taxa were additionally associated with the diseases’ phenotypic
severity (Fig. 4a, Additional file 7: Table S5). Montreal classification [44] was used as a
proxy for disease severity, including Behavior categories for Crohn’s disease (B1 non-
stricturing, non-penetrating, B2 stricturing, non-penetrating, B3 stricturing and pen-
etrating) and Extent for ulcerative colitis (E1 limited to rectum, E2 up to descending
colon, E3 pancolitis). We tested for features differentially abundant in the more severe
phenotypes when compared against the least severe category (B1 CD and E1 UC, “Meth-
ods”). Among statistically significant results, many extended those identified above as
overall IBD associated (Fig. 3b), such as the depletion of Faecalibacterium in B3 CD
and Roseburia in B2 CD, as well as the enrichment of Enterobacteriaceae in E3 UC. In
most cases, microbial dysbiosis was also additionally aggravated from the moderate to
the most extreme disease manifestations; such differences were statistically significant
(“Methods”) in, for example, the progressive depletion of Bacteroides in CD and UC, as
well as the enrichment of Enterobacteriaceae in UC. This meta-analysis is uniquely pow-
ered to detect these subtle differences, which aid in shedding light on the microbiome’s
response to progressive inflammation and disease subtypes. Pancolitis corresponds with
a unique microbial configuration distinct from regional colitis and not generally detect-
able in smaller studies [6], for example, while more severe CD induces essentially a more
extreme form of the same dysbiosis observed in less severe forms of the disease.

Additionally, diseases (CD and UC) and their corresponding dysbioses also inter-
acted distinctly with the microbiome under different treatment regimes and in differ-
ent biogeographical environments (mucosa vs. stool, Fig. 4b, Additional file 8: Table S6).
Interaction effects, in the statistical sense, were defined as a main exposure (IBD or
treatment) having differential effects on taxon abundance with respect to either sam-
ple type (biopsy/stool) or diseases (CD/UC); they were identified via moderator meta-
analysis models (“Methods”). Overall, we found elevated effects of both CD (relative to
controls) and antibiotic treatment in stool as compared to biopsy-based measurements
of the microbiome (Additional file 8: Table S6). An example of this is Dehalobacterium,
with significantly greater depletion in CD stool relative to biopsies (Fig. 4b). Dehalobac-
terium, as with Turicibacter above, is underrepresented in reference sequence databases,
better-detected by amplicon sequencing, and thus not a common microbial signature
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Fig. 4 |BD-associated taxa are aggravated in more severe disease; disease biogeography and CD/UC
differentially affect some taxa with respect to disease and treatment. a Statistically significant genera from
meta-analytically synthesized differential abundance effects among severity of CD and UC phenotypes

as quantified by Montreal classification. The difference between the most severe phenotype with the

least severe one (B3 vs. B1 for CD, E3 vs. E1 for UC) was in most cases more aggravated than that of the
intermediate phenotype. Many of the identified features overlap with those associated with IBD vs. control
differences, suggesting a consistent gradient of severity effects on the microbiome. Individual study results
in Additional file 7: Table S5. b Genus Dehalobacterium as an example in which a taxon is uniquely affected in
the stool microbiome during CD and not at the mucosa. Likewise, family Enterobacteriaceae as an example
in which steroid treatment corresponds with enrichment of the clade in CD samples, but depletion in UC.
In all panels, effect sizes are aggregated regression coefficients on arcsin square root-transformed relative
abundances. Full sets of statistically significant interactions, with individual study results, are in Additional
file 8: Table S6

of IBD. It has been linked to CD in at least one existing 16S-based stool study [50]. In
contrast, several UC-specific microbial disruptions were more prominent at the mucosa
(i-e., in biopsies, Additional file 8: Table S6). Coupled with the severity-linked differences
above, this suggests CD-induced changes in the entire gut microbial ecosystem largely as
a consequence of inflammation, with UC-induced dysbioses both more local and more
specific to disease and treatment regime. Additional results include effect of steroids
on the Enterobacteriaceae, which tended to be more abundant in CD patients receiving
steroids, but less abundant in UC recipients (Fig. 4b, Additional file 8: Table S6, Addi-
tional file 2: Supplemental Notes).

Lastly, we also conducted a more direct comparison of IBD microbiome associations
found after applying each of the three batch correction methods (quantile normaliza-
tion, ComBat, and MMUPHin_Correct) to our meta-analysis dataset. This employed a
simpler post-correction testing strategy, as previously recommended [18], thus making
the results more directly comparable but likely less biologically relevant than those dis-
cussed previously (Fig. 3). MMUPHin_Correct-processed abundance profiles still iden-
tified more IBD-associated genera compared to ComBat and quantile normalization,
while also showing the best agreement with both other methods (Additional file 1: Fig.
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S12). This provides empirical evidence for MMUPHin’s effectiveness in real-world set-
tings, in addition to its accuracy as quantified by our simulation studies.

Consistent IBD microbial population structure discovered by unsupervised analysis

The existence of subtypes within gut microbial communities has been a major open
question in human microbiome studies, and it is of particular importance within IBD as
a potential explanation for heterogeneity in disease etiology and treatment response [6,
9]. To systematically characterize population structure in the IBD gut microbiome that
was reproducible among studies, we performed both discrete (MMUPHin_Discrete) and
continuous (MMUPHin_Continuous) structure discovery on the 10 cohorts using our
meta-analysis framework. To identify potential discrete community types (i.e., clusters),
we performed clustering analysis within each cohort’s IBD patient population and evalu-
ated the clustering strength via prediction strength (MMUPHin_Discrete, “Methods”).
We found no evidence to support discrete clustering structure within individual cohorts,
nor were we able to reproduce each cohort’s clustering results externally (Fig. 5a). This
lack of discrete structure was consistent when we further stratified samples to either
CD or UC populations (Additional file 1: Fig. S13), or extended to additional dissimi-
larity metric and clustering strength measurements (Additional file 1: Fig. S13, “Meth-
0ds”). Our observation that the IBD gut microbiome cannot be well characterized by
discrete clusters is thus consistent with previous findings on gut microbial heterogeneity
for healthy populations [41] and suggests that, at the level powered by this study, such
microbiome subtypes are not clearly responsible for clinical heterogeneity.

Conversely, we identified two consistent, continuously varying gradients of micro-
bial community variation in the IBD microbiome (Fig. 5b—d, Additional file 1: Fig. S14).
These gradients represent patterns of microbes that occur with greater or lesser abun-
dance in tandem, and which covary across subjects in a population; they were identified
as principal component (PC) vectors that recur among different cohorts (MMUPHin_
Continuous, see “Methods”) [35]. Briefly, we used the four largest IBD cohorts (CS-
PRISM, Pouchitis, PROTECT, and RISK) as training datasets to identify two clusters
of consistent PCs (Fig. 5b), which were confirmed with sensitivity analysis (Additional
file 1: Fig. S15) and validated in the remaining cohorts (Additional file 1: Fig. S16). The
consensus loadings (i.e., within-cluster average) representing these two clusters (Fig. 5c,
Additional file 1: Fig. S14, Additional file 9: Table S7) were used to assign continuously
varying scores to the IBD population that capture gradient changes in the microbiome
that occurred consistently within IBD, across diseases, sample types, and cohorts. This
disease-linked “type” of microbiome variation corresponded roughly to severity or
extent of inflammation, as detailed below.

In particular, while the second continuous population structure captured the Firmi-
cutes-Bacteroidetes tradeoff present in most gut microbiome studies (Additional file 1:
Fig. S14) [9, 32, 41], the first continuous score was IBD-specific and corresponded
roughly to more extreme disease-associated dysbiosis in CD and UC populations
(Fig. 5d). This is evidenced by the taxa with highest weights in the scores’ consensus
loading vector (Fig. 5¢), which included taxa differentially abundant between IBD and
control populations (Fig. 3). The score was consistent both within CD and UC while
also further differentiating IBD, non-IBD control, and healthy populations (Fig. 5d,
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Fig. 5 Unsupervised population structure discovery finds no evidence of microbiome-based subtypes in the

IBD gut, but a reproducible gradient of continuously variable dysbiosis in disease. a No support was detected

for discrete microbiome subtypes (clusters) within the IBD microbiome, neither within cohort nor when

evaluated among studies (red bars) using prediction strength [42]. This remained true during stratification

within CD and UC, and for additional dissimilarity metric/clustering strength measurements (Additional

file 1: Fig. S12). b Conversely, two reproducible, continuously variable patterns of microbiome population

structure were identified using groups of similar principal components (“Methods”) [35]. These patterns

were consistent within and between cohorts, disease types, and sample types, as well as under different

edge strength cutoffs (Additional file 1: Fig. S14), and their consensus loadings were reproducible among

cohorts (Additional file 1: Fig. S15). ¢ Top 20 genera with highest absolute loadings for the disease-associated

dysbiosis score corresponding to the first cluster in b. Many of these taxa were also IBD-associated (Fig. 3b). d

Distribution of the dysbiosis pattern across CD, UC, non-IBD control, and healthy populations. Although it was

defined in an unsupervised way solely within the IBD population, across which the pattern is highly variable,

it also differentiates well between IBD and control populations (Additional file 1: Fig. S16)

Additional file 1: Fig. S17), even though it was identified unsupervisedly only from
diseased subsets. The composition of the score and its population structure are also
consistent with our recent definition of dysbiotic gut microbiome configurations cor-
responding with multi-‘omic perturbations during IBD activity [9]. Together with the
supervised meta-analysis results above, these unsupervised population structure find-
ings confirm that there are no detectable discrete subtypes of the gut microbiome in IBD
even among ~5000 combined samples, while showing a single continuously variable gra-
dient of microbiome changes reproducibly present during more dysbiotic diseases.
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Discussion

Microbiome studies in general, and the IBD gut microbiome in particular, stand to
benefit from meta-analysis, as have other multiply sampled conditions such as colo-
rectal cancer [51, 52]. This is a major hurdle in establishing reproducibility of clini-
cally relevant disease biomarkers, i.e., ecological and microbiological changes during
disease that are reproducible across populations. Both the findings and methodology
presented in this work are thus of interest, allowing MMUPHin to be validated and
to leverage increased sample sizes from combined studies. However, all microbial
community meta-analyses should be approached with caution, since in many cases
unwanted sources of technical variation between studies (i.e., batch effects) are so large
as to potentially mask biological signals even after correction [53-55] (Additional file 2:
Supplemental Notes). Reducing interstudy variation in microbial community profiles
is challenging relative to other ‘omics data types due to (1) the extreme heterogeneity
of microbes within most communities (exacerbating both technical and biological dif-
ferences), and (2) feature zero inflation arising from both biological and technical rea-
sons [13, 56]. MMUPHin alleviates this problem by taking care to incorporate batch/
study effects in each of its components, not just during batch effect normalization
(MMUPHin_Correct): mixed effects modelling was adopted for differential abundance
meta-analysis to allow for residual per-study effects (MMUPHin_MetaDA); PC network
clustering prioritizes consistent biological signals over batch effects (MMUPHin_Con-
tinuous). Thus despite these challenges, MMUPHin was able to meta-analyze amplicon
profiles in this study both to associate microbial shifts with disease outcome, to associ-
ate them with treatment-specific differences, and to identify a single pattern of typical
microbial variation within IBD. While previous efforts have developed IBD dysbiosis
scores by contrasting patients with control groups [7, 9], this pattern of microbial vari-
ation was present specifically within IBD patients (both CD and UC), and in agreement
with supervised methods, captured several classes of microbial functional responses in
the gut (Additional file 2: Supplemental Notes).

We consider this study based on 16S rRNA gene sequencing to be a proof of concept,
able to achieve unprecedented power due to the number of amplicon profiled samples
available, but with greater precision possible in future work using, e.g., metagenomic
and other ‘omics technologies. This also enabled comparison of responses in the stool
versus mucosal microbiomes, the latter of which are not amenable to metagenomic
profiling from biopsies; these were in overall good agreement, but the few areas of sig-
nificantly differential responses to inflammation are likely of particular immunological
interest. The large sample and population sizes also provide some confidence in ruling
out discrete, microbially driven population subtypes as an explanation for CD and UCs’
clinical heterogeneity. Instead, the work identified a single consistent axis of gradient
microbial change corresponding to increasing departures from “normal” microbiome
configurations [7, 9, 57]. This pattern of consistent microbial dysbiosis can continue to
be explored in further work on its functional, immunological, and clinical consequences.
Overall, this study represents one of the first large-scale, methodologically appropriate,
targeted meta-analysis of the IBD microbiome, and the corresponding methodology and
its implementation are freely available for future meta-analyses of human-associated and
environmental microbial populations.
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Conclusions

We provide a novel framework for microbial community meta-analysis and apply it to
the first large-scale integration of over 5100 amplicon profiles of the stool and mucosal
microbiomes in IBD. This identified a significantly reproducible gradient in the gut
microbiome indicative of increasing dysbiosis in subsets of patients. Our results sup-
ported many of the taxonomic associations previously ascribed to IBD (e.g., Faecali-
bacterium, Ruminococcus, Enterobacteriaceae) while uncovering new associations
(Turicibacter, Acinetobacter) not confidently associated with inflammation by other
populations or data types. Almost all effects were exhibited similarly using either stool
or mucosal profiling, with a small number of exceptions showing significant differen-
tiation (e.g., Dehalobacterium). Novel disease-treatment response interactions were
observed (e.g., steroids on Enterobacteriaceae). The study also showed no evidence of
additional population structure, such as microbiome-driven discrete disease subtypes,
within CD or UC. The meta-analysis framework developed for the study, MMUPHin,
has been extensively evaluated and its performance for batch effect removal, supervised
meta-analysis of exposures and covariates, and unsupervised population structure dis-
covery validated on a variety of simulated microbial community types. It is extensible
to integration of microbial community taxonomic or functional profiles from other data
types (e.g., metagenomic sequencing), environments, or health conditions.

Methods

MMUPHin: a uniform statistical framework for meta-analysis of microbial community
studies

We developed MMUPHin (Meta-analysis Methods with a Uniform Pipeline for Het-
erogeneity in microbiome studies) as a framework for meta-analysis of microbial com-
munity studies using taxonomic, functional, or other abundance profiles. It includes
components for batch effect adjustment, differential abundance testing, and unsuper-
vised discrete and continuous population structure discovery.

Batch adjustment: MMUPHin_Correct

For microbial community batch correction, we extended the batch correction method
developed for gene expression data in ComBat [15] with an additional component to
allow for the zero-inflated nature of microbial abundance data. In our model, sample
read count Y was modelled with respect to both batch variable and biologically relevant
covariate(s) X:

Yl] = eXp{ﬂle«/ =+ O'p()/ip —+ 5ip€sz)} X Iijp

where i indicates batch/study, j indicates sample, and p indicates feature. y,, and §,, are
batch-specific location and scale parameters. 0, is a feature-specific standardization fac-
tor. B, are covariate-specific coeficients, and €, is an independent error term follow-
ing a standard normal distribution. I, is a binary (0, 1) zero-count indicator, to allow
for zero inflation of features. As in ComBat, y;, and §;, are modelled with normal and

inverse-gamma priors, respectively. Hyperparameters are estimated with empirical
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Bayes estimators as in ComBat [15]. The posterior means, y;':ip and 5£ip, along with
standard frequentist estimates ﬂ;, and 6, are used to provide batch-corrected count data:

~ B X k&
{Ylip BpXij' = v*iy0p
%

Yjjp = exp + pri/} x Lijp

Per-sample feature counts are then re-normalized to keep sample read depth
unchanged post-correction. In practice, the user provides sample microbial abun-
dance table (Y), batch/study information, and optionally any other covariates X that
are potentially confounded with batch but encode important biological information.
MMUPHin outputs an adjusted profile ;/ that is corrected for the effect of batches
but retains the effects of X (if provided).

With this model specification, we expect MMUPHin_Correct to often reduce,
rather than fully correct batch differences. This is due to two considerations. First,
MMUPHin_Correct focuses on correcting non-zero abundance batch effects, and
does not change features’ presence/absence across batches. “Correcting” a feature’s
batch-specific presence to absence is inappropriate, as substantial non-zero read
counts indicate biological presence rather than technical artifacts. Imputing non-
zero abundance for batch-specific absence is technically challenging in our linear
modelling framework, as the per-sample/feature noise €, cannot be reliably inferred
for inflated zero values. Second, the empirical Bayes batch effect estimates y;,* and
ai;* are shrunken from their frequentist counterparts, which provides regulariza-
tion for high-dimensional parameters as in ComBat and avoids “overfitting” to batch
differences in small sample sizes. MMUPHin_Correct’s design is thus intentionally
conservative, by correcting batch differences that can be confidently inferred, and
maintaining those that are not (which thus also avoids eliminating non-batch, bio-
logical signal).

Lastly, we note that MMUPHin_Correct does not explicitly model any particular
sources of batch effects, such as primers, extraction protocols, and amplicon regions
for 16S rRNA sequenced profiles. However, it will nevertheless attempt to correct for
variability caused by differences in these protocols, to the extent that they manifest
as batch/study differences. As examples: if two studies adopted different extraction
protocols, potential study differences will be captured with MMUPHin_Correct and
normalized. In contrast, if samples within the same study were sequenced using dif-
ferent amplicon regions, and this difference in protocol was not flagged as a “batch”
variable, MMUPHin_Correct will not register the potential differences.

Meta-analysis differential abundance testing: MMUPHin_MetaDA

For meta-analytical differential abundance testing, after batch correction, MMUPHin_
MetaDA first performs multivariate linear regression within individual studies using
previously validated data transformation and modelling combinations appropriate for
microbial community profiles (MaAsLin2 [33]). This yields study-specific, per-feature
differential abundance effect estimations ,B;p, where i indicates study and p indicates fea-
ture. These are then aggregated into meta-analysis effect size with fixed/random effects
modelling as implemented in the metafor R package [34]:
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IBAip = ﬂp +€ip +eip

B, is the overall differential abundance effect of feature p. €,, is per-study measurement
error, and € 1s study-specific random effects term (not present in fixed-effect models).

Overall, for running MMUPHin_MetaDA, the user provides a microbial community
profile, study design (batch) information, the main exposure variable of interest, and
optional additional covariates. If any meta-analyzed studies include repeated meas-
ures (e.g., longitudinal designs), then random covariates can also be provided and will
be modelled for such studies. MMUPHin_MetaDA then performs MaAsLin2 regres-
sion modelling within each study and aggregates effect sizes of the exposure variable
ﬂ:«p across studies using the resulting random/fixed effects model. The estimated overall
effect, Ep, is reported as the overall differential abundance effect for feature p.

We note that MMUPHin_MetaDA always accounts for the batch variable in its super-
vised differential abundance testing. This agrees with the field’s consensus on the most
appropriate way to address batch effects during supervised testing [15, 58]. Through
simulation evaluations, the performance (FPR, power) of MMUPHin_MetaDA is robust
with or without upstream adjustment with MMUPHin_Correct (Additional file 1: Fig.
S8). Nevertheless, pre-correcting the data with MMUPHin_Correct can still be helpful.
This is both consistent with similar applications of batch correction in other molecular
data types [15], and because MMUPHin_Correct accounts for both location and scale
batch effects, while the linear modeling in MMUPHin_MetaDA only accounts for the
former. Regardless, correcting the data with MMUPHin_Correct is most useful in analy-
sis tasks where accounting for batch effects is otherwise not straightforward, such as for
visualizing the data or during unsupervised population structure discovery.

Unsupervised discrete structure discovery: MMUPHin_Discrete
For unsupervised discrete (i.e., cluster) structure discovery of a single study, again after
batch correction, MMUPHin_Discrete uses average prediction strength [42], an estab-
lished clustering strength metric, to measure the existence of reproducible clusters
among meta-analyzed datasets. Briefly, for each individual dataset, the metric randomly
and iteratively divides samples into “training” and “validation” subsets. In each iteration,
clustering is first performed on the training samples, across a range of cluster numbers &,
yielding (for a specific k) training sample clusters A;, Az, ..., A Note that A;y, Agy, .o
Ay jointly forms a partition of the testing sample indices. The same clustering analysis
is then performed on the validation samples, and the resulting partition of sample space
provides classification membership potentially different from clustering memberships
Ay Ay oo Agg Prediction strength for kclusters is defined as
ps(k) = min ———— Y 1{validation samples j and ;" are classified to the same group according to training samples }
ik (my — 1) e
i.e., the minimum (across validation clusters) proportion of same-cluster sample pairs
also being classified as the same group by training samples. n;;= | Ay, or the number of
test samples in the /th cluster.

Average prediction strength is the average of prediction strengths across randomi-
zation iterations. Intuitively, it characterizes the degree of agreement between the
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clustering structures in randomly partitioned validation and training subsets; if k is
appropriately describing the true number of discrete clusters in the dataset, then average
prediction strength should be close to one (training and validation samples agree most
of the time).

We additionally generalized this metric to meta-analysis settings, where we aimed to
quantify the agreement of clustering structures between studies. In the meta-analytical
setting, generalized prediction strength for cluster number k in study i with validation

study i'is

gps;;, (k) = min . Z I{validation samples i'j and i'j’ are classified to the same group according to study i}

1K gy (g = 1) it
where A, indicates the /th cluster membership in study i, when cluster number is speci-
fied as k; ny;= | Ay;l- The average generalized prediction in study i for cluster number k
is then defined as the average of gps,,(k) across all i =, i.e., all validation studies (instead
of iterations of randomized partitions). Similar to the single study prediction strength,
it describes the generalizability of clustering structure in study i in external validation
studies.

Unsupervised continuous structure discovery: MMUPHin_Continuous

We extended our previous work in cancer gene expression subtyping [35] to perform
unsupervised continuous structure discovery in microbial community profiles. Comple-
mentary to discrete cluster discovery, the goal is to identify strong feature covariation
signals (gradients) that are reproducible across studies. This is carried out by perform-
ing principal component analysis individually in microbiome studies and constructing a
network of correlated PCA loading vectors, to identify loadings that are consistently pre-
sent across studies. In detail, given a collection of training microbial abundance datasets,
our method takes the following steps (visualized in Additional file 1: Fig. S5):

(1) For each dataset i, PCA is performed on normalized and arcsin square root-trans-
formed microbial abundance data. Given a user-specified threshold on variance
explained, we record its top PC loading vectors, w;1, Wi, ..., Wiy, where J; is the
smallest number of top loading vectors that jointly explain percentage of variability
in the dataset past a customizable threshold 0 < threshold, <1 (default to 80%).

(2) For two PC loadings from different datasets w;; and w;/;, similarity is quantified

J

with the absolute value of cosine coefficient [59] |cos <w;, w;;>|. This yields a

ij?
network of PC loading vectors associated by weighted edges w;; and w;/;, retaining
edges only if their weight surpasses a customizable similarity threshold (| cos <w;;,

j
w;ip> | > threshold,, 0 < threshold<1).

(a) This threshold is default to 0.7, which is close to the theoretical guarantee
that all size-three clusters will by definition have positive cosine coefficients
between all PC pairs. In practice, we recommend the user to vary this param-
eter as needed to evaluate robustness and interpretability.

(3) In the resulting network, we perform cluster detection based on modularity score
[60, 61] to identify densely connected modules of PCs. Each module by definition



Ma et al. Genome Biology

~

=

(2022) 23:208

consists of PCs from different datasets that are similar to each other—whether or
not they occur in the same order or with similar percent variance explained—and
which thus represent strong feature covariation signals that are recurrent in studies.

(a) Clustering by modularity score avoids large clusters with few intracluster
edges and prioritizes smaller clusters that are more densely connected (Addi-
tional file 1: Fig. S18, Additional file 2: Supplemental Notes). This is relevant for
MMUPHin because the more densely connected a cluster is, the better consist-
ency the PCs in the cluster have, which provides evidence for recurring biologi-

cal signals across the spanned datasets.

For a module & containing PC set M, its consensus vector W is calculated as the
EW" M Wi/
average of sign-corrected loading vectors in M, ie., Wy := "’;Iikf Note that

the average is taken not over the original loading vectors w;, but rather their sign-

~ i
corrected versions w;;. Specifically, the signs of each w;; in M are corrected so that

all loading vectors have positive cosine coefficients.

(a) We note that, given a specific cosine threshold for constructing edges of the
network, it is not guaranteed that such a correction is always possible. That is,
with all possible sign corrections, there are still certain intracluster PCs that
have negative cosine coeflicients. Such cases are unlikely to happen in empiri-
cal evaluations and are further reduced by our modularity clustering approach
(Additional file 1: Fig. S18). We discuss this issue in Additional file 2: Supple-
mental Notes.

(b) In the case where such issues occur, a higher cosine threshold is recommended.
With a sufficiently high cosine threshold, clusters are guaranteed to be consist-
ent (all PCs will have positive cosines), but also be smaller and thus are less

interpretable in terms of consistent biological signals across studies.

The module-wide consensus vectors W) represent strong, mutually independent,
and reproducible covariation signals across the microbial datasets; they are used to
identify continuously varying gradients in microbial abundance profiles that repre-
sent reproducible population structures. Specifically, given a sample with normal-
ized and transformed microbial abundance measurements x, its continuous score
for module k is defined as x W, as in regular PCA.

If additional studies are available, the reproducibility of each W) can be further
examined by correlating W) with the top PC loadings in each such validation study.
For each additional study, W, is considered to be validated in that dataset if its
absolute cosine coefficient with at least one of the dataset’s top PCs surpasses the
coefficient similarity cutoff threshold; the number of top PCs to consider in the val-
idation dataset loadings is determined with the same cutoff threshold,,

Simulation validation of MMUPHin
We performed extensive simulation studies (Fig. 2, Additional file 1: Figs. S6-S10, Addi-
tional file 4: Table S2) to validate the performance of each component of MMUPHin

Page 18 of 31
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(MMUPHin_Correct, MMUPHin_MetaDA, MMUPHin_Discrete, and MMUPHin_
Continuous). In all cases, these employed realistic microbial abundance profiles gener-
ated using SparseDOSSA (http://huttenhower.sph.harvard.edu/sparsedossa). This is a
model of microbial community structure using a set of zero-inflated log-normal distri-
butions fit to selected training data, in this case drawn from the IBD gut microbiome
[6]. Controlled microbial associations with simulated covariates can then (optionally) be
spiked in. Note that although the assumed null distributions in MMUPHin and Sparse-
DOSSA are the same (zero-inflated log normal), the models of effects for batch and bio-
logical variables are substantially different: MMUPHin assumes exponentiated effects,
while SparseDOSSA assumes re-standardized linear effects.

Specifically, SparseDOSSA models null microbial feature abundances using a zero-
inflated log-normal distribution:

Yip ~ LogN (/’Lp: azp) x Bernoulli (np)

This is the same initial distributional assumption as the MMUPHin batch correction
model, when there are no batch or covariates effects. However, for spiked-in associations
with metadata (batch, biological variables, etc.), SparseDOSSA uses a different model.
Given a simulated, pre-spiking-in feature count vector Y, with mean //tpy and standard
error UPY,
the post-spiked-in feature count is set to:

as well as a metadata variable vector X with mean " and standard error o,

}

where ¢ is a configurable spike-in strength parameter. By this definition, microbial fea-

- 1 X’—MX)GY
Yip= {mp+¢xl(lox p+MpY

tures post-spike-in have the same mean and approximately the same variance as before,
the only difference being the added association with the metadata variable(s) used.
This is to ensure the counts of the modified feature are not dominated by the values of
the target covariate, but instead distributed similarly to real data. The SparseDOSSA
association model thus differs from MMUPHin’s model in two substantial ways: (i)
MMUPHin’s associations are defined within the exponentiated component and are thus
better described as a multiplicative effect, whereas SparseDOSSA’s effects are directly
applied on untransformed data, and (ii) SparseDOSSA additionally ensures realistic data
generation with the re-standardization procedure.

Thus, the only component of the SparseDOSSA model that requires fitting to training
data is the aforementioned zero-inflated log-normal null distribution. In our analysis,
this was always PRISM [6], while other parameters were specified across a wide range of
combinations to simulate different application scenarios. These include the effect sizes of
the associated batch and biological variables (i.e., the ¢ parameter), number of batches,
sample sizes, and dimensionality (both the total number of features and the percentage
of features randomized to be associated with batch/biological variables). For each com-
bination of simulation parameters, we performed 20 random replications (i.e., running
simulation/evaluation with the same parameters but different random seeds). Additional
file 4: Table S2 presents the full list of parameter combinations.
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Evaluating batch adjustment

For evaluation of MMUPHin’s batch effect adjustment component, MMUPHin_Correct,
we simulated metadata that included batch (with varying total batch numbers 2, 4, 6, 8),
a binary positive control (simulated “biological” covariate), continuous positive control
(“biological”), and negative control (binary, and guaranteed to be non-associated with
microbial features) variables. Microbial abundance data was simulated to be associated
with the batch and the two positive control variables at varying effect sizes (1, 2, 5, 10 for
batch variable and fixed at 10 for positive control variables), but not with the negative
control variable. We additionally varied the number of samples per batch (20 to simulate
multiple-batches in a single study scenario, 100 to simulate meta-analysis with moderate
sized studies and 500 to simulate large meta-analysis), total number of microbial fea-
tures (#=200 and 1000), as well as the percentage of features associated with metadata
(5%, 10%, and 20%) (Additional file 4: Table S2).

Performance of batch correction methods was quantified by omnibus associations
(PERMANOVA R2) between the simulated microbial abundance data with the batch
and positive control variables, before and after batch correction. For ComBat [15] and
our method, batch correction was performed with both positive control variables and
the negative control variable as covariates. MMUPHin_Correct successfully reduced the
confounding batch effect, but retained the effect of positive control variables, and did
not inflate the effect of negative control variable (Fig. 2a, Additional file 1: Fig. S6).

Evaluating meta-analytic differential abundance testing

We evaluated false positive rates (FPR) for meta-analytic feature association testing, spe-
cifically the null case in which there are no associations between microbial features and
covariates, but false associations can arise in the presence of batch effects with unbal-
anced distribution of covariate values across studies (Fig. 2b). For simulation, we gen-
erated a binary covariate unevenly distributed between two “studies” at varying levels
of disparity (Additional file 4: Table S2). Microbial abundance data was simulated to be
associated only with the two studies and not with the covariate (i.e., study confounded
null data), with varying strengths of batch effect (from 0 to 10). The number of sam-
ples per batch varied between 100 and 500 to, again, simulate moderate- and large-sized
meta-analysis. Lastly, we varied a total number of microbial features and the percentage
of features associated with metadata as above.

FPRs were calculated as the percentage of simulated microbial features with nomi-
nal p-values < 0.05 for associations with the exposure variable. Four data normalization
and analysis regimes were evaluated (Fig. 2c, Additional file 1: Fig. S6): (a) naive MaAs-
Lin2 model on the study effect confounded null data (without explicitly modelling the
batches), (b) the quantile normalization procedure, paired with two-tailed Wilcoxon
tests, as proposed in [18], (c) BDMMA as proposed in [19], with the default 10,000 total
MCMC sampling and 5000 burn-in, (d) the complete MMUPHin meta-analysis model
for the batch-corrected data as described above (MMUPHin_Correct + MMUPHin_
MetaDA). Note that due to its computational cost we were only able to evaluate the
Dirichlet-multinomial regression model on a subset of parameter combinations, namely

number of samples per batch = 100, number of features = 200, and percent of associated
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microbes = 5%. These parameters roughly agree with those used in the simulation analy-
sis in the method’s original publication [19].

We also evaluated the computational costs of quantile normalization, BDMMA, and
MMUPHin (Additional file 1: Fig. S7). For this, the same subset of 20 replications (batch
effect 0, exposure imbalance 0, number of samples per batch 100, and number of fea-
tures 200) were ran through the three methods under the same computation environ-
ment (single core Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz). The computational
cost of BDMMA is prohibitive when compared to MMUPHin and quantile normaliza-
tion, requiring ~5 total CPU hours to finish on the very moderately sized data (200 total
samples by 200 features).

Evaluating unsupervised discrete structure discovery

To simulate microbial abundance data with known discrete clustering structure, we
again used the simulation model above, with microbial feature associations added both
with a discrete “batch” variable and a discrete clustering variable, at varying number of
batches (2, 4, 6, 8), number of clusters (3, 4, 5, 6), and effect size of association (0 to 10
for batch, fixed at 10 for cluster). For the evaluation of MMUPHin’s unsupervised meth-
ods (both here for MMUPHin_Discrete and during continuous population structure dis-
covery below for MMUPHin_Continuous), we fixed the number of samples per batch at
500, the number of total features at 1000, and the percent of associated features at 20%.
These were guided by the fact that the underlying unsupervised methods (clustering,
PCA) require larger sample sizes for good performance even without batch confound-
ing, and are generally only practical with higher feature dimensions (Additional file 4:
Table S2).

Performance of clustering was evaluated as the percentage of replicates in which the
right number of synthetically defined underlying clusters was identified using prediction
strength, across technical replicates for a fixed combination of simulation parameters.
That is, the number of clusters within a simulation was identified as that which maxi-
mized prediction strength. This was compared to the “truth” (i.e., the known simulation
parameter) and counted as a success only if the two agreed. The percentage of success
for a given parameter combination across the 20 random replications was used as the
evaluation metric for model performance. We compared the performance of cluster-
ing before and after MMUPHin_Correct (Fig. 2e, Additional file 9: Table S7). Note that
batch correction is modelled only using the batch variable and specifically not including
the cluster variable as a covariate in the batch correction model above, as the underlying
cluster structure is unknown in non-synthetic unsupervised analyses settings.

Evaluating unsupervised continuous structure discovery

To simulate microbial abundance data with known continuously variable population
structure, we spiked in feature associations with both a simulated batch covariate (4,
6, 8) and a continuously varying gradient (uniformly distributed between —1 and 1), at
varying number of batches and effect size of both associations (as above). The number
of samples per batch, total number of microbial features, and the percentage of features
associated were fixed at the same values as above (Additional file 4: Table S2).
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Performance of continuous structure discovery analysis with MMUPHin_Continu-
ous was evaluated as the Spearman correlation between the known simulated gradi-
ent score and the strongest continuously valued population structure as identified by
MMUPHin’s continuous structure discovery method (above). We again compared the
performance of continuous score discovery on the batch confounded and batch-cor-
rected data (Fig. 2g, Additional file 1: Fig. S10). Note that, as above, batch correction
is again modelled only using the batch variable and does not have any access to the
synthetic continuous gradient, as any underlying continuous population structure is
unknown during unsupervised analyses settings.

Collection and uniform processing of ten IBD microbiome studies employing 16S rRNA
gene sequencing

Study inclusion and raw sequence data

We curated 10 published 16S rRNA gene sequencing (abbreviated 16S) gut micro-
biome studies of IBD for meta-analysis (Table 1, Additional file 3: Table S1). Demul-
tiplexed raw sequences were either downloaded from EBI (Jansson-Lamendella and
Herfarth) or available locally as previously generated (other eight studies). Metadata
were obtained either directly from the sequence repository/manuscript (Herfarth,
Jasson-Lamendella, HMP2, MucosalIBD, PROTECT, RISK), or from collaborators
(BIDMC-FMT, CS-PRISM, LSS-PRISM, Pouchitis). This resulted in a total of 5151
samples and 2179 subjects available prior to processing and quality control.

Metadata curation
We manually curated subject- and sample-specific metadata across studies to ensure
consistency. Variables collected and curated include:

« Disease (CD, UC, control), universally available.

+ Type of controls (non-IBD, healthy). Control information was available directly
for CS-PRISM, Jansson-Lamendella, and Pouchitis, inferred from study design
described in manuscript for Herfarth, HMP2, MucosalIBD, and RISK (all non-IBD
controls), and not applicable for BIDMC-FMT, LSS-PRISM, and PROTECT (only
has IBD subjects).

« Sample type (biopsy, stool), universally available.

+ Body site of biopsy sample collection (ileum, colon, rectum), with more detailed
classifications recorded separately in case of need. Mappings for the relevant data-
sets are:

° CS-PRISM: terminal ileum, neo-ileum, pouch are aggregated as ileum;
cecum, ascending/left-sided colon, transverse colon, descending/right-sided
colon, and sigmoid colon were aggregated as colon; rectum classification was
kept unchanged.
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° HMP2: ileum classification kept unchanged; cecum, ascending/right-sided
colon, transverse colon, descending/left-sided colon, and sigmoid colon were
aggregated as colon.

° MucosalIBD: all terminal ileum samples, aggregated to ileum.

° Pouchitis: terminal ileum, pouch, pre-pouch ileum aggregated as ileum; sig-
moid colon aggregated to colon.

° PROTECT: all rectum samples, classification kept unchanged.

° RISK: terminal ileum was aggregated to ileum; rectum kept unchanged.

« Montreal classifications:

° Location for CDs (L1, L2, L3, and possible combinations), available for
BIDMC-FMT, CS-PRISM, Herfarth, Jansson-Lamendella, LSS-PRISM, and
Pouchitis.

° Behavior for CDs (B1, B2, and B3), available for CS-PRISM, Herfath, Jans-
son-Lamendella, LSS-PRISM, Pouchitis, and RISK.

° Extent for UCs (E1, E2, and E3), available for CS-PRISM, Jansson-Lamen-
della, LSS-PRISM, Pouchitis, and PROTECT.

+ Age at sample collection (in years), available for BIDMC-FMT, CS-PRISM, Her-
farth, HMP2, LSS-PRISM, MucosalIBD, Pouchitis, PROTECT, RISK.

+ Age at diagnosis (in years). Directly available for CS-PRISM, HMP2, LSS-PRISM,
and Pouchitis, inferred as baseline age for PROTECT and RISK as these were new-
onset cohorts.

» Race (White, African American, Asian / Pacific Islander, Native American, more
than one race, others). Directly available for CS-PRISM, Herfarth, HMP2, PRO-
TECT, and RISK, inferred from manuscript cohort description for Jansson-
Lamendella (all Caucasian cohort).

« Gender (male/female). Available for BIDMC-FMT, CS-PRISM, Herfarth, HMP2,
Jansson-Lamendella, LSS-PRISM, MucosallBD, Pouchitis, PROTECT,

« Treatment variables, including antibiotics, immunosuppressants, steroids, and
5-ASA. These variables were encoded as yes/no to indicate, approximately, cur-
rently receiving them at the time of sampling. Additional information such as
specific medication or delivery method was recorded separately if available in
case of need. We note the potentially confounding difference in studies’ defini-
tions of treatment: for Pouchitis and PROTECT authors defined antibiotics as
receiving the treatment within the past month (30 days for Pouchitis, 27 days for
PROTECT), whereas for CS-PRISM, HMP2, LSS-PRISM, and RISK such determi-
nation was not possible (antibiotics “yes” was defined as “currently taking”). Like-
wise, we had no additional information to determine the time extent for the other
three treatments, beyond that according to metadata/publication, patients were
“currently taking” the treatment at sample collection.

For a comprehensive list of curation mapping schema, please refer to our metadata
curation repository: https://github.com/biobakery/ibd_meta_analysis.
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16S amplicon sequence bioinformatics and taxonomic profiling

Sequences were processed, per cohort, with the published, standardized bioBakery
workflow [62] using the UPARSE protocol [63] (version v9.0.2132-6